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Controllability of a 2 x 2 parabolic system by one force with
space-dependent coupling term of order one.

M. Duprez*

March 2, 2016

Abstract

This paper is devoted to the controllability of linear systems of two coupled parabolic equa-
tions when the coupling involves a space dependent first order term. This system is set on an
bounded interval I CC R, and the first equation is controlled by a force supported in a subinterval
of I or on the boundary. In the case where the intersection of the coupling and control domains
is nonempty, we prove null controllability at any time. Otherwise, we provide a minimal time
for null controllability. Finally we give a necessary and sufficient condition for the approximate
controllability. The main technical tool for obtaining these results is the moment method.

1 Introduction and main results

Let T > 0, w := (a,b) C (0,7) and Q7 := (0,7) x (0,T). We consider in the present paper the
following distributed control system

6tyl - 8xacy1 = ]lwv in QT7

Ory2 — Oxay2 + p(2)0:y1 + q(x)y1 = 0 in Qr, (1)
yl(ov') :yl(ﬂ-a') :y2(07'> =y2(7r,-) =0 on (OvT)a .
yl('70) = y?» y2(70) = yg in (0771—)

and boundary control system

0121 — Ogez1 =0 in Qr,

Orzo — Ozepzo + p(2)0p21 + q(x)21 =0 in Qr,

21(0,-) = u, z1(m,-) = 2(0,) = z(m,) =0 on (0,T), (12)
21(+,0) = 29, 25(-,0) = 29 in (0,7),

where y° := (y9,49) € L?(0,7)? and 2° := (2}, 29) € H~1(0,7)? are the initial conditions, v € L*(Qr)
and u € L?(0,T) are the controls, p € WL (0,7), ¢ € L*(0, ).

It is known (see [20] (resp. [16])) that for given initial data y° € L?(0,7)? (resp. 2° € H=1(0,7)?)
and a control v € L*(Qr) (resp. u € L*(0,T)) System (1.1) (resp. (1.2)) has a unique solution
y = (y1,y2) (resp. z = (21, 22)) in

£2(0,75 H(0,m)2) 1 C(0, T); L2(0, m)?)
(resp. L*(Qr)?> N C([0,T); H=1(0,7)?) ),

*Laboratoire de Mathématiques de Besangcon UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray,
25030 Besangon Cedex, France, E-mail: michel.duprezQuniv-fcomte.fr, Tel.: 33 (0) 3.81.66.63.26



M. Duprez, March 2, 2016

which depends continuously on the initial data and the control, that is

||Z/|\L2(0,T;Hg(o,7r)2) + Hy||C([O,T];L2(O,7r)2) < CT(||Z/0||L2(077T)2 + HU||L2(QT))
(resp. [|2llL2(@qr)2 + lIZlleqo,my -1 0,m2) < Cr(ll20ll -2 (0,m)2 + l[ull2(0,7)) )-
Let us introduce the notion of null and approximate controllability for this kind of systems.

e System (1.1) (resp. System (1.2)) is null controllable at time T if for every initial condition
yY € L%(0,7)? (resp. 2° € H~1(0,7)?) there exists a control v € L*(Qr) (resp. u € L?(0,T))
such that the solution to System (1.1) (resp. System (1.2)) satisfies

y(T)=0 (resp. 2(T)=0) in (0,m).

e System (1.1) (resp. System (1.2)) is approzimately controllable at time T if for all ¢ > 0 and
all 0, yT € L2(0,7)? (vesp. 2°, 2T € H=1(0,7)?) there exists a control v € L?(Q7r) (resp.
u € L?(0,T)) such that the solution to System (1.1) (resp. System (1.2)) satisfies

19(T) =y  lr2omz <€ (vesp. [2(T) = 2" || -1(0,m2 < e)-

The main goal of this article is to provide a complete answer to the null and approximate control-
lability issues for System (1.1) and (1.2). For a survey and some applications in physics, chemistry
or biology concerning the controllability of this kind of systems, we refer to [6]. In the last decade,
many papers studied this problem, however most of them are relating to some parabolic systems with
zero order coupling terms. Without first order coupling terms, some Kalman coupling conditions
are made explicit in [3], [4] and [16] for distributed null controllability of systems of more than two
equations with constant matrices and in higher space dimension and, in the case of time dependent
matrices, some Silverman-Meadows coupling conditions are given in [3].

Concerning the null and approximate controllability of Systems (1.1) and (1.2) in the case p =0
and ¢ # 0 in (0, 7), a partial answer is given in [1, 2, 13, 23] under the sign condition

g<0 or ¢g>=0 in (0,7).

These results are obtained as a consequence of controllability results of a hyperbolic system using the
transmutation method (see [21]). One can find a necessary and sufficient condition in [7] when

/07r q(z)dz # 0.

Finally in a recent work [8; 9], a complete study for any ¢ € L>°(0, ) is given.

Let us now remind known results concerning null controllability for systems of the following more
general form. Let Q be a bounded domain in RY (N € N*) of class C? and wy an arbitrary nonempty
subset of 2. We denote by 02 the boundary of 2. Consider the system of two coupled linear parabolic
equations

01 = Ay1 + 911 - Vyr + 912 - Vya + aniyn + araye + Loyv in Q x (0,7),

Oy = Aya + go1 - Vy1 + goo - Vyo + a21y1 + a0y in Qx(0,7), (1.3)
y=0 on 90 x (0,T), '
y(-,0) =y° in Q,

where y° € L2(Q)?%, g;; € L>(Q x (0,T))" and a;; € L>=(Q x (0,7)) for all 4,5 € {1,2}.
As a particular case of the result in [17] (see also [5]), System (1.3) is null controllable whenever

go1 = 0 and (a21 > C or a1 < *C) in w1 g wo, (14)
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for a positive constant C.
In [18], the author supposes that ai1, gi11, a2, goo are constant and the first order coupling
operator go1 - V + ao1 can be written as

g21-V+ay =Pof in Qx(0,7T), (1.5)
where 6 € C%(Q) satisfies |#] > C in w; C wy for a positive constant C' and P; is given by
Py :=mg-V +mq,
for some mg, m; € R. Moreover the operator P; satisfies
lllr ey < CllPFullzay V€ H®).

Under these assumptions, the author proves the null controllability of System (1.3) at any time.

In [10], the authors prove that the same property holds true for System (1.3) if we assume that a;; €
CHQ x (0,7)), gi; € CHQ x (0,T))N for all 4,5 € {1,2}, go1 € C3(Q2 x (0,7)) and the geometrical
condition

{ Ow N Of) contains a nonempty open subset v s.t. ¥ # &, (1.6)

Azo € v s.t. g21(t, mo) - v(wg) £ 0 for all ¢ € [0, T,

where v represents the exterior normal unit vector to the boundary 9f2.
Lastly, for constant coefficients, it is proved in [14] that System (1.3) is null/approximately con-
trollable at any time 7" if and only if

g1 #0 or ag #0.

In [14], the authors give also a condition of null/approximate controllability in dimension one which
can be written for system (1.1) as: p € C%(wp), ¢ € C*(wp) and

—40,(q)02(P)P + Oz (@)P* + 2002 (q)p — 3pqOzap + 6q(02p)* — 2¢°0up
_ama::r (p)p2 + 589: (p)aa:a: (p)p - 4(89519)3 7é 0 in wo

for a subinterval wq of w.
Now let us go back to Systems (1.1) and (1.2) for which we will provide a complete description of
the null and approximate controllability. Our first and main result is the following

THEOREM 1.1. Let us suppose that p € WL (0,7) N W2 (w), ¢ € L>=(0,m) N WL (w) and

(Supp(p) U Supp(q)) Nw # @. (1.7)
Then System (1.1) is null controllable at any time T.
Let us compare this result with the previously described results to highlight our main contribution:

1. Even though System (1.1) is considered in one space dimension, we remark first that our coupling
operator has a more general form than the one in (1.5) assumed by Guerrero [18]. Moreover
unlike [14], its coefficients are non-constant with respect to the space variable.

