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1 Discussions on Theorem 5

In this section, we give explicit bounds for ULA which are consequences of Theorem 5.
First note that, if (y)x>1 is a non-increasing sequence of step sizes with y; < (m+ L)},
we have by (9) that

ulP () <> {Ar? + A} T (= swe/2), (S1)
i=1 k=i+1
where & is given by (42), and

Ao =2L%k7d, (S2)
Ay =20%d+dL* (s P+ (m+ L) H(m P+ 67 m+ L)) . (S3)

1.1 Explicit bounds for fixed step size and fixed precision

If (y%)k>1 is a constant step size ,y, = v for all £ > 1, then a straightforward conse-
quence of Theorem 5 and (S1) is the following result, which gives the minimal number
of iterations n. and a step size . to get Wo (0, QY, m) smaller than € > 0.

'Email: alain.durmus@cmla.ens-cachan.fr
Zeric.moulines@polytechnique.edu



Corollary S1 (of Theorem 5). Assume H1 and H2. Let x* be the unique minimizer
of U. Let x € R? and € > 0. Set for all k € N, v, = v with

Ao+ (A2 4 e2RA)Y2
T 2A,
n= [log_l(l — Ky/2) {—log(s2/2) +log(2d/m)}] .
Then Wg(ém*Rg,ﬂ') <e.

Note that if 7 is given by (S4), and is different from 1/(m~+L), then v < e(4A;x~1)~1/2
and 2k 71 (Agy + A1y?) = £2/2. Therefore,

7> (/4 {Ao + s(Am/éL)l/Q}il

It is shown in [1, Corollary 1, Proposition 2] that under H 2, for constant step size
for any € > 0, we can choose v and n > 1 such that if for all £ > 1, v = =, then
|v*Q7 — || py < € where v* is the Gaussian measure on R? with mean z* and covariance
matrix L~!I; or a warm start. We stress that the results in [1, Corollary 1, Proposition
2] hold only for particular choices of the initial distribution v*, (which might seem a
rather artificial assumption) whereas Theorem 5 holds for any initial distribution in
Po(RY).

We compare the optimal value of v and n obtained from Corollary S1 with those given
in [1, Corollary 1, Proposition 2] and [2, Table 2] for the total variation distance and
established under the same conditions as Theorem 5. This comparison is summarized
in Table 1; for simplicity, we provide only the dependencies of the minimal number of
simulations n as a function of the dimension d, the precision € and the constants m, L.
It can be seen that the dependency on the dimension is significantly better than those in
[1, Corollary 1]. The dependency on the dimension and the precision is same compared
to [1, Proposition 2] (up to logarithmic terms), but this result only holds if the initial
distribution is a warm start. In addition, the dependency on L and m is not explicit in
[1, Proposition 2], and that is why we do indicate it in Table 1. On the other hand, we
get the same dependency on ¢ and d as [2, Table 2]. Note that however the result of [2]
holds for the total variation and not the Wasserstein distance.

A(m+L)7t, (S4)

Parameter d € L m
Corollary S1 dlog(d) | e ?|log(e)| | L* | [log(m)|m~3
[1, Corollary 1] Gaussian start d? e~ 2 log(e)| | L? | [log(m)| m~2
[1, Proposition 2] warm start d e 2 log(e)| | — —
[2, Table 2] dlog(d) | e=?|log(e)| | L? m=2

Table 1: Dependencies of n

1.2 Explicit bounds for v, = v k* with « € (0, 1]

We give here a bound on the sequences (ug)(’y))nzo and (ug) (7))n>0 for (vx)k>1 defined

by 71 < 1/(m + L) and v, = y1k~ for a € (0,1]. Also for that purpose we introduce



for t € RY,

@ -1)/8 for 80

¥slt) = {log(t) for B=0. (85)

We easily get for a > 0 that forall n,p > 1, n <p

p
Yi-a(p+1) —P1-4(n) < Z k™" <tp1-a(p) —¥1-a(n) + 1, (S6)
k=n
and for a € R »

D k<P ap+1) — 1 a(n) + 1, (S7)

k=n
1. For a = 1, using that for all t € R, (1 +t) < e’ and by (S6) and (S7), we have

