
HAL Id: hal-01175000
https://hal.science/hal-01175000

Submitted on 10 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plasticity for 3D User Interfaces: new Models for
Devices and Interaction Techniques

Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Éric Maisel, Jérôme Royan

To cite this version:
Jérémy Lacoche, Thierry Duval, Bruno Arnaldi, Éric Maisel, Jérôme Royan. Plasticity for 3D User
Interfaces: new Models for Devices and Interaction Techniques. Proceedings of EICS 2015 : 7th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, Jun 2015, Duisburg, Germany.
pp.28 - 33, �10.1145/2774225.2775073�. �hal-01175000�

https://hal.science/hal-01175000
https://hal.archives-ouvertes.fr

DRAFT
Plasticity for 3D User Interfaces:

new Models for Devices and Interaction Techniques
Jérémy Lacoche

IRT b<>com, UMR CNRS
6074 Irisa - Inria Rennes

jeremy.lacoche@b-com.com

Thierry Duval
UMR CNRS 6285

Lab-STICC, Telecom
Bretagne, IRT b<>com
thierry.duval@telecom-

bretagne.eu

Bruno Arnaldi
UMR CNRS 6074 Irisa - Inria
Rennes, INSA de Rennes, IRT

b<>com
bruno.arnaldi@irisa.fr

Eric Maisel
UMR CNRS 6285

Lab-STICC, ENIB, IRT
b<>com

maisel@enib.fr

Jérome Royan
IRT b<>com

jerome.royan@b-com.com

(a) (b) (c)
Figure 1: Different ways to complete a Selection and Manipulation task with the proposed interaction model (a) A 3D-ray based
interaction controlled by a razer hydra is used (b) Without this device connected, the ray is now controlled with the mouse (c)
With the leap motion, another interaction technique is chosen, a 3D-cursor controlled with the user’s hand.

ABSTRACT
This paper introduces a new device model and a new interac-
tion technique model to deal with plasticity issues for Virtual
Reality (VR) and Augmented Reality (AR). We aim to pro-
vide developers with solutions to use and create interaction
techniques that will fit to the needed tasks of a 3D applica-
tion and to the input and output devices available. The de-
vice model introduces a new description of inputs and outputs
devices that includes capabilities, limitations and representa-
tions in the real world. We also propose a new way to de-
velop interaction techniques with an approach based on PAC
and ARCH models. These techniques are implemented inde-
pendently of the concrete devices used thanks to the proposed
device model. Moreover, our approach aims to facilitate the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EICS’15, June 23 - 26, 2015, Duisburg, Germany
c© 2015 ACM. ISBN 978-1-4503-3646-8/15/06...$15.00

DOI: http://dx.doi.org/10.1145/2774225.2775073

portability of interaction techniques over different target OS
and 3D framework.

Author Keywords
3D User Interfaces; Virtual Reality

ACM Classification Keywords
H.5.1 Information interfaces and presentation: Multimedia
Information SystemsArtificial, augmented, and virtual
realities; H.5.2 Information interfaces and presentation (e.g.
HCI): User Interfaces

INTRODUCTION
In the last years, interest in 3D user interfaces has grown [2].
For instance, 3D user interfaces include Virtual Environments
(VE), serious games or Computer-Aided Design (CAD) ap-
plications. They differ from traditional graphical user inter-
faces (GUI) by including a third dimension to present content
and by using a wider range of interaction devices than the
traditional set: mouse, keyboard and touch-screen.

With the wide variety of existing interaction devices and the
daily emergence of new ones, it is difficult and time consum-
ing for developers to adapt their applications to each possible

1

DRAFT
configuration. For instance, in these new devices we can find
the Microsoft R© KinectTM, the Leap Motion or the Oculus rift.
More than using each time a new SDK, these devices lead de-
velopers to redevelop parts of their applications, particularly
interaction techniques in order to fit each capability.

Developing an application that takes into account the plastic-
ity property is one solution to deal with these issues. Plas-
ticity is the capacity of an interactive system to withstand
variations of both the system physical characteristics and the
environment while preserving its usability [17]. Code inter-
operability and usability continuity has to be guaranteed to
be considered as plastic. Plasticity has already been well ex-
plored in the field of 2D user interfaces, however it has been
reported in [12] that the problem is even larger for 3D and
that no solution meets all the plasticity requirements.

