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In this paper we present numerical simulations of rapidly-rotating Rayleigh-Bénard convection in the Boussi-
nesq approximation with stress-free boundary conditions. At moderately low Rossby number and large
Rayleigh number, we show that a large-scale depth-invariant flow is formed, reminiscent of the condensate
state observed in two-dimensional flows. We show that the large-scale circulation shares many similarities
with the so-called vortex, or slow-mode, of forced rotating turbulence. Our investigations show that at a fixed
rotation rate the large-scale vortex is only observed for a finite range of Rayleigh numbers, as the quasi-two-
dimensional nature of the flow disappears at very high Rayleigh numbers. We observe slow vortex merging
events and find a non-local inverse cascade of energy in addition to the regular direct cascade associated with
fast small-scale turbulent motions. Finally, we show that cyclonic structures are dominant in the small-scale
turbulent flow and this symmetry breaking persists in the large-scale vortex motion.

I. INTRODUCTION

A transition between three-dimensional (3D) and two-
dimensional (2D) behaviours is observed in many flows
due to the action of external forces. In the particular
case of geophysical flows, the combined effects of rotation
and density stratification constrain the dynamics due the
anisotropic effects of the Coriolis and buoyancy forces.
This leads to two distinct types of motion: large scales are
dominated by slow quasi-geostrophic 2D motions whereas
small scales are dominated by fast 3D inertia-gravity
waves. The interaction between these small-scale disper-
sive waves and turbulence is at the core of many models
of geophysical flows such as the β-plane model or the
Boussinesq equations for rotating stably-stratified flows.
A generic property of the idealised flows found in geo-

physical models is their ability to transfer energy to
the large-scale slow manifold, providing that rotation or
stratification is dominating the dynamics. For example,
inverse cascade of energy from the small forcing scale to
the largest available scale has been observed in forced ro-
tating turbulence1,2 and forced rotating stably-stratified
turbulence3 in tri-periodic domains. In these cases, there
are no solid boundaries so that the anisotropy and in-
verse cascade mechanisms originate from the dynamical
effects of the body forces only. Note however that de-
caying rotating turbulence, even when confined between
two horizontal planes4, does not seem to support an in-
verse cascade. The flow in such cases becomes strongly
anisotropic with columnar vortices aligned with the ro-
tation axis5,6, but an energy injection mechanism is nec-
essary for the growth of these vortices on larger scales.
It has also been shown possible to gradually shift from
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a 3D direct cascade to a 2D inverse cascade by reducing
one of the spatial dimension of an otherwise tri-periodic
system, with or without rotation7,8. Finally, even in fully
3D isotropic turbulence, an inverse cascade of energy can
emerge providing that only one type of helical waves is
artificially kept in the system9. The link between these
3D inverse cascade mechanisms in strongly anisotropic
flows and the well-known 2D inverse cascade10, and the
duality between direct and inverse cascades are still being
explored11,12.

Most of the studies about energy cascades in fully de-
veloped three-dimensional flows are based on artificial
forcings, where the energy is injected arbitrarily at a
given scale by a random forcing3. Although the forced
approach allows for fine tuning of the energy injection
mechanism (in terms of spatial structures13 or spatial
scales2,14 for example), it does not physically represent
any realistic instabilities or energy sources. In the at-
mosphere, for example, many sources of energy can be
invoked to feed the inverse cascade from wave breaking15

to convective instabilities16. Rotating convection, where
the energy is naturally injected at small scales by the
buoyancy force, has been studied in many idealised con-
figurations from homogeneous tri-periodic domains17 to
the classical Rayleigh-Bénard configuration. Although
rapidly-rotating Rayleigh-Bénard convection has been
the focus of many experimental and numerical investi-
gations, inverse cascades and condensate states were not
observed until recently. In fully-compressible simulations
of rotating convection in a polytropic plane layer, large-
scale horizontal flows have been observed when the con-
vection is rapidly-rotating and turbulent18,19. Compress-
ible effects modify quantitatively the structure and prop-
erties of the large-scale flow, but are not fundamental in
order to explain their origin as discussed below. Using
a reduced set of equations, valid in the asymptotic limit
of vanishing Rossby number20, it has been shown that
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a similar 2D flow can be sustained even in the Boussi-
nesq approximation21,22. As yet, however it has not been
shown that such an inverse cascade mechanism exists in
rapidly-rotating Rayleigh-Bénard convection at moder-
ate Rossby numbers in models utilising the full set of
Boussinesq equations.
In addition to the cascade mechanisms mentioned

above, another interesting property of rapidly-rotating
fluids is the symmetry breaking between cyclonic struc-
tures that rotate in the same direction as the background
rotation, and anti-cyclonic structures that rotate oppo-
sitely to the background flow. The dominance of cyclonic
vorticity has indeed been observed in rotating turbulence
experiments23 and in many numerical simulations of ro-
tating turbulent flows24,25. It is known that idealised
vortices in a rotating fluid are potentially destabilised
by centrifugal instabilities only when their vorticity is
negative in the rotating frame26,27. Rotating Rayleigh-
Bénard experiments28 have also found a correlation be-
tween unstable manifolds (as defined by Chong et al.29

in terms of the properties of the local velocity gradient
tensor) and anti-cyclonic swirl motions. However, in all
of these studies, the cyclonic dominance was observed
in the small-scale turbulent flow only since no inverse
cascade mechanism was observed. In the presence of
an inverse cascade, it is not clear how the asymmetry
of the small-scale flow will affect the large-scale conden-
sate. In simulations of rotating compressible convection,
different states were obtained, where both cyclones and
anti-cyclones can dominate depending on the parameters
being considered30. In the asymptotic model of Julien et

al.21,22, which is based on an expansion of the Boussinesq
equations at low Rossby number, a symmetric state is ob-
tained where both large-scale cyclonic and anti-cyclonic
circulations can coexist. The link between the observed
symmetry breaking in the small-scale turbulent flows and
large-scale condensate states still remains unclear.
In this paper, we describe the formation of a large-

scale, depth-invariant, cyclonic flow in rapidly-rotating
Rayleigh-Bénard convection. We focus on the Boussi-
nesq regime so that compressible effects, while important
in many geophysical and astrophysical contexts, are ig-
nored for now. The paper is organised as follows. The
equations and the numerical method are described in sec-
tion II. The choice of parameters for our simulations are
discussed in section III. Finally, we discuss our results in
section IV and conclude in section V.

II. DESCRIPTION OF THE MODEL

We consider the evolution of a plane-parallel layer of
incompressible fluid, bounded above and below by two
impenetrable, stress-free walls, a distance h apart. The
geometry of this layer is defined by a Cartesian grid, with
x and y corresponding to the horizontal coordinates. The
z-axis points vertically upwards. The layer is rotating
about the z-axis with a constant angular velocity Ω =

Ωẑ and gravity is pointing downwards g = −gẑ. The
horizontal size of the fluid domain is defined by the aspect
ratio λ so that the fluid occupies the domain 0 < z < h,
0 < x < λh and 0 < y < λh. The kinematic viscosity, ν,
and thermal conductivity, κ, are assumed to be constant.

