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Abstract

In this article, we propose a systematic numerical solution method for deriving the homogenized
material parameters in the case where a large contrast in the phase thermal properties leads to a
macroscopic memory effect. Focus is therefore set on the determination of this memory effect for
a periodic microstructure. As for other and more classical homogenized parameters, the possibility
of analyzing with the finite element method a single periodic cell is used, and a transient simula-
tion allows to provide the incremental evolution of the memory effect function. Additionally, some
approximations are proposed for a low cost estimate of this function, and validated on two examples.
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1 Introduction

Models with memory effects (or heredity models) have been used quite extensively in structural mechanics
for viscoelasticity behaviors. Especially when the structures are subjected to forced vibration loading,
their response may be easily found, analytically in simple cases, or numerically. For transient responses,
concurrent models, mainly with internal variables have proved their ability to be used numerically [1].

Several justifications can be stated for the physical meaning of memory effects, one being the presence
of a microstructure in the material, leading to a delayed response at the macroscopic scale, therefore
related to upscaling [2] and a kind of time non-locality. This is for instance the case for scattering
of elastic waves for hyperbolic problems [3], for composite materials where the constituents themselves
exhibit a memory effect [4], or for particular non-linear behaviors or time-dependent material properties
[5].

In this article we focus on the case of evolution (elliptic) problems, even with linear constituents, but
where the contrast of constitutive properties is large. The delayed effect is therefore directly provided
by the homogenization procedure [6, 7, 8, 9]. We proposed to study a thermal problem for illustration
purpose, though the same framework also applies to different physics [10].

∗D. Dureisseix gratefully acknowledges support and partial funding from Carnot Institute ‘Ingénierie@Lyon’ (Carnot
I@L), and B. Faverjon gratefully acknowledges the French Education Ministry, University of Lyon, CNRS, INSA of Lyon
and LabEx iMUST for the CRCT and the out mobility grant.
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The aim is to be able to compute numerically the memory effect function as a macroscopic material
characteristic from simulations on the microstructure (i.e. a periodic cell), as it is classically done for
the homogenized other parameters, such as the capacity and the conductivity.

In this article, section 2 recalls the results of the periodic homogenization method for the kind of
problem that is under concern. Section 3 proposes a numerical procedure for the memory effect function
determination. Finally, section 4 provides two numerical examples: (i) a 1D problem with an analytical
solution, allowing to test the numerical procedure, and whose study provides approximations for deter-
mining the memory function at small and large times; (ii) a 3D problem for testing the discretization
choices and for validation of the previous approximations.

2 Asymptotic expansion and periodic homogenization

This homogenization technique is based on the spatial description of the various fields at two scales, i.e.
with two coordinate systems: one is the slow coordinates x at the scale of the whole structure (typically
x ∈ [0, L] where L is a characteristic size of the whole structure), the other one is the fast coordinate
y, related to the scaled microstructure cell (typically y ∈ [0, l/ε] where l is the characteristic size of the
cell). The scaling parameter is ε = l/L; it is expected to be small, traducing the assumption that the
scales are separated. The spatial derivative then reads ∂

∂x + 1
ε
∂
∂y . The temperature field is expanded

with respect to the (small) parameter ε:

θ =

∞∑
α=0

εαθα(x, y, t)

where all the temperature fields θα(x, y, t) are Ω-periodic for the variable y, where Ω is the scaled
basic cell that allows the reconstruction of the whole microstructure by periodic duplication in each
space dimension. For sake of simplicity, we assume that this microstructure is composed of two phases,
denoted by F and S occupying the domains ΩF and ΩS ; Γ = ∂ΩS ∩ ∂ΩF is the interface. Equating
all the problem equations for the different powers of ε allows to successively provide the models for the
different temperature fields [11, 12].