2. We do not have the geometrical restriction (1.6) assumed in [10] by A. Benabdallah and al.
More precisely we do not require the control support to be a neighbourhood of a part of the
boundary.
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For all k£ € N*, we denote by ¢y : x — \/gsin(k:x) the eigenvector of the Laplacian operator, with
Dirichlet boundary condition, and consider the two following quantities

Iok(p,q) :=/ (q — 20.p) ¢3,
0

Ii(p,q) ==/ (g — 30.p) ¢%,
0

for all k € N*. Combined with the Hautus test (|15, Cor. 3.3] or Th. 5.1 in the present paper),
Theorem 1.1 leads to the following characterization:

(1.8)

THEOREM 1.2. Let us suppose that p € WL (0,7) N W2 (w) and ¢ € L>=(0,7) N WL (w). System
(1.1) is approzimately controllable at time T if and only if

(Supp(p) U Supp(q)) Nw # @ (1.9)
or
1k (p, @) + Lo,k (P, @)| # O for all k € N*, (1.10)

This last result recovers the case p = 0 studied in [11] for Supp (¢) Nw = &, where the authors
use also the Hautus test. In [19], the authors prove the approximate controllability at any time T of
System (1.1) under the condition p = 0 and ¢ = 1,,, with wg a nonempty open subset of (0, 7), which
implies (1.10).

Remark 1. We will see in the prove of Theorems 1.1 and 1.2 that only the following regularity are
needed for p and ¢

p € Wa (0,m) NWZ (@),
q € L=(0,m) N W, (@),

for an open subinterval @ of w. These hypotheses are used in Definition (1.8) of I (p, q) and I, 1 (p, q)
and the change of unknown described in Section 3.2. For more general coupling terms, these control
problems are open.

When the supports of the control and the coupling terms are disjoint in System (1.1), following the
ideas in [9] where the authors studied the case p = 0, we obtain a minimal time of null controllability:

THEOREM 1.3. Let p € WL (0,m), ¢ € L°°(0,7). Suppose that Condition (1.10) holds and

(Supp(p) USupp(q)) Nw = 2. (1.11)

Let Ty(p, q) be given by

in(—log |1, —1og |1, 1 (p,
To(p’q)::hmsupmm( 0g |1x(p, 4)| , —log Lo,k (P, 9) 1)

1.12
k—o0 I ( )

One has
1. If T > Ty(p, q), then System (1.1) is null controllable at time T.
2. If T < Ty(p,q), then System (1.1) is not null controllable at time T

Concerning the boundary controllability, in [22, Th. 3.3], using the Hautus test, the author proves
that System (1.2) is approximately controllable at time 7' if and only if

I (p,q) # 0 for all k € N*. (1.13)

About null controllability of System (1.2), we can again generalize the results given in [9] to obtain
a minimal time:
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THEOREM 1.4. Let p € WL (0,7), ¢ € L>(0,7) and suppose that Condition (1.13) is satisfied. Let
us define

T (pa Q) := lim sup M

1.14
k—o0 k2 ( )

One has
1. If T > Ti(p,q), then System (1.2) is null controllable at time T.
2. If T < Ti(p,q), then System (1.2) is not null controllable at time T.

Remark 2. A simple computation leads to the convergence of the tow sequences (Ix(p,q))ren+ and
(La,k (P, q))ken=, more precisely

: 1" _ | e
lim Li(p,q) = I(p.q) = — / (¢ 10,p) and Tim Top(p,q) = Lu(p.q) = ~ / (¢ 1o,p).
k— oo T Jo k— oo ™ Jo

Thus, we remark that Ty(p, q) = T1(p, q) = 0 when

U 1 U
q#*/ 0D
[o#3)

and in particular under the condition
1 . 1 .
q> 589319 in (0,7) or ¢ < 58361) in (0, 7).

This article is organized as follows. In the first section we present some preliminary results useful
to reduce the null controllability issues to the moment problem. In the second and third sections
we study the null controllability issue of System (1.1) in the two cases when the intersection of the
coupling and control supports is empty or not. Then we give the proof of Theorems 1.2 and 1.4 in
Section 4 and 5. We finish with some comments and open problem in Section 6.

2 Preliminary results
Consider the differential operator

L: D(L)cCL?*0,7)> — L?(0,n)?
fo= —0uuf +Ao(posf +af),

0 0
A°::<1 0)’

the domain of L and its adjoint L* is given by D(L) = D(L*) = H?(0,7)> N HZ(0,7)2. In section 2.1,
we will first establish some properties of the operator L that will be useful for the moment method
and, in section 2.2, we will recall some characterizations of the approximate and null controllability
of system (1.1).

where the matrix Ag is given by

2.1 Biorthogonal basis

Let us first analyze the spectrum of the operators L and L*.
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PROPOSITION 2.1. For all k € N* consider the two vectors

:: ’@ :: 5
1,k ( O 2,k 0

where ¥} ts defined for all x € (0,m) by
k(o) = ajinle) — [ sinlh(o — DI Du©) + %O — a (el
ai=1 [ [ sl - 00O + 2: (1) - aOpuOlin(e)dede.

One has
1. The spectrum of L* is given by o(L*) = {k? : k € N*}.

2. For k > 1, the eigenvalue k* of L* is simple if and only if Ix(p,q) # 0. In this case, 35 )
and @7 ;. are respectively an eigenfunction and a generalized eigenfunction of the operator L*
associated with the eigenvalue k2, more precisely

L* — kK2 Id)d* , = I, ,
{ ( ) 1,k E¥2 L (2.1)

(L* — k21d)®3 , = 0.

3. For k > 1, the eigenvalue k? of L* is double if and only if I;(p,q) = 0. In this case, ], and
35 ). are two eigenfunctions of the operator L* associated with the eigenvalue k2, that is for
i1=1,2

(L* — K*1d)®} ), = 0.

Proof. The adjoint operator L* of L is given by

L*: D(L)c L*(0,m)* — L*0,m)?
f — _aacx.f+A0(_ax(pf)+Qf)

We can remark first that the inverse of L* is compact. Thus the spectrum of L* reduces to its point
spectrum. The eigenvalue problem associated with the operator L* is

— Oz — ax(p(x)@) + Q(x)90 =AY in (Oa 71—)7
—0Ozz0 = Ap in (0,7), (2.2)
©(0) = 1(0) = o(m) = ¥(r) =0,

where (¢, ) € D(L*) and A € C. For ¢ = 0in (0,7) and v = ¢y, in (0,7), A = k? is an eigenvalue of
L* and the vector @3 , := (¢, 0) is an associated eigenfunction. If now ¢ # 0 in (0, 7), then A = k?
is an eigenvalue and ¢ = ki with k € R*. We remark that System (2.2) has a solution if and only
if Ir(p,q) = 0. If Ix(p,q) = 0, @7, == (¥}, ¢x) is a second eigenfunction of L* linearly independent
of P31, where, applying the Fredholm alternative, ¢y is the unique solution to the non-homogeneous
Sturm-Liouville problem

{ —Opeth — k2 = f in (0,7), 23)

¥(0) = ¢(m) =0,
with

[ =0 (p(x)pr) — q(x)pr
and is such that

/07T Y(z)pr(z) de = 0. (2.4)
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A solution to System (2.3) can be written for all z € (0,7) as

x

vie) = apn(o) = [ sink(r =€) F(€)dt.

with o € R. Under Condition (2.4), we obtain the expression of 1 given in Proposition 2.1. Thus,
in the case Ij(p,q) = 0, A = k? is a double eigenvalue of L*. Ttems 1 and 3 are now proved.

