
HAL Id: hal-01171343
https://hal.science/hal-01171343

Submitted on 3 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient semantic-based IoT service discovery
mechanism for dynamic environments

Sameh Ben Fredj, Mathieu Boussard, Daniel Kofman, Ludovic Noirie

To cite this version:
Sameh Ben Fredj, Mathieu Boussard, Daniel Kofman, Ludovic Noirie. Efficient semantic-based IoT
service discovery mechanism for dynamic environments. IEEE 25th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014, Sep 2014, washington, United
States. pp.2088 - 2092, �10.1109/PIMRC.2014.7136516�. �hal-01171343�

https://hal.science/hal-01171343
https://hal.archives-ouvertes.fr

Efficient semantic-based IoT service discovery
mechanism for dynamic environments

Sameh Ben Fredj
Alcatel-Lucent Bell Labs

route de Villejust
91620 Nozay, France

sameh.ben fredj
@alcatel-lucent.com

Mathieu Boussard
Alcatel-Lucent Bell Labs

route de Villejust
91620 Nozay, France

mathieu.boussard
@alcatel-lucent.com

Daniel Kofman
Telecom ParisTech
23 avenue d’Italie

75013 Paris, France
daniel.kofman

@telecom-paristech.fr

Ludovic Noirie
Alcatel-Lucent Bell Labs

route de Villejust
91620 Nozay, France

ludovic.noirie
@alcatel-lucent.com

Abstract—The adoption of Service Oriented Architecture
(SOA) and Semantic Web technologies in the Internet of Things
(IoT) enables to enhance the interoperability of devices by
abstracting their capabilities as services and enriching their de-
scriptions with machine-interpretable semantics. This facilitates
the discovery and composition of IoT services. The increasing
number of IoT services, their dynamicity and geographical
distribution require to think about mechanisms to enable scalable
and effective discovery. We propose in this paper a semantic
based IoT service discovery mechanism that supports and adapts
to the dynamicity of IoT services. The discovery mechanism
is distributed over a hierarchy of semantic gateways. Within
a semantic gateway, we implement mechanisms to dynamically
organize its content over time, in order to minimize the discovery
cost. This cost is measured in terms of numbers of service-request
matching operations performed in a gateway to find suitable
services. Results show that our approach enables to maintain a
scalable and efficient discovery and limits the number of updates
sent to a neighboring gateway.

I. INTRODUCTION

According to the Internet of Things (IoT) vision [6] [1],
billions of objects will be connected by 2020 and have
computation capabilities to interact and cooperate with other
objects or users. Moreover, with the large adoption of the
Service Oriented Architecture (SOA), real world devices will
be able to offer their capabilities as web services [8].

A crucial challenge for the success of this vision is to enable
the discovery of IoT services, among thousands of others,
matching a set of requirements and expectations. Using models
such as OWL-S1 or WSMO2, semantic web services can be
used to provide rich descriptions about functionalities of IoT
services and facilitate their discovery and composition [7].

A common practice in semantic service discovery is to
match the semantic input/output signature of a service to a
request to select a suitable service among others in a reposi-
tory. In systems with a large number of IoT services, retrieving
services which semantically match a discovery request can
become a challenging task [10]. Organizing services into
clusters accelerates their discovery [11], as it limits the scope
of search. When considering device mobility, service discovery

1http://www.w3.org/Submission/OWL-S/
2http://www.w3.org/Submission/WSMO/

becomes more challenging where service clustering needs to
adapt to IoT service dynamicity in order to improve service
discovery. In this paper, we propose an approach based on a
hierarchy of semantic gateways to accelerate the discovery for
IoT semantic web services in a dynamic context. We develop
in each semantic gateway mechanisms that adapt to changes
induced by service dynamicity. Groups of similar services
are created through incremental clustering. The clustering is
optimized over time to minimize the discovery cost.

The paper is organized as follows: section II gives an
overview of the approach. Section III details the mechanisms
to dynamically organize the content of the gateway and
accelerate discovery. Section IV provides an experimental
evaluation and section V presents the related work.