1
ulD(y) < (4172w (9) < (n+ )72 A @y jo1oj(n+ 1) + 1)
§=0

2. For a € (0,1), by (S6) and Lemma 23 applied with ¢ = [n/2], where [-] is the
ceiling function, we have

ulD () < eXp (—smY1-a(n +1)/2)
) < ZA [2/@‘1 ]H (n/2)~ a(j+1) —|—fy]+2 {1/11 a(j+2) (f”/ﬂ + 1}
x exp (—(k71/2) {P1-a(n+1) —P1-a([n/2])})] . (S8)

1.3 Optimal strategy with a fixed number of iterations
Corollary S2. Let n € N* be a fized number of iteration. Assume H1, H2, and (vyk)r>1
is a constant sequence, v = for all k > 1. Set
7t = 2(5n) 7! [log(n/2) +1og(2(l& — 2> + d/m)) — log(2x"Ao)|
- = 2(kn) " [log(ﬁn/@ +log(2(|lz — 2*||* + d/m))
—log {2 (Ao +2A1(m+ L)~ ")}] .

Assume v € (O, (m + L)_l).Then, the optimal choice of v to minimize the bound on
W2 (6. R, ) given by Theorem 5 belongs to [y—,7y *]. Moreover if v = 7, then there
exists C > 0 independent of the dimension such that the bound on WZ(J, R, ) given by
Theorem 5 is equivalent to Cdn~'log(n) as n goes to +oo.

Similarly, we have the following result.



Corollary S3. Assume H1 and H2. Let (v)r>1 be the decreasing sequence, defined by
Ve = Ya /K, with o € (0,1). Let n > 1 and set

Yo = 2(1 = a)r™1(2/n)' " log(kn/(2(1 - @))) .

Assume v, € (0, (m—I—L)*l). Then there exists C' > 0 independent of the dimension
such that the bound on Wg(ész,ﬂ) given by Theorem 5 is equivalent to Cdn~!log(n)
as n goes to +00.

Proof. Follows from (S1), (S8) and the choice of ~,. O

2 Discussion on Theorem 8

Based on Theorem 8, we can follow the same discussion as for Theorem 5. Note that
n n
uld (v) < Z {Bov +B17i'} H (1 —rw/2), (S9)
=1 k=i+1

where & is given by (42), and

By = d [2L2 + (4/(3K)) {di2 + L4/mH : (S10)
Bi=d [ﬁ_1L4 +L/(6(m+ L)) + m_l] . (S11)

2.1 Explicit bounds for fixed step size and fixed precision

The following result gives for a target precision € > 0, the minimal number of iterations
ne. and a step size 7. to get Wg(éx*QZ,Tr) smaller than e, when (7y;)r>1 is constant,
Vi = e for all k > 1.

Corollary S4. Assume H1, H2 and HS3. Let z* be the unique minimizer of U. Let
z € R and e > 0. Set for all k € N, v, = v with

7= [(¢/(2%) {Bo+Bi(m + L)} A (1/(m + 1)),
n = [log7'(1 — rkv/2) {—log(?/2) + log(2d/m)}] .
Then Wa(0.+ RS, ) < e.

We provide the dependencies of t minimal number of simulations n. as a function of
the dimension d, the precision € and the constants m, L, L in Table 2.

Parameter d € L m
Corollary S4 | dlog(d) | e~ |log(e)| | L? | [log(m)|m—2

Table 2: Dependencies of n



2.2 Explicit bounds for 7, = 1 k* with « € (0, 1]

We give here a bound on the sequence (u%?’) (7))n>0 for (v )x>1 defined by v < 1/(m+L)

and v, = mk™® for @ € (0,1]. Bounds for (u,(ll)(’y))nzo have already been given in
Section 1.2. Recall that the function % is defined by (S5). For a € (0,1], by (S6) and
Lemma 23 applied with ¢ = [n/2], where [-] is the ceiling function, we have

2
u(0) £ 3By 267197 0/2) 70D 4ol (1 agaa(0/2]) + 1)
j=1
x exp (—(m1/2) {1 a(n+1) — 1 a([n/2DD)] - (S12)

2.3 Optimal strategy with a fixed number of iterations
Corollary S5. Let n € N* be a fized number of iteration. Assume H1, H2, HS3 and
(Vk)k>1 is a constant sequence, vy, = * for all k > 1, with
7 =A(kn) "t {log(fmﬂ) +log(2(|lz — 2*||* + d/m))} -
Assume v* € (0, (m + L)_l). Then there exists C > 0 independent of the dimension
such that the bound on W22(5$R,YYL,7T) is equivalent to Cd*n~2log?(n) as n goes to +oc.
Similarly, we have the following result.