Let us now suppose that I(p,q) # 0. The eigenvalue A = k? is simple, @3, = (¢r,0) is an
eigenfunction and a solution ®7 , := (¢, ) to (L* — k*Id)®} = 1i(p, @) @3, that is

—0path — 0 (p(x)0) + q(2)p = K*¢Y + I (p, q)pr i (0,7),
—Oprp = K20 in (0,7), (2.5)
©(0) = (0) = p(m) = ¢(7) =0,

is a generalized eigenfunction of L*. We deduce that ¢ = kg in (0,7) for a constant x € R*. Again
System (2.5) has a solution if and only if K = 1. Then % is solution to the Sturm-Liouville problem
(2.3) with

f=Ii(p.a)er + 0x(p(x)er) — a(z)pr

and satisfying (2.4). Again, using (2.4), we obtain the expression of ¢} given in Proposition 2.1. O

The function v} given in Proposition 2.1 will play an important role in this paper and we will
need the following straightforward property

Lemma 2.1. There exists a positive constant C' such that

SO c *
o] < 7 1Vl os 0,7) < T 1029l Lo~ 0,m) < C, Vk € N*. (2.6)

Since the eigenvalues of the operator L* are real, we deduce that L and L* have the same spectrum
and the associated eigenspaces have the same dimension. The eigenfunctions and the generalized
eigenfunctions of L can be found as previously.

PROPOSITION 2.2. For all k € N* consider the two vectors

0 Pk
(0] = [0} =
1,k ( Ok ) s 2.k < ’(/Jk ) )

where Py, is defined for all x € (0,7) by

1

nle) = awpn(e) ~ 1 [ sinlhte = ). n(€) - PO (er(6)) ~ a(E)on(E)ld,

/ / sin(k(z — ) T, )or(€) — PO (21(6)) — a(€)or(©)pn (x)dedr,

One has
1. The spectrum of L is given by o(L) = o(L*) = {k? : k € N*}.

2. For k > 1, the eigenvalue k* of L is simple if and only if Ix(p,q) # 0. In this case, ®1 ) and
Dy are an eigenfunction and a generalized eigenfunction of the operator L associated with the
eigenvalue k%, more precisely

{ (L — k21d)®, 4 = 0, o

(L — K2Id)®y j, = [1 Py .
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3. For k > 1, the eigenvalue k* of L is double if and only if Ir(p,q) = 0. In this case, Py
and ®s ) are two eigenfunctions of the operator L associated with the eigenvalue k2, that is for
i=1,2

(L — k*Id)®;, = 0.

Lemma 2.3 and Corollary 2.6 in [9] can be adapted easily to prove the following property.
Property 2.1. Consider the families

Bi={® ), ®op: k €N} and B*:= {cb;,k, By, ke N*} .

Then
1. The sequences B and B* are biorthogonal Riesz bases of L*(0,)>.

2. The sequence B* is a Schauder basis of Hi(0,7)? and B is its biorthogonal basis in H~=*(0, ).

2.2  Duality

As it is well known, the controllability has a dual concept called observability (see for instance
[6], [12, Th. 2.44, p. 56-57]). Consider the dual system associated with System (1.1)

00— 0,20 + A5(—0,(p()6) + a(x)6) =0 in Qo
0(0,-) =0(m,-) =0 on (0,7), (2.8)
0(-,T) =6° in (0,7),

where 0 € L?(0,7)2. Let B the matrix given by

b= ().

The approximate controllability is equivalent to a unique continuation property:

PROPOSITION 2.3. 1. System (1.1) is approximately controllable at time T if and only if for all
initial condition 0° € L?(0,7)? the solution to System (2.8) satisfies the unique continuation

property
1,B*0=0in Qr = 6#=0in Q. (2.9)

2. System (1.2) is approzimately controllable at time T if and only if for all initial condition
0° € HL(0,7)? the solution to System (2.8) satisfies the unique continuation property

B*9,0(0,t)=01in (0,7) = 6=0in Qr. (2.10)
The null controllability is characterized by an observability inequality:

PROPOSITION 2.4. 1. System (1.1) is null controllable at time T if and only if there exists a
constant Cops such that for all initial condition 8° € L*(0,m)? the solution to System (2.8)
satisfies the observability inequality

16(0)12 0,072 < Cons / / 11, B0 2dad. (2.11)
T

2. System (1.1) is null controllable at time T if and only if there exists a constant Cops such that
for all initial condition 8° € HE(0,7)? the solution to System (2.8) satisfies the observability
inequality

T
1000y 0,502 < Cone | 1B*0,000.0)at (212)
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3 Proof of Theorem 1.1

In this section, we first establish the moment problem related to the null controllability for System
(1.1) and then we will solve it in section 3.2. The strategy involves finding an equivalent system (see
Definition 3.1) to System (1.1), which has a associated quantity I} satisfying "some good properties".

3.1 The moment problem

Let y° := (47,99) € L*(0,m)*. For i € {1,2} and k € N*, if we consider §° := @} in the dual
System (2.8), we get after an integration by part

// (z,t)1,B*0(x, t)dzdt = (y(T),® >L2(0 2 — (4°, 0(0)) £2(0,x)2-

Since B* is a Riesz basis of L?(0,7)2, System (1.1) is null controllable if and only if for all y° €
L?(0,7)?2, there exists a control v € L?(Qr) such that for all kK € N* and i € {1,2} the solution y to
System (1.1) satisfies the following equality

// v(z, )1, B*0; (x,t) drv dt = —(y°,0; £(0)) L2(0,7)2, (3.1)

where 6, . is the solution to the dual system (2.8) with the initial condition §° := Q7
In the moment problem (3.1), we will look for a control v of the form
o(z,t) == fO@)o(T —t) + fO(2)oP(T - t) for all (z,t) € Qr, (3.2)

with v, v € L2(0,T) and fM), f?) € L?(0, 7) satisfying

Supp (f(1)> , Supp (f@)) Cw.

The solutions 0y and 63,5 to the dual System (2.8) with the initial condition @7 ; and @3, are
given for all (z,t) € Qr by

O1p(z.t) = e H 0 (@ 1 (2) = (T = ) I(p,0) 95, (2)) 53
O2,k(2,t) = e"“g(T‘“@;k(w)- .

Plugging (3.2) and (3.3) in the moment problem (3.1), we get for all k > 1

T T
f,gl) / i) (t)e_kzt dt + f,f) v (t)e_kzt dt
0

0
o f® [ O 1) [ o e
0 0
= —e Ty — TIi(p, )}

T T
Y / v e dt+ fP [ 0@ () de = —e Ty,
0 0

where 1", £ and y?, are given for all i € {1,2} and k € N* by
here f{", /1 and 19, are given for all i € {1,2} and k € N* b

Ve [ O o (@)de. FD o [ FD ()05 (2)da
—/Of<>gok<>d, k./ofuwk()d, (3.4)

y?,k = <y ,(I) >L2(O )" (35)

and
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In [16], the authors prove that the family {61,k = ekt e = te*th} admits a biorthogonal
k>1

family {q1 x, g2k }k>1 in the space L?(0,T), i.e. a family satisfying

/OT eikqj1(t)dt = 6;0,, Yk, 1>1, 1<4,j<2 (3.6)
Moreover for all € > 0 there exists a constant C. 7 > 0 such that
ikl 20y < Cer e, VE>1, i=1,2. (3.7)
We will look for v(!) and v(?) of the form

v () =S {0l ae(t) + ol an(t)}, i=1,2. (3.8)
k=1

Thus the moment problem (3.1) can be written as

A kVig + A2 Vo = Fi,  forall k =1, (39)
with for all £ € N*
R ~L(p. ) fy) ~Iu(p.a) £
4 _ . & A _ kD, k E\D:q) ] 3.10
Lk ( o g ) 0 0 ’ )
(1) )
v v
weom (5). v () 311
vk Y2,k
and
_ _m( 0 7T 9 )
e ( e yl”isz Ok(p, 0Ya2) | (3.12)
—e Yok

The next sections will be devoted to solving problem (3.9) and prove that the corresponding solution
v, (2 belongs to L*(0,T).