In the Boussinesq approximation, using the thermal
diffusion time in the vertical as a unit of time and the
depth of the layer h as a unit of length, the dimensionless
equations are

∂u

∂t
= −u·∇u−∇p−σ

√
Taez×u+σRaθez+σ∇2

u , (1)

∂θ

∂t
= −u · ∇θ + w +∇2θ , (2)

∇ · u = 0 , (3)

where u = (u, v, w) is the velocity, p is the pressure and
θ is the fluctuating temperature with respect to a linear
background. Ra is the Rayleigh number, Ta is the Taylor
number and σ is the Prandtl number defined in the usual
way by

Ra =
gα∆Th3

νκ
, Ta =

4Ω2h4

ν2
and σ =

ν

κ
. (4)

For simplicity, the Prandtl number is fixed to be unity
throughout the paper. These dimensionless quantities
involve g the constant gravitational acceleration, α the
coefficient of thermal expansion and ∆T the temperature
difference between the two horizontal plates.
In the horizontal directions, all variables are assumed

to be periodic. The upper and lower boundaries are as-
sumed to be impermeable and stress-free, which implies
that ∂zu = ∂zv = w = 0 at z = 0 and z = 1. The ther-
mal boundary conditions at these surfaces correspond to
fixing θ = 0 at z = 0 and z = 1.

We solve equations (1)-(3) using a well-tested mixed
pseudo-spectral and finite difference method. The origi-
nal numerical method is based on the compressible code
described in Matthews et al.32 and used in many subse-
quent papers33–36. We have updated the code to solve
the Boussinesq equations given above in the same Carte-
sian geometry. In order to ensure the incompressibility
condition defined by equation (3), the velocity field is
decomposed using a poloidal-toroidal formulation

u = ∇×∇× (Sẑ) +∇× (T ẑ) , (5)

where T is the toroidal component, S is the poloidal com-
ponent and ẑ is the unit vector in the vertical direction.
Each of these scalar quantities is projected onto a hori-
zontal Fourier basis

S(x, y, z) =
∑

Ŝ(kx, ky, z)e
ikxxeikyy , (6)

T (x, y, z) =
∑

T̂ (kx, ky, z)e
ikxxeikyy , (7)
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TABLE I. Summary of the parameters considered in this study. Ta is the Taylor number, Ra is the Rayleigh number, Rac is
the critical Rayleigh number, Ro is the input Rossby number as defined by equation (8), R̃a is a scaled Rayleigh number as
defined by equation (9), λ is the horizontal aspect ratio, kc is the most unstable wave number predicted by linear theory31,
Urms is the root mean square velocity, L0 is the horizontal integral scale, Re is the Reynolds number, RoL is the large-scale
Rossby number and Roω is the small-scale Rossby number. The Prandtl number σ is fixed to be one for all simulations. The
output quantities computed from the simulations are obtained by removing the vortex mode as defined by equations (15)-(16).
LSC stands for Large-Scale Circulation.

Case Ta Ra Ra/Rac Ro R̃a λ 2π/kc Nx×Ny×Nz Urms L0 Re RoL Roω LSC

A1 106 5× 105 5.8 0.71 50 4 0.48 2402 × 120 124 0.19 23.6 0.65 1.82 No

A2 106 2× 106 23.0 1.4 200 4 0.48 4802 × 120 291 0.18 52.3 1.62 5.17 No

A3 106 107 115.0 3.2 103 6 0.48 7202 × 240 704 0.15 105.6 4.69 15.4 No

B1 107 106 2.5 0.32 21.5 4 0.33 2402 × 120 100 0.13 13.4 0.24 0.63 No

B2 107 2× 106 5.0 0.45 43.1 4 0.33 2402 × 120 201 0.14 28.2 0.46 1.33 No

B3 107 5× 106 12.4 0.71 107.7 4 0.33 3602 × 180 380 0.16 60.9 0.75 2.83 No

C1 108 2× 106 1.1 0.14 9.3 6 0.22 2402 × 96 14.3 0.05 0.67 0.03 0.04 No

C2 108 4× 106 2.1 0.2 18.6 6 0.22 3602 × 120 123 0.09 11.2 0.14 0.35 No

C3 108 107 5.3 0.32 46.4 6 0.22 4802 × 120 375 0.12 43.8 0.32 1.13 Yes

C4 108 2× 107 10.7 0.45 92.8 4 0.22 3602 × 180 625 0.11 70.6 0.55 2.1 Yes

C5 108 5× 107 26.7 0.71 232.1 5 0.22 4802 × 240 1072 0.11 121.2 0.95 4.1 No

C6 108 108 53.4 1 464.2 4 0.22 4803 1569 0.12 193.0 1.28 6.76 No

D1 109 107 1.2 0.1 10 3 0.15 2402 × 120 38 0.05 2.0 0.02 0.05 No

D2 109 2× 107 2.3 0.14 20 3 0.15 2402 × 120 214 0.06 13.9 0.1 0.28 No

D3 109 5× 107 5.8 0.22 50 3 0.15 3602 × 180 658 0.09 61.2 0.22 0.94 Yes

D4 109 108 11.5 0.32 100 3 0.15 3602 × 180 1111 0.1 111.1 0.35 1.7 Yes

D5 109 3× 108 34.5 0.55 300 3 0.15 4802 × 240 2241 0.1 232.6 0.68 4.1 Yes

D6 109 5× 108 57.5 0.71 500 2 0.15 4803 2997 0.09 260.0 1.1 6.0 No

E1 1010 5× 107 1.2 0.07 10.8 4 0.1 4802 × 120 75 0.02 1.8 0.03 0.05 No

E2 1010 108 5.0 0.14 43.1 4 0.1 6002 × 120 354 0.04 15.3 0.08 0.21 Yes

E3 1010 2× 108 9.9 0.14 86.2 4 0.1 6002 × 180 908 0.06 58.0 0.14 0.56 Yes

E4 1010 5× 108 12.4 0.22 107.7 4 0.1 7202 × 240 1969 0.07 133.3 0.29 1.39 Yes

E5 1010 109 24.8 0.32 215.4 2 0.1 4803 3302 0.07 240.1 0.45 2.58 Yes

F1 1012 109 1.2 0.03 10 1 0.05 2402 × 120 122 0.01 1.5 0.01 0.02 No

F2 1012 3× 109 3.5 0.05 30 1 0.05 4802 × 240 1297 0.03 43.3 0.04 0.16 Yes

F3 1012 1010 11.5 0.1 100 1 0.05 4803 4790 0.05 215.5 0.11 0.67 Yes

where kx and ky are discrete horizontal that are wave
numbers multiple of 2π/λ. For each value of the horizon-

tal wave numbers, the vertical functions Ŝ(kx, ky, z) and

T̂ (kx, ky, z) are represented by their discretized values
on a non-uniform vertical grid between z = 0 and z = 1.
The vertical derivatives are computed using fourth order
finite-differences and boundary conditions are imposed
using ghost points at the top and bottom boundaries.
The grid is denser close to the boundaries in order to ap-
propriately resolve thermal boundary layers. The time-
stepping is performed using a semi-implicit second order
Crank-Nicholson scheme for the linear dissipative terms
and a third-order explicit Adams-Bashforth for the non-
linear advection and linear Coriolis terms. The solution
is de-aliased in the horizontal directions using the 2/3
rule. The spectral order in the horizontal direction is

varied from 240 up to 720 depending on the aspect ratio
and parameters considered, the number of grid points in
the vertical direction is varied from 96 up to 480 and the
code is parallelised in the vertical direction using MPI.