Our goal is to propose new solutions for developers to han-
dle plasticity for 3D user interfaces. In this paper, we focus
on interaction techniques. In [3], an interaction technique is
defined as a method allowing a user to accomplish a task via
the user interface. It includes both hardware (input/output)
and software components. We want to be able to define inter-
action techniques that will work whatever the target context
of use. This context consists in a description of the available
devices through a new device model and a high level descrip-
tion of the tasks that have to be performed. This device model
aims to describe devices in terms of data they can collect and
provide. It differs from classic approaches by also including
information such as intrinsic properties, limitations and rep-
resentation in the real world. Then, the interaction technique
model based on PAC and ARCH models gives the possibility
to developers to implement interaction techniques indepen-
dently of devices and of a target 3D framework.

This paper is structured as follows: first we recall the plastic-
ity requirements for 3D that our models have to meet. Then,
we introduce our new device model used in the context de-
scription. Next, we present an extension of the PAC model
[7] for interaction techniques implementation that ensures in-
dependence from the devices and from the target VR frame-
work. Last, we conclude and give directions for future work.

REQUIREMENTS
To handle the plasticity property for interaction techniques,
our models have to take into account a set of 3D requirements
such as some reported by Lacoche et al. in [12]:

R1 Ensure code portability. Interaction techniques must be
available on many Operating Systems (mobile and desk-
top). Moreover they need to be possibly integrated or im-
plemented with the main 3D frameworks (for instance, a
game engine) and not dependent on a particular one. In-
deed, each developer may have his own code database or
3D content in a particular framework.

R2 Independence over the devices used. Interaction tech-
niques must work whatever the concrete devices available.
The devices needed by an interaction technique must be
defined with a high level description. Alternatives must
be possibly defined in case of a compatible device is not

found. Moreover, interaction techniques must be aware of
the device properties.

R3 Handle user and system adaptations. Interaction tech-
niques must be possibly instantiated with an automatic
adaptation process, this is adaptivity. However, the user
has to be able to modify the interaction techniques with a
set of predefined parameters, this is adaptability.

R4 Interaction techniques must be configurable at runtime (dy-
namic adaptation) and between sessions (static adapta-
tion). To ensure usability continuity, context modifications,
such as a device plugged or a new task needed, must be
recorded. The interaction techniques have to be dynami-
cally adapted according to the context modifications.

A NEW DESCRIPTION FOR INPUTS AND OUTPUTS
In order to perform hardware adaptations and fullfill the sec-
ond requirement (R2), an accurate description of the input
and output devices is needed: this is the device model. In-
deed, the adaptation process has to know which devices are
available, their capabilities and limitations. This model is
needed to perform device selection and adaptation. In the
model, inputs devices are considered as the devices that can
collect data from the real world. For example, a position, a
pressure on a button or a sound acquisition. Regarding output
devices, they restitute computer generated values to the real
world, for instance an image on a screen or a vibration.

In the literature we can find several classifications about how
to perform static or automatic input device selection, such as
the Buxton taxonomy [4] extended later by Mackinlay et al.
[15] and also DEVAL [16] a device abstraction layer for VR
and AR applications. They consider a device as a composi-
tion of several input units where each unit is responsible to
acquire one kind of data. This kind of classification aims to
describe the data provided by input devices units such as the
number of degrees of freedom (DoF) of an input value or the
property sensed (position, motion, pressure). DEVAL has the
advantage to describe a wide variety of device units. It in-
cludes more recent devices that can also have output capabil-
ities. For instance, trackers, buttons, haptic feedback, speech
and gesture recognition. Less common sensors are also in-
cluded such as light and temperature sensors. This classifica-
tion hierarchically structures inputs and outputs units accord-
ing to their properties. Anyway, this model and the previous
ones only define devices with input and output data while it
would be interesting to also expose their physical properties
in the real physical workspace or their internal properties like
refresh rate or accuracy. The graph representation of devices
proposed by Lipscomp and Pique [14] and the DEVAL exten-
sion introduced by Lindt [13] expose this kind of meta-data.
Lipscomp and Pique [14] give the physical characteristics of
each device and so a more precise description on how the data
is acquired and their limitations. For example, it differentiates
bound and unbound inputs as well as isotonic, isometric and
elastic ones. In the DEVAL extension [13], three kinds of
meta-data can be added to a device unit. First, static devices
properties do not change over the time such as the weight
of a HMD. Next, configurable devices properties depend on
the device setup like the smoothing factor of a tracking de-