The large contrast in material characteristics arises when the ratio between the capacities or the
conductivities is of the order of εn with n 6= 0. A special case arises when the ratios between conductivity
is of order ε2 while the capacities are of the same order, i.e. ρF cF ≈ ρScS and kF = ε2k′F with k′F ≈ kS .
In such a case, the emergent macroscopic thermal problem is of a different kind [7]. This case is usefully
interpreted with characteristic times [9, 13] since the characteristic macroscopic time is expected to be
τM = (CM/kM )(L/π)2 (if CM and kM are the homogenized total capacity and conductivity), while their
counterparts for the microscopic S and F phases are τS = (ρScS/kS)(lS/π)2 and

τF =
ρF cF l

2
F

kFπ2
≈ ρF cFL

2
F

k′Fπ
2
≈ τS/ε2 ≈ τM

since the characteristic lengths associated to each phase are lS ≈ lF ≈ l and LS = lS/ε ≈ LF = lF /ε ≈ L.
Therefore, the transient phenomena at the micro scale for the F -phase may well arise at macro scale.

Details on the successive derivations of the micro and macro problems can be found in [7], and the
main results are recalled in the following.

2.1 Macroscopic property of θS0

The first result for the S-phase is that the temperature at order 0, i.e. multiplied by ε0, does not depend
on the fast variable:

θS0 = θS0(x, t)

it is therefore a macroscopic temperature field, and its gradient with respect to the fast variable y is null.
Its gradient with respect to the slow variable x is a macroscopic temperature gradient

ZS0(x, t) = grad
x
θS0
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2.2 Localization property of θS1

The next order equations give the problem that θS1 should satisfy:

divyqS0
= 0 in ΩS

q
S0
· nS = 0 on Γ

q
S0

= −kS(ZS0 + grad
y
θS1) in ΩS

θS1 is Ω-periodic

It is a steady-state thermal problem whose variational formulation is∫
ΩS

grad
y
θ? · kSgrad

y
θS1dΩ = −

∫
ΩS

grad
y
θ? · kSZS0dΩ (1)

for all Ω-periodic test functions θ?(y). It is usually discretized with finite elements, and its solution is
linear with respect to the macroscopic loading ZS0. Therefore this solution, and its gradient ZS1 =
grad

y
θS1 can be expressed using a linear operator which is a characteristic of the S-microstructure. For

instance,
ZS1(x, y, t) = −LS(y)ZS0(x, t)

The numerical determination of LS requires: (i) as many resolutions of the previous linear micro
problem (1) on ΩS as there are independant components in ZS0, i.e. 2 for 2D problems, and 3 for 3D
problems, and (ii) the storage of the same number of temperature gradient fields on ΩS (the columns of
the matrix LS).

This operator is a localization operator for the temperature gradient. Indeed, it allows to recover the
first two terms of the full temperature gradient, obtained from the asymptotic expansion of θS , once the
macroscopic gradient is known:

ZS ≈ ZS0(x, t) + ZS1(x, y, t) = (1−LS)ZS0

and of the thermal flux
q
S

= −kSZS ≈ qS0
= −kS(1−LS)ZS0

2.3 Problem to solve for θF0

The zero-order terms for the F -phase provide the following problem:

ρF cF θ̇F0 = −divyqF1
in ΩF

θF0 = θS0 on Γ

q
F1

= −k′F grad
y
θF0 in ΩF

θF0 is Ω-periodic

This problem couples the micro and the macro scales due to the fact that θF0 still depends on the y
coordinate, and due to the presence of the θS0(x, t) term as a boundary condition on Γ. On the F -cell,
this term is uniform due to the scale separation. A change in variable may be useful: if we denote

θF0(x, y, t) = θS0(x, t) + w(x, y, t) (2)

the new problem consists in finding w which is Ω-periodic, null on Γ, such that

ρF cF θ̇F0 + ρF cF ẇ = divy(k′F grad
y
w) in ΩF

Using a test function which is Ω-periodic and null on Γ, the variational formulation reads:∫
ΩF

w?ρF cF ẇdΩ +

∫
ΩF

grad
y
w? · k′F grad

y
wdΩ = = −

∫
ΩF

w?ρF cF θ̇F0dΩ (3)
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2.4 A macro model with a 2-field temperature, or with a memory function

The macroscopic model is obtained by ensuring that the next higher order problem for θS2 is well-posed.
It reads:

−divyqS1
− divxqS0

= ρScS θ̇S0 in ΩS

q
S1
· nS + q

F1
· nF = 0 on Γ

q
S1

= −kS(grad
x
θS1 + grad

y
θS2) in ΩS

θS2 is Ω-periodic

The partial averaging operations are defined as 〈•〉S = 1
vol(Ω)