The numerical approach that we are utilising for this
work is similar to the one used by Cattaneo et al.37 (apart
from the use of finite differences in the vertical direction
instead of Fourier modes in their case). In addition to
testing our new version of the code against the results
of Cattaneo et al., we have also successfully compared
our numerical scheme against the spectral element code
Nek5000

38,39.
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III. PARAMETERS

The aim of this paper is to find the parameters for
which a large-scale circulation driven by an inverse cas-
cade is observed, and discuss the properties of this large-
scale flow as a function of the key dimensionless param-
eters of this problem. It is known from previous com-
pressible studies18,19,30 and from the recent works using
asymptotic model equations20–22 that a large-scale circu-
lation only appears if the flow is sufficiently constrained
by rotation (low Rossby number regime) and sufficiently
turbulent (large Reynolds number regime). Therefore,
this is the regime this paper is focusing on.
We define here the large-scale (i.e. based on the depth

of the fluid layer) Rossby number as

Ro =

√

Ra

σTa
(8)

where Ra, σ and Ta are the Rayleigh, Prandtl and Tay-
lor numbers respectively. In order to estimate the level
of turbulent activity a priori, we use the ratio between
the Rayleigh number and the critical Rayleigh number
(which depends on the Taylor number) in order to de-
scribe how far we are from the onset of thermal convec-
tion. Finally, it is well known from linear theory31 that
the ratio between the characteristic horizontal length
scale of the flow and the depth of the layer scales as
Ta−1/6. In order to take into account for this strong
variability in the horizontal length-scale of the flow as
the Taylor number is varied, we use the scaled Rayleigh
number

R̃a = Ra Ta−2/3 , (9)

which was used in the asymptotic model of Julien et al.21.
In this investigation, we vary the Taylor number from

106 up to 1012 and the Rayleigh number from 105 up
to 1010. For each Taylor number, the Rayleigh number
considered are from just above the critical threshold up to
1000 times this value. This choice of parameters implies
that the Rossby number, as defined by equation (8), is
varying between 0.03 and 3.2 and the scaled Rayleigh
number R̃a, as defined by equation (9), is varying from
10 to 103. Our complete set of parameters for each of
the simulations discussed in this paper is summarized in
Table I.
In order to describe our results, we calculate the follow-

ing quantities. We first compute the root mean square
velocity Urms =

√

〈u2〉 in the early stage of the nonlin-
ear evolution (just after the system reaches a quasi-steady
equilibrium and before an eventual steady increase of the
kinetic energy), where 〈.〉 denotes the volume average. A
typical horizontal length-scale of the flow is then esti-
mated by computing the longitudinal correlation length-
scale as

L0 =
1

2

∫ λ

0

〈ui(x+ lei)ui(x)〉
〈ui(x)ui(x)〉

dl (10)
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FIG. 1. Time evolution of the kinetic energy density for cases
E1 to E4 in Table I.

where ui and ei are the velocity component and the unit
vector in one of the horizontal directions. We then define
the local Reynolds and Rossby numbers as

Re = UrmsL0 and RoL =
Urms√
TaL0

. (11)

Note that the Reynolds number does not depend explic-
itly on viscosity since we use the thermal or viscous dif-
fusion time as a unit of time. In keeping with previous
publications on rotating turbulence5,24, we also define a
small-scale Rossby number based on the vertical compo-
nent of the vorticity as

Roω =
ωrms√
Ta

, (12)

where ωrms is the root mean square value of the vorticity
ω = ∇ × u. The values of these output parameters for
each case are given in the right part of Table I. Note
that these dimensionless parameters correspond to the
flow associated with the 3D mode only, which is defined
in the next section by equations (15)-(17).

IV. RESULTS

A. Growth of the 2D mode

In this section, we discuss a particular set of simula-
tions where the Taylor number is fixed to be Ta = 1010

(cases E1 to E4 in Table I). The kinetic energy den-
sity as a function of time for these cases is shown in
Figure 1. This shows an initial linear phase where the
kinetic energy grows exponentially from a layer at rest
with small temperature perturbations. As expected, the
growth rate of the instability increases as the Rayleigh
number is increased. After the nonlinear saturation, the
kinetic energy eventually evolves towards its equilibrium
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FIG. 2. Top line: temperature fluctuations in a horizontal plane located at z = 0.95, close to the upper boundary. Bright/yellow
colours correspond to positive temperature fluctuations whereas dark/red colors correspond to negative temperature fluctua-
tions. We also plot horizontal streamlines as white lines in order to emphasis the large-scale circulation. Bottom line: vertical
vorticity in the middle of the layer z = 0.5. Red corresponds to positive cyclonic vorticity whereas blue corresponds to negative
anti-cyclonic vorticity. Time is increasing from left to right and snapshots are taken at t = 0.001, t = 0.01 and t = 0.02. The
figures on the left correspond to the very beginning of the nonlinear phase and each plot is then separated by approximately
two hundred turnover times.

value. For the simulation with the smallest Rayleigh
number, E1, the kinetic energy remains close to its quasi-
stationary value for a complete viscous timescale. For
larger Rayleigh numbers however (simulations E3 and
E4 for example), the kinetic energy gradually increases
with time. After many turnover times, the kinetic energy
eventually saturates to a much larger value than what
is observed for the initial nonlinear saturation. During
the slow growth phase of the kinetic energy, both total
viscous dissipation and buoyancy work (not shown) are
found to remain fairly constant. As the kinetic energy
saturates, and buoyancy balances viscous forces, we ob-
serve a slight decrease in both of these quantities. This
corresponds to an overall decrease of the Nusselt num-
ber and heat flux through the layer, as discussed in more
detail by Guervilly et al.40.

Figure 2 shows a horizontal slice across the domain
for case E4 at times t = 0.001, t = 0.01 and t = 0.02.
We show the the temperature fluctuations in the plane
z = 0.95, close to the upper boundary, and the vertical
vorticity at the middle of the layer, z = 0.5. At t = 0.001,
small-scale convective cells are clearly identifiable. For
this particular value of the Taylor number, the horizon-

tal scale of maximum growth rate predicted by linear
theory31 is approximately 2π/kc = 0.1 (which we have
verified numerically). Given this horizontal scale, the as-
pect ratio of λ = 4 provides an initial clear scale separa-
tion. As time increases, we observe the generation of vor-
tices evolving on a horizontal scale much larger than the
one of the background small-scale convective flow. This
is also seen by looking at the horizontal streamlines in the
top panel of Figure 2. Note that the streamlines associ-
ated with positive cyclonic vertical vorticity are smooth
when compared to the streamlines associated with the
anti-cyclonic regions, which will be further discussed in
section IVE. For all the simulations considered in this
paper, the large-scale circulation is growing in amplitude
on a timescale much larger than the turnover time asso-
ciated with the small-scale convective flow.