Corollary S6. Assume H1, H2 and H5. Let (y;)r>1 be the decreasing sequence, defined
by Vi = Yo /k*, with o € (0,1). Let n > 1 and set

Yo =2(1— a)/ifl(2/n)17°‘ log(kn/(2(1 — a))) .

Assume v, € (O, (m + L)_l). Then there exists C' > 0 independent of the dimension
such that the bound on W3 (6, R, ) is equivalent to Cd*n~? log®(n) as n goes to +oo.

Proof. Follows from (S9), (S12) and the choice of ~,. O

Note that in Corollary S5 and Corollary S6, we do not find the optimal convergence
rates obtained for the sequence of step sizes v, = 71 /k, for k > 1 and 7 > 0, up to a
logarithmic factor log(n). This most likely due to the fact that the bounds (for example
(S12)) used to compute the optimal parameters v* and -y, are not the most appropriate.

3 Generalization of Theorem 5 and Theorem 8

In this section, we weaken the assumption 7; < 1/(m+ L) of Theorem 5 and Theorem 8.
We assume now:

G1. The sequence (yx)g>1 is non-increasing, and there exists ny such that v,, < 1/(m+
L).



Under G 1, we denote by
no =min{k e N | v, <2/(m+ L)} (S13)

We first give an extension of Proposition 2-(i). Denote in the sequel (-); = max(-,0).
Recall that under H2, z* is the unique minimizer of U, and & is defined in (A)

Theorem S7. Assume H1, H2 and G1. Then for alln,p e N*, n <p

[ =1 10@h(de) < G )

where

no—1

Gn,p(:U’Ov = €xp < Z Yk + Z L2 2) / ”.’E — CC*HQ ,u(](dl‘)
no—1 no—1
+2dr~t 4 2d{ H (Yng—1L?) ™1 (1+ L~} }exp ( Z KYE + Z ’ykmL> . (S14)

k=n

Proof. For any v > 0, we have for all z € R%:
[l = a1 Byl d) = o =290 @) =+ 294
Using that VU (z*) = 0, (42) and H1, we get from the previous inequality:

[ = a1 By )

< (=) lle ="+ <7 - ) IVU () - VU ()| + 29

<n(y) |z — ¥ +2vd

m—+ L

where n(y) = (1 — ky +vL(y —2/(m+ L))+). Denote for all & > 1, i, = n(yx). By a
straightforward induction, we have by definition of Q% for p,n € N, p < n,

p
[ e @) < T [ et potaa) + 203 [T mor- (515)
k=n

1=n k=1i+1

For the first term of the right hand side, we simply use the bound, for all x € R,
(1+2x) <e”, and we get by G1

P no—1
[T <exp ( Z Kk + Z Lzm) : (S16)
k=n



where ng is defined in (S13). Consider now the second term in the right hand side of

(S15).

no—1 Y4

ZH%%SZ H U=rm)vi+ D>, [ mv
1=n k=i+1 1=ng k=i+1 1=n k=i+1
p p p
<k ) { 11 (1fﬂk)H(1mk)}
i=no Uk=i+1 k=i
no—1 no—1 p
+{Z T (+2°%) }H (1 — ki) (S17)
i=n k=i+1 k=

Since (y)k>1 is non-increasing, we have

i ﬁ (L4 L*3) v = i (v L)~ { ﬁ (14 L*y3) - ﬁ (1+ L%,%)}

i=n k=i+1 i=n k=i k=i+1
no—1
< ] (o 27 (14 2797)
k=n

Furthermore for k < ng v, > 2/(m + L). This implies with the bound (1 + z) < e* on
R:

H (1 — Ryg) <exp ( Z /vyk> exp <OZ /vyk>
k=ng
< exp ( Z /ﬂk> exp (i 'ykmL> .

Using the two previous inequalities in (S17), we get

PP
ZH%%’

i=n k=i+1
no—1 no—1
<r 4 { H (Yng—1 L*) 71 (1+ L?42 }exp ( Z KYk + Z PykmL> . (S18)
k=n
Combining (S16) and (S18) in (S15) concluded the proof. O

We now deal with bounds on W2 (u0Q%,7) under G 1. But before we preface our
result by some techincal lemmas.

Lemma S8. Assume H1 and H2. Let ¢y € Po(R? x R?), (Y:, Yi)i>0 such that (Yo,Y)
is distributed according to (o and given by (50). Let (F{)i>o0 be the filtration associated
with (Bt)i>o with F}, the o-field generated by (Yy,Yy).