2

DRAFT
Figure 2: A device is a set of inputs and outputs as well as a
collection of physical objects for its real representation.

vice. Finally, runtime properties include performances and
device states. The classification into three categories can be
discussed because the associated category of a property may
change over different devices. For instance, the resolution of
an image acquired by a camera can be configurable for some
devices such as the Microsoft R© KinectTM while for most of
them it is a static value. Moreover, the set of properties intro-
duced in the model does not include enough properties to pre-
cisely describe the capabilities of each device. For instance,
values boundaries and devices position are not included.

Our device model aims to solve these issues with an accu-
rate description of the devices capabilities, limitations and of
their representation in the real world. The model must be ex-
tendable because new devices will still appear and they might
include new properties not yet included in the current model.
The model is described with UML class diagrams, so it is
totally editable by any developer who wants to add new prop-
erties or a new input or output type. At runtime the properties
of a device instance are fulfilled with an XML description file
edited with a graphical tool that takes into account the UML
diagram. Then, the developer has to complete some functions
to fulfill the input data, trigger the outputs when needed and
update the dynamic parameters. Moreover, a function has to
be implemented in order to tell the system when a new in-
stance of the device is plugged or unplugged. These steps
can be done with a device SDK. Static properties have to be
fulfilled into the description before execution if needed, for
instance the position of a device in the real world. These
properties can also be reported into the device SDK to per-
form its configuration.

In the model, we consider an interaction device as a complex
entity that may acquire input(s) and render output(s) and that
has a representation in the real world. As shown in Figure 2,
the model represents a device as a collection of inputs, out-
puts and physical objects entities. A device is defined by its
name, the name of the SDK used to manage it, its index in the
case we use different instances of the device, and a boolean
that indicates if it is plugged or not.

The set of physical objects describes the representation of the
device in the real world. For example, it gives properties such
as a 3D representation of the device if we want to represent
it in the virtual world. Its position gives the possibility to a
developer to automatically adapt the coordinate system of the
tracking values. Moreover, all inputs and outputs are associ-
ated to a physical object, this information may help to select
an input or an output unit used by an interaction technique.
Indeed, for an interaction technique, inputs and outputs that
correspond to the same physical object can be preferentially

Figure 3: The description of real value input with two entities:
the ”data description” and the ”technology”.

selected. The goal would be to minimize device switchings
as well as the homing time of the GOMS model [6].

Regarding input description, the goal is to describe all pos-
sible acquired signals that are currently used in 3D applica-
tions. We established a list of three categories that gather
these possible inputs:

• real values: the most common value type used. It refers
to continuous values acquired by trackers, sensors, touch-
screens, etc. It can represent a position or a rotation as
well as more original values such as a temperature or the
lighting intensity of a room.

• discrete values: taken into a set of predefined ones. For
example a button pressed or not, a gesture or a vocal com-
mand.

• Generic streams: they continuously provide array of val-
ues. This category is divided into multiple subtypes with
more specific properties (image streams, EEG signals,
sound acquisition...)

In the model, these different input types include a description
of the acquired data, their properties and limitations, and in-
formation about how these data are acquired by the device.
To do so, we propose to describe each input into two entities.
The ”data description” ensures the first need, and the ”tech-
nology” ensures the second one.

For the two entities of the real value input type described in
figure 3, the description reuses the most important properties
of previously described taxonomies, especially [14] and [15],
while adding some new ones. Regarding the new properties,
three booleans describe the axis on which the value is defined
as proposed by Mackinlay et al [15]. A fourth axis called
”none” is also included for values that are not expressed in
a 3D coordinate system, for example a temperature. To con-
tinue, the semantics lets the developer know which real world
data is acquired. For example, it can be the name of a body
joint in the case of the Microsoft R© KinectTM. In the ”tech-
nology” entity, we included a reliability rank of the acquired
data between 0 and 1, this property is present for all input
types. This value may change at runtime, as some SDK are
able to give a reliability score for each value acquired. With
the ”Techno Real Type” property, we differentiated the values
acquired with a distant wireless sensor and with a physical
object. For example with optical tracking there is no interme-
diary for the interaction contrary to a gamepad.