As discussed by Julien et al.21, the large-scale cir-
culation shown in Figure 2 is better described as a
depth-independent 2D flow, which they called barotropic
circulation. This decomposition between slow quasi-
geostrophic and fast 3D flows has been used for a long
time in order to describe rotating and stratified homoge-
neous turbulence3,41–43. In the case of a vertically rotat-
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ing fluid for example, the dispersion relation of inertial
waves is ω = 2Ωkz/k where ω is the wave frequency, kz
is the wave number in the vertical direction and k is the
modulus of the wave vector. The so-called slow vortex
mode corresponds to purely horizontal wave vectors (in
the case of a vertical rotation axis) such that the iner-
tial wave frequency is zero. In our case, inertial waves
are present due to the restoring Coriolis force, but in-
ternal gravity waves are not supported since the stratifi-
cation is unstable, leading instead to convective eddies.
In addition, our system is inhomogeneous in the vertical
direction due the presence of the horizontal solid bound-
aries. For these reasons, we cannot explicitly use the
classical wave-vortex decomposition, but we introduce a
very similar flow decomposition, following Julien et al.21.
Note also that it has been shown that in the case of wave
turbulence in a rotating channel, the 2D depth-invariant
mode needs to be considered independently, since the
group velocity of inertial modes vanishes in this case,
which is inconsistent with classical wave turbulence the-
ory based on dispersive waves44.
In the presence of the two solid boundaries at z = 0

and z = 1, we define the depth-averaged 2D horizontal
flow, subsequently called the 2D mode, as

〈u〉z(x, y) =
∫ 1

0

u(x, y, z) dz (13)

〈v〉z(x, y) =
∫ 1

0

v(x, y, z) dz , (14)

where u and v are the velocity component in the x and
y directions respectively, and the fast 3D fluctuations,
subsequently called the 3D mode, as

u′(x, y, z) = u(x, y, z)− 〈u〉z (x, y) (15)

v′(x, y, z) = v(x, y, z)− 〈v〉z (x, y) (16)

w′(x, y, z) = w(x, y, z) . (17)

Note that the vertical average of the vertical velocity is
zero due to mass conservation, so that the vertical ve-
locity only appears in the 3D mode. We can then define
the (purely horizontal) kinetic energy associated with the
slow 2D mode as

K2D =
1

2

∫∫

(

〈u〉2z + 〈v〉2z
)

dx dy , (18)

the horizontal kinetic energy associated with the fast 3D
mode as

KH
3D =

1

2

∫∫∫

(

u′2 + v′2
)

dx dy dz , (19)

and the vertical kinetic energy as

KV
3D =

1

2

∫∫∫

w2 dx dy dz . (20)

Figure 3 shows the decomposition of the total kinetic
energy in terms of 2D, 3D, horizontal and vertical com-
ponents versus time for case E3 in Table I. Both vertical
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FIG. 3. Time evolution of the kinetic energy for simulation
E3. The total kinetic energy (straight black line) is decom-
posed between horizontal, 2D (equation (18)), 3D horizontal
(equation (19)) and 3D vertical components (equation (20)).

and horizontal 3D components remain small and shows
no sign of growth as time increases. The growth of the
total kinetic energy is entirely due to the energy growth
of the horizontal depth-independent 2D mode.
To gain further insight into the properties of these

large-scale flows, it is useful to consider their kinetic
energy spectra. For each horizontal wave number, we
define the vertically-averaged horizontal kinetic energy
spectrum in the following way

EK(kH) =
1

2

∑

z

∑

kx,ky

ûH(kx, ky, z) · û∗
H(kx, ky, z) (21)

where ûH(kx, ky, z) is the 2D Fourier transform of
the horizontal flow uH(x, y, z) (with complex conjugate
û
∗
H(kx, ky, z)) and the second summation is over all kx

and ky such that kH <
√

k2x + k2y ≤ kH + 1. Figure 4

shows the horizontal kinetic energy spectrum for both
2D (as defined by equations (13)-(14), where the sum-
mation over z in equation (21) is not required) and 3D
components (as defined by equations (15)-(17)) in the
early stage of the nonlinear saturation and at the end
of the simulation when the kinetic energy density starts
to saturate. The results correspond to simulation E4 in
Table I.
Figure 4 shows that initially both spectra approxi-

mately peak at scales corresponding to kH ≈ 10. The
small scales (i.e. kH > 10) are dominated by the fast
3D mode whereas both 3D and 2D modes are of com-
parable amplitude at larger scales. Note that the ampli-
tude of both the 2D and 3D modes is initially exactly
zero since the fluid is at rest at t = 0. The 3D mode is
characterized by an inertial scaling of k

−5/3
H , consistent

with a 3D direct cascade of energy whereas the 2D mode
displays a k−3

H scaling, consistent with a direct enstro-
phy cascade. Similar scalings were obtained by Julien et
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FIG. 4. Horizontal kinetic energy spectrum as defined by
equation (21). Shown is the 3D mode contribution (in red),
the 2D mode contribution (in blue) and the total spectrum
(in black). Top: time t = 0.001 just after the nonlinear over-
shoot. Bottom: time t = 0.03 when the total kinetic energy is
starting to saturate and the large-scale condensate is nearly
in equilibrium.

al.21 in their geostrophic turbulence model at very low
Rossby numbers, and in forced rotating and stratified
turbulence in tri-periodic boxes14. At later times, the
2D vortex mode energy gradually accumulates at large
horizontal scales, whereas the energy associated with the
3D mode remains qualitatively unchanged (we observe a
slight increase in the 3D mode energy for kH < 10). The
horizontal spectrum of the vertical kinetic energy (not
shown) remains qualitatively the same as the large-scale
flow grows in amplitude but we note a slight decrease
in the energy associated with the convective eddies at
kH ≈ 10, which is consistent with the overall reduction
of the buoyancy work as previously discussed. The flow
is therefore dominated by a large horizontal scale con-
densate that is invariant in the z-direction, and virtually
all the kinetic energy is concentrated in this 2D vortex
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FIG. 5. Time evolution of the kinetic energy density for case
E3 varying the horizontal aspect ratio λ of the numerical
domain.

mode (see Figure 3), whereas the small-scale convective
flow remains qualitatively unchanged. We are not able
to discuss the spectral behaviour at small wave numbers
due to the lack of scale separation between the most un-
stable modes and the horizontal extent of the numerical
domain. Therefore, the effect of the condensate on the
spectral slope associated with the inverse cascade is not
accessible here.

B. Dependence on the aspect ratio and vortex merging

A characteristic feature of the large-scale circulation is
that it fills the entire numerical domain, until a so-called
condensate state is reached. In order to show this, we
consider various simulations with the same set of param-
eters Ta = 1010 and Ra = 2 × 108 (case E3 in Table I)
but varying the horizontal aspect ratio λ from 1 to 4.
The results are shown in Figure 5. As λ increases, the
initial stage of the kinetic energy growth is similar for all
cases, and we observe a linear growth of the total kinetic
energy after the initial nonlinear overshoot. However,
the smaller the box, the quicker the circulation saturates
to its equilibrium state, where the largest available hor-
izontal scale is filled. For the largest aspect ratio con-
sidered here, the saturation is not even reached in a run
time that is numerically feasible. The fact that the large-
scale 2D circulation is a box-filling mechanism points in
the direction of an upscale transfer of energy (see section
IVD) and similar results were reported in compressible
models30.