∫
ΩS
• dΩ and 〈•〉F = 1

vol(Ω)

∫
ΩF
• dΩ, so

that 1
vol(Ω)

∫
Ω
• dΩ = 〈•〉S+〈•〉F . The compatibility condition is obtained by averaging the first equation

(and using periodicity), leading to [7]:

− 1

vol(Ω)

∫
Γ

q
S1
· nSdΓ + divx(〈kS(1−LS)〉S ZS0) = 〈ρScS〉S θ̇S0

with the macroscopic parameters

CMS = 〈ρScS〉S and kMS = 〈kS(1−LS)〉S (4)

The average of the previous problem giving θF0 reads:

− 1

vol(Ω)

∫
Γ

q
F1
· nF dΓ =

〈
ρF cF θ̇F0

〉
F

=
1

vol(Ω)

∫
Γ

q
S1
· nSdΓ

Finally, the macroscopic problem reads:

CMS θ̇S0 = divx(kMSZS0)−
〈
ρF cF θ̇F0

〉
F

(5)

It also involves the second thermal field rate θ̇F0 defined on the microstructure.
This problem can be seen as a macroscopic thermal problem with additional internal variables at

each macro material point which are the underlying values of θ̇F0 on a full micro cell. Once discretized
by finite elements, this involves at each macro integration point the storage of a full field θ̇F0 at each
nodes of the underlying discretized cell, as used in the so-called FE2 approach [14]. In our context,
this approach is too storage consuming. Note that in the past, memory effect models were designed for
visco-elasticity problems, but have been superseded by models with internal variables [1]. The converse
way is used herein, since we promote an available memory effect model [7]:

CMS θ̇S0 = divx(kMSZS0) +

∫ τ=t

τ=−∞
θ̈S0(τ)β(t− τ)dτ (6)

where β(t) is a memory function, that should depend only on the macro material (independent of
boundary conditions) and that should vanish for large t (evanescent memory). Concerning practical initial
value for this problem, we may consider that a stationary state is given for t ≤ 0, i.e. θ̇S0(t ≤ 0) = 0
and θ̇F0(t ≤ 0) = 0, so that the back-in-time can start for τ = 0, and we may define the searched
temperature differences as the differences with respect to these initial temperatures, so that one also has:
θS0(t ≤ 0) = 0 and θF0(t ≤ 0) = 0.

The results given in [7] and reused previously are established using a Fourier transform method. This
approach also enabled the author to derive the memory function as an infinite sum of a series, for a
simple 1D problem. In this article, we aim to establish the possibility of computing the memory function
in a general way, using only transient problems on a unique cell, in a similar fashion as the two other
homogenized parameters CMS and kMS that are derived from stationary simulations on the same unique
cell.

3 Numerical determination of macro material parameters

As mentioned before, the parameters CMS and kMS can be computed in a standard fashion, solving
simple steady state problems on a single cell with periodic boundary conditions. The last parameter is
now the memory function β to be determined.
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3.1 Discretization of the memory effect

The first step is the discretized-in-time version of the memory effect. We propose to use a simple implicit
Euler integration scheme. Note that the same procedure can be used for any other scheme. We denote
tk the time instant number k, and h the time step (assumed constant for sake of simplicity), and we use
the superscript or the subscript k to denote the value of a quantity at time tk. Moreover the considered
instant for unknown quantities is ti+1, and the past instants are tk for k = 0, ..., i; by convention, t0 = 0.

The time integration scheme relates the values for the derivative of a quantity w to the values of the
same quantity. Here it reads: wi+1 = wi + hẇi+1 or equivalently ẇi+1 = 1

h (wi+1 − wi).
Concerning the heredity integral with the second derivative of the micro temperature field, dealing

with first order derivatives is easier for a time integration scheme dedicated to parabolic equations. We
therefore discretize the integral using only values for the first order derivative of the temperature. To
do so, we integrate by parts to formally use the derivative of the memory function γ(t) = β̇(t) , and the
time integration scheme:∫ t

0

θ̈S0(τ)β(t− τ)dτ = θ̇S0(t)β(0)− θ̇S0(0)β(t) +

i∑
k=0

∫ tk+1

tk

θ̇S0(τ)γ(ti+1 − τ)dτ

≈ θ̇i+1
S0 β0 − θ̇0

S0βi+1 +

i∑
k=0

θ̇i+1−k
S0 γkh (7)

and βk = βk−1 + hγk.