(i) For alln >0, e; >0 and ez > 0,

g = 2
E T [HYFn-&-l - YFn+1H }
=54 2
<AL = ynt1 (5 — 261) + Va1 L((1 + €2)vns1 — 2/(m + L)1+ } || Y, — Y1, ||
#9201 (1/ )+ (146 i) (22 + (L1 /2) I1Vr, — 2| + dLi92,1/12)

(ii) If in addition H3 holds then for allm >0, €1 > 0 and e3 > 0,

/ - 2
Efrn [HYFTHA - YFTHrl H }
=3 2
< {1 = ynt1 (8 = 2e1) + 1 L((1 + €2) 1 — 2/(m + L))+ } ||[Yr, — Yo, ||
+ (261) 3 {(2L/3) ¥, — 21 + L*dyasa /2 + 242173}

+ 951+ ") (AL2 + (Lini1/2) [Yr, — 2| + dL*2,/12)

Proof. (i) Let n >0 and €; > 0, and set A,, = Y, — Y, by definition we have:

2

E7fn [ Ania]l?] = 4] + BT (S19)

H/rin+1 {VU(Y.) - VU(Yr,)} ds

o Fn+1 ,
s (A, VU (V) — VU(T7,)) — 2 / B [( A, {VU(Y2) — VU (Ye,)}) ds] .
Iy
Using the two inequalities | (a,b) | < e1]|a||® + (4e1)71|b]|? and (42), we get

E7fn [|An11]?] < {1 = s (5 = 260)} 1Al

—2Yp41/(m+ L) ||VU(Yr,) = VU(YT,)|
\ ]

Tnt1
+ )™t [ B [IvU) - VOO ds . (s21)

? (S20)

+E'

/FHH{VU(YS) —VU(Vr,)}ds

Using [|a +b|]> < (1 + e2) [la]|* + (1 + ;1) ||b]|* and the Jensen’s inequality, we have

2
ETn

/F"H (VU(Y,) - VU(Yr,)} ds
I'n

< (14 @2, ||[VU,) - VU

" l_‘n+1
+(1+ 6D E [/ IVU(Ys) — VU(Yr )P ds| . (S22)
Iy



This result and H1 imply,
7 [ 8n41]] < {1 = (5 = 261) + 31 L + €2)ms1 — 2/(m+ L))+ } [ A
Fn 1
F(+ G+ e) ™) [ B [IVUM) - VUG, ds. (52)

By H1, the Markov property of (¥;);>0 and Lemma 21, we have

Fn+1 " 9
[ [Ivo ) - vu ) IF] ds

< L (2 + dLPyh 0 /124 (B0 /2) IV, — 2*)) .+ (S24)
Plugging this bound in (S23) concludes the proof.

(ii) Let n > 0 and € > 0, and set ©,, = Yy, — Y. Using Itd’s formula, we have for
all s € [Fn,Fn+1),

VUY) - VU, = [ {VUr)vu) + Ao

n

+V2 | VPU(Y,)dB, . (S25)
I'n

Since O, is Fp,-measurable and ( [ V2U (Y,)dBu)seor,.1] 15 & (Fs)seor,,,,]-martingale
under H1, by (525) we have:

BT (0, VU(Y:) = VU (Yr,)]]
‘< _E”t [ {V2U )+A(VU)(YU)}du}>‘
<

Combining this equality, (S22) and | (a,b) | < e1]/a||? + (4e1)71||b]|? in we have

EZe [10ns11P] < {1 = i1 (5 — 261) + 1 L1+ €2)3me1 — 2/ (m + D)4} [0

| ]
+ea) A (g e | [ Vo) - voes) s
'y
(S26)

where )

SVQU( Y, )VU(Y,) + A(VU)( u)du] ds .

1—‘n+1
A= /
n FTL
We now separately bound the two last terms of the right hand side. By H1, the Markov
property of (Y;);>0 and Lemma 21, we have

E7Tn [

Fnta
L [IvU) - vU )17 ds

< 12 (24 + dEh 0 /12 + (1/2) L2534 Y, — 2*)%) .+ (S27)



We now bound A. We get using Jensen’s inequality, Fubini’s theorem, VU (z*) = 0 and
(10)

A< 2/F"H(s -T,) / E/Tn D|v2U(Yu)VU(Yu)HZ} duds
| Y s . 2
+ 2/Fn (s —T) /Fn E7 T [HA(VU)(YH)

Fn+1 S ~
< 2/ (s — Pn)L4/ £ [HYU - x*ﬂ duds + 293, ,d2L2/3 . (928)
n Fn

] duds

By Lemma 21-(i), the Markov property and for all ¢ > 0, 1 —e~* < t, we have for all
s € [F?%Fn—i-l]?