3.2 Resolution of the moment problem

In this section, we will prove the null controllability of System (1.1) at any time T when the
supports of p or ¢ intersects the control domain w. In [17], the authors obtain the null controllability
of System (1.1) at any time under Condition (1.4), so we will not consider this case and we will always
suppose that |p| > C in @ for a positive constant C' and an open subinterval @ of w.

Let us first introduce the following notion of equivalent systems.

DEFINITION 3.1. Let py, po € WL (0,7) and q1, g2 € L>(0, 7). Consider the systems given for
i€ {1,2) by

For given y° € L?(0,7)2, v € L*(Q7),

Find y := (y1,y2) € W(0,7)? such that :

Ory1 — Ozt = Ly in Qr, (S)
Ory2 — Oxay2 + pi(2)0:y1 + qi(x)yr =0 in Qr, '
y(0,)) = y(m,-) =0 on (0,7),

y(-,0) =y° in (0, 7).

We say that System (S1) is equivalent to System (Sz) if System (Sp) is null controllable at time T if
and only if System (Sz2) is null controllable at time T

10



3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Let us present the main technique used all along this section. Suppose that System (1.1) is null
controllable at time 7. Let v a control such that the solution y to System (1.1) verifies y(T") = 0 in
(0,7) and wp := (v, B) a subinterval of w = (a,b). Consider a function § € W2 (0, ) satisfying

0=k in (0, @),
0=kry in (B,m), (3.13)
0] > kg in (0,m),

with 1, k2, k3 € R%. Thus if we consider the change of unknown
7:= (U1,y2) with 7 := 01y, (3.14)

then 7 is solution in L2(0,T; Hg(0,7)?) NC([0,T]; L?(0,7)?) to the system

8t:l//\l - 8x:1:?/j1 = ]lwi}\ in QTa
Ory2 — Oray2 +pOzy1 + qy1 =0 in Qr, (3.15)
@\(07 ) = 37(7.['7 ) =0 on (O7T)a
?/J\("O) = Yo in (0’ 77)’
where the initial condition is gy := (07 1y?,49) € L?(0,7)2, the control is ¥ = —0., (07 )y; —
20, (07 1)0,y1 + 071w € L2(Qr) and the coupling terms are given by
p = pb,
b (3.16)
q := p0d.0 + ¢b.

Since 6 is constant in (0, 7)\wg, we have
Supp ¥ Cw x (0,7).

Since y is controlled, then 7 also. The converse is clearly true: starting from the controlled System
(3.15) the same process leads to the construction of a controlled solution of System (1.1). Thus
through the change of unknown (3.14), following Definition 3.1, Systems (1.1) and (3.15) are equiva-
lent.

The next main result of this section is Proposition 3.1 that will be introduced after some lemmas.
The first of them is the following.

Lemma 3.1. Let p € WL (0,7) N W2 (w) and ¢ € L>=(0,7) N WL (w) with |p| > C in an open
subinterval @ of w for a positive constant C. There exists a subinterval wy = (o, ) C @ and a
function § € W2 (0, ) satisfying (3.13) such that System (1.1) is equivalent to System (3.15) with
qd =0 in wg. Moreover for all € > 0 the interval wy can be chosen in order to have for all k € N*

I(p.q) — 1B, )| <& and [In(p,q) — Ie(P.9)] < & (3.17)
Proof. Let wp := (av, 3) be an interval strictly included in & := (a, b) and 6 € W2 (0, ) satisfying

p0:0+gf =0 in wp,

=1 in (0, m)\&, (3.18)

6] > C in (0,7),
for a positive constant C. In the intervals (@, o] and [3 ,E), we can take 0 of class C* in order to have
6 € W2, (0, ). Thus the function 6 verifies (3.13) and, following the change of unknown described in
(3.14), System (1.1) is equivalent to System (3.15) with ¢ = 0 in wq (see (3.16)). The estimates in
(3.17) are obtained taking the interval wy small enough. O

11



3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Let us first study System (1.1) in a particular case.

Lemma 3.2. Consider p € WL (0,7) N W2 (w) and ¢ € L>®(0,7) N WL (w). Let us suppose that
p=C € R* and ¢ =0 in an open subinterval w of w. Then System (1.1) is equivalent to a system of
the form (3.15) with coupling terms p, q satisfying

|I:(P,q)| > C/k®, Vk € N*.
To prove this result we will need this lemma:
Lemma 3.3. Let (ui)ren+ be a real sequence. Then there exists k € RY such that for all k € N*
lur, + K| = 1/k2.

Proof of Lemma 3.3. By contradiction let us suppose that for all x € R% there exists k € N* such
that for all k£ € N*

lup + k| < 1/k2.
Then
Ry € (uk — 1/K up + 1/K). (3.19)
keN~

The convergence of the series Y, . 1/k? implies that the measure of the set in the right hand-side
in (3.19) is finite and leads to the conclusion. O

Proof of Lemma 3.2. Let (a, 3) an open subinterval of @ with o and 3 to be determined later, x € R
and 6 € W2 (0, 7) satisfying

(3.20)

9 = 1 iIl (0371—)\(0‘75)7
0=1+ré in (a,p),

where

&= sin? <7r(5x_—aa)> in (a, B).
In particular, we have # > 1 in (0,7). Let k € N*, 3 := 0~ 'y; and 4 := (¥1,%2) the solution to
System (3.15). For System (3.15) the quantity I, defined in the introduction is given by

PN T o1,
Iy(p,q) = /0{61—583010}90%
= Ix(p,q) + KJx,

with p, ¢ given in (3.16) and Jj defined by

Then, after a simple calculation, we obtain

27
_ (B=a)? . )
BTy ek gy e sn(E el (3.21)

-«

Let n € N* and ¢ an algebraic number of order two satisfying

a
—<i<
n

— and é#gforalljeN*.

12



3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Let us take oo :=nf and 5 := (n + 1)¢. Thus o, 8 € (a,b) and
E(B+a) =k(2n+1)¢ and k(8 —a) = kL. (3.22)

Moreover
2 2

f—a f—a
with R > 0. Since ¢ is an algebraic number of order two, using diophantine approximations it can be
proved that

2%k + x |2k — < Rk?,

inf (7] sin(j0)) > 7, (3.23)
j>1
for a positive constant v (see [9]). The expressions (3.21)-(3.23) give
2 ~?
Ji| = . 3.24
K> 5o R+ Dk (3.24)
Using Lemma 3.3, there exists x € R’} satisfying
I
L(p: ) +n‘ > 1/k.
Ji
Combining the last inequality with Estimate (3.24),
k(. @)| = |1k (p, @) + £Ji| > I /k* > C/K°.
O

The next lemma is proved in [9] but, for the sake of completeness, we will include the proof in the
appendix A.

Lemma 3.4. There exist functions f), f3) € L2(0,7) satisfying

Supp (f(”) , Supp (f(2)> Cw

and such that for all k € N*

. C
min{] £ 1571} > 5.
. (3.25)
1) 42 2) (1
B = 7R > €.
where for i € {1,2} the terms f,gi) and f,(:) are given by
flgi) ::/ fO(x)pp(x)dz and f,(j) ::/ D (z) cos(kx)dz. (3.26)
0 0

With the help of Lemma 3.4, we deduce the following proposition:

PROPOSITION 3.1. Consider p € WL (0,m) N W2 (w) and g € L*>(0,7) N WL (w). Let us suppose
that |p| > C in an open subinterval @ of w for a positive constant C. Then System (1.1) is equivalent
to a system of the form (3.15) with coupling terms p, q satisfying Condition (1.10), Ty(p,q) = 0 and

\det Al,k

C ~ N C ~ «
> 7 Lax @@ = 2 k(@.9)| 7k eN, (3.27)

where Cy and Cy are two positive constants independent on k (the notion of equivalent systems is
defined at the beginning of Section 3.2).