II. APPROACH OVERVIEW

In our approach that we developed in a static context in [2],
we model an IoT environment as a tree hierarchy of smart
spaces (e.g., country, region, city, streets, buildings, rooms).
Each smart space is embodied by a semantic gateway, which
is a software component maintaining information about the
IoT services in its scope and processing discovery requests.
At the lowest level nodes the actual IoT service descriptions
are registered in the semantic gateway (the networking-level
discovery of these services is out of scope here) while at upper
levels only aggregated information is maintained.

A semantic gateway N performs clustering and aggregation
of its content. For each of its clusters K, a representative
W

K,N

and radius r
K,N

are computed based on a quasi-metric
Q. The aggregated information (i.e., the representative W

K,N

and the radius r
K,N

) of each semantic gateway is then sent to
its parent gateway where the process is performed recursively.
In each gateway, a routing table is built, representing each
cluster by its representative, its radius, and the list of its
elements.

During discovery request processing, the semantic similarity
between a request and a service is measured based on the
quasi-metric Q. At a gateway N for a cluster K, an incoming
request is matched with the cluster representatives. For each
cluster K, we use a specific decision threshold Td

K,N

to
decide to further compare the request with each element of

the cluster or not. For higher level nodes, a fine-grained
comparison is performed with elements of a cluster, using
the associated Td

K

0
,N

0 decision threshold of the originating
node and cluster for these elements. This enables to select the
originating node to forward the request to. For lowest level
nodes, a matching threshold is used to return final service
descriptions matching the request.

An initial prototype of this architecture and the related
discovery mechanism were detailed in [2], in a static context.
In this work, we consider a dynamic environment and we
develop new mechanisms to adapt the discovery mechanism
to service mobility.

III. DYNAMIC MANAGEMENT OF GATEWAY CONTENT

In this part, we detail the dynamic management mechanisms
for a semantic gateway to support service dynamicity and
reduce search cost. We define first an incremental clustering to
create and update clusters of similar services based on service
arrivals and departures. Second, we optimize the defined
clustering in terms of number of clusters and number of
services per cluster in order to minimize the search cost.

A. Dynamic clusters creation and updating
During clusters creation, we aim to make new services

quickly discoverable while limiting the number of semantic
matching operations required to insert them in the gateway’
clusters. In the following, we detail the different service
management actions and considered conditions to insert a
new service within a node or to delete it. For a node N ,
K = {K

i

, i 2 {1, · · · ,M}} is a set of clusters in the node
N . For a cluster K 2 K, W

K,N

and r
K,N

are respectively its
representative and radius.

1) Service arrival cases: We consider a new service S1

that will be inserted into the node N . We set K
min

=
argmin
K2K

[Q (S1,WK,N

)]. K
min

is the cluster in N whose

representative is the closest to S1 and we note d
min

this
distance: d

min

= Q (S1,WK

min

,N

). The arrival of S1 can
represent different scenarios (See Figure 1):

a) If d
min

 r
K

min

,N

, then S1 is inserted into K
min

and
no change is made within the cluster.

b) If not (a) and 9K 2 K \ {K
min

} where
r
K,N

� Q (S1,WK,N

), then S1 is inserted into K =
argmin

K2K\{K
min

}
[Q (S1,WK,N

)], no change is made within

the cluster.
c) If not (a) and not (b) and d

min

< Q (W
K,N

,W
K

min

,N

),
then we enlarge the radius of K

min

to include the
service S1. We have:
K

min

= {W
k

min

,N

, r
k

min

,N

= d
min

}.
d) If not (a), not (b) and not (c), then a new cluster K 0 2

K is created with a representative W
K

0
,N

= S1 and a
radius r

K

0
,N

= 0.
2) Service departure cases: In the following, we consider

a case of service departure where S1 is leaving the cluster
K. We consider d = Q (S1,WK,N

). The departure of S1 can
represent different scenarios (See Figure 2):

Figure 1. 2D representation of service arrival cases

Figure 2. 2D representation of service departure cases

a) S1 6= W
K,N

and d < r
K,N

then no change is made
within the cluster.

b) S1 6= W
K,N

and S1 is the only service where d = r
K,N

,
then we recalculate the radius of the cluster upon S1

departure to optimize it.
c) S1 = W

K,N

and |K| > 1 then we consider a virtual
representation of S1 that can be with a service request
during service search but it can not be part of the final
set of found services that will be returned to a user. No
change is made within the cluster.

d) S1 = W
K,N

and |K| = 1 then we delete the cluster K
of node N .