[ BT (1Y = o] du < (2m) 710 - e e, — ¥ d(s — T)?

Using this inequality in (S28) and for all t > 0, 1 —e™! <t , we get
A< LY011/3) Ve, — 2*|* + Ldvp /2 + 29512123
Combining this bound and (S27) in (S26) concludes the proof.
U

Lemma S9. Let (vx)r>1 be a non-increasing sequence of positive numbers. Let w, 5 > 0
be positive constants satisfying w? < 483 and T > 0. Assume there exists N > 1, yw < T
and yyw < 1. Then for alln >0, j > 2

()
n+l n+l n+l n+l
oIl O=ww+wBn -1 <> [ G—wo)r
i=1 k=i+1 i=N k=i+1
N-1 n+1
+ {6‘17{ I @ +7;35)} I ==
k=1 k=N

(ii) For all ¢ € {N,...,n},

n+l n+l1 ) n+1 /—1 ] 7]'71
Y II G —ww)s] <exp (—Zwvzf) v+

, : w
=N k=i+1 k=0 i=N
Proof. (i) By definition of N we have

n+1 n+l

ST = ww + B — 7))+

i=1 k=i+1
ntl ntl N-1 N-1 n+1

<3 0 -t {3 0L 0ot} T . s
i=N k=i+1 i=1 k=1+1 k=N

10



Using that (vx)x>1 is non-increasing, we have

N—-1 N—-1 N—1 j N-1 N-1
> IT (o)l < 307 {H(lﬂiﬁ)— 11 (1+w%ﬁ)}
=1 k=i+1 i=1 k=i k=i+1

N-1
<B T (L +28) -
k=1
Plugging this inequality in (S29) concludes the proof of (i).

(ii) Let £ € {N,...,n+1}. Since (vx)r>1 is non-increasing and for every z € R,
(1+2x) <e”, we get

n+1 n+1 -1 n+1 n+1l n+1
S 11 0=t = 3 I e+ 3 0T 0
i=N k=i+1 i=N k=i+1 i=f k=i+1
/—1 n+1 n+l n+l
. i1
<Y exp (— > ww) WA I - ww) v
i=N k=i+1 =0 k=i+1

n+1 ‘7
< exp ( wa> > oA+

(iii)
O

Lemma S10. Let (7;)k>1 be a non-increasing sequence of positive numbers, w, 5,7 > 0
be positive real numbers, and N > 1 satisfying the assumptions of Lemma S9. Let
PeN C;>0,i=0,...,P be positive constants and (un)n>0 be a sequence of real
numbers with ug > 0 satisfying for allmn >0

P
2
Unt1 < (1 = Y11 + Byt (a1 — 7)4 )un + Z Cﬂfmil

Then for allm > 1,

N-1 n
unS{H +B%}H 1 — ) UO+ZC Z H (1 - @)y "?
k=N

k=1 7=0 i=N k=i+1

=

Z CiB i H (14178) (1 — @) -
=0 k=1 k=N
Proof. This is a consequence of a straightforward induction and Lemma S9-(i). O

Theorem S11. Assume H1, H2 and G 1.

11



(i) For all o € P2(RY) and n > 1,

W3 (10QY, m) < @D (VW3 (po, ) + ) (7)., (S30)
where
D) = {kH (1 +2%2) } kH (1= w/2) | (s31)
#26) = 3 bl kﬁﬂ(l — ww/2) (532)
F ()20 {kHu ¥ 27;@2)} kH (1~ rw/2).
with 7 7

b(y) = L*d{x~ +~} (2 + L?y/m + L*4*/6) .