In low aspect ratio simulations, where there is no clear
scale separation between the convective scale and the hor-
izontal size of the box, a large-scale circulation consisting
of one large cyclonic vortex gradually appears as convec-
tive cells are non-linearly interacting. The picture is dif-
ferent if a true scale separation is achieved. In this case,
several cyclonic vortices of size comparable with the con-
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FIG. 6. Vertical vorticity plotted in a horizontal plane located at z = 0.5 for simulation E4. Red colours correspond to positive
value of the vertical vorticity (i.e. cyclonic) whereas blue colours correspond to negative values (i.e. anti-cyclonic). Time is
increasing from left to right and top to bottom, and approximately 6 turnover times separate each figure. Only 1/4th of the
total horizontal numerical domain is shown.

vective cells initially appear and slowly move relative one
to another. Eventually, two of these vortices get close to-
gether and merge in a dynamical event reminiscent of
the classical vortex merging mechanism observed in 2D
flows. We show an example of such an event in Figure 6,
where a time series of the vertical vorticity in a horizontal
plane located in the middle of the layer is shown. These
results correspond to the simulation E4 in Table I for
which Ta = 1010 and Ra = 5 × 108. Approximately 6
turnover times separate each panel.
In the first panel in Figure 6, seven cyclonic vortices are

present in the whole domain (we only show 1/4th of the
complete domain in order to focus on the merging event).
As time evolves, the number of vortices decreases due to
merging events, as shown in the second and third panels
of Figure 6. Eventually, only one large vortex remains at
the end of the computation. This vortex merging mech-
anism is only observed in large aspect ratio simulations
and is probably not enough in itself to explain the origin
of the large-scale circulation since low aspect ratios simu-
lations can still sustain a large-scale circulation although
no vortex merging events are observed in this case. In ad-
dition, the first initial vortices are spontaneously formed
in the layer without any merging events to generate them.

C. Dependence on the parameters

For all of the simulations discussed in this paper, we
assume that there is a large-scale circulation as soon as
we observe an increase in the kinetic energy associated
with the 2D mode, as seen in Figure 3. Note that for
some simulations (case E2 for example), the growth rate
of the kinetic energy of the 2D mode is very small when
compared to the turnover time of the small-scale turbu-
lent flow and so a very long time integration is required
to unambiguously identify the 2D mode. Simulations dis-
playing such a large-scale horizontal flow are shown by
a blue circle in Figure 7. Clearly, only simulations suffi-
ciently far from the onset of convection, i.e. in a turbu-
lent state, can sustain a large-scale flow. This is further

confirmed by looking at the local Reynolds number of
the flow, as defined by equation (11) in Table I. Only
the simulations for which Re > 20 are able to sustain
a large-scale circulation. In addition, only simulations
with a low enough Rossby number, typically RoL < 1,
show a growth in the kinetic energy associated with the
2D mode.

The two conditions described above, together with the
fact that the aspect ratio must be large enough to ac-
commodate for the large-scale flow (see section IVB),
are difficult to satisfy numerically, which could explain
why this behaviour was only observed relatively recently
in numerical models18. It is relatively easy to obtain a
turbulent flow in a classical Rayleigh-Bénard set-up by
increasing the Rayleigh number to highly supercritical
values. However, this tends to decrease the effect of ro-
tation (or equivalently increase the Rossby number) so
that no large-scale circulation can be observed. Main-
taining a regime with both large Reynolds number and
low Rossby number requires very large rotation rates,
so that even when the Rayleigh number is supercritical
and the flow turbulent, the Rossby number remains small
compared to unity. These results are qualitatively con-
sistent with previous parametric studies performed in the
fully-compressible regime30.

For each value of the Taylor number larger than Ta =
108, we found a critical Rayleigh number above which
a large-scale vortex mode is sustained. This threshold
Rayleigh number approximately corresponds to five times
the critical value Rac. As the Rayleigh number is fur-
ther increased while the Taylor number is fixed, we re-
port a second transition above which the vortex mode
is not sustained any more. We managed to reach this
regime numerically for two Taylor numbers, Ta = 108

and Ta = 109, where we found growth of the vortex
mode at moderate Rayleigh numbers until the large-scale
flow is no longer sustained at very large Rayleigh num-
bers (cases C5, C6 and D6 in Table I). The dotted line
in Figure 7 corresponds to this transition and our data
suggest a critical Rayleigh number for the disappearance
of the vortex mode scaling as Ta. Note that this scaling
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FIG. 7. Summary of the Boussinesq simulations considered
in this paper in the plane (Ta,Ra). The grey area corre-
sponds to the stable regime. The critical Rayleigh number
is approximately given by Rac ≈ Ta2/3. Blue circles cor-
respond to simulations where a large-scale circulation is ob-
served. The domain of existence in parameter space of the
large-scale circulation is delimited by the thick black line. The
dotted line corresponds to a suggested boundary in the large
Ra, Ta regime which is not accessible numerically. The dot-
dash line is showing the scaling Ra ≈ Ta and corresponds to a
constant value of the Rossby number around unity as defined
by equation (8).

corresponds to a constant value of the Rossby number
using the definition given by equation (8). This confirms
that the large-scale flow is no longer sustained as soon as
the Rossby number exceeds a critical value close to unity.

The fact that we only observe a large-scale circulation
for a given range of parameters indicates that there is a
transition between two different states of the flow as both
Taylor and Rayleigh numbers are varied. This transition
is linked to the anisotropy of the flow, which strongly de-
pends on the input parameters as we will discuss below.
Anisotropy in rotating Boussinesq convection has been
studied by Kunnen et al.45,46. Following their approach,
we use the formalism introduced by Lumley47,48 in order
to characterise the anisotropy of a turbulent flow in terms
of the properties of the Reynolds stress tensor. We define
here the Reynolds stress tensor as Rij =

〈

u′
iu

′
j

〉

where the
brackets now denote a temporal and horizontal average.
Here, u′

i is the velocity component of the 3D mode only in
the ith direction, as defined by equations (15)-(17). The
Reynolds stress tensor of the total velocity field is indeed
strongly time-dependent (due to the slow evolution of
the large-scale circulation) whereas the tensor associated
with the 3D mode only is quasi-stationary, even in the
case where a large-scale circulation is sustained (see, for
example, the time evolution of the kinetic energy associ-
ated with the 3D mode in Figure 3).

The anisotropy of the flow can be characterised by the
deviatoric part of Rij , defined as bij = Rij/Rkk − δij/3
where δij is the Kroenecker tensor and summation is im-
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FIG. 8. Invariants of the deviatoric part of the Reynolds stress
tensor plotted in a so-called Lumley map for cases C1, C3 and
C5. Red corresponds to the region close to the boundaries
whereas blue corresponds to the middle of the layer. From left
to right, the Rayleigh number is increasing. The vertical dash-
dotted line in the right panel correspond to the approximate
critical value of the invariant III below which the flow cannot
sustain a 2D mode.

plied over repeated indices. The tensor bij is traceless and
symmetric, and has been used to describe the anisotropy
in physical space of many turbulent flows. Note that the
tensor bij is also related to a more complete two-points
homogeneous description of the anisotropy in spectral
space (see for example Cambon et al.5). The three in-
variants of the tensor bij are

I = bii = 0 , II =
−bijbji

2
and III = Det (bij) .

(22)
The second and third invariants provide a simple way to
describe the one-point anisotropy of the flow in the plane
(III,−II). Several limiting cases are of interest: when
III = II = 0, the flow is effectively isotropic in the sense
that the Reynolds stress tensor is isotropic. There is a
limiting curve on the left of the map (defined by III =

−2 (−II/3)
3/2

, see48 for more details) which corresponds
to what has been called “pancake shaped” 2D turbulence
and corresponds to the case where two eigenvalues of the
deviatoric tensor bij are dominant. The second limiting
curve on the right part of the map corresponds to III =

2 (−II/3)
3/2

and is often referred as to “cigar-shaped”
2D turbulence since one eigenvalue is dominant.