3.2 Discretization of the micro problem of the F -phase

On a second hand, we wish to express the solution of the transient thermal problem on the F -cell
with a recursion formula (in a back-in-time expression). To do so, we consider a spatial finite element
discretization of the corresponding variational problem. It reads at time ti+1:

w?T (Cẇi+1 +Kwi+1) = −w?TCuθ̇i+1
S0 (8)

C and K are the capacity and conductivity matrices using the material parameters ρF cF and k′F on the
ΩF domain, w is the column vector of nodal values for the thermal field w, u is a unitary vector column
of nodal values, so that uθ̇i+1

S0 is a discretized uniform field with value θ̇i+1
S0 . The thermal field w should

be Ω-periodic and null on Γ, therefore the corresponding column vector can be built from a smaller
size vector, w̃, getting rid of null values on the nodes on Γ and dependent values due to periodicity.
Formally, we may use a boolean rectangular mapping matrix B (with BBT being the identity on a
reduced subspace) to express these dependencies as w = BT w̃; so does the test functions: w? = BT w̃?.
Therefore, the problem reads

(BCBT ) ˙̃wi+1 + (BKBT )w̃i+1 = −BCuθ̇i+1
S0

Using now the time integration scheme, it transforms into:

(B
1

h
C̃BT )w̃i+1 = −BCuθ̇i+1

S0 +
1

h
BCwi

where C̃ = C + hK is invertible, so one gets the expression of w̃i+1, then of wi+1 = BT w̃i+1:

wi+1 = Awi − hAuθ̇i+1
S0

with
A = BT (BC̃BT )−1BC (9)

Using this recursion formula for w together with the time integration scheme allows to find the
recursion formula for ẇ as well, leading after algebraic manipulations to:

ẇi+1 = Ai(A− 1)
1

h
w0 −

i∑
k=1

Ak(A− 1)uθ̇i+1−k
S0 −Auθ̇i+1

S0
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Noting that w0 = θ0
F0 − θ0

S0 = 0, one finally gets

θ̇i+1
F0 = −

i∑
k=0

Ak(A− 1)uθ̇i+1−k
S0 (10)

Note that for a parabolic equation of a time-dependent problem such as this micro problem, spurious
but bounded oscillations can appear for a too short time step due to the non satisfaction of the discrete
maximum principle [15, 16]. The rule-of-thumb (obtained for a discretized 1D problem) is that [17, 18]
h ≥ (ρF cF e

2)/(6k′Fα) where e is the element size and α the parameter for the θ-method time integration
scheme: here, α = 1 for implicit Euler method. Therefore, the bound can be stated as

h

τF
≥ π2

6

(
e

LF

)2

=
π2

6

(
e

lF

)2

ε2

Otherwise, a lumping of the capacity matrix (or a lower order estimates) allows to remove the bound
[19], for instance using a numerical integration with integration points located at nodes for the capacity
model. In the following, we will always satisfy the previous criteria.

3.3 Identification of the two models

Identifying the two previous discretized versions, (7) and (10), of the same term in (5) and (6):∫ τ=t

τ=0

θ̈S0(τ)β(t− τ)dτ = −
〈
ρF cF θ̇F0

〉
F

(11)

leads to:

β0 − hγ0 = −〈ρF cF (1−A)u〉F
hγk =

〈
ρF cFA

k(A− 1)u
〉
F

for k = 1, ..., i

There is still an indeterminacy for β0 and γ0 that can be overcome by ensuring the vanishing property
of the memory function β. Indeed, using the incremental relationship βk+1 = βk + hγk+1, one gets

βi+1 = β0 +

i+1∑
k=1

hγk = β0 −
〈
ρF cF (1−Ai+1)Au

〉
F

If the spectral radius of the iterated operator A is ρ(A) < 1, then the limit of βi+1 for large values of i
is β0 − 〈ρF cFAu〉F . Nullifying this value for a vanishing memory function leads to choose

β0 = 〈ρF cFAu〉F =
1

vol(Ω)
uTCAu

so that for k = 0, . . . , i

βk =
〈
ρF cFA

k+1u
〉
F

=
1

vol(Ω)
uTCAk+1u (12)