B. Clustering optimization within a node

With the mechanism described in the previous section,
we incrementally modify the set of clusters. However, the
number of clusters and the number of services per cluster vary
during service mobility and can affect the search cost (i.e., the
number of matching operations). We define in the following a
mechanism that can optimize the distribution of services when
it is needed.

1) Minimal Search cost: To evaluate our clustering, we
define a referential model of an ideal clustering that we intend
to approach during service mobility in order to minimize the
service search cost. In an ideal clustering, a request will not
visit any cluster if there is no service matching it and will
visit only one cluster if there is a service matching it (See
definition 1).

Definition 1: Ideal Clustering.
We consider N

s

services distributed over a set of clusters K =
{K

i

, i 2 {1, · · · , n}}. R a request sent to K to find a matching
with a service S. � is the number of clusters visited by the
request R to search for a matching service S. K is an ideal
clustering if and only if, for any request R:

• � = 1 when there is a service S that matches R,
• � = 0 when there is no service S that matches R.

During service mobility, the number of formed clusters may
increase greatly and some clusters may become very populated
in terms of number of services. Thus, service distribution
within a node impacts the search cost. We should mention that
we consider the assumption that for a uniform distribution of
requests, the more populated a cluster is, the more likely it
will be visited by a request. However, for the same number of
services, two clusters have equal probability to be visited by a
request. In the following, we define an optimal distribution of
services within a node (see proposition 1), where we consider
an optimal number of services and an optimal average number
of services per cluster to minimize the search cost.

Proposition 1: Optimal service distribution.
We consider a node N with N

s

services distributed over the
group of clusters K = {K

i

, i 2 {1, · · · ,M}} formed follow-
ing the process described in section III-A. We consider m

i

the number of services per cluster K
i

, thus
P

M

i=1 mi

= N
s

.
A set of requests R are sent to the node N . We define hM

r

i
the average matching cost per request R, n

c

the number of
clusters, hm

s

i the average number of services per cluster and
h�i the average number of visited cluster per request. We
also define hM

r

min

i the minimal average matching cost per
request, n

c

op

the optimal number of clusters per node and⌦
m

s

op

↵
the optimal average number of services per cluster.

Based on definition 1, we can write:

hM
r

i = n
c

+ h�i ⇥ hm
s

i and N
s

= n
c

⇥ hm
s

i .

hM
r

i is minimal for:

n
c

op

⇡
p
h�i ⇥N

s

,
⌦
m

s

op

↵
⇡
q

N

s

h�i ,

and we have: hM
r

min

i = 2⇥
p
h�i ⇥N

s

.

Proof: We have: hm
s

i = N

s

n

c

and we consider the function
f : R⇤

+ 7! R where f(n) = n + h�i ⇥ N

s

n

. By studying the
variation of the function f , we can determine the value of n

c

op

for which the function f is minimal.
Based on definition 1 of the ideal clustering, we have h�i 2

]0, 1[. Since the ideal clustering is a limit that we intend to
approximate, we fix h�i = 1 in the following, which is the
worst case for hM

r

min

i. Moreover, we will consider the integer
part of n

c

op

and
⌦
m

s

op

↵
which are very close to their real

values and we will keep the same notation.
2) Reclustering mechanisms: During service mobility, node

content changes dynamically, which impacts the number of
clusters n

c

and the number of services per cluster m
s

. In our
approach to optimize service distribution within a node, we
define mechanisms of re-clustering where a cluster splitting is
performed to limit the maximum number of services per clus-
ter (that we note m

Max

) and a cluster merging is performed to
be close to the optimal number of clusters n

c

op

. The purpose
is to approach the minimal average matching cost per request
hM

r

min

i defined in proposition 1. Continuous merging and
splitting involve additional matching operations and updates
that impact the system scalability. To reduce the matching
cost due to merge and split operations, we define limits on the

number of clusters per node n
c

Limit

and the maximum number
of services per cluster m

Max

Limit

(See definition 2). The goal
is to always have n

c

 n
c

Limit

and m
Max

 m
Max

Limit

. We
are aware that by doing so, we will have: hM

r

i > hM
r

min

i.
By adding margins to the optimal values n

c

op

and m
s

op

in
proposition 1, we expect hM

r

i to still be advantageous with
comparison to a centralized approach where the request is
matched with all services within a gateway.