Figure 8 shows the two invariants in a Lumley map
for different Rayleigh numbers and a fixed Taylor num-
ber of Ta = 108 (cases C1, C3 and C5 in Table I). As
expected, in all cases, the turbulence is 2D and dom-
inated by the two horizontal components very close to
the boundaries z = 0 and z = 1 (red colour, limiting
curve on the left in Figure 8). This state of “pancake”
structures, forced by the presence of the solid boundaries,
rapidly shifts towards a more isotropic state as we move
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FIG. 9. Vertical slice in a (x, z) plane where temperature
fluctuations are shown. Bright colours correspond to positive
temperature fluctuations whereas dark colours correspond to
negative fluctuations. The Taylor number is Ta = 108 and
the Rayleigh number is 2× 106, 107 and 5× 107 from top to
bottom (simulations C1, C3 and C5 in Table I). Only the
case in the middle is able to sustain a large-scale circulation.

away from the boundaries. At very low Rayleigh num-
bers (left panel in Figure 8), the anisotropy of the flow
in the middle of the layer is characterized by 2D “cigar”
shaped structures where the vertical velocity is dominat-
ing. As the Rayleigh number is increased from case C1
to case C5, this strong anisotropy is reduced, so that at
sufficiently large Rayleigh number, the flow in the middle
of the fluid layer tends towards a quasi-isotropic 3D state
(III ≈ II ≈ 0).

For Ra = 2 × 106, the flow in the bulk of the layer is
strongly anisotropic, but the Reynolds number is very low
(Re = 0.67, see case C1 in Table I). The Rayleigh num-
ber is very close to its critical value (Ra/Rac = 1.1) so
that only a very limited range of horizontal wave numbers
are unstable. In that case, convective columns barely in-
teract, the flow is quasi-stationary and no large-scale flow
is observed (see Figure 7). For Ra = 107, the bulk flow is
still anisotropic (see Figures 8 and 9) but the Reynolds
number is now large enough (Re = 43.8, see case C3
in Table I) to allow for non-linear interaction between
the larger range of unstable convective cells, leading to
the formation of a large-scale circulation. Finally, for
Ra = 5 × 107, the anisotropy of the flow is strongly re-
duced (apart from the region very close to the bound-
aries). Thermal boundary layers are destabilized and co-
herent localised thermal plumes are emitted from them,
resulting in a turbulent flow in the bulk of the layer in a
quasi-isotropic 3D state. The energy associated with the
2D mode remains small compared to the other compo-
nents in this case. Note that for cases with Ta = 108 and
Ta = 109, we found a maximum value of the Rayleigh
number above which no large-scale flow is sustained due
to the reisotropization of the flow (see Figure 7 and Ta-

ble I). In both cases, the transition occurs for a critical
value of the third invariant III around 0.04, as shown by
a vertical dashed line in the right part of Figure 8.
The analysis above is confirmed by visually looking at

the flow properties as the Rayleigh number is increased
for a fixed Taylor number. Figure 9 shows tempera-
ture fluctuations in a vertical (x, z) plane for the same
three Rayleigh numbers Ra = 2 × 106, 107 and 5 × 107

and Ta = 108. At the lowest Rayleigh number, lam-
inar quasi-steady columnar convective cells are found.
As the Rayleigh number is increased, localised thermal
plumes start to appear that eventually lead to a fully-
turbulent regime. Only for the intermediate Rayleigh
number, where the turbulent in intense enough but the
flow is still quasi-2D, is the large-scale flow sustained.
Note that in the convective cell regime, the relative he-
licity of the flow is nearly maximum whereas it is close
to zero in the thermal plumes regime.
The transition discussed above in terms of anisotropy

corresponds to the transition empirically measured in
terms of heat flux by Schmitz et al.49. They found a
transition around ReLσTa

−1/4 ≈ 10, where ReL is the
Reynolds number based on the root-mean square velocity
and the depth of the layer and σ is the Prandtl number.
For Ta = 108, the transition occurs between cases C4
and C5, where ReLσTa

−1/4 is varying from 6.2 for case
C4 to 10.7 for case C5. For Ta = 109, the transition
occurs between cases D5, for which ReLσTa

−1/4 = 11.4,
and case D6, for which ReLPrTa−1/4 = 16.8. This indi-
cates that the transition discussed by Schmitz et al.49 in
terms of heat flux is the same as the transition discussed
here in terms of large-scale circulation. Note however
that these authors did not mention the existence of a
large-scale flow in their simulations.

D. Inverse energy transfer

Using a reduced set of equations50, it has been sug-
gested that the origin of the large-scale circulation is due
to a non-local inverse cascade of energy21. These au-
thors decomposed the flow into barotropic (i.e. 2D) and
baroclinic (i.e. 3D) components and described the self-
interaction of the barotropic component and the cross-
interaction between the two components. Here, we pro-
vide another proof for non-local inverse cascade of kinetic
energy using the full Boussinesq equations, valid for any
values of the Rossby number, and a different shell-to-
shell transfer analysis. We use the formalism described
in several papers51,52 and later used to study a variety of
homogeneous turbulent flows, from rotating2 to magne-
tohydrodynamic turbulence53.

We first compute the 2D horizontal Fourier transform
of the velocity field û(kx, ky, z). We then define the fil-
tered velocity field uK(x) as

uK(x, y, z) =
∑

K<kH≤K+1

û(kx, ky, z)e
ikxxeikyy , (23)
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where kH =
√

k2x + k2y is the horizontal wave number.

This velocity field in physical space corresponds to the
sum of all modes with a horizontal wave vector lying
in the cylindrical shell K < kH ≤ K + 1. Note that
by summing all filtered velocity fields from K = 0 to
K = kmax, we recover the initial total velocity field u.
The evolution of the kinetic energy in shell K, defined
by

E(K) =
1

2

∫

V

|uK |2dV (24)

is given by

∂E(K)

∂t
=

∑

Q

T (Q,K)−D(K) + F(K) (25)

where the function T (Q,K) corresponds to the energy
transfer from shell Q to shell K. By summing this func-
tion over all possible shells Q, we get the total energy
transfer in and out of shell K. T (Q,K) is defined by

T (Q,K) = −
∫

V

uK ·
(

u · ∇uQ

)

dV , (26)

and it satisfies the symmetry property T (Q,K) =
−T (K,Q). If T (Q,K) > 0, then a positive amount of
kinetic energy is extracted from shell Q and given to shell
K. The kinetic energy dissipation rate is defined by

D(K) = σ

∫

V

|∇uK |2dV , (27)

and the buoyancy work is defined by

F(K) = σRa

∫

V

θuK · ezdV . (28)

The buoyancy work F(K) is always negligible at small
wave numbers, so that the kinetic energy deposited there
must come from another mechanism.
We calculate the vertically averaged transfer function

for simulation E4. Results are shown in Figure 10 at
two different times, when the vortex mode starts grow-
ing (i.e. at t ≈ 0.01, see Figure 1) and when it saturates
at the box size (i.e. at t ≈ 0.04). For this particular
simulation, the convective scale before the appearance
of a large-scale circulation approximately corresponds to
kf = 10. For shells Q ≈ K (i.e. close to the diag-
onal) and at scales smaller than the convective scale,
the transfer is mostly local (i.e. concentrated close to
the diagonal). Energy is extracted from shell K slightly
smaller than shell Q and given to slightly larger scales
K. This is a characteristic of a direct local energy trans-
fer between shells. As time evolves, this direct energy
transfer becomes more and more localised around the di-
agonal, showing that the direct cascade of energy at small
scales is mediated by interactions with the largest scale
in the system kH ≈ 1. This is consistent with the cascade

mechanism observed in forced rotating turbulence2. In
addition, we also observe a positive transfer in the region
K < 10 and Q > 10. Thus the small convective scales are
loosing energy in favour of large-scale scale flow. This is
typical of an inverse non-local energy transfer from the
small convective cells to the large scales. The transfer is
non-local since there can be a significant difference be-
tween the wavenumber of the shell giving energy and the
wavenumber of the shell receiving energy. Note that these
non-local transfers are not observed if we compute the
energy transfer function associated with the wave mode
only (not shown). In this case, only a direct local cascade
from the most unstable scale down to the dissipative scale
is observed. The transfer function shown in Figure 10 is
very similar to the results discussed by Mininni et al.2

in the context of rotating turbulence and using the same
formalism. An alternative analysis of the energy trans-
fers at low Rossby numbers can be found in Rubio et al.22

and filtered simulations have been recently discussed by
Guervilly et al.40.