A rough proof of the contraction property of the operator A is the following: within the subspace
of Ω-periodic thermal fields that are null on Γ, consider any thermal field w 6= 0 and denote v = Aw

with A = C̃
−1
C and C̃ = C + hK (C is symmetric definite positive, and K is symmetric positive, and

definite on the considered subspace, provided that the measure of Γ is not null, i.e. that the phases are
not separated). One has

(w − v)TC(w − v) = wTCw + vTCv − 2vTCw

= wTCw + vTCv − 2vT (C + hK)v

= wTCw − vTCv − 2hvTKv

We can therefore conclude that vTCv = wTCw − (w − v)TC(w − v) − 2hvTKv. Provided that
v 6= w, one gets vTCv < wTCw. Assume now that w is an eigenvector ofA associated to the eigenvalue
λ 6= 1: v = λw and the previous inequality leads to λ2wTCw < wTCw, so λ2 < 1. To complete the
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proof, consider the case where λ = 1 and v = w; the previous developments allow to conclude that
vTKv = 0 and therefore (on the dedicated subspace) v = 0, so w = 0 which is contradictory, so λ 6= 1.
The final conclusion is therefore: ρ(A) < 1.

The simple overall pseudo-code to build the values of the memory function is summarized in the
algorithm 1. Since this memory function is interpreted as a macroscopic homogenized material charac-
teristics, it is determined with computations at the cell microstructure level, as the other homogenized
material parameters are, such as macroscopic conductivity and macroscopic capacity.

Algorithm 1 Memory function determination

1: build unitary column vector u
2: nw ← ‖u‖
3: compute r ← Cu
4: for k = 0, 1 . . . i do
5: solve w?T C̃w = w?Tr to get w, Ω-periodic and null on Γ
6: nold

w ← nw, nw ← ‖w‖, ρk ← nw/n
old
w

7: compute r ← Cw
8: compute βk ← 1

vol(Ω)u
Tr

9: end for

Note that the characteristic time τF0 for the discretized-in-space problem is linked to the previous
operators in the left hand side. Indeed, one can defined it as being the inverse of the minimal eigenvalue
of (BCBT )−1(BKBT ). So, the spectral radius of A is ρ(A) = (1 + h/τF0)−1 < 1 and

τF0 =
h

ρ(A)−1 − 1

More precisely, the restriction of A in the reduced subspace of admissible fields is

BABT = 1 + h(BCBT )−1(BKBT )

Usually, the matrix A is not explicitly available, but its spectral radius can be obtained with the iterates
of the power method. This is also what is done in the algorithm 1 for two successive vectors wk and
wk+1: when sufficiently iterated, the spectral radius is close to ρk+1 = ‖wk+1‖/‖wk‖. The stabilization
of this value therefore denotes that the evolution of the function β is found for “large” values of t/τF
therefore leading to an exponential decay for β(t) of the form exp(−t/τF0).

3.4 Memory effects on the different macroscopic fields

The previous developments consider θS0 as a macroscopic temperature field. Indeed, it is independent
of the fast coordinate. For the other phase, an average of the temperature is also a macroscopic field,
i.e. 〈θF0〉F , as well as the average of the first temperature terms of both phases, i.e.

θ̄ = 〈θS0〉S + 〈θF0〉F = (1− n)θS0 + 〈θF0〉F

where n is the fraction of F -phase.
Considering the recurrence formula (10) (and its counterpart with no time derivative), one gets the

linear combinations 〈
θ̇i+1
F0

〉
F

=

i∑
k=0

αkθ̇
i+1−k
S0 and

〈
θi+1
F0

〉
F

=

i∑
k=0

αkθ
i+1−k
S0

with αk = −
〈
Ak(A− 1)u

〉
F

.