13



3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Proof. Using Lemma 3.1, without loss of generality, we can suppose that ¢ = 0 and |[p| > C in a
subinterval & of w for a positive constant C. If 9,p = 0 in &, Lemma 3.2 leads to

\Ix(p,q)| = C/k®, Vk € N,

which implies that Condition (1.10) is satisfied and the right hand-side of inequality (3.27) is negative
for some appropriate constants C; and Cs. Otherwise, let («, ) C & such that d,p > C in (o, 8) or
O:p < —C in (v, B) for a positive constant C.

The rest of the proof is divided into three steps:

(i) In a first step we will see that System (1.1) is equivalent to a system with coupling terms p, ¢
satisfying

/ {a— mp}#O

(ii) We will show in a second step that we can suppose that System (1.1) is equivalent to a system
with coupling terms p, ¢ such that for a positive constant C'

[Ix(p, q)| > C for all k € N* satisfying ppy non-constant.

(iii) Finally, in a third step, we will prove that System (1.1) is equivalent to a system which fulfills
the three conditions described in (3.27).

Step 1: Assume that I(p,q) = 0 and consider § € W2 (0, ) defined in (3.20), with x := 1. We
remark that || > 1. If we consider the change of unknown described in (3.14), then for all £ € N*,
using the definition of Iy, we obtain

LED = Llpg / (3060 — €0, ()} o

where

1 B
Wpa) = o [ 1000~ €001} (1 - cos(2ka))do

B8
S o / (0,(6)p — €0, (p) o

- ——/ga J(p,q).

Using the definition of £, we get
- 1nf |81p|/ sin? me—a) dx
B —«

— 1nf \&Cpl/ {1 — cos (W)}dx

_ (5 ).
= 5 (g’lg)laxpl#()-

WV

|J(p, q)|

We recall that I(p,q) — I(p,q) = 0. Thus we obtain I+ (p,q) — I(p,q) # 0.

Step 2: Let us now assume that I(p,q) # 0. Using Lemma 3.1, up to the change of unknown
(3.14) we can also suppose that ¢ = 0 in an open subinterval @ of @. Moreover, by (3.17), the
function 6 and @ can be chosen in order to keep the quantity I different of zero. Let (a, 8) C & such

14



3.2 Resolution of the moment problem M. Duprez, March 2, 2016

that |[p| > C > 0 in («, ). Since I(p,q) # 0 and I(p,q) — I(p,q), there exists ky € N* such that
|7k (p,q)| > C for a constant C' > 0 and all k > kg. Let us define the set

={k e N*: I;(p,q) = 0 and pypy, non — constant in (o, 3)}
and M := #Sp < co. Let § € W2 (0, ) satisfying

9:1+2Am4:1§m7

Em € W2(0,7), for all m € {1, ..., M},
Supp(ém) C (e, B), forallm e {1,.... M},
6] > C >0,

where &1, ...,&p are to be determined. Again, if we consider the change of unknown (3.14), then for
all k € N*, using the definition of I, we obtain

R M B 1 1
RED = B0+ S [ (306 - 36n0u)its
m=1Ja

M
= L(pad+ Y Jmrpq).

m=1

The goal is to choose the functions &1, ..., such that for a constant C' > 0 we have |Ix(p, q)| > C
for all k € N* satisfying pyy non-constant in (¢, 8). We will construct &1, ..., from & until €.
Let k € Sy and consider (f1,&1) € WL (o, 8) x W2 («, B) a solution to

S0 (E)p — 560:(0) = fi in (. 9)
§i(e) = &(B) = 0:&1(a) = 0:61(B) =

This system is equivalent to

2f1 (5)

/a e >) =

ds, forall z € (o, B),

fila) = f1(B) =
We remark that we need that p € W2 («, 3). Finding a function f; satisfying
1(s)

file) = f1(B) = /p()d—O and J1 x(p, q) /f1 s)pi(s)ds # 0, (3.28)

is equivalent to finding a function g := 2f; /p? satisfying
B B
g1(a) =g1(B8) = O,/ g1(s)ds =0 and g1(8)p? ()2 (s)ds # 0.

[e3

Let k1 € R and define for all j € N* and all z € (¢, 8)

)

Using the fact that ppy is non-constant in (v, 8), without loss of generality, we can suppose that

(o522 (e B o 22).

g1,(x) := K1 sin (
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3.2 Resolution of the moment problem M. Duprez, March 2, 2016

otherwise we adapt the interval («, ) at the beginning of Step 2. We deduce that the function hy of
L*(a,a + (B — )/2) defined by

hy: (q,a+(B—w®)/2) — R
s = PAs)ei(s) —p*(B+a—s)pR(B+a—s)

is not equal to zero in (o, + (8 — «)/2). Since (g1,;)jen~ is a Riesz basis of L?(a, a0 + (8 — «)/2),
there exists j; € N* such that

at(f—a)/2
/ 9139 [P ()R (s) (5 + = s)eh(5 + a = 5)] ds 20
«
Moreover, using the fact that

91,51 (8) = 91,5, (B +a —s) Vs € (a,a + (8 = a)/2),

we have
B

OH_(ﬁ_a)/Q 2 2 2 2
/ 9152 (8)P(5) g ()ds # — 9152 (5)P(5) 03 (5)ds.
« at+(B—a)/2

Thus y
/ 91,5, (8)P* ()i (s)ds # 0.

2
Plugging g1 := ¢1,j, and f; := % in (3.28), we obtain

K A mTi(s — a
Jik(p,q) = ?1/04 sin (2‘751(_0[)) p(8)*pr(s)?ds # 0.

We have also for all j € N*

D) =" [oin (R o as

We fix x1 in order to have
1
sup |J1:(p,q)| < = inf |Li(p,q)l.
@gl Lip )l < 5 Z,EN*\SOI i(p,q)|
Let m € {2,..., M} and let us assume that &1, ...,&,,—1 are already constructed. Consider the set

m—1

Sm—1:=1{k € N*: I.(p,q) + Z J;k(p,q) =0 and pyy non — constant in (a, 5)}.
j=1

If S,,—1 = @, then we take &, = 0 in (0,7). Otherwise, let k € S,,_1 and consider (f,,&mn) €
WL (a,B) x W2 (a, B) a solution to

1 1 .

iax(gm)p - ifmax(p) = fm in (o, 8),

Em(Oé) = Em(ﬂ) = azgm(a) = amém(ﬂ) = 0.

This system is equivalent to

na) = (o) [ 25;}2‘?@, for all 2 € (a, ),

p 2fm(s) ,
[ =0
fm(a) = fm(ﬁ) =0.
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3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Let K., > 0. Again, there exists j,, € N* such that the function f,, given for all z € (o, 8) by

i) = g sin (2= )y

is solution to this system. Then, we obtain

Tm.j (D, q) = %m /j sin (W) p(s)%p;(s)?ds.

The last quantity is different of zero for j = k. Let us fix x,, in order to have

1 m—1
sup |Jm.i < = inf I; Jis .
sup [Jmi(p @)l < 3 dnf z(p,q)+j§ 5.i(p, )

Thus, after constructing the functions &1, ..., &, the obtained functions p and ¢ are such that
|Ix(p, )| > C for all k € N* satisfying ppy non-constant in (a, 8),

where C is a positive constant which does not depend on k. If |Ix(p,q)| > C for all k € N* and a
positive constant C', then Condition (1.10) is satisfied and the right hand-side of inequality (3.27) is
negative for some appropriate constants C7 and Cs.

