Using Subjective Logic to Divide Learners into Groups
Thomas Largillier

To cite this version:
Thomas Largillier. Using Subjective Logic to Divide Learners into Groups. International Symposium on Web Algorithms, Jun 2015, Deauville, France. hal-01171300

HAL Id: hal-01171300
https://hal.archives-ouvertes.fr/hal-01171300
Submitted on 3 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Using Subjective Logic to Divide Learners into Groups

Thomas Largillier
Normandy University
thomas.largillier@unicaen.fr

Abstract

Massive Open Online Courses (MOOC) appeared fairly recently in distance education. Unlike traditional e-learning classes, they are intended for an unlimited number of participants and successful ones can gather hundreds of thousands of participants. Basically they consist on a video class per week that the learners can watch when it is most fitting for them. It is a very useful tool for learners who wish to learn at their own pace. One of the biggest problems facing MOOCs is the high drop ratio. Indeed even for the very successful ones it is common to see only 10% of the participants following the class until the end. As shown in previous studies on online learning, collaboration between the participants is an effective way to solve this problem. This paper introduces a group partitioning scheme based on subjective logic operators that intends to satisfy the learners by reforming successful alliances and splitting unfulfilling ones.

I. Introduction

MOOCs appeared fairly recently in distance education and have generated a huge interest in the scientific community [10].

Unlike traditional e-learning classes, they are intended for an unlimited number of participants who can subscribe without any geographic restriction. This implies that the learners participating in MOOCs can number in hundreds of thousands with close to a hundred different nationalities for the most successful ones. The participants are also very diverse in ages and educational background.

In MOOCs, some material, usually videos and documents, are made available to the learners at fixed points in time and the learners have a predefined time period to watch/read the material before turning in an assignment to make sure they have assimilated the content of the material. This time period is usually one or two weeks. Also the learners are encouraged to use collaborative tools to interact with each other.

The main problem faced by MOOCs is their really high drop ratio. Even the most successful ones have a completion rate around 10%. This drop ratio is usually estimated using the percentage of learners who turn their assignment in. Some studies shown that learners can feel isolated in a MOOC and overwhelmed by the amount of information available on collaborative platforms. Especially learners whose mother tongue is not the one the class is taught in.

In this paper, we propose to solve this problem by “forcing” learners to interact with a subset of other learners through group assignments. In order to do this, we introduce a model to partition learners in order to maximise the probability of success of all the assembled groups. We also propose an algorithm that computes such a partition.

II. Related Work

Despite them being fairly recent, MOOCs have been studied a lot. Mackness et al. conducted a study [7] on one of the first ever MOOC to happen in 2008. The authors discovered that learners like the autonomy they have in a MOOC environment, but they also really appreciate the interactions/connections between the learners since a lot of them felt really isolated during this class.

The first MOOC proposed on the edX platform was extensively studied by Breslow et al. in [1]. This MOOC was launched in 2012 and regrouped more than 155,000 learners. One of the objectives of the study was to identify the factors that lead to the success of a learner for this class. The only positive correlation they got was with the interaction factor. Learners that completed the class interacted more with other learners. This study is still undergoing.

The problem of partitioning learners into small groups in order to optimize their progression has been extensively studied. Most of the work done concerns learners in a classroom of a “classical” e-learning environment. Few people consider the case where there are hundreds of thousands of learners spread across the globe.

Oakley et al. propose, in [9], a team formation method. Their objective is to group students with diverse ability levels and common blocks of time to meet outside classes. Groups are put together by the teacher who uses forms filled by the students. Learners will be assigned roles in their group. These roles will evolve so that the learners can see different aspects of the collaboration.

The Felder-Silverman classification has been used by Martin et al. in [8] to group students and adapt e-learning material to learners. Their system for grouping learners uses the students’ profile obtained via the Index of Learning Styles questionnaire. The idea is then to group together both reflexive and active learners to produce more efficient groups. This system needs to be studied further since it is not clear what should happen to well-balanced learners and if a student learning style in a group is not influenced by the rest of the group.

Katherine Deibel implemented in a class the method above as well as the latent jigsaw method and describe her results in [2]. The feedback she got
from her students was really positive. The learners really appreciated to work in groups as they felt it helped them to learn more efficiently by being confronted with different ideas.

Wessner et al. introduces in [11] a tool to regroup students participating in a e-learning platform. This tool is based on the “Intended Points of Cooperation” (IPC). These IPCs are used by the teacher to assemble groups. The grouping can also be done automatically to regroup people that have reached the same learning stage.

Giemza et al proposed in [4] an android application called Meet2Learn for university freshmen to help them connect with other student and join learning groups associated with courses. Within this application students can create, look for and join learning groups. Here, the grouping is done manually by each student that wishes to join a group.

Largillier et al, in [11], proposed a model to recommend the best fitted group for any learner in an online environment using information from previous collaborations. Their method estimate the expected performance of any group that might be assembled and select the one with the highest expected performance using a greedy algorithm. They do not aim to solve the problem introduced in this paper.