In the special case where the microstructure is identically the same at any macroscopic point, and
when ρF cF is constant, the macroscopic problem (5), can be written at the different time steps i+ 1− k
and weighted with the coefficients αk to give

αkCMS θ̇
i+1−k
S0 = divx(kMSgrad

x
(αkθ

i+1−k
S0 ))− ρF cFαk

〈
θ̇i+1−k
F0

〉
F

7



Figure 1: 1D test case of a bilaminated composite (infinite in vertical direction, periodic in horizontal
direction).

leading when summing for k = 0, ..., i to:

CMS

〈
θ̇i+1
F0

〉
F

= divx(kMSgrad
x

〈
θi+1
F0

〉
F

)−
i∑

k=0

ρF cFαk

〈
θ̇i+1−k
F0

〉
F

whereas the first macroscopic problem (5) was

CMS θ̇
i+1
S0 = divx(kMSgrad

x
θi+1
S0 )−

i∑
k=0

ρF cFαkθ̇
i+1−k
S0

i.e. with the same heredity term function in the right-hand-side. As a consequence, the macroscopic
problem for the total average temperature is also of the same form:

CMS
˙̄θi+1 = divx(kMSgrad

x
θ̄i+1)−

i∑
k=0

ρF cFαk
˙̄θi+1−k

4 Numerical examples

4.1 Bilaminated composite

This 1D test case is defined in [7] for which a Fourier analysis allows to have an explicit expression
for the memory function1. It concerns a stack of 2 kinds of layers (S and F ) with a volumic fraction
n of phase F , see figure 1. This example may serve as a validation test for the proposed approach to
compute numerically the memory function, as well as to illustrate the dependence on the discretization
parameters, i.e. the time step h and the finite element size e.

When the macroscopic temperature is considered constant, but a function of a parameter τ , a
Fourier analysis gives the particular expression of the searched temperature for phase F as Φ(x, t; τ) =
φ(x, t)θS0(τ) with

φ(x, t) = −
∞∑
q=0

uq(x)vq(t)

uq(x) =
4

(2q + 1)π
sin[(2q + 1)πx/LF ]

vq(t) = exp[−(2q + 1)2t/τF ]

To find the solution when the macroscopic temperature depends on time t, the use of Duhamel
integral provides

w(x, t) =
∂

∂t

∫ t

0

Φ(x, t− τ ; τ)dτ

With an initial condition θS0(x, 0) = 0, and vq(0) = 0, this leads to

w(x, t) =

∫ t

0

θ̇S0(τ)φ(x, t− τ)dτ

ẇ(x, t) = θ̇S0(0)φ(x, t) +

∫ t

0

θ̈S0(τ)φ(x, t− τ)dτ

θ̇F0(x, t) = ẇ(x, t) + θ̇S0(t)

1a typo in the original paper is corrected here, so intermediate steps are provided herein to obtain the analytical solution.
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so that

−
〈
ρF cF θ̇F0(x, t)

〉
F

=

∫ t

0

θ̈S0(τ)

∞∑
q=0

〈ρF cFuq(x)〉F vq(t− τ)dτ+

+ θ̇S0(0)

∞∑
q=0

〈ρF cFuq(x)〉F vq(t)− ρF cFnθ̇S0(t)

Hence

β(t) =

∞∑
q=0

〈ρF cFuq(x)〉F vq(t)

= ρF cFn
8

π2

∞∑
q=0

1

(2q + 1)2
exp[−(2q + 1)2t/τF ] (13)

for which

β(0) = ρF cFn
8

π2

∞∑
q=0

1

(2q + 1)2
= ρF cFn

If only one term of the development is kept for an approximate analytical solution, it reads:

β(t) ≈ ρF cFn
8

π2
exp[−t/τF ] (14)

These solutions are depicted on Figure 2.
For validation purposes, a 1D discretization of ΩF = [0, LF = nL] is done with ne 2-node finite

elements of uniform size e = nL/ne, and a time discretization of [0, τF ] with nh time steps, also with a
uniform time step h = τF /nh. The error with respect to the exact solution is depicted on figure 3. It is
concentrated at the beginning of the time evolution of β(t). This is due to the fact that the elementary
solution that is to be captured by the numerical method is a somehow thermal boundary layer (boundary
conditions with a different value than the initial condition), for which a fine discretization is useful to
capture the good average. Such boundary layers can be captured using mesh local refinements or with
enriched FE methods [20, 21]. Here, we focus on a semi-analytical approximation to get the first values
of the memory effect function β(t) for the beginning of its evolution, i.e. for a “small” time t. Indeed,
analytical solutions are available for an infinite half plane, i.e. locally to each point of the boundary Γ
when the boundary layer is close to the boundary: in the direction of the normal to the surface, with a
coordinate x, it is φ(x, t) ≈ erf(u); erf is the error function, and

u =
x√

(4k′F /ρF cF )t
=
π

2

x/LF√
t/τF

Using a similar development as before, this allows to get an approximate solution for the memory function:

