L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Math. ETH Zürich. Birkhäuser, 2008.

M. Arnaudon, M. Bonnefont, and A. Joulin, Intertwinings and generalized Brascamp-Lieb Inequalities
URL : https://hal.archives-ouvertes.fr/hal-01272885

D. Bakry, F. Bolley, and I. Gentil, Dimension dependent hypercontractivity for Gaussian kernels, Probability Theory and Related Fields, vol.118, issue.3, pp.845-874, 2012.
DOI : 10.1007/s00440-011-0387-y

URL : https://hal.archives-ouvertes.fr/hal-00465879

D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov diffusion operators, Grund. Math. Wiss. Springer, vol.348
DOI : 10.1007/978-3-319-00227-9

URL : https://hal.archives-ouvertes.fr/hal-00929960

D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Revista Matem??tica Iberoamericana, vol.22, issue.2, pp.683-702, 2006.
DOI : 10.4171/RMI/470

URL : https://hal.archives-ouvertes.fr/hal-00353946

F. Barthe and A. Kolesnikov, Mass Transport and Variants of the Logarithmic Sobolev Inequality, Journal of Geometric Analysis, vol.22, issue.1, pp.921-979, 2008.
DOI : 10.1007/s12220-008-9039-6

URL : https://hal.archives-ouvertes.fr/hal-00634530

S. G. Bobkov, I. Gentil, and M. Ledoux, Hypercontractivity of Hamilton???Jacobi equations, Journal de Math??matiques Pures et Appliqu??es, vol.80, issue.7, pp.669-696, 2001.
DOI : 10.1016/S0021-7824(01)01208-9

S. Bobkov, N. Gozlan, C. Roberto, and P. Samson, Bounds on the deficit in the logarithmic Sobolev inequality, Journal of Functional Analysis, vol.267, issue.11, pp.4110-4138, 2014.
DOI : 10.1016/j.jfa.2014.09.016

URL : https://hal.archives-ouvertes.fr/hal-01053507

S. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geometric and Functional Analysis, vol.10, issue.5, pp.1028-1052, 2000.
DOI : 10.1007/PL00001645

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.3360

S. Bobkov and M. Ledoux, From Brunn???Minkowski to sharp Sobolev inequalities, Annali di Matematica Pura ed Applicata, vol.110, issue.3, pp.369-384, 2008.
DOI : 10.1007/s10231-007-0047-0

URL : https://hal.archives-ouvertes.fr/hal-00634578

S. Bobkov and M. Ledoux, Weighted Poincar??-type inequalities for Cauchy and other convex measures, The Annals of Probability, vol.37, issue.2, pp.403-427, 2009.
DOI : 10.1214/08-AOP407

URL : http://arxiv.org/abs/0906.1651

F. Bolley, I. Gentil, and A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker???Planck equations, Journal of Functional Analysis, vol.263, issue.8, pp.2430-2457, 2012.
DOI : 10.1016/j.jfa.2012.07.007

URL : https://hal.archives-ouvertes.fr/hal-00632941

F. Bolley, I. Gentil, and A. Guillin, Dimensional contraction via Markov transportation distance, Journal of the London Mathematical Society, vol.135, issue.1, pp.309-332, 2014.
DOI : 10.1112/jlms/jdu027

URL : https://hal.archives-ouvertes.fr/hal-00808717

F. Bolley, I. Gentil, A. Guillin, and K. Kuwada, Equivalence between dimensional contractions in Wasserstein distance and curvature-dimension condition
URL : https://hal.archives-ouvertes.fr/hal-01220776

E. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, Journal of Functional Analysis, vol.101, issue.1, pp.194-211, 1991.
DOI : 10.1016/0022-1236(91)90155-X

D. Cordero-erausquin, Some Applications of Mass Transport to Gaussian-Type Inequalities, Archive for Rational Mechanics and Analysis, vol.161, issue.3, pp.257-269, 2002.
DOI : 10.1007/s002050100185

URL : https://hal.archives-ouvertes.fr/hal-00693655

D. Cordero-erausquin, Transport inequalities for log-concave measures, quantitative forms and applications
DOI : 10.4153/cjm-2016-046-3

URL : http://arxiv.org/abs/1504.06147

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport. Optimal transportation, Soc. Lecture Note Ser, vol.413, pp.100-144, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00519401

M. , D. Pino, and J. Dolbeault, The optimal Euclidean L p -Sobolev logarithmic inequality, J. Funct. Anal, vol.197, issue.1, pp.151-161, 2003.

R. Eldan, A two-sided estimate for the Gaussian noise stability deficit, Inventiones mathematicae, vol.6, issue.1, pp.561-624, 2015.
DOI : 10.1007/s00222-014-0556-6

M. Erbar, K. Kuwada, and K. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner???s inequality on metric measure spaces, Inventiones mathematicae, vol.91, issue.3, pp.993-1071, 2015.
DOI : 10.1007/s00222-014-0563-7

M. Fathi, E. Indrei, and M. Ledoux, Quantitative logarithmic Sobolev inequalities and stability estimates, Discrete and Continuous Dynamical Systems, vol.36, issue.12, pp.6835-6853, 2016.
DOI : 10.3934/dcds.2016097

URL : http://arxiv.org/abs/1410.6922

A. Figalli and E. Indrei, A Sharp Stability Result for the Relative Isoperimetric Inequality Inside Convex Cones, Journal of Geometric Analysis, vol.23, issue.4, pp.938-969, 2013.
DOI : 10.1007/s12220-011-9270-4

A. Figalli and D. Jerison, Quantitative stability for the Brunn-Minkowski inequality

A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Inventiones mathematicae, vol.34, issue.4, pp.167-211, 2010.
DOI : 10.1007/s00222-010-0261-z

A. Figalli, F. Maggi, and A. Pratelli, Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation, Advances in Mathematics, vol.242, pp.80-101, 2013.
DOI : 10.1016/j.aim.2013.04.007

G. Hargé, Reinforcement of an inequality due to Brascamp and Lieb, Journal of Functional Analysis, vol.254, issue.2, pp.267-300, 2008.
DOI : 10.1016/j.jfa.2007.07.019

E. Indrei and D. Marcon, A Quantitative Log-Sobolev Inequality for a Two Parameter Family of Functions, International Mathematics Research Notices, vol.20, pp.5563-5580, 2014.
DOI : 10.1093/imrn/rnt138

S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control, Optimisation and Calculus of Variations, vol.15, issue.3, pp.712-740, 2009.
DOI : 10.1051/cocv:2008044

R. Mccann, A Convexity Principle for Interacting Gases, Advances in Mathematics, vol.128, issue.1, pp.153-179, 1997.
DOI : 10.1006/aima.1997.1634

V. H. Nguyen, Dimensional variance inequalities of Brascamp???Lieb type and a local approach to dimensional Pr??kopa??s theorem, Journal of Functional Analysis, vol.266, issue.2, pp.931-955, 2014.
DOI : 10.1016/j.jfa.2013.11.003

F. Otto and C. Villani, Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality, Journal of Functional Analysis, vol.173, issue.2, pp.361-400, 2000.
DOI : 10.1006/jfan.1999.3557

M. Talagrand, Transportation cost for Gaussian and other product measures, Geometric and Functional Analysis, vol.27, issue.3, pp.587-600, 1996.
DOI : 10.1007/BF02249265

C. Villani, Topics in Optimal transportation, volume 58 of Grad. studies in math, 2003.

C. Villani, Optimal transport, Old and new, 2009.