Step 3: Assume that there exists m € N* such that

[Ix(p,q)| > C > 0 for all k € N*\{m},

Im(p,q) =0, (3.29)
PYm constant in («, 3).

Again, using Lemma 3.1, up to the change of unknown (3.14) described at the beginning of the section
we can also suppose that ¢ = 0 in a subinterval («, 8) of @. Moreover, using (3.17), this change of
unknown can be chosen in order to keep the property: |[Ix(p,q)| > C > 0 for all £ € N*\{m}. Let
m € N* such that I,,,(p,q) = 0 and py,, is constant in («, 3), otherwise we argue as in Step 2. Let
6 € W2 (0, ) satisfying

0=1+¢ in (0,m),

£ e WX (0,m),

§=¢ R in (0,0),
E=0in (8,7),

6] > C > 0.

Again, if we consider the change of unknown described in (3.14), then for all k € N*

R | 1 )
Iv(p,q) = Ik(p,q)Jr/ {iax(ﬁ)p+§q—§faz(p)}wkd$
0
= Ix(p,q) + Ji(p, 9)-

We will distinguish the cases I m(p,¢) = 0 and Iy . (p,q) # 0 (see (1.8) for the definition of this
quantity) for the new control domain w := («, 8).

Case 1: Assume that I, ., (p,q) = 0. Let (£,h) € W2 (a, B) x WL (a, B) be a solution to the system

§(B) = 0:8(a) = 0:£(8) = 0,
§(a) =&a €R™.
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3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Case 2:

This system is equivalent to

E(x) = —p(x) [{ BSds,  forall w € (a, ),

z p3(s)
@ Fds = 5
ha) = —§a3;p(04)’
h(B) = 0.

Taking into account that I ,»(p,¢q) =0, ¢ = 0 in (a, ) and py,, = v in (¢, ) for a v € R*,
one gets

IRV T (6, 7
T (psq) = éa/o (0= 50:(p)¢hnda + 7/(1 O (p> =5 7"

Let &, and h be such that

1
sup |Ji(p,q)| < =  inf Ii.(p,q)|.
sup 1. ) < 5, _int \Tk(p.0)

Then |Ix(p, q)| > C for all k € N* and a positive constant C. Thus Condition (1.10) is satisfied
and the right hand-side of inequality (3.27) is negative for some appropriate constants C; and
Cs.

Let us now assume that I ., (p, ¢) # 0. Then Condition (1.10) is verified. In this case, we recall
that, in the moment problem described in the last section, we have

det Avp = FOFD SO 15,
where f}g), ,(,?), Y and f,(,?) are given in (3.4). Since py,, is constant in (a, 8), the function
7, of Proposition 2.1 reads for all z € (a, f)
[0

Uin@) = ahom—— [ sin(m(z — )0 (p(E)m(€) — a(€)pm(E)]dE

m.Jo
= Tmpm(z) — \/jnllfa,m(p, q) cos(max),
with
= 0 — ﬁ o | cosmO0. (©)n(€)) ~ a©pm
0

We deduce that
T 1
et = =[5 2 Lonlp. ) F 1D = FD 1),

where f,(nl) and f,(,f) are given in Lemma 3.4. Using Lemma 3.4, we obtain detA; ,, # 0. Thus,
for C; small enough (3.27) is true for k = m and, for all k¥ # m, the right hand-side of (3.27)
is negative for C'y be enough.

We conclude this proof remarking that, in each case, there exists C' > 0 and ky € N* such that, for
all k > kg, we have

|1x(5,9)| = C/K®,

which implies that Ty(p, ) = 0. O
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3.2 Resolution of the moment problem M. Duprez, March 2, 2016

We recall that To(p, q) is given by

in(—log|I “log |L, »(p.
To(p,q) :zlimsupmm( Og|k(paQ)|? Og| JC(p Q)D

: e (3.30)
—00

Before to prove Theorem 1.1, we will establish the following proposition which is true not necessary
in the case where the coupling region intersects the control domain.

PropoOSITION 3.2. Assume that Condition (1.10) holds, T > Ty(p,q) and, for positive constants
Cl and CQ,

C C
det Av k| > - [Tk (0 0) = =7 He(p. 0] (3:31)
Then System (1.1) is null controllable at time T.

Proof. We will use the same strategy than [9]. Let e > 0. Using the definition of the minimal time
To(p,q) in (3.30), there exists a positive integer k. for which

min {log Lok (0, q)] " log | I (p, q)|_1} < KA(To(p,q) +¢), Yk > k.. (3.32)

The goal is to solve the moment problem described in Section 3.1. We recall that we look for a control
v of the form (3.2) and (3.8) with f(V) and f defined in Lemma 3.4. We will solve the moment
problem (3.9) depending on whether k belongs to Ay, Ay or Az, where

A = {EeN:Lu(p.q) £ 0, Iou(p.q) # 0},
A2 = {kGN* :Ik(p7 )#0 Iak( ):O}7
A3 = {kEN* ZIk(p, ):0 Iak( )750}

Case 1 : Consider the case k € A1 with k& < k..
Let us take
GO CO Nyt
U1k = Vo = Y-

The moment problem (3.9) becomes

1 1 1 1 _ L2
OV 1 (n@ﬁ)QQZAEkT(ﬁ¢*T&@AM%>7

1 1 >
Oofl = —evmg,

Since Ij(p, ¢) # 0 and using the estimate of f]gl) and f,EQ) in Lemma 3.4, the last system has a unique

solution

1) _ —sz Y9k
k= IOK

— k2T

(1) e (l)y
Uk = 7, D (y?,k *Tfk(p,Q)ygk I 2(113

) (3.33)

Moreover, since the set of the k considered in this case is finite, we get the inequality

(i)
1

— 2 . .
e T L2 0,mp2s 4G =1,2. (3.34)

Case 2: Let k € Ay such that k > k. and |I(p, q)| " < ek (To(pa)+2¢)
As in the previous case, we take vgzlz = vg » = 0 and the moment problem (3.9) has a unique solution,
given by (3.33). Thanks to the property of ¢} (see (2.6)) and Lemma 3.4, we get for ¢ = 1,2 the

following estimates

M=ot 1Y) <

)

= Q

< Cllyollrzo,m2, Vb € N™. (3.35)
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3.2 Resolution of the moment problem M. Duprez, March 2, 2016

Thus, using the assumptions on k, we obtain

1 _ L2 (T 2
w{)| < Ck3e* THyO||L2(0,7r)2 < Coem TR |40 L2 0,2,

_ k2
v (2) C e (T=9) —(T—To—

0 <C 3e)k?|[,,0
f(p,q> Iy°ll220m)2 < Cee 150 22 02

where C. is a constant which is independent on k and y°.
— 2
Case 3: Consider now k € Ay such that k > k. and [I(p, q)| " > ¥ (Top0)+2e),
This implies with (3.32) that

Lo k(p,q)| 7 < ¥ (To(pa)te), (3.36)

The two last inequality lead to
1e(p, @)l < e Lo (p, q)] -

Combined with inequality (3.31), taking k. large enough, we get
|det Aq | > C.e <k’ [To.i: (P Q)| (3.37)
with C; independent on k. To solve the moment problem (3.9), we take here
1) 2
”é,k = U2,li =0.

