
HAL Id: hal-01171295
https://hal.science/hal-01171295

Submitted on 3 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reordering Very Large Graphs for Fun & Profit
Lionel Auroux, Marwann Burelle, Robert Erra

To cite this version:
Lionel Auroux, Marwann Burelle, Robert Erra. Reordering Very Large Graphs for Fun & Profit.
International Symposium on Web AlGorithms, Jun 2015, Deauville, France. �hal-01171295�

https://hal.science/hal-01171295
https://hal.archives-ouvertes.fr

1st International Symposium on Web AlGorithms • June 2015

Reordering Very Large Graphs for Fun & Profit

Lionel Auroux
LSE - EPITA

lionel.auroux@lse.epita.fr

& Marwann Burelle
LSE - EPITA

marwan.burelle@lse.epita.fr

& Robert ERRA
LSE - EPITA

robert.erra@lse.epita.fr

Abstract

We have made experiments with reordering algo-
rithms on sparse very large graphs (VLGs), we have
considered only undirected, unweighted, sparse and huge
graphs, i.e. G = (V,E) with n = |V | from million to
billion of nodes and with |E| = O(|V |). The problem
of reordering a matrix to enhance the computation time
(and sometimes the memory) is traditional in numeri-
cal algorithms but we focus on this short paper on results
obtained for the approximate computation of the diame-
ter of a sparse VLG (with some graphs on various dif-
ferent computers). The problem of reordering a graph
has already been pointed, explicitly or implicitly by a lot
of people, from the numerical community but also from
the graph community, like the authors of the Louvain al-
gorithm when they write that choosing an order is thus
worth studying since it could accelerate the Louvain algo-
rithm. Our experimental results show clearly that it can
be worth (and simple) to preprocess a sparse VLG with
a reordering algorithm.

I. Introduction

Let G be a graph, G = (V,E), with n = |V | nodes
and m = |E| edges, we will say it is a very large
graph (VLG) if n is very large, or huge, i.e. G has
at least millions (from some to billions) of vertices
and edges, we will say that G is sparse if |E| = O(n)
and we consider mainly graphs that come from real
life, i.e. graphs that comes from a real-world large
or huge dataset. We will limit our analysis to graphs
that fit in the RAM.

For two isomorphic graphs G and G’, will any
(polynomial deterministic or not) algorithm on
graphs give exactly the same result ? Theoretically
this is true. Practically, for very large graphs, sparse
or not, but with hundred of millions or billions of
edges, this is not true, at least for the cpu time.

The problem of reordering a graph has already
been pointed in [4], the authors point that choos-
ing an order is thus worth studying since it could
enhance the computation time of the Louvain algo-
rithm because it is a greedy algorithm. We propose
here to explore experimentally a such simple reorder-
ing algorithm as a preconditionner for very large
graphs problems. The full version of this paper will
contain the detailed results we have obtained for dif-
ferent graphs, problems and computer architectures.
We focus on this short paper on results obtained for
the approximate computation of the diameter of a
sparse VLG. This problem is time polynomial and
in a lot of computer science courses (and textbooks),
time polynomial algorithms are presented as fast, by

opposition with exponential or subexponential algo-
rithms. This is theoretically true, but for sparse
VLGs of billions of edges known exact algorithms
can not be used because their time complexity is
above the O(n) complexity that acts as a real wall.
On very large problems we can only use approxi-
mate algorithms that have a linear complexity (or
in some cases a linearithmic complexity O(n log(n))
), and O(n2) or O(n3) algorithms are practically use-
less. Experimental results presented here show that
it can be worth (and simple) to preprocess a sparse
VLG with a reordering algorithm.

II. Reordering algorithms

I. A little bit of history

The story of reordering algorithms seems to begin
with the landmark paper of Cuthill and McKee [5],
where the authors explain that an efficient reorder-
ing for a sparse matrix is related to the labeling (or
reordering) of an undirected graph. This paper has
been followed by a lot of algorithms, one of them is
the GPS [9] another is the Sloan algorithm, generally
a more efficient and faster algorithm [14, 15].