Definition 2: Reclustering limits.
We consider a node N with N

s

services distributed over n
c

clusters. We consider hm
s

i the average number of services
per cluster and m

Max

the maximum number of services in
a cluster. n

c

op

is the optimal number of clusters and
⌦
m

s

op

↵

the optimal number of services per cluster. We set limits on
the number clusters per node (n

c

Limit

) and on the number of
services per cluster (m

Max

Limit

) by defining margins � and
� respectively on n

c

op

and
⌦
m

s

op

↵
as follows:

• n
c

Limit

= (1 + �)⇥ n
c

op

,
• m

Max

Limit

= (1 + �)⇥
⌦
m

s

op

↵
.

For margins, we fix � = 1. This allows after a split
(based on the splitting approach described below) to have 2
clusters with approximately

⌦
m

s

op

↵
services in each. For �,

we consider values 2 [0.5, 1] in order to limit the number of
merging operations.

We consider a node N and N
s

services distributed over the
group of clusters K = {K

i

, i 2 {1, · · · ,M}}. We consider m
i

the number of services per cluster K
i

. Based on the defined
margins and re-clustering limits, cluster merging and splitting
are performed as follows:

• If it exists a cluster k
i

where m
i

> m
Max

Limit

, then we
split k

i

into two new clusters K
new1 and K

new2 where
m

new1 ⇡ m
new2 . To do so, we consider first the 2 most

dissimilar services S1 and S2 within the cluster K
i

based
on a distance Q0 that we obtain through symmetrization
of the quasi-metric Q. We start with K

new1 = {S1}
an K

new2 = {S2}. Services in K
i

\ {S1, S2} will be
matched against S1 and S2 based on the quasi-metric Q
and associated with the most similar one until we have:
m

new1 ⇡ m
new2 ⇡

⌦
m

s

op

↵
. Finally, we calculate the

representative and radius of K
new1 and K

new2 .
• If n

c

> n
c

Limit

then we merge K
i

and K
j

defined
by (K

i

,K
j

) = argmin
(K

a

,K

b

)2E
[Q (W

K

a

,N

,W
K

b

,N

) + r
K

b

,N

]

where E =
�
(K

a

,K
b

) 2 K2 \m
a

+m
b

 m
Max

Limit

.

After cluster merging, we calculate the representative and
radius of K

merg

. Because � = 1, we always have E 6= ;.
• In other cases nothing is done.

IV. EXPERIMENTAL EVALUATION

In the following, we describe the prototype and the used
data set, we define the considered performance metrics and
we analyze the results.

A. Prototype and data set
We deployed a prototype of a lowest level semantic gateway

as a Java Web Application hosted in a Tomcat server. We

implemented the incremental clustering mechanism described
in section III-A and the clustering optimization mechanism
described in section III-B. A process of service arrivals and
departures was simulated in the gateway. The service arrival
process is a Poisson process with an arrival rate �. The time
spent by a service in a node has an exponential distribution
with parameter µ (with � > µ). The average number of
services within a node is then : hN

s

i = �/µ. The requests
arrival process is a Poisson process with arrival rate ⌘. In real
system, we expect that for a given period of time T the request
arrival process is faster than the service arrival process (i.e.,
⌘ >> �).

Since real and rich data sets about IoT semantic service
descriptions are not very common nowadays, we used for our
experimental evaluation the known OWL-S service retrieval
Test Collection (OWL-S TC v3.03). The data set is composed
of 7 different service categories. We chose among them 3
service categories to be represented in the node to ensure
service diversity.

B. Metrics

To evaluate our approach we measured the total matching
cost M

T

which is the sum of the discovery cost (i.e., the
number of service-request matching operations involved dur-
ing service discovery M

rT

), the mobility matching cost (i.e.,
the number of service matching operations involved during
service arrivals and departures) and the clustering optimization
matching cost (i.e., the number of service matching operations
involved during cluster merging and splitting). We compare it
to the discovery cost M

rT

to evaluate the cost engendered by
the dynamic management mechanisms. We also measured the
relative rate of generated updates sent by a node to its parent,
which is the ratio between the number of events sent by a
child node to its parent node and the total number of events
received by a child node over a given period (i.e., total number
of service arrivals and departures events).