(i3) If in addition H3 holds, for all g € Po(R?) and n > 1,

W3 (10Q%, 7) < a4l (VW3 (no, 7) + P (7) ($33)
where
WD (y) =Y Adetw) J] 0= rw/2) (S34)
i=n1 k=i+1
ni—1 n
+mc(m) (2L { [Ja+ 2%3L2)} 1] (= sw/2),
k=1 k=n1
with

72 4
c(y) =d {2L2 bl (X pm) +a! <4d3L B, i) } .
Proof. (i) Let (o be an optimal transference plan of ug and 7. Let (Y3, Y})i>0 with
(Yo, Yy) distributed according to (p and defined by (50). By definition of W5 and since
for all t > 0, 7 is invariant for P;, W3 (uoQ™, ) < E[||Yr, — X1, ||?]. Then the proof
follows from Lemma S8-(i) and Lemma S10 using that for all k € N, E[||Yr, —2*||] < d/m
by since Y} is distributed according to 7.

(ii) The proof follows the same line as the first statement using Lemma S8-(ii) instead

of Lemma S8-(i).
O

12



3.1 Explicit bound based on Theorem S11 for v, = v, /k

We give here a bound on the sequences (fcg)(’y))nx and (ﬂff)( )n>1, (4
(V&)k>1 defined by 1 > 0 and 75, = 71/k. Recall that 13 is given by (S5
since (vk)r>1 is non-increasing, for all n > 1, we have

D (9))nz1 for
). First note,

n

1 n
ayy SZC Z’yj+2 H (1 — Ky,/2)
7=0 i=nq k=i+1
1 ) ni—1 n
+ G2 { [Ma+ 27§L2)} I = svwe/2), (S35
3=0 k=1 k=n1
where
Ci=2bdL? ,Cy = b(dL fm +ndL"/6) ,b=r""+ 1.
and
1 no n
ZRICIED ST DEFA | CEEIE)
Jj=0 1=n1 k=i+1
1 n1—1 n
+ZD (2L2) 1 ]+1 { H (1+ 272 LZ)} H (1= rvi/2), (S36)
J=0 k=1 k=n1
where

D, =d [2L2 +(4/(3)) {dﬁ + L4/mH Dy =d[s'L*+ L'y /(m+ L) +m™] .

1. We first give explicit bound based on Theorem S11-(i). For n; = 1, by (S6) and
(S7), we have

WD) < (n )72

1
a7 (7) < (n+1)7/2 Z Cj {7{+2(¢n71/2717j(n +1)+1)+ (2L2)71’7{} :
=0

For m; > 1, since (7x)x>0 is non increasing, using again (S6), (S7), and the bound
for t e R, (1+1¢) <e, we get

D) < (n+ 1) exp {rmigpo(m) /2 + 20297 (Y1 (1 — 1) +1)}

=41

1
P (y) < (n+1)7"n/2 Z G (’Y{H(iﬁnm/zq—j(” +1) =y, 2-1-5(n1) + 1)
=0

+(41/(2L%)) exp { kmitpo(n1) /2 + 21797 (-1 (n1 — 1) + 1)}) :

Thus, for 41 > 2k, the bound given by Theorem S11-(i) is of order O(n™!).
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2. We first give explicit bound based on Theorem S11-(ii). Note that bounds on

(&511)(7))7121 have been obtained below. We just need to give some bounds on
(ﬂ%s) (7))n>1. For ny =1, by (S6), (S7), we have

1
i) < 0+ )23 D {A P Wy oo j(n+ 1) + 1)+ 2L
j=0

For n; > 1, since (7x)x>0 is non increasing, using again (S6), (S7), and the bound
for t € R, (1 +1t) <et, we get

1
i) < (0 172 3705 (P Wy joma (14 1)~y oy (1) + 1)
j=0

+({™/(2L%) exp {rmnvo(n1)/2 + 2L 21 (m — 1) + 1)} ) .

Thus, for 71 > 4k~!, the bound given by Theorem S11-(i) is of order O(n™!).

4 Explicit bounds on the MSE

Without loss of generality, assume that || f|[;;, = 1. In the following, denote by €}(z) =

|z — 2*||* + d/m and C a constant (which may take different values upon each appear-
ance), which does not depend on m, L,y;, « and ||z — z*||.

4.1 Explicit bounds based on Theorem 5

1. First for o = 0, recall by Theorem 5 and (S1) we have for all p > 1,
WE(6.R2, 1) < 20(2)(1 — 51 /2)P + 2 LAt + Ai?) |
where A and A; are given by (5S2) and (S3) respectively. Set
A=AV (Ay/(m + L))
So by (27) and Lemma 23, we have the following bound for the bias

k™" exp(=kN71/2)Q(2)
yin

EN () - n())} < C ( T NIAM) .