Let V = {1, · · ·n} the n vertices of a graph G =
(V,E), a linear ordering, or reordering of V is a one-
to-one function f : V → V [7]. The Bandwidth
Problem for G is to find a reordering f to minimize
the bandwidth β(G, f) defined as:

β(G, f) = max
(i,j)∈E(G)

|f(i)− f(j)|.

For a symmetric matrix A the corresponding prob-
lem is to find a permutation matrix P such that
A′ = P.A.PT with maxi,j∈{1,···n},A′(i,j) 6=0 |i−j| min-
imum. We want to minimize the bandwidth by si-
multaneous row and column permutation. They are
other similar problems [8]: the profile problem, the
wavefront problem and the fill-in Problem (we want
to minimize the fill-in during the numerical Gauss or
Cholesky factorization of a sparse and large matrix
by reordering it).

1st International Symposium on Web AlGorithms • June 2015

Figure 1: The adjacency matrix DWT 1005

Figure 2: The matrix DWT 1005, reordered with the
Reverse Cuthill-McKee algorithm

Figure 3: The matrix DWT 1005, reordered with the
Sloan algorithm

One wants to minimize the bandwidth,the wave-
front, or the profile of a matrix, or by extension of a
graph [5, 14, 15].

The problem of finding a minimum bandwidth re-
ordering is a NP-complete problem [7] so what is
a good reordering for a graph or a matrix ? It is
a polynomial algorithm that gives a reordering of
your graph such that this ”new” graph is easier to
manipulate for some graph problems. Let us give
an example. The figure 1 shows the adjacency ma-
trix DWT 1005 from the Everstine’s collection (1011
vertices, 7716 edges. The figures 2 and 3 show the
adjacency matrices reordered, we can see that the
bandwidth is just better, they have been found, re-
spectively, with the Cuthill-McKee and the Sloan re-
ordering algorithms. The figure 4 shows a toy graph
example and the 5 shows the reordered graph.

II. Stategies and tactics to reorder

But how can we reorder a matrix ? Almost all known
reordering algorithms for matrices follow the same
strategy:

1. Find w as one of the nodes of a pseudodiameter
(or hopefully diameter), as proposed in [5, 14,
11, 13].

2. Compute a rooted level structure from w:
L(w) = {L0, L1, · · ·Lr}.

3. Renumber the nodes using L(w) with w as node
0.

The rooted Level structure is very similar to a BFS
tree obtained by a BFS traversal of the graph. The
algorithms Cuthill McKee, Sloan and the others are
approximation algorithms and are polynomial:

• Cuthill McKee [5] has a complexity
O(M log(M)|V |),

• Sloan [14, 15] has a complexity of
O(log(M)|E|).

with M = maxi(deg(vi)). The results depend of
course highly of the tactics to choose the vertex w
and the way to compute the L(w).

Figure 4: Original toy graph example

Figure 5: Reordered toy graph

III. Our reordering algorithm

Some experiments with Boost Graph Library (BGL)
implementation of Cuthill-MCkee and Sloan algo-
rithm have shown that these algorithms were slow
on the real sparse very large graphs we have tested.
We wanted a fast and simple algorithm, with a lin-
ear complexity, to respect the O(n) wall, so we have
used a very simple, but fast algorithm: just pick a
random point w and compute the BFS from w and
use the BFS tree to renumber the graph vertices.
This gives the following algorithm:

1. Choose a node w of the graph G and compute
the BFS of the graph with w as the root.

2. Renumber the nodes following the BFS traver-
sal with w node 0.

The complexity of this algorithm is just the linear
complexity of a BFS traversal, so it is O(|E| + |V |)

1st International Symposium on Web AlGorithms • June 2015

for a sparse VLG and it is generally really faster
than Cuthill-McKee and Sloan algorithms on VLGs.
Typically, for the approximate diameter computa-
tion via BFS traversals, a reordering costs approxi-
mately more than a BFS computation but less than
two BFS computations so it can be used without
problems on sparse VLGs.