3

DRAFTFigure 4: The description of a force feedback output.

A description of output devices is also included. An output
is described by one entity that provides the information about
how the data is rendered to the real world. All output types
but visual and sound are extracted from the MPEG-V stan-
dard [10]. These types are:

• Visual outputs. They include screens such as monitors and
HMDs. They also encompass punctual lights, for instance
a gamepad led or a remotely controlled lighting system that
modifies the lighting conditions of the real world.

• Sound outputs. They stimulate the auditory sense and in-
clude devices such as speakers and headphones.

• Tactile outputs. They stimulate the touch sense, for exam-
ple the vibration of a gamepad.

• Force-feedback outputs. They apply a force in return of
a user interaction in order to simulate a collision with a
virtual object. Typical force devices are robotics arms.

• Temperature outputs. They modify the temperature of the
real world or of a contact point. An example is to control
the temperature according to the weather conditions in a
virtual world.

• Wind output. They change the air speed and direction dy-
namically.

• Scent outputs. They stimulate the olfactory sense.
• Sprayer outputs. They can throw water on a user. It can be

used to simulate a virtual rain effect in the real world.

Three properties are common to all output and input types:
the name, the refresh rate and a possible associated relative
object. For instance, the force feedback type properties are
listed in Figure 4. The first three properties are extracted from
the description of force feedback devices given by Florens et
al. [8]. First, the continuous force is the maximum force
that can be applied for an unlimited period without damaging
the device. Secondly, the peak force is the maximum feasible
force. Thirdly, the force resolution gives the quantization step
of the force that can be applied. All these values are expressed
in newtons. Then, we have extended this description with a
boolean for each DoF on which the device can apply a force.

In this section we have introduced an extendable device
model to perform device selection and adaptation. Two con-
crete examples of descriptions of device units types have been
given, real values for inputs and haptic rendering for outputs.
The other listed inputs and outputs types are also described
in the model. We need such a model to adapt the interaction
techniques to the hardware configuration (R2). In order to fit
R4 the model can be configured before a session and updated
at runtime. In the next section, we show how this model is

used to perform automatic selection of device units and for
device intrinsic parameters adaptations.

PAC AGENTS FOR INTERACTION TECHNIQUES
Having modeled input and output devices, we now focus on
the interaction techniques that work independently from any
concrete device thanks to this model. Interaction techniques
are created in order to complete a high level task needed in the
target application. For 3D user interfaces, according to Hand
[11], these tasks belong to three categories: selection and ma-
nipulation, application control and navigation. According to
the plasticity requirements, there is a need for a model for in-
teraction technique description that ensures a good portability
over the possible target 3D frameworks and an independence
of techniques over the interaction devices.

A convenient model could be PAC [7] (Presentation-
Abstraction-Control), a multi-agent model that ensures a
good decoupling between user interface semantics and its
concrete implementation. It decomposes an interaction com-
ponent into three facets:

• the Presentation: it is the concrete implementation of the
component in charge of its input and output management,

• the Abstraction: it describes the semantics of the compo-
nent and the function it can perform,

• the Control: it ensures the consistency between the presen-
tation and the abstraction.

However, this model has not been designed to perform con-
text adaptation: a PAC agent will be the same whatever the
target platforms and users. Therefore, Calvary et al. intro-
duced Compact [5] (COntext of user Mouldable PAC for plas-
ticity) a specialization of PAC. Compact divides each facet
into two parts, the physical part that is dependent from the
current context and the logical one which is always the same.
For instance, an algorithm used by the abstraction facet can
be replaced according to the target platform performances by
just replacing the physical part. However, keeping the se-
mantics and algorithms constant whatever the context was the
main interest of the PAC model with its presentation facet
that deals with it. PAC does not provide a good decoupling
between the input and the output management because the
Presentation facet includes both. This decoupling is needed
in 3D because of the larger set of possible devices. To solve
this issue Grappl [9] describes an interaction technique with
a base class that performs semantics and presentation compu-
tation. This class is extended by other classes that implement
different ways to control the technique with several sets of
interaction devices. Compared to PAC, the method does not
ensure a good decoupling between semantics and presenta-
tion and a good independence to the target 3D framework.
Indeed, Grappl uses its own internal scene graph system.