Then the moment problem (3.9) reads Ay V1 = Fj. Since detA; j # 0, the inverse of A; j is given
by

—1 —1 f(z) _f(2)

We deduce that the solution to the moment problem (3.9) is

2 k32T 1
)= e U — (T, ) Y + w8 )

1 e~ k2T 2 2 2
vg,l = det Arn {_fli )y(l),k + (T'Ik(p, @) f3 & ff@ ))yg,k}7
(
1

The last expression together with (3.36) and (3.37) gives
o{)] < Cee™T=T0=2R% 00| o vz i =1,2. (3.38)

Case 4: Let us consider k € As.
If £ < k., we can argue as in Case 1. Let us suppose that k > k.. In this case, I, x(p,q) = 0,

Ii(p, q) # 0 and inequality (3.32) reads |I;(p, q)| " < e¥’ To@2)+e)  We take here

2 2
o= =0

) )

and the solution of moment problem (3.9) is given by (3.33). We get

Ee—kz(T—To(P7Q)—25)Hy0||L2(0Jr)2, 1,7 =1,2.

s

Case 5: Let us now deal with the case k € As.
We recall that I, (p,q) =0, I1 1(p, q) # 0 and inequality (3.32) reads

ok (p,q)| 7" < & (To@a)+e), (3.39)
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The moment problem (3.9) is now A; Vi = Fjy with Ay and Fj given in (3.10) and (3.12),
respectively. From (3.31), the matrix A; j is invertible and

1 — k2T 2 2
v = detAlk{ fk)ym"’j yzk}

2 (1 =1
Uilz = dot A1 k{fk )yl & fk: )yQ,k}'

Using inequalities (3.31) and (3.39), we obtain estimate (3.38).
Conclusion:
We have constructed a control v of the form (3.2) and (3.8), which satisfies

v i S Cfs Zeikﬂ(TiTO(p’q)iSE)HyOHL2(0,7r)2, Z,j _ 1727 ke N*
k=1

The last inequality, the estimate (3.7) of ¢;  and the expression (3.8) of v(¥) (i = 1,2) lead to

H,U(i) < Cepe” (TfTo(p,q)*‘lE)’ i=1,2.
L2(0,T)
Thus, taking
T — T
e (07 0(1%@))7
4
we have the absolute convergence of the series defining v") and v(? in L?(0,T). This ends the proof.

O

Proof of Theorem 1.1. Using Proposition 3.1, System (1.1) is equivalent to a system with coupling

terms p and ¢ satisfying Condition (1.10) and (3.31). Proposition 3.2 leads to the null controllability

of System (1.1) when T > Ty (p, ¢). We end the proof of Theorems 1.1 remarking that Ty (p, ¢) = 0.
O

4 Proof of Theorem 1.3

4.1 Positive null controllability result

Before studying the case where the intersection of the coupling and control domains is empty, we
will first rewrite the function %} given in Proposition 2.1.

Lemma 4.1. Let k € N*. Consider the function v} defined in Proposition 2.1. If we suppose that
Condition (1.11) holds, then for all x € w

Vi (r) = Trr(x) + gr(x) for all z € w,

where

_ ﬁ H / " cos(k)[0: (p(€)x (6)) — a(E)on (€)1

au(0) 1= LD [ 1z~ )pu(€)de [ 1 sl ) costhn).

and

Proof. Since p=¢ =0 in w, we get for all z € w,

wile) = aioute) - =20 [Tin(i(o - 9)pue) de

1 [ st — )10, (pOn©) — a(@) el
0
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Proof of Theorem 1.5. We will follow the strategy of [9]. Assume that Conditions (1.10) and (1.11)
hold. Consider the functions () and f(?) defined in Lemma 3.4 and the matrix A ; given in (3.10).
Let & € N*. We recall that, in this case, we have

det Ay 1= JV F2) — F@) 40

where, for i = 1,2, f,gi) and flgi) are defined in (3.4). Since Supp (f(i)) C w, using the expression of
1y, given in Lemma 4.1, we obtain

FO = f9 4 /Oﬂ F(x) gi(x) da,

where for all x € w

gr(x) = 7Ik(zv q) /Ow sin(k(xz — &))pr(£)dE — \/Zéfa,k(pv q) cos(kx).

We deduce that

det A f,ﬁz) /07r f (@) gr(x)da — f,gl) /7r F(z) gi(z) dz

= B (5 [7 [ 0 wpsintete - 9ol ds

s / / ) sin(ha — ) |

w1 1) .2 2) (1
V3 #has) (012 = F21Y).

where f,(:) are defined in (3.26). Since the integrals

/ / 70 (@) sin(h(z — €))pr(€) de da

are uniformly bounded with respect to k and i, we conclude with the help of Lemma 3.4.
We deduce that Condition (3.31) holds. Thus, using Proposition 3.2, System (1.1) is null control-
lable at time T
O

4.2 Negative null controllability result

Let us now prove the negative part of Theorem 1.3 with the strategy used in [9]. Suppose that
T < To(p,q) and System (1.1) is null controllable at time 7. Using Proposition 2.4, there exists
a constant Cups > 0 such that for all ° € L2(0,7)2, the solution to System (2.8) satisfies the
observability inequality

16000 mp < Cons [[ 150 ddt. (@)
T
Using the Definition of Ty(p, q) (see (1.12)) there exists a sequence (ky,)nen C N satisfying:
. min (log |Ta., (P, q) " L)
To(p,q) = lim (¢ | 12 D- (4.2)

Let us fix n > 1 and 69" := an®y . +bn @3, with (@n,b,) € R? to be determined later and 3 1.
@7 4, the eigenfunction and generalized eigenfunction associated with k2 given in Proposition 2.1. If
we denote by 0" the solution to the dual System (2.8) for initial data 6°", then

0" (x,1) = e Fn =00, @5 .+ (b — (T — 1)1, (p, q)an) @5, },
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thus we have

2
Ay = 18" (O) 320,072 = €2 {lan etk

2 Janf? + (b — Tk, (p, 4)an)” }

and

T
Azin :// '“B*"”'Q‘”dt:/ / T 0 e (2) + (b — e, (b, 0)an ok, (2)? da di.
T 0 w

The observability inequality (4.1) reads

Alm < CobsAQ,n- (43)
By choosing a,, :=1 and b,, := —73,,, we get
A, > ekl (4.4)

T 1

- EHIa,kn (p’ q) COS(,Z{Z”:Z?)

and the expression of ¢ () given in Lemma 4.1 leads to

1 [ ?
i ea) g [ sin ol — ) o, (€) d — e, (), o) dod
0

T 2
Az = / / ¢ 2t
0 w
n

< Cak, (p,9)* + I, (p, 9)?).

Let € > 0. Equality (4.2) implies that there is k. € N* such that for all k,, > k.

max (lfa,kn 0 ) 1 x, (0, q)IZ) < e M Toa—e),
We deduce that for e := (Ty(p,q) — T)/2, we get
Ay, < Cem2kn(THe), (4.5)

Thus estimates (4.4) and (4.5) are in contradiction with inequality (4.3) for n large enough.

5 Approximate controllability of system (1.1)

Theorem 1.2 can be proved with the same argument as in [9], but we propose to use here the
Hautus test given below, as in [11] for example.

THEOREM 5.1 (see [15], Cor. 3.3). System (1.1) is approzimatively controllable at time T if and
only if for any s € C and for any u € D(L*) we have

L*u = su in (0, )
. =u=0.
B*u=0inw

Proof of Theorem 1.2.
Necessary condition: Let us suppose that Conditions (1.9)-(1.10) do not hold i.e. there exists
ko € N* such that
Tio (P, @) = Lako (P, q) = 0
and

(Supp(p) USupp(q)) Nw = 2.
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Then the function ¢} of Lemma 4.1 is given by ¢} = Ty, ¢k, Moreover

* ¥ 0
‘1)1,k0 - Tkoq)lk’o = < O >

is an eigenfunction associated with the eigenvalue k3 of the operator L* and satisfies
B*(®] iy — Tho®5 1) =0 in w.