Therefore plugging this inequality and the one given by Theorem 15 implies:

(937)

MSEY™ < ¢ <R1A71 y T H R exp(RlN 2)9@))
< .

nvyi

14



So with fixed v; this bound is of order ;. If we fix the number of iterations n, we
can optimize the choice of v1. Set

Ye0(n) = (H_lA)_l(CMSEy()/TL)l/Q , where Cyvisg o = KT3A
and (S37) becomes if 71 < Y. 0(n),
MSE}™" < C(Cusgon)? (k7" exp(—rN7.0(n)/2)2(x) + Cuisk,o) -
Setting No(n) = 2(kyx0(n)) " log(Q(z)), we end up with
MSEﬁcVO(”)’n < O(Cuspo/n)Y? .

Note that No(n) is of order n'/2.

. For a € (0,1/2) by Theorem 5, Lemma 23, (S6) and (S8), we have the following
bound for the bias

(B - () <C ( KA e N/ (L~ o)) W)) |

(1 —2a)ne ynl—e
Plugging this inequality and the one given by Theorem 15 implies:

KAy e { RN (2(1 — )} Q) 1 2
(1 —2a)n® ynl-e

MSE}““ <C (

(S38)
At fixed 71, this bound is of order n™%, and is better than (S37) for (yx)r>1
constant. If we fix the number of iterations n, we can optimize the choice of v;
again. Set

Yea(n) = (kTA/(1 —2a))_1(C’MSE,a/n1_20‘)1/2 , where C\iso = & °A/(1—2a) ,

(S38) becomes with 71 < Yx,a(n),

MSE}V’”
< C(Omsg,an) 2 (k7 exp { KN, o (n)/(2(1 — )} Q(2) + Criska) -

Setting N, (n) = {2(1 — a)(kYsa(n)) " og(Q(x))}/1=9) we end up with
MSE}*"" < C(Cyispa/n)'/? .

It is worthwhile to note that the order of N, (n) in n is n(1-20)/(2(1=2)) and CMSE o
goes to infinity as a« — 1/2 .

15



3. If @ =1/2, by Theorem 5, Lemma 23, (56) and (S8), we have the following bound
for the bias

-~ k~1Av; log(n Kk lexp { —ky N2 /41 Q(z
{Ex[wif(f)]—vr(f)}QéC( 7 log(n) | b il /4} <>>_

Plugging this inequality and the one given by Theorem 15 implies:

n_lAqglogUQ +n*lexp{--fwﬂ\fl/z/‘l}ﬁ(l")*"‘72 . (S39)
i ni/?

M%$m§0<

At fixed 71, the order of this bound is log(n)n~'/2, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of ;. Set

Yerja(n) = (57 A) " (Cpsp.a o/ log(n)/? , where Cyigp 10 = KA,
and (S39) becomes with v1 < 7, 1/2(n),
log(n) >1/2< _ CMsE,1/2
MSEN’"§C< k tex —KN1/2* n)/4,Qx) + ————) .
: o — p{ =N 1a(m) 4] 9(e) +
Setting Ny jo(n) = (4(k7vs1/2(n)) " log(Q(x)))?, we end up with
log(n)Cyisk,1/2 > 1/2

n

MSE;\fl/z(”)v” <C <

4. For o € (1/2,1], by Theorem 5, Lemma 23, (S6) and (S8), we have the following
bound for the bias

{mﬁﬁuﬂ_ﬂq”2gc<iiﬁq+n1%p%«wz;zfu—anﬂu@>.

Plugging this inequality and the one given by Theorem 15 implies:
R A s ep {—am N (21— )} ) + )

nl—a ’Ylnl_a

M%ﬁﬂgC(

For fixed 71, the MSE is of order n'~®, and is worse than for o € [0,1/2]. For
a fixed number of iteration n, optimizing v; would imply to choose v; — 400 as
n — +oo. Therefore, in that case, the best choice of ~; is the largest possible value

1/(m + L).

5. For a = 1, by Section 3.1, for 71 > 2x~! there exists C; > 0, independent of d and
n such that the bias is upper bounded by

{7 ()] - 7(f)}" = €1/ log(n) .