To solve all of these issues we represent the interaction tech-
nique model with a PAC model enhanced with ARCH con-
cepts [1]. ARCH proposes to add adaptor components be-
tween the different facets of PAC-like models. This model
is also considered as a meta-model for other software mod-
els by proposing a generic separation between facets of inter-
active components. ARCH represents an interactive compo-

4

DRAFT
Driver

Fly Navigation
«Joysticks »

Action: Orientation Control Action: Position Control

Action: Collision Feedback

Optional
Type : Tactile Output

Needed
Type : Real Input
Axe X : Yes
Axe Y : Yes
Axe Z : No
Real Value Type : FORCE
Bounds : [(-1 , -1 , 0 ,0) , (1 ,1 , 0 ,0)]

Needed
Type : Real Input
Axe X : Yes
Axe Y : Yes
Axe Z : No
Real Value Type : FORCE
Bounds : [(-1 , -1 , 0 ,0) , (1 ,1 , 0 ,0)]

Needs

Figure 5: An example of a logical driver and its device units
needs. It controls a fly navigation interaction technique with
joysticks. The first needs are two real values that describe the
two joysticks needed. A need is defined with some properties
extracted from the device model. As shown some properties
can be omitted, only the detailed ones will be used to select
the available device units. The last one is tactile feedback,
which is optional and can give a vibration feedback when the
user collides any 3D object.

nent as a set of facet branches dedicated to specific features
such as presentation and data processing. Our model differs
from PAC by separating the original presentation facet into
two branches as shown in Figure 6. No adaptor component is
currently used. The two branches are based on its rendering
and device management core functions:

• The rendering facet is the only facet depending on a 3D
framework. It handles graphics output and physics.

• The logical driver handles input and output devices man-
agement. It describes the way the interaction technique is
controlled according to a set of interaction device units.
The work of the developer is to choose these device units in
order to drive correctly the interaction technique. The logi-
cal driver describes all required inputs and outputs units ac-
cording to a set of parameters taken from our device model.
Some can be optional if they are not needed for a good us-
ability. The logical driver can be instantiated if these units
can be found at runtime. At runtime, the logical driver
receives the input data that it needs and it can trigger the
outputs. The device units may come from different con-
crete devices in order to perform device composition. An
example of logical driver is given in Figure 5.

Getting the data independently from concrete devices is one
of the possibilities given by the logical driver. Nevertheless,
it does not ensure the same behavior over all the devices be-
cause all do not have the same capabilities and the same in-
trinsic properties. As the logical driver is associated with de-
vice units, it can access each property of our device model.
Thus, the possibility to perform adaptation to the intrinsic pa-
rameters of each device unit is given to the developer. For
instance, in case of a 3D cursor interaction technique for se-
lection and manipulation controlled with a 6-DoF device, if
the virtual environment is bigger than the device tracking vol-
ume, the user will not be able to reach all parts of the virtual
world. One solution consists in using the boundaries of the
tracking value to adapt the gain of a 3D cursor displacement.

By using this PAC/ARCH approach we ensure a good de-
coupling between the interaction technique semantics and its
concrete implementation, the independence of the technique

over the target 3D framework and OS (R1), over the con-
crete devices used as well as over the interaction modality
used (R2). Indeed, as we can develop multiple compatible
logical drivers for the same interaction technique, this inter-
action technique can be controlled with different modalities.
Moreover, in a case of a context modification at runtime, any
presentation facet can be exchanged with another one if it
is compatible with the interaction technique. This property
ensures the possibility to perform static and dynamic adap-
tations (R4). To do so, as shown in figure 6 a facet is imple-
mented on top of the control facet: the supervision control.
This facet is not present in the classic PAC model. This com-
ponent contains all the types that can be instantiated as a pre-
sentation facet for the current interaction technique: a list of
all compatible logical drivers and a list of all rendering facets.
It also receives the context modifications at runtime and then
is able to determine if a presentation facet is still possible in
the current context and may ask the adaptation engine for a
replacement. For instance, if a device is unplugged from the
system, the supervision control may detect that the current
logical driver is unusable and therefore ask the system to re-
place it by another one into its list of compatible ones.