The existence of an inverse cascade of energy in the
context of constrained 3D flows is a long-standing issue9.
While the particular case of 2D flows has been thoroughly
studied, there is far less examples of incoherent inverse
cascade in fully-developed three dimensional flows. One
way to gradually transit from 3D to 2D behaviours is
to spatially confine the flow in one direction until an
inverse cascade eventually appears. This approach has
been taken by several authors7,8, and the results are very
similar to our set of simulations with constant Taylor
number but increasing Rayleigh number. We indeed ob-
tain a regime where a linear growth of the kinetic energy
is observed (see Figure 5) until the flow saturates at the
box scale. However, the transition from 3D to 2D dynam-
ics naturally appears in our system due to the coupled
action of rotation, buoyancy and horizontal boundaries,
as opposed to a prescribed spatial confinement only. Note
further that Smith et al.7 considered the simultaneous ef-
fects of both rotation and reduction of one of the spatial
dimensions, which is very similar to our case.

As discussed earlier, the existence of an inverse cascade
is, in our case, related to the value of the Rossby and
Reynolds numbers. If the Rossby number is too large,
the flow is dominated by the buoyancy and is mostly 3D
apart from the thin boundary layers. This is the case
for flows with Ta < 108 at any Rayleigh numbers. The
anisotropy is moderate and the 3D flow can only cascade
energy from the injection scale down to the viscous dis-
sipation scale. If the Rossby number is small enough,
the flow is dominated by the Coriolis force, which en-
hances the horizontal mixing in the layer. The bulk of the
flow is quasi-2D, so that an inverse cascade can eventu-
ally develop in addition to the direct cascade, sustaining
a large-scale depth-invariant horizontal flow. Although
this mechanism is robust, it only exists in a rather lim-
ited region of the parameter space (see Figure 7), since
large enough Rayleigh numbers will eventually lead to a
return to isotropy and associated downscale cascade.
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FIG. 10. Kinetic energy transfer function T (Q,K) for shells
0 < Q,K < 59 and case E4 in Table I. The function is pos-
itive when energy is taken from shell Q and negative when
energy is received. The top figure corresponds to t ≈ 0.01
(just after the initial nonlinear saturation) whereas the bot-
tom figure corresponds to t ≈ 0.04 (when the large-scale flow
saturates at the box size), see Figure 1.

E. Cyclones, anti-cyclones and symmetry breaking

In most of the results discussed so far, there is a clear
symmetry breaking in the large-scale circulation. We ob-
serve a dominance of cyclonic structures in favour of anti-
cyclonic structures (see for example Figure 6). Cyclonic
vortices are rotating in the same direction than the back-
ground rotation and correspond here to positive values of
the vertical vorticity. Anti-cyclonic structures are rotat-
ing in the opposite direction and correspond to negative
vertical vorticity. In the case of no-slip boundary condi-
tions, the prevalence of cyclonic thermal plumes can be
explained by the Ekman pumping at the boundaries50. In
our stress-free case however, the corresponding pumping
is much weaker so that another explanation must be pro-
vided for the existence of preferentially cyclonic plumes.

To try to understand the symmetry breaking in our

simulations it is instructive to look at the probability
density function (PDF) of the vertical vorticity in various
simulations. As already observed by several authors50,
the PDF of vertical vorticity is strongly skewed close to
the boundaries, where strong positive values are more
likely. A positive skewness for the vertical vorticity im-
plies a dominance of large positive vorticity events. This
is a property of rotating convection at moderate Rossby
number even in the absence of large-scale circulation.
As the Rossby number is decreasing, the symmetry be-
tween cyclonic and anti-cyclonic structures is restored. In
the limit of vanishing Rossby number, asymptotic mod-
els predict a symmetric state between both cyclonic and
anti-cyclonic structures21.
Figure 11 shows the PDF of the vertical vorticity

close to the boundaries. The Taylor number is fixed
to Ta = 1010 and we consider different values of the
Rayleigh number. In all cases, the PDF is strongly
skewed in favour of large positive values of the vertical
vorticity. As the Rayleigh number is decreased (and the
Rossby number decreased), the PDF becomes more and
more symmetric. The skewness of the vertical vorticity,
defined by

Sω =

〈

ω3
z

〉

〈ω2
z〉3/2

(29)

is also plotted in the bottom panel of Figure 11 as a func-
tion of depth. As already observed in previous studies50,
the skewness of the vertical vorticity is positive close to
the boundaries and remains very small in the bulk of
the layer. Again, we emphasize that these observations
do not depend on the existence, or lack of, a large-scale
circulation. The vorticity statistics are nearly stationary
even during the growth phase of the 2D mode. As the 2D
mode saturates at the box scale, we observe a slight de-
crease of the vertical vorticity skewness in the middle of
the layer (not shown) whereas the skewness remains un-
changed close to the boundaries. The symmetry breaking
between cyclonic and anti-cyclonic structures is therefore
an underlying property of small-scale rotating Rayleigh-
Bénard convection and not the result of this large-scale
circulation. The skewness decreases as the Rossby num-
ber is decreased, which is consistent with the asymptotic
model of Julien et al.21 and with simulations of decay-
ing rotating turbulence25 and rotating Rayleigh-Bénard
convection experiments28,46.

Another interesting observation comes from the em-
bedded plot in Figure 11 that focuses on small values of
the vertical vorticity. Recall that the vertical vorticity
is scaled with the value of the background vorticity 2Ω.
For cyclonic structures, the critical value ω = 2Ω does
not affect the vorticity distribution and we observed an
exponential tail. However, the PDF of anti-cyclonic vor-
ticity drops for absolute values of the vertical vorticity
that are larger than the background vorticity. This indi-
cates that anti-cyclonic structures are less likely to have
large values of vertical vorticity than cyclonic structures.
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FIG. 11. Top: Probability density function of the vertical
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tical vorticity skewness as a function of depth. The results
correspond to cases E2 to E5 in Table I.