III. Why does reordering
algorithms works so well ?

The memory hierarchy of a computer system can be
very complex. Between the classical RAM memory
and the registers of the processor there can be dif-
ferent cache levels of memory. It seems that, at least
for the approximate diameter computation the main
reason that explains why the reordering algorithm
works so well is that it minimizes cache misses. A
lot of papers have presented some ideas similar to
our main idea, implicitly or explicitly : to reorder
a huge date structure can be a good idea to save
time or to accelerate an algorithm. For example,
Mueller and al. [12] compares different reordering
algorithms for large graph visualization, and Apos-
tolico and Drovandi [1] have shown the interest to
reorder a VLG (by a BFS) to have a better com-
pression ratio.

All these examples are concerned by the locality
principle, an expression coined by D.J. Denning in
the years 60, he has written [6] the locality princi-
ple will be useful wherever there is an advantage in
reducing the apparent distance from a process to the
objects it accesses. And reordering a graph (or any
huge structure) seems to augments the data locality.

I. Methodology and some results

We have renumbered some VLGs and we have com-
pared time with two inputs: the initial graphs and
the renumbered graphs obtained by our linear re-
ordering algorithm, on different computers.

For the approximate diameter computation we
have observed an acceleration from 10% to 40%
(using the software diam.c [10], whithout any
change, from authors of [11]. The acceleration seems
to highly depend on the hardware and notably to de-
pend thoroughly on the memory hierarchy, we have
observed a lower number of cache misses (measured
with perf) which seems to be the main reason.

To try to understand what really happens we have
also written our own program to compute the ap-
proximate diameter of a sparse VLG, and the results
are similar, as we will see now.

II. Some Experiments with the perf linux
command

We have made some measures with the perf linux
command, which is a powerful profiler tool for Linux

2.6+ based systems. We have used a computer with
a dual core AMD opteron 2220, at 2.8 GHz, with
16 Gb of memory, 48 Kb of L1 cache, 1 Mb of L2
cache and 16 Mb of L3 cache memory. We have used
our own program for the approximate computation
of the diameter, but the results are similar to those
obtained with diam.c [10].

II.1 The (small) graph 3elt

It seems that the graph has not to be too small
to see an improvement, for example for the graph
3elt with 4720 vertices, 13722 edges (indeed a very
small graph) the following table shows no ameliora-
tion (ABFS means average time for a BFS traversal)
except for the cache misses:

Graph Initial Reordered

Loading time 0. 0190s 0. 0266s
Cycles 241,948,601 200,120, 628
Cache misses 467,126 204,880
ABFS 4, 8 10−3s 5, 2 10−3s

II.2 The p2p graph

For this graph with 5,792,297 vertices and
142,038,401 edges; the results show a smaller load-
ing time, a smaller ABFS and a dramatic decrease
on the number cache misses:

Graph Initial Reordered

Loading time 112.24s 102.94s
Cycles 782 109 667 109

Cache misses 919,506,845 200,823,282
ABFS 23.45s 19.08s

II.3 The web graph

And for the huge graph web with 39,459,925 ver-
tices and 783,027,125 edges; the results show again
a smaller loading time, a smaller ABFS and, a large
decrease on the number cache misses:

Graph Initial Reordered

Loading time 420.47s 387.21s
Cycles 13,201 109 10, 604 109

Cache misses 9,358,538,202 5,028,589, 731
ABFS 65.03s 50.69s

IV. Conclusion and future work

We need more experiments to better understand and
explain the results we have observed. And some in-
teresting research questions have raised:

• Is it possible to find a specialized reordering al-
gorithm, with a linear complexity, for a specific
task on a targeted computer architecture ?

• How can we reorder efficiently a very large di-
rected graph (and how) ?

1st International Symposium on Web AlGorithms • June 2015

• Is it interesting to find a reordering algorithm
for weighted graphs (and how to do it) ?