As we said, a PAC agent represents an interaction technique
instantiated to achieve a high level task. To represent this
relation Grappl [9] associates each task with a set of compati-
ble interaction techniques. In the same way, in our interaction
model, each task derives from a basic task class and contains
a list of properties as well as a list of all PAC agents that can
complete it. Therefore, the developer is responsible to asso-
ciate the interaction techniques that can complete a high level
task. This compatibility list is exposed to the system to allo-
cate the best interaction techniques according to the desired
tasks. At runtime, the abstraction facet is associated to the
task description in order to access its properties. This asso-
ciation allows a developer to include some parameters into
the task that will be used by the interaction technique. For
instance, in a manipulation task we could parametrize the de-
grees of freedom on which objects can be manipulated.

To illustrate our interaction model, the Figure 6 presents a
manipulation task and its compatible interaction techniques in
which we detail the 3D ray-based PAC agent. In that case, the
presentation facet creates the ray geometry, handles collision
detection and performs scene graph modifications according
to the control facet requests. The logical driver handles how
the ray is manipulated according to different device units. The
first one is based on a 3D interaction device that can provide
a 6-Dof tracker. The ray base is controlled in position and ro-
tation by the data given by this tracker. A discrete input (such
as a button) is used to attach and detach an object to the ray
extremity. Two other discrete inputs are used to change the
length of the ray, the first one to increase it, the other one to
decrease it. It also includes an optional tactile output in or-
der to perform a vibration feedback when an object is caught.
This implementation is shown in Figure 1a, the device used
is a razer hydra. The second logical driver is based on two
2-DoF force input like joysticks. The position of the ray base
is constant and set at the center of the user view, just in front
of the main camera. The first 2-DoF input is used to control

5

DRAFT
3D

Cursor
3D Ray

3D Ray PAC Agent

Compatible with

3D Ray
Abstraction

3D Ray
Rendering

Presentation

3D Ray
Logical
Driver

3D Ray Control

3D Ray
Supervision Control

Selected from

Driver
 6-Dof

Driver
GamePad

Driver
Mouse

Compatible with

Separation of
the

presentation
facet into two

branches

Selection
and

Manipulation
Task

3D
Proximity

Figure 6: The proposed interaction model. The task selec-
tion and manipulation is compatible with 3 interaction tech-
niques. The figure represents the PAC agent of the 3D ray-
based technique. This agent is compatible with three con-
crete logical drivers. Multiple rendering presentations could
be implemented depending on the target 3D framework.

the rotation of the ray on the X and Y axes in order to con-
trol the ray target. The second 2-Dof input is used to increase
the ray length when a positive force is applied on the Y axis
and decrease it when a negative force is applied. A discrete
input is still used for object catching. The last one is based on
an input of mouse type with a 2-DoF input in screen space, as
shown in Figure 1b. The position is also constant at the center
of the user view. To control the ray rotation, we compute the
ray target as the intersection point between the far clipping
plane and a ray defined by two points, the camera position
and the 3D point that corresponds to the mouse position on
the near clipping plane. The mouse wheel is used to increase
and reduce its length and a discrete state (one button) for ob-
ject catching. The 3D-ray is one interaction technique that
can complete the selection and manipulation task. However,
as shown in Figure 6, it is not the only one. The Figure 1c
gives another example: a 3D cursor represented by a virtual
hand. In that case, the logical driver used consists in control-
ling a 3D cursor in position and rotation by tracking the user’s
hand. To catch and object, the user has to close his hand.

In this section we describe our interaction technique model
that ensures device and framework independence which al-
lows our toolkit to cover R1 and R2. The creation of inter-
action techniques and logical drivers and the association with
device units can be done automatically. It can also be con-
figured seamlessly at runtime, for instance switching from a
device to another one, or trying another interaction technique.
Therefore the model also satisfies R3 and R4. An integrated
GUI to perform the configuration could reinforce these as-
pects. The automatic allocation of the interaction techniques
and the configuration GUI are topics for future work.