This transition is particularly visible at low Rossby num-
bers and low Reynolds numbers where the flow is organ-
ised in vortical cells aligned with the rotation axis (see
the top panel in Figure 9). As the Rayleigh number is
increased from one case to the next, this transition be-
comes gradually less clear. We observed this sharp tran-
sition in the vertical vorticity PDF when ωz ≈ −2Ω for
all Taylor numbers considered. This transition in the
behaviour of the negative vorticity is possibly related to
instabilities observed in idealised vortices with a rotating
background. It is known that centrifugal instabilities are
not possible for cyclonic vortices but are possible for anti-
cyclonic vortices provided that that W0/2Ω < −1 where
W0 is the vorticity at the core of the vortex26,27,54. This
seems to be consistent with the fact that value of the

vertical vorticity smaller than −2Ω are very unlikely. As
the Rayleigh number is increased, the bulk of the flow
becomes more turbulent and 3D so that this argument
based on idealised vortices is less applicable, although a
clear asymmetry is still observed. Note also that Voro-
bieff et al.28 found experimentally a correspondence be-
tween positive vertical vorticity and stable focus topology
of the motion and between negative vertical vorticity and
unstable focus topology.
Irrespective of the existence of an inverse cascade and

the associated large-scale depth-invariant horizontal flow,
rotating Rayleigh-Bénard flows with stress-free bound-
aries tends to favour strong cyclonic motions since the
anti-cyclonic vortices close to the boundaries are unstable
to centrifugal instabilities. If the Rossby number is low
enough and if the Reynolds number is large enough, this
asymmetry in the vorticity distribution of the small-scale
convective motions will persist in the large-scale circula-
tion leading to a condensate state made of one large-scale
coherent cyclonic vortex and spread out incoherent anti-
cyclonic motions (see the bottom panels in Figure 2). In
the asymptotic regime of low Rossby numbers, symme-
try is restored and large-scale cyclones can coexist with
large-scale anti-cyclones22.

V. CONCLUSION

We performed numerical simulations of rapidly-
rotating Rayleigh-Bénard convection using the Boussi-
nesq approximation. We have focused on the rapidly-
rotating regime where it has been observed using differ-
ently constructed models18–21,30 that a large-scale hor-
izontal circulation can be sustained by the small-scale
turbulent convection. We confirm that such a large-scale
circulation is also observed in the Boussinesq limit using
the full set of equations valid for any values of the Rossby
number.
The existence of such a large-scale horizontal flow de-

pends on two conditions. First, the initial small-scale
flow must be sufficiently turbulent. For all parameters
considered here, no large-scale circulation was observed
very close to the onset of convection where the flow is or-
ganised in laminar and quasi-steady columnar structures
aligned with the rotation axis. The Reynolds number
based on the correlation length-scale of the horizontal
flow and the root mean square velocity (see equation 11)
must be approximately larger than 100 in order for the
flow to generate a dominant vortex mode. Second, the
flow must be sufficiently constrained by rotation. We
quantify this constraint in terms of the Rossby number
(as defined by equation (8)), which should be of order
unity, or lower. If the first condition is met (i.e. the
flow is turbulent) but the Rossby number is too large,
no large-scale flow will be observed. This is the case
for example for Taylor numbers smaller than Ta = 108,
where we did not observe large-scale flows independently
of the value taken for the Rayleigh number (see Fig-
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ure 7). We also observed the eventual disappearance of
the large-scale circulation at very large Rayleigh number
for a fixed Taylor number. As the Rayleigh number is
increased between different simulations, the flow under-
goes a transition between strongly anisotropic turbulence
(characterized by “cigar”-shaped structures) to a quasi-
isotropic state of turbulence (where the Reynolds stress
tensor tends towards an isotropic state) in the middle
of the layer. Eventually, as the flow becomes more tur-
bulent and isotropic, the Rossby number becomes too
large so that no large-scale flow can be sustained. We
observed this restoration of isotropy for particular cases
at Ta = 108 and Ta = 109 (cases C5, C6 and D6 in
Table I), but we speculate that this will be observed for
any Taylor numbers and sufficiently large Rayleigh num-
bers. Unfortunately, we could not check this due to the
obvious numerical constraints at this present time, but
our data suggest that this critical value of the Rayleigh
number (above which the vortex mode is not sustained)
scales approximately as the Taylor number. Note that
the scaling Ra ≈ Ta also corresponds to constant values
for the Rossby number as defined by equation (8), which
is consistent with our previous analysis.

The origin of the large-scale flow is due to a non-local
inverse cascade of energy and the 2D behaviour of the
depth-averaged vortex mode, which was already observed
in the asymptotic model of Julien et al.21. We have con-
firmed this observation using the full set of equations,
and a different shell-by-shell energy transfer analysis.
Our results are very similar to energy transfers observed
in forced rotating turbulence in tri-periodic domains2,
which confirms that this inverse cascade mechanism is a
generic feature of rotating flows at low Rossby and larger
Reynolds numbers. As in 2D turbulence, we also ob-
served vortex merging events, provided that the aspect
ratio of the numerical domain is large enough.

The asymmetry between cyclonic and anti-cyclonic
vortices is not related to the existence of this large-scale
circulation. It is an underlying property of small-scale 3D
wave mode generated by rapidly-rotating convection. We
showed that the vertical vorticity statistics barely evolve
as the large-scale flow is growing in amplitude. From the
beginning, a clear asymmetry is observed between differ-
ent sign of the vertical vorticity and cyclonic structures
are dominant, especially close to the boundaries, where
the flow can be described as a collection of localised 2D
vortices aligned with the rotation axis. A clear transi-
tion is observed when the negative anti-cyclonic vertical
vorticity close to the boundaries equals the background
vorticity 2Ω. Large values of negative vertical vorticity
are less likely than values smaller than the background
vorticity whereas the cyclonic vorticity has a long expo-
nential tail without particular transitions. As observed in
stability analyses of idealised vortex with a background
rotation27, anti-cyclonic vortices can be destabilised by
centrifugal instabilities whereas cyclonic structures re-
main stable.

Several simplifications were made in this work and it

is important to discuss these here. First, we only con-
sidered stress-free boundary conditions. As discussed in
section IVE, no-slip boundary conditions are also of in-
terest since the Ekman pumping at the boundary might
significantly change the dynamics of vorticity and large-
scale horizontal flow, but these are beyond the remit of
this paper. Imposing a flux instead of fixing the temper-
ature at the boundaries might also affect the structure of
the large-scale flow since it is associated with a decrease
in the Nusselt number40. Second, we only considered
the incompressible limit in the Boussinesq approxima-
tion. The most striking difference between our incom-
pressible simulations and previously published compress-
ible models is the ability of compressible rotating convec-
tion to sustain large-scale anti-cyclonic structures30. As
already mentioned, we only observed cyclonic large-scale
vortices in our moderate Rossby numbers simulations.
Since the horizontally-averaged vertical vorticity vanishes
due to our choice of boundary conditions, anti-cyclonic
vorticity must exist but is weak and spread amongst the
layer. The asymptotic model of Julien et al.21 showed
that in the vanishing Rossby limit, a symmetric state
of geostrophic turbulence populated with both cyclones
and anti-cyclones is obtained. We did not observe such a
symmetric state due to the moderate values of the Rossby
number considered here (RoL > 10−2, see Table I), or a
dominant large-scale anti-cyclone as in the compressible
regime. The possibility of coherent anti-cyclonic large-
scale vortices seems to be a specific of the compressible
model. We are investigating this aspect of the prob-
lem, and results on how density stratification drastically
changes the angular momentum redistribution in the flow
will be discussed in a subsequent paper.
Simulations have been performed on the HPC facil-

ity Archer under the Project Group e308. The authors
would like to thank C. Guervilly and P.J. Bushby for
useful numerical comparisons and discussions.
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