C. Tests and results

For the measurements, we considered hN
s

i = 400 semantic
service descriptions within the gateway. We simulated service
mobility (i.e., service arrivals and departures) during 100⇥T0,
where T0 = 1/µ. We consider n

r

and n
m

respectively the
number of requests and the total number of service arrivals and
departures that happen during T0. We choose n

r

= 5⇥n
m

and
we have n

m

= 2 ⇤ hN
s

i. During simulation, we measured the
different matching costs (i.e., M

rT

and M
T

) and the number of
generated updates. To facilitate simulations and to estimate the
impact of node content changes on the request matching cost,
we did not perform a continuous request arrival process as for
services, instead, we measured the average matching cost over
100 requests, every 10⇥T0, then we calculated the total request
matching cost M

rT

over requests. We start with an empty node
that is filled with service arrivals representing singletons. The
routing table of the node is constructed and updated in parallel.

3http://projects.semwebcentral.org/projects/owls-tc/

Figure 3. Number of matching operations in approach (1) and approach (2).

Merging clusters starts when there is about 10 singletons in
the gateway (at this stage, the optimized clustering become
more advantageous in terms of discovery cost than considering
singletons). When the node content reaches 400 services, we
start measurements. Each new service is chosen randomly
among 3 different service categories.

For service arrivals and departures process, we fixed µ =
0.0025 and � = 1. For reclustering mechanisms, we fixed
h�i = 1 as explained in III-B1, to calculate the optimal
values of n

c

op

and
⌦
m

s

op

↵
. We take a margin � = 1 for

the maximum number of services per clusters m
Max

Limit

, as
explained in III-B2. For the maximum number of clusters per
node n

c

Limit

, we choose a margin � = 0.6 following test
results.

We measured the evolution of the overall matching cost M
T

and we compared it to the evolution of the total discovery cost
M

rT

= nr ⇥ hM
r

i, during 100 ⇥ T0. Results are shown in
figure 3. We compared the discovery cost of our approach
(1) to the discovery cost of approach (2) representing a non
clustered node. We have M

rT

(2) � 4⇥M
rT

(1) over time. We
also compared the discovery cost M

rT

of both approaches to
the minimal value M

r

minT

= n
r

⇥hM
r

min

i defined in propo-
sition 1. We can see in our approach that M

T

(1) and M
rT

(1)
are quasi-constant over the time thanks to the mechanisms that
we defined. We have M

T

(1) ⇡ M
rT

(1) which means that the
matching costs generated by the management mechanisms are
negligible compared to the discovery cost. Moreover, we have
M

rT

(1) ⇡ 2⇥M
r

minT

. This gap between the two values is due
to the margins that we added to the optimal values of n

c

op

and⌦
m

s

op

↵
to reduce the number of reclustering operations. Also,

cluster merging and splitting degrade the quality of clusters
which increases the average number of visited clusters per
request.

We measured the relative rate of generated updates sent by
a node to its parent. These updates are due to changes in node
content that impact its routing table and need to be notified
to a parent node to update its content and ensure an efficient
service discovery. Results are shown in figure 4. We can see
with our approach, a node generates a low relative rate of
updates to its parent (< 1%). Thus, our mechanisms allow for
a higher level node to receive mobility events at a rate 100

Figure 4. Relative rate of generated updates sent by a node to its parent.

times slower than the one received at a lower level node.

V. RELATED WORK

This section presents some related works about techniques
that have been investigated in order to improve semantic based
service discovery.

METEOR-S [12] is based on a classification system of
ontology concepts where peers sharing similar concepts are
grouped together and process requests related to these con-
cepts. Used ontologies need to be known in advance to create
peers categories, which is problematic in dynamic context.

Clustering approaches [3] try to find information in un-
labeled data. These approaches have been used to improve
semantic service discovery performances, specially to reduce
the scope of search.

Statistical clustering (e.g., K-means, BIRCH, Hierarchical
clustering) has been investigated in clustering web services
based on similarity metrics. This clustering presents high com-
plexity when dealing with high dimensional data structures
such as semantic web services, formed by multiple concepts.
Moreover, they do not adapt well to dynamic contexts.