CONCLUSION AND FUTURE WORK
In this paper, we propose two models that meet the require-
ments needed to handle the plasticity property for interaction

techniques in 3D user interfaces. The first one is an extend-
able device model which includes devices capabilities, limi-
tations and representations in the real world. This model ex-
poses device context changes such as the add of the removal
of a device, or properties modifications. The second one is
an interaction model that uses the device model, it is based
on PAC and ARCH. The approach lets the developer create
interaction techniques independently of concrete devices and
of a 3D framework.

Future work consists in establishing and adaptation engine
that will create the interaction techniques at runtime accord-
ing to the current context in order to always provide the most
suited application. Our models must also be extended in order
to take into account different levels of adaptation such as user
and content adaptation. Our perspective is to create a tool for
developers and designers for the creation of plastic 3D user
interfaces. Such a tool is being developed with our models in
Mono C# and interfaced with the Unity3D game engine.

REFERENCES
1. A metamodel for the runtime architecture of an

interactive system: The uims tool developers workshop.
SIGCHI Bull. 24, 1 (Jan. 1992), 32–37.

2. Bowman, D. A., Coquillart, S., Froehlich, B., Hirose,
M., Kitamura, Y., Kiyokawa, K., and Stuerzlinger, W. 3d
user interfaces: new directions and perspectives. IEEE
computer graphics and applications 28, 6 (2008),
20–36.

3. Bowman, D. A., Kruijff, E., LaViola, J. J., and
Poupyrev, I. 3D User Interfaces: Theory and Practice.
Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 2004.

4. Buxton, W. Lexical and pragmatic considerations of
input structures. SIGGRAPH Comput. Graph. 17, 1 (Jan.
1983), 31–37.

5. Calvary, G., Coutaz, J., Daassi, O., Balme, L., and
Demeure, A. Towards a new generation of widgets for
supporting software plasticity: the ’comet’. In
EHCI-DSVIS’04 (2004), 306–323. Hamburg, Germany.

6. Card, S. K., Newell, A., and Moran, T. P. The
Psychology of Human-Computer Interaction. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 1983.

7. Coutaz, J. PAC, on object oriented model for dialog
design. In Interact’87 (1987). 6 pages.

8. Florens, J.-L., Hulin, T., Gil, J. J., and Davy, P. Force
feedback device / force properties. In Enaction and
enactive interfaces : a handbook of terms. Enactive
Systems Books, 2007, 106–108.

9. Green, M., and Lo, J. The grappl 3d interaction
technique library. In Proceedings of VRST 2004, ACM
(New York, NY, USA, 2004), 16–23.

10. Han, S., Han, J.-J., Kim, J. D. K., and Yeong Kim, C.
Connecting users to virtual worlds within MPEG-v
standardization. Signal Processing: Image
Communication (Nov. 2012).

6

DRAFT
11. Hand, C. A survey of 3d interaction techniques. In

Computer graphics forum, vol. 16 (1997), 269–281.

12. Lacoche, J., Duval, T., Arnaldi, B., Maisel, E., and
Royan, J. A survey of plasticity in 3D user interfaces. In
7th Workshop SEARIS (2014).

13. Lindt, I. Adaptive 3D-User-Interfaces. PhD thesis, 2009.

14. Lipscomb, J. S., and Pique, M. E. Analog input device
physical characteristics. SIGCHI Bull. 25, 3 (July 1993),
40–45.

15. Mackinlay, J., Card, S. K., and Robertson, G. G. A
semantic analysis of the design space of input devices.
Hum.-Comput. Interact. 5, 2 (June 1990), 145–190.

16. Ohlenburg, J., Broll, W., and Lindt, I. DEVAL–a device
abstraction layer for VR/AR. In Universal Acess in
Human Computer Interaction. Coping with Diversity.
Springer, 2007, 497–506.

17. Thevenin, D., and Coutaz, J. Plasticity of user interfaces:
Framework and research agenda. In Proceedings of
INTERACT, vol. 99 (1999), 110–117.

7

	Introduction
	Requirements
	A new description for inputs and outputs
	PAC agents for interaction techniques
	Conclusion and Future Work
	REFERENCES