Plugging this inequality and the one given by Theorem 15 implies there exists
C > 0, independent of d and n such that the bias is upper bounded by

MSE}V’” = Cy/log(n) .
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4.2 Explicit bound based on Theorem 8
1. First for o = 0, recall by Theorem 8 and (S9) we have for all p > 1,

W3 (6. RP, ) < 2Q(x)(1 — k71/2)P + 26~ (Boy1 + B177) ,
where By and B; are given by (S10) and (S11) respectively. Set
B=ByV (Bl/(m—f—L))

So by and Lemma 23, we have the following bound for the bias

. 2 Kk~ texp(—kN71/2)(x) _
(BB (O] - 7)) < 0 (R +riBat) |

Therefore plugging this inequality and the one given by Theorem 15 implies:

24k Lexp(—kNy1/2)Q
MSE?’"§C<m_lBﬁ+K TR~ ep(—alNn/2) ($)> .

S40
nvyi ( )

So with fixed v; this bound is of order ;. If we fix the number of iterations n, we
can optimize the choice of ~1. Set

Yeo(n) = (kBn) =2,
and (S37) becomes if 71 < Y, 0(n),
MSEJ" < C(B2n) 2/ (40 exp(—kNuo(m)/2)02) + 5~99)
Setting No(n) = 2(kyx0(n)) "t log(Q(z)), we end up with
MSE (" < O(B™Y/2%/2n) 72/ |
Note that No(n) is of order n'/3.

2. For a € (0,1/3) by Theorem 8, Lemma 23, (S6) and (S12), we have the following
bound for the bias

A 2 kT 1BA2 T lexp {—rmN'7/(2(1 — a)) } Q(2)

Plugging this inequality and the one given by Theorem 15 implies:

MSEN™ < ¢ Kk 1By? rlexp {—kN'T/(2(1 — @)} Qz) + k72
Foo= (1 = 3a)n2 Yl '

(S41)
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If we fix the number of iterations n, we can optimize the choice of v; again. Set
Yea(n) = (' 73 6B/(1 = 3a)) 71/,
(S41) becomes with 71 < Y4.a(n),

MSE" < C(B/2n) 72/ (1% exp(—kNyo(n)/(2(1 = ) 2a) + 1~*/*(1 = 30) 1) .

Setting Ny (n) = {(k7x.a(n)) " log(Q(2))}/(1=%) we end up with
MSE}"" < C(B™1245/2n) /3

It is worthwhile to note that the order of N (n) in n is n(1=30)/B(1-a)),

. If @« = 1/3, by Theorem 8, Lemma 23, (S6) and (S12), we have the following bound
for the bias

(E ) -r) < o (e Cen R 0

’Ylnz/ 3
Plugging this inequality and the one given by Theorem 15 implies:

n'Brtlog(n) Kl exp {—rnN*?/4} Q) + Hz) . (542)

N,n
<K
MSEf <C < n2/3 71112/3

At fixed 71, the order of this bound is log(n)n~2/3, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of ;. Set

Yerj2(n) = (kBlog(n)) "1/,

and (542) becomes with v1 < 7, 1/2(n),

1 B\ 1/3
MSEijﬂn <C <Og7(z;l)> (154/3 exp {—HN1/2’Y*71/2(77,)/4} Qx) + /(5/3> )

Setting Nyjo(n) = (4(kvs1/2(n) " log(92(x)))3/2, we end up with

1/3
MSENI/Q(n)vn < C log(n)B / )
f (B2

We can see that we obtain a worse bound than for o« =0 and o € (0,1/3).

. For a € (1/3,1], by Theorem 8, Lemma 23, (S6) and (S12), we have the following
bound for the bias

(B 7N (F)] - m(f)} < C (H;le n H‘lexp{—mlfi;?{(izu —a))} Q(x)> |
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Plugging this inequality and the one given by Theorem 15 implies:

—1 -1 l1—a -2
Non KT1By; kT lexp{—rnN'"*/(2(1 - )} Qz) + &
MSEf S c ( nlfa + ,ylnlfa :

For fixed 71, the MSE is of order n'~®, and is worse than for a = 1/2. For a fixed
number of iteration n, optimizing v; would imply to choose v; — 400 as n — +o00.
Therefore, in that case, the best choice of 7; is the largest possible value 1/(m+L).

5. For a = 1, by Section 3.1, for 71 > 2x~! there exists C; > 0, independent of d and
n such that the bias is upper bounded by

(B (7Y ()] - 7(1)}" = C1/ log(n) .

Plugging this inequality and the one given by Theorem 15 implies there exists
C > 0, independent of d and n such that the bias is upper bounded by

MSE}V’" = Cy/log(n) .
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