Probabilistic methods for service clustering have been used
in [9] and [4]. The dimensionality of the service description
is reduced as each service can be described in terms of latent
factors. These latent factors are used to group services into
clusters. Any newly added service can be clustered with a
direct calculation and without requiring to re-calculate the la-
tent variables. Although probabilistic clustering methods have
a reasonable search complexity and adapt well to dynamic con-
text, they are significantly less expressive than our approach
since they do not take advantage of the logic based description
of services. Moreover, the clustering is not optimized over
time.

Developed Incremental clustering techniques [5] [13] have
been used to cluster dynamic data sets in a metric space.
Data joins a cluster if some predefined criteria are verified.
Otherwise, a new cluster is created to represent the object. In-
cremental clustering performs clusters merging under specific
conditions in order to preserve the consistency of clusters.
They lack split mechanisms which can be useful in certain
applications. Moreover, most approaches are considering clus-
tering text documents and not exploiting semantic services.

VI. CONCLUSION

In this paper, we presented an approach to enable efficient
IoT semantic service discovery in a dynamic context and
over a hierarchy of semantic gateways. Within a gateway,
we defined an incremental clustering mechanism to create
groups of similar services. This clustering is optimized over
time in terms of number of clusters and number of services
per cluster. Results show that the discovery cost is quasi-
constant over time and is well optimized with comparison
to a non-clustered approach. The matching cost generated
by the management mechanisms is negligible compared to
the discovery cost. Moreover, the relative rate of generated
updates sent by the gateway to its parent is very low. This
means that, in the hierarchy of gateways, higher level gateways
will be less affected by service dynamicity and changes that
happen in lower level gateways. As a next step, we will extend
our testing to the whole architecture. We will generalize the
mobility support mechanisms to all nodes of a hierarchy and
evaluate the whole system.

ACKNOWLEDGMENT

Part of the work presented in this paper has been carried out
at Laboratory of Information, Network and Communication
Sciences (LINCS, www.lincs.fr).

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, The Internet of Things: A survey,

Computer Networks (2010), 2787–2805.
[2] S. Ben Fredj, M. Boussard, D. Kofman, and L. Noirie, A Scalable IoT

Service Search Based on Clustering and Aggregation, Green Computing
and Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE Cyber,
Physical and Social Computing, 2013, pp. 403–410.

[3] P. Berkhin, A Survey of Clustering Data Mining Techniques, Grouping
Multidimensional Data, 2006, pp. 25–71.

[4] G. Cassar, P. Barnaghi, and K. Moessner, Probabilistic Methods for Ser-
vice Clustering, Proceedings of 4th International Workshop on Service
Matchmaking and Resource Retrieval in the Semantic Web, 2010.

[5] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, Incremental Clus-
tering and Dynamic Information Retrieval, SIAM J. Comput. (2004),
1417–1440.

[6] E. Dave, The internet of things: How the next evolution of the internet
is changing everything, CISCO white paper (2011).

[7] S. De, P. Barnaghi, M. Bauer, and S. Meissner, Service Modelling for
Internet of Things, FedCSIS, 2011, pp. 949–955.

[8] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, Interacting
with the SOA-Based Internet of Things: Discovery, Query, Selection, and
On-Demand Provisioning of Web Services, IEEE T. Services Computing
(2010), 223–235.

[9] J. Ma, Y. Zhang, and J. He, Efficiently finding web services using a
clustering semantic approach, CSSSIA, 2008, pp. 5.

[10] S. Ben Mokhtar, D. Preuveneers, N. Georgantas, V. Issarny, and Y.
Berbers, EASY: Efficient semAntic Service discoverY in pervasive com-
puting environments with QoS and context support, Journal of Systems
and Software (2008), 785–808.

[11] Christian Platzer, Florian Rosenberg, and Schahram Dustdar, Web service
clustering using multidimensional angles as proximity measures, ACM
Transactions on Internet Technology (2009), 11.

[12] K. Verma, K. Sivashanmugam, A. P. Sheth, A. A. Patil, S. A. Oundhakar,
and J. A. Miller, METEOR-S WSDI: A Scalable P2P Infrastructure
of Registries for Semantic Publication and Discovery of Web Services,
Information Technology and Management (2005), 17–39.

[13] S. Young, I. Arel, T. P. Karnowski, and D. Rose, A Fast and Stable
Incremental Clustering Algorithm, ITNG, 2010, pp. 204–209.