The next section presents a model and an algorithm to efficiently partition a set of learners into small groups in order to maximise the overall success probability of the partition. The introduced model uses similar ideas to the one in [6] since they are both based on previous collaborations to infer the performance of new ones. However this model uses a totally different way to evaluate the efficiency of a group and is based on strong theoretical background: the subjective logic. This paper tries to solve the problem introduced in this paper.

III. Method
This section presents a new modeling for the group formation problem that uses subjective logic to decide which groups should be formed. It will briefly introduce subjective logic and the relevant related information before presenting the proposed modeling of the problem.

I. Subjective Logic
Subjective logic is extensively described by Josang in [5]. It was developed as an extension of the probabilistic logic. The founding principles of subjective logic are that opinions always belong to an observer and nobody can be certain of everything as expressed by Josang: “A fundamental aspect of the human condition is that nobody can ever determine with absolute certainty whether a proposition about the world is true or false. In addition, whenever the truth of a proposition is expressed, it is always done by an individual, and it can never be considered to represent a general and objective belief. These philosophical ideas are directly reflected in the mathematical formalism and belief representation of subjective logic.”

In subjective logic, an opinion is noted as \(\omega_X^A \) where \(A \) is the owner of the opinion and \(X \) is the target frame over which the opinion is expressed. Opinions in subjective logic are triplets,

\[
\omega_X^A = (u_X^A, b_X^A, \overline{a}_X^A)
\]

where \(u_X^A \in [0, 1] \) represent the uncertainty of the opinion, \(b_X^A \) is the belief vector over the elements of the target frame \(X \) and \(\overline{a}_X^A \) is the base rate vector.

Whenever it is clear from the context or non essential we will remove the notation corresponding to the owner of the opinion.

Let \(X \) be a set, we will note \(R(X) = 2^X \setminus \{X, \emptyset\} \) the reduced power set of \(X \).

These values and vectors are such that

\[
\forall x_i \in R(X), b_X^A(R(x_i)) \in [0, 1] \quad u_X(R(x_i)) + \sum_{x_i \in R(X)} b_X^A(R(x_i)) = 1
\]

\[
\forall x_i \in X, \overline{a}_X^A(x_i) \in [0, 1] \land \sum_{x_i \in X} \overline{a}_X^A(x_i) = 1
\]

The base rate is used as the "intuitive" value when the uncertainty is total, it represents the basic opinion in absence of any knowledge.

In order to aggregate opinions of several on an element of \(R(X) \) we will use the belief constraint operator defined in [5]. This operator is associative and commutative and can be computed in polynomial time for a constant number of opinions.

The expected "value" of a focal element from the target set can be computed through its probabilistic projection using the following formula \(\forall x_i \in R(X), \)

\[
\overline{E}_X(x_i) = \sum_{x_j \in R(X)} \overline{a}_X(x_i/x_j) \cdot b_X^A(x_j) + u_X \cdot \overline{a}_X(x_i)
\]

II. Modeling the problem
Let \(L \) denote the set of all learners. The target frame of our opinions will be the reduced power set of our learners, therefore the target set \(R(L) \) will be omitted from the notation in the rest of this paper.

Each learner \(l \in L \) maintains a list of other learners she wants to collaborate again with noted \(OK_l \) together with a list of learners she doesn’t want to collaborate with again in the future noted \(NOK_l \). Both sets are empty at the beginning of the process. In order to influence the future formation of groups we will bias the base rate of users in favor of other learners the current one wish to work again with.
III. Algorithm

The proposed algorithm has three separated phases. In the first phase, each learner will build a list of groups she wishes to be part of together with her opinion on these groups. In a second phase we aggregate for each group the opinions of all its members. At last we build a partition using a greedy algorithm based on the aggregated opinions obtained on the previous step.

Building groups Each learner \(l \) will compute a list of groups, \(\text{groups}_l \), she will consider to be part of. Each group \(g \in \text{groups}_l \) is such that

\[
\begin{align*}
g \cap \text{OK}_l & \neq \emptyset \\
g \cap \text{NOK}_l & = \emptyset
\end{align*}
\]

Eq. 1 only applies when \(\text{OK}_l \neq \emptyset \). The base rate of these groups is simply the sum of the base rates of its members.

As for the belief in each group, let \(b = 1 - u_l \) be the available belief for learner \(l \) and let \(p_k = \min\{|\text{OK}_l|, k\} \) and \(\forall i \in [1, p], g_i = \{g | g \cap \text{OK}_l = i\}. \)

\[
b(G_i) = b \cdot \frac{2 \cdot i}{p \cdot (p + 1)}
\]

This belief is then uniformly distributed amongst each group, \(\forall i \in [1, p], \forall g \in G_i \Rightarrow b(g) = \frac{b(G_i)}{|G_i|} \)

Aggregating opinions The method then use the belief constraint operator on each group to compute the aggregated opinion of its members on said group. This operator is used to compute the consensus opinion of several observers on a particular focus element of the target set. It will help to separate groups that are happy to work together from those whose only a fraction of the users wish to see it assembled.