Thus, using Theorem 5.1 System (1.1) is not approximately controllable at time T.
Sufficient condition: Let us suppose that Conditions (1.9)-(1.10) hold. If (Supp(p)USupp(g))N
w # @ we conclude using Theorem 1.1. Let us now suppose that

1k (p, @)| + [Lak (P, q)| # O for all k € N*
and

(Supp(p) USupp(q)) Nw = 2.

If I1.(p, q) # 0, the set of the eigenvectors associated with the eigenvalue k? of L* is generated by
@3 . (see Proposition 2.1). In this case, we remark that for all k € N*

B*®% = pp #0 in w. (5.1)

If I1.(p, q) = 0, the eigenvectors associated with the eigenvalue k? of L* are linear combinations of
@7 ) and @3 ;. Let o, f € R and @ := a®] |, + SP7 , satistying

B*®* =0 in w. (5.2)
Using Lemma 4.1, it is equivalent to
1
(o + Bri) () — 5\/§kla,k(% q) cos(kx) =0 for all z € w.

Since I, 1 (p, q) # 0, we deduce that § = 0. Then o = 0. We conclude using Theorem 5.1.

6 Null controllability of System (1.2)

As in Section 3.1, System (1.2) is null controllable at time T if and only if for all y° € H=1(0,7)?,
k € N* and 7 € {1,2} the solution 6; j, to the dual System (2.8) for the initial data @7, satisfies

T
| a01B0,0:(0. 00t =~ 604,011 (6.1)
0
We recall that, for all k € N*, 0 ;, and 65, are given for all (z,t) € Qr by

Hl,k(xvt) = e_kz(T_t) ((I)T,k(x) - (T - t)lk(p’ q)q)z,k(x)) )

O 1 (z,t) = e‘kQ(T_t)tl);"k(m).

Proof of Theorem 1.4. Again, we will follow the strategy used in [9]. Assume that T > T; and
I (p,q) # 0 for all k € N*. We will look for the control « under the form

u(t) == > {u kg i(T — t) + uz kg2 (T — 1)}, (6.2)
keN®
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for all ¢ € (0,T), where ¢1, and ¢z are defined in Section 3.1. Plugging the expressions of u, 6 i
and 63, in Equality (6.1), we obtain the moment problem

_k2T (0, @k>H*1,Hé

Uk =€ 0-¢1(0)
Wk—em”«wwm11+wwmll—Qﬂ+@mm§@0m>ll}
T DDy (0) VT TR0 AT PRI Doipi(0) ) T

Let ¢ > 0. Using the definition of T} (see (1.14)), we have Ix(p,q) > Ce ¥ (Tite) for all k € N*.
Then, using the estimates (2.6) and (3.35), we get

2
| + Jug | < Ce™ T2 10| s g e

Thus for ¢ < (T — T1)/2, the control u defined in (6.2) is an element of L?(0,T).

Assume now that 7' < Ty and Ix(p,q) # 0 for all k € N*. By contradiction let us suppose that
there exists a constant Cops such that for all 9 € H}(0,7)? the solution to the dual System (2.8)
satisfies

10001171 (0,my2 < Cobs /OT |B*8,0(0,t)|%dt. (6.3)
Let € = (Th — T')/2. Using the definition of T3, there exists a sequence (ky,)nen~ such that
I, (p,q) < e Fn(THe), (6.4)
Let 60 := an®y p + b, @5, with (an,b,) € R%. We recall that
0" (@, ) = e T {a, @F 5, + (by — (T = ) Iu(p, @)an) @3 1, }.
Then, after calculation, we get

o2
1000) 123 0.0y = €507 (@211t [Py + a2K2 + (b — TTi(p, g)an)*k2)

and
T T
| 1Br0.00.08a = [ 00,0, 0) + (b — (T = ), (. ) o
0 0
For a, := 1 and b, := —0,%, (0)/k,, taking into account inequality (6.4) and using the estimate

(2.6), we obtain
T
10003 0,ye > K2e 57 and [ 1B0,600,0) Pt < CR2e 240749,
0

Thus for n large enough we get a contradiction with observability inequality (6.3).

7 Comments and open problems
When the control domain and the support of the coupling coefficients p and ¢ is disjoint in the system

8tyl - a:val = Iloﬂ] in QT7
0ry2 — Ozay2 + p(2)0:y1 + q(z)y1 =0 in Qr,

y1(0,) = ya(m, ) = y2(0,-) = y2(m,-) =0 on (0,7),
yl('vo) = y?» y2('70) = yg in (0771—)

(7.1)
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(resp. system (1.2)), it is legitimate to ask if the minimal time 7 (resp. Tp) given in Theorem 1.3
(resp. Theorem 1.4) can be different of zero and finite. For p = 0 in (0, 7), it is proved in [9] that for
any 7o € [0, 00] there exists a function ¢ € L (0, 7) such that the minimal time of null controllability
To(p, q) associated with System (1.1) is given by

To(p, q) = 70.

The authors give explicit functions and one can easily adapt them to the case p £ 0 in (0, 7). In the
other hand, the null controllability in the cases T = Tj in Theorem 1.3 and T = T} in Theorem 1.4
are open problems.

In higher space dimension, even for this simplified system (7.1) (resp. system (1.2)), distributed
and boundary controllability are also open problems. Considering the different results described
in the introduction of the present paper, we can conjecture that the system of two coupled linear
parabolic equations

O = Ayr + g11 - Vy1 + 912 - Vya + aniyn + arey2 + Lyv in Q x (0,T),

Orya = Aya + g21 - Vy1 + gaz - VY2 + a21y1 + a2y in Q x (0,7), (7.2)
y=0 on 99 x (0,7), '
y('v 0) = yO in €,
is null controllable at time T' > 0 if there exists an open nonempty subset wqy of w such that
lagi| > C in wo x (0,T) or |gh;| > C in wo x (0,7), (7.3)

fora ke {l,..,N}.

It seems that the main difficulty is to prove a Carleman estimate for the adjoint problem of system
(7.2) under condition (7.3) when the coupling term is a differential operator (see for instance [10, 18]
and also [14] for a different approach). In the one-dimensional case, we were not able to adapt the
strategy developed in this paper in this general setting.

A  Proof of Lemma 3.4

Proof of Lemma 3.4. Let k € N*. Consider aq, b1, as,by € w to be determined later with a; < b; for
i € {1,2} and define the functions
{ O =1 (g, b)),

f(2) i= 1 (ay,b5)-

Thus, for ¢ = 1,2, we obtain

‘ LA 2 /2 i 0\ . i — Qg
fkf) = / D (x)op(x) de = =4/ = sin (km) sin (kb a )
A K 2 2

™

. L 2 i+ b . b; — a;
f’(cl) = / FO(x) cos(kx) de = = cos (k:a + > sin <k a > .
0 k 2 2

A simple computation leads to

4 [2 by — by — by —a1—b
|Bi| = \/7 sin (k22— gin (£ 2292 ) gin (&2 T h . (A1)
K2V 7w 2 2 2

Let n € N* and ¢ an algebraic number of order two satisfying

and

a/2n < £ <b/(2n+ 3).
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Let us take ay := 2nf, by := a1 + 24, as := a1+ and by := as +2¢. Thus a1, b1,a2,b2 € w and a; < b;
for i = 1,2. Furthermore

by —ay =by —as =as +by—ay — by =24,
ag + bg = (471 + 4)£

Since ¢ is an algebraic number of order 2, as said in the proof of Proposition 3.2, using diophantine
approximations, there exists a constant v > 0 such that

inf (7 |sin(j¢)[) > 7. (A.3)
jz1

Combining (A.1)-(A.3), we deduce that

24’}/3 (1) 2 272 (2) 2 72
B 2 - 9 2 - d 2 - 9
| By| \/;1& £ ‘/w(2n+1)k3 and |f] ‘/wi(nﬂ)/&

for all k£ € N*. O
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