Progressive Current Source Models in Magnetic Vector Potential Finite Element Formulations
Patrick Dular, Patrick Kuo-Peng, Mauricio Ferreira da Luz, Laurent Krähenbühl

To cite this version:

HAL Id: hal-01174978
https://hal.archives-ouvertes.fr/hal-01174978
Submitted on 31 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Progressive Current Source Models in Magnetic Vector Potential Finite Element Formulations

Patrick Dular1,2, Patrick Kuo-Peng3, Mauricio V. Ferreira da Luz3, and Laurent Krähenbühl4

1University of Liège, ACE, Liège, Belgium, Patrick.Dular@ulg.ac.be \quad 2F.R.S.-FNRS, Belgium
3Universidade Federal de Santa Catarina, GRUCAD, Brazil
4Université de Lyon, Ampère (CNRS UMR5005), École Centrale de Lyon, Écully, France

Progressive refinements of the current sources in magnetic vector potential finite element formulations are done with a subproblem method. The sources are first considered via magnetomotive force or Biot-Savart models up to their volume finite element models, from static to dynamics. A novel way to define the source fields is proposed to lighten the computational efforts, via the conversion of the common volume sources to surface sources, with no need of any pre-resolution. Accuracy improvements are then efficiently obtained for local currents and fields, and global quantities, i.e. inductances, resistances, Joule losses and forces.

Index Terms—Finite element method, inductor, model refinement, subproblems.

I. INTRODUCTION

The current sources in finite element (FE) magnetodynamic problems can generally be considered via Biot-Savart (BS) models, possibly giving the conductors some simplified geometries, with, e.g., filament, circular or rectangular cross sections [1]. In the slots of magnetic core regions, an alternative to the explicit definition of such simplified geometries is to consider the slot-core interfaces as perfect magnetic walls via a zero flux boundary condition (BC). The slot regions are thus omitted from the calculation domain, neglecting the slot leakage flux instead of calculating other inaccurate distributions. The associated sources are magnetomotive forces (MMFs) [2].

MMFs are inherently associated with surfaces whereas BS models define source fields (SFs) that are originally volume sources (VSs). A novel procedure is here proposed to convert the BS SFs into surface sources (SSs) as well, to lighten the computational efforts, mainly by reducing the number of BS evaluations. It is based on interface conditions (ICs) that define field discontinuities fixed from surface BS fields. The developments are performed in the frame of the magnetic vector potential a formulations. Accuracy improvements up to volume FE representations of the conductors, that improve the local field distributions, and from static to dynamic excitations, that accurately render skin and proximity effects, can be done at a second step via the subproblem (SP) method (SPM) [3], [4], which defines a general frame for the whole modeling procedure.

II. PROGRESSIVE SOURCE MODELS – METHODOLOGY

A. MMF model

Boundary Γ_m of some magnetic (conducting or not) regions Ω_m, possibly extended with air gaps $\Omega'_m \subset \Omega_m$, can first be considered as a perfect magnetic wall (Fig. 1), thus with no leakage flux. For the so-defined SP $p \equiv$ MMF, the calculation domain is thus limited to Ω_p, called a flux tube, with a BC on Γ_m fixing a zero normal trace of the magnetic flux density b_p. In terms of a magnetic vector potential a_p, with $b_p = \text{curl} \ a_p$, one has the equivalent essential BCs

$$n \cdot b_p|_{\Gamma_m} = 0 \iff n \times a_p|_{\Gamma_m} = n \times \text{grad} \ w_p|_{\Gamma_m},$$

where n is the exterior unit normal and w_p is a multivalued unknown surface scalar potential. The required gauge condition on a allows to particularize the distribution of w_p.

Through such a process, the actual current source regions Ω_i are idealized as perfect solenoids winded all along Γ_m, i.e., around the flux tubes. In 3-D, scalar potential w_p in BC (1b) can be reduced to a constant jump through each of the cut lines making Γ_m simply connected. In 2-D, such constant jumps come down to the definition of a constant a_p (a kind of floating potential) on each non-connected portion $\Gamma_{m,i}$ (with i the portion index) of Γ_m (Fig. 1, left). The constant jumps are directly (strongly) related to the unknown magnetic fluxes flowing in Ω_m and are related to the MMFs via the weak formulation, tested with the non-local jump test functions [2]. An example of result is given in Fig. 3.

Each $\Gamma_{m,i}$ can be considered as the boundary of a slot in a device. The related MMF gathers all the current sources in the slot, for all coils, e.g., coils with different phases in a machine or primary/secondary coils in a transformer. A slot can be generalized to represent the exterior region, including coils as well.

Fig. 1. Example of a magnetic region Ω_m including an air gap Ω'_m, first considered without leakage flux, via perfect magnetic walls BCs on $\Gamma_{m,1}$ and $\Gamma_{m,2}$ in channel slots (XY-plane, left) coupled to end windings coil γ_{BS} via BS-SF model (XZ-plane, right).

B. BS-SF model

With the SPM, the BS SF evaluations can be limited to the material regions Ω_m via local VSs [3], [4], instead of the whole domain with the common method [1]. Such a support reduction already allows to lighten the BS calculations. Then, for accurate combinations with the reaction fields, the BS SFs gain at being projected onto similar function spaces (edge FEs for both source and reaction fields). Also, instead of volume
projections of the SFs in the mesh of Ω_m, the SFs gain at being calculated there via an FE problem with their boundary values as BCs on $\partial \Omega_m$, thus already limiting the BS evaluations to surfaces.

To go one step further, such a preliminary FE problem can be avoided through its inclusion in the main SP $p = BS$-SF. The key is to think of two successive SPs pa and pb actually solved together (Fig. 2). SP pa first prevents the field to enter Ω_m, thus with a reaction field in Ω_m opposing the BS field (direct solution of SP q), keeping unchanged the field out of Ω_m. This constraint is simply expressed via both tangential and normal field trace discontinuities of magnetic field h_{pa} and magnetic flux density b_{pa} through Γ_m, i.e., with ICs with SSs

$$\left[n \times h_{pa}\right]|_{\Gamma_m} = -n \times h_q|_{\Gamma_m}, \quad [n \cdot b_{pa}]|_{\Gamma_m} = -n \cdot b_q|_{\Gamma_m}.$$

(2a-b)

In terms of a_p, IC (2b) leads to

$$[n \times a_{pa}]|_{\Gamma_m} = -n \times a_q|_{\Gamma_m}.$$

(3)

The result is an exact zero field in Ω_m, with no need of volume calculation. Then, SP pb considers the actual physical properties in Ω_m, with no more VSs, which is a great advantage. Combining SPs pa and pb thus gives a single SP p that considers the physical properties of Ω_m and with the trace discontinuities of SP pa (2a-b) still being valid for its solutions h_p and b_p (because SP pb introduces no discontinuities).

BS SF evaluations are thus only required on Γ_m, which is a significant advantage. At the discrete level, the IC-SSs in (2a-b)-(3) can be obtained from a mesh projection of only the a BS SF in a layer of FEs along the boundary of Ω_m. Details will be given in the extended paper. An example of result is given in Fig 4.

D. Volume FE models of conductors

Additional SPs for volume FE models of the source conductors can follow (Fig. 5) [3], [4], for accurate determination of their characteristics (impedances, losses, forces).

The proposed methodology has first been validated on 2-D test problems. It offers tools that allow to reduce the computational effort of the classical approach. When applied up to 3-D problems, its advantages will be shown to be numerous and significant, with quantification of the benefits.

ACKNOWLEDGMENT

This work is supported by the F.R.S.-FNRS and the CNPq (project 400452/2014-6).

REFERENCES