During this phase we also remove all groups \(g \) where at least one learner do not wish to see assembled, \(\forall l \in g \Rightarrow \text{OK}_l \neq \emptyset \). Since a learner \(l \) might wish to work again with another learner \(m \) but not the other way around.

Partitioning learners We then compute a partition of the learners using a greedy algorithm that iteratively selects the group with the highest probabilistic projection and adds it to the partition. When a group is selected we then remove all candidate groups that can no longer be assembled because at least one of their members has already been picked to be part of another group. We repeat this step until the partition is complete and every learner appears in the partition.

The whole process is presented in Fig. 1.

Input: a learner set \(\mathcal{L} \), an integer \(k \)
Output: a partition \(p \) of \(\mathcal{L} \) in groups of size \(k \)

1. foreach \(l \in \mathcal{L} \):
 \(\text{groups}_l \leftarrow \text{build}_\text{groups}_l(l) \)
2. \(G \leftarrow \text{aggregate}(\bigcup_{l \in \mathcal{L}} \text{groups}_l) \)
3. \(p \leftarrow \emptyset \)
4. while \(p \) is not complete:
 \(g_{\text{max}} \leftarrow \text{argmax}_{g \in G} \{G(g)\} \)
 \(G \leftarrow G \setminus \{g | g \in G \land g_{\text{max}} \land g \neq \emptyset\} \)
 \(p \leftarrow p \cup \{g_{\text{max}}\} \)
5. return \(p \)

Figure 1: Partition method

Updating values At the start of the process the base for each learner \(l \in \mathcal{L} \) is as follows,

\[
\overline{\alpha}(l) = 0 \land \forall m \neq l \in \mathcal{L}, \quad \overline{\alpha}(m) = \frac{1}{|\mathcal{L}| - 1}
\]

meaning that the base rates are uniformly distributed among every other learner. After the assignment are done by the groups we update for each learner \(l \) its \(\text{OK}_l \) and \(\text{OK}_l \) sets based on her feedback. The feedback can be obtained through asking each learner if they wish to see the group they were part of be assembled in the future and use this information for all the members in the group or by asking the learner is she wish to work again with each learner that was part of the group.

The later kind of feedback is much more precise since if the group worked fine for except one or two members that did nothing this finer granularity can help get a more precise understanding of which connections inside the group where really effective. Keep in mind that the assembled groups are of a reasonable size, \(k \in [2, 5] \).

When a learner \(l \) is added to the \(\text{NOK}_m \) set of another learner \(m \) her base rate is simply set to 0 and its value is uniformly distributed among all other learners that do not belong to the \(\text{NOK}_m \) set.

When a learner is added to another learner \(l \) set \(\text{OK}_l \) her base rate is incremented by a value \(\alpha \) which is uniformly taken from all learners with a non zero base rate that are not in \(\text{OK}_l \). Every addition to \(\text{OK}_l \) also reduces the uncertainty of learner \(l \) of a value \(\beta \). Since she has found a good match she has gained knowledge about her future collaborations. This will give a higher belief to the future groups \(l \) will select to work with. The precise value of \(l \) uncertainty’s decrease depends on several criteria like the duration of the class and the time that can reasonably spent searching an optimal group for the learner \(l \).
IV. Discussion

The first question regarding this method one should ask is “is it tractable on real life data?” For each user, the method has to handle a polynomial ($O(n^k)$) number of groups at most and all operations on those groups are supported in polynomial time as well.

Sorting all the groups created by all the users requires $O(n^k \cdot \log(n^k+1))$ operations.

At last constructing the partition is linear in the total number of considered groups which is $O(n^k+1)$.

The update phase runs in time linear in the number of users since each user interacts with a constant number $k-1$ of other users.

Therefore the whole process runs in polynomial time which is considered tractable on regular sized instances. For a class with a few thousands students, this method is undeniably tractable and can be used weekly to construct more and more efficient groups.

It will be interesting to run this method on larger instances of the problems as some real life MOOCs can reach several hundreds of thousands of users. This might be problematic even if one can have a couple of days to compute an efficient partition.

This limitation can be circumvented in practice because it is unlikely that a learner can collaborate with any other learner in the same class. For example it makes sense to divide learners into subgroups corresponding to time zone or the first language so they can actually interact with one another in a more direct way.

V. Conclusion & Future Work

This paper presents a method to partition a group of learners hoping to maximize the probability that the groups will turn their assignment in and therefore helping learners to keep a high level of motivation through meaningful interactions with other learners.

The proposed method rely on a sound theoretical background, the subjective logic. It is particularly fit for this kind of problems since it helps aggregate individual opinions in a simple yet robust manner.

This method requires a very small investment for the learners. It still needs to be tested in a real MOOC to assert that users are willing to give this simple feedback in order to improve their overall experience of online learning and also to measure the impact of teamwork on learners’ motivation.

REFERENCES

[4] Adam GIEMZA, Sven MANSKE, and H Ulrich HOPPE. Supporting the formation of informal learning groups in a heterogeneous information environment.