• A lot of sparse VLGs are real-world data and
are generally not static : could we define an
incremental reordering algorithms for dynamic
graph ?

• If a VLG, sparse or not, does not fit in the RAM,
can we design an efficient external memory re-
ordering algorithm ?

• Is it worth to reorder a VLG for other prob-
lems, possibly with a specific reordering algo-
rithm, for example: the graph isomorphism and
the subgraph isomorphism problems for a VLG,
or finding, listing and counting all triangles in
a VLG (sparse or not) ?

• Our experiments for the computation of com-
munities via the Louvain algorithm show an ac-
celeration from 20% to 50%, using the soft-
ware [2, 3], without any change, from authors
of the Louvain algorithm [4]. It seems that a
lower number of cache misses is not the main
reason, the Louvain algorithm is a greedy al-
gorithm and it seems that with the reordered
graphs the algorithm just works better (as pro-
posed by the authors themselves). Can we find
a specialized reordering algorithm to accelerate
the computation of communities?

But our results are clear: they show it can be
really worth to use a reordering algorithm as a pre-
conditionner for sparse VLGs so, more research need
to be done on the problems we have presented.

References

[1] A. Apostolico and G. Drovandi. Graph com-
pression by BFS. Algorithms, 2(3):1031–1044,
2009.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte,
and E. Lefebvre. https://perso.uclouvain.be/
vincent.blondel/research/louvain.html.

[3] V. D. Blondel, J.-L. Guillaume,
R. Lambiotte, and E. Lefebvre.
https://sites.google.com/site/findcommunities/.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte,
and E. Lefebvre. Fast unfolding of com-
munities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

[5] E. Cuthill and J. McKee. Reducing the band-
width of sparse symmetric matrices. In Pro-
ceedings of the 1969 24th National Conference,
ACM ’69, pages 157–172. ACM, 1969.

[6] P.J. Denning. The Locality Principle. Com-
munications of the ACM, 48(7):19–24, dcembre
2005.

[7] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1979.

[8] A. George and J. W. Liu. Computer Solution
of Large Sparse Positive Definite. Prentice Hall
Professional Technical Reference, 1981.

[9] N. E. Gibbs, W. G. Poole, Jr., and Paul K.
Stockmeyer. A comparison of several band-
width and profile reduction algorithms. ACM
Trans. Math. Softw., 2(4):322–330, December
1976.

[10] C. Magnien. http://www-rp.lip6.fr/ mag-
nien/Diameter/.

[11] C. Magnien, M. Latapy, and M. Habib. Fast
computation of empirically tight bounds for the
diameter of massive graphs. ACM Journal of
Experimental Algorithmics, 13, 2008.

[12] C. Mueller, B. Martin, and A. Lumsdaine. A
comparison of vertex ordering algorithms for
large graph visualization. In APVIS 2007, 6th
International Asia-Pacific Symposium on Visu-
alization 2007, Sydney, Australia, 5-7 February
2007, pages 141–148, 2007.

[13] J. K. Reid and J. A. Scott. Ordering symmetric
sparse matrices for small profile and wavefront.
Int. J. for Num. Methods in Eng., 45(12):1737–
1755, 1999.

[14] S. W. Sloan. An algorithm for profile and wave-
front reduction of sparse matrices. International
Journal for Numerical Methods in Engineering,
23(2):239–251, 1986.

[15] S. W. Sloan. A fortran program for pro-
file and wavefront reduction. International
Journal for Numerical Methods in Engineering,
28(11):2651–2679, 1989.

https://perso.uclouvain.be/vincent.blondel/research/louvain.html
https://perso.uclouvain.be/vincent.blondel/research/louvain.html

	Introduction
	Reordering algorithms
	A little bit of history
	Stategies and tactics to reorder
	Our reordering algorithm

	Why does reordering algorithms works so well ?
	Methodology and some results
	Some Experiments with the perf linux command
	The (small) graph 3elt
	The p2p graph
	The web graph

	Conclusion and future work