β(t) ≈ ρF cF
1

vol(Ω)

∫
Γ

∫ L̃

0

φ(x, t)dxdS

= ρF cF
surf(Γ)

vol(Ω)

∫ L̃

0

φ(x, t)dx

L̃ is a normal distance to the boundary, allowing to have a significant integral on the whole domain
ΩF . For the previous 1D problem, there is no surface integral but two boundaries, and L̃ = LF /2 (each
boundary is associated to half of the domain). For 3D problems, and for consistency reasons (exact
integration of a constant field), one can choose

L̃ = vol(ΩF )/surf(Γ) = n× vol(Ω)/surf(Γ) (15)

An analytic expression of the integral is available, so that

β(t) ≈ ρF cF
surf(Γ)L̃

vol(Ω)

[
erf
(1

ε

)
+

ε√
π

(
exp
(
− 1

ε2
)
− 1
)]

(16)
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Figure 2: Analytical results for the 1D test case of a bilaminated composite.

Figure 3: Error between the exact solution and the numerically obtained solution with different uniform
discretizations.

with

ε =
1

L̃

√
4k′F
ρF cF

t =
2

π

√
t/τF

L̃/LF

which is expected to be accurate for ε being small. This asymptotic solution is also depicted on figure 2
for the 1D test case, for which surf(Γ)L̃/vol(Ω) is replaced with n = LF /L. Indeed, we checked that the
approximation (16) fits the exact solution at small time values (say for t/τF ≤ 0.2), while the exponential
decay approximation is correct for large time values (say for t/τF ≥ 0.4).

4.2 A 3D connected phase with low conductivity

For 3D problems, approximate close forms of the solution —asymptotic solution (16) and the exponential

decay exp (−t/τF0)— are therefore driven by the correct choices of characteristic length L̃ and charac-
teristic time τF0. Nevertheless, for a complex microstructure, their evaluation may not be trivial, so the
previous transient numerical simulation on the microstructure is still of interest.

The proposed test case is depicted on figure 4. The F -phase is arranged along a cubic connected
lattice, and the S-phase is the matrix which surrounds. In the proposed case, with a scalar temperature
field as unknown, only 1/8 of a cell can be simulated, discarding the periodicity conditions that are
automatically satisfied due to the planar symmetries. The fraction of F -phase is n = 0.354.

Since the spectral radius of A is (1+h/τF0)−1, the smaller h is, the slower the iterative power method
converges (i.e. the simulation gives the initial evolution of β(t), not the asymptotic convergence rate
when t is large). Therefore, an initial computation can be done with a somehow large time step h, not to
provide the accurate memory function evolution, but to reach the exponential decay regime, to give the
value of τF0 (depending on the spatial mesh size, but not on the time step). Then, a second simulation
with a small time step will give the evolution of β(t) for small time t. Eventually, this last computation

10



Figure 4: Material microstructure for phase F . A group of 8 cells is depicted.

mesh 2 mesh 4 mesh 5

Figure 5: Different spatial discretizations of 1/8th of the cell.

can be replaced with the approximation of the memory function for small time t (16); this requires a

guess for the characteristic length L̃, that can be given with (15).
In the following tests, we first compute a characteristic time value τF0 with a coarse time step and

different mesh sizes to assess the precision of the estimate. Second, we run several simulations with
different fine time steps and mesh sizes to study the convergence to the memory function, and compare
the results with the previous approximation (16) for small time values. All pre and post-processings have
been done with Gmsh [22] and Paraview [23] codes, and processing with the FE code Cast3M [24].

A first set of simulations is performed with 40 time steps only on a time interval [0, 10τF ], with an
estimated τF obtained with a length LF taken as 0.4 times the cell edge length. Several meshes (with
P1 4-node tetrahedral elements) are used: regular meshes with different refinement levels (meshes 1 to
3), and a mesh with a size gradient (mesh 4), the smallest elements being located on the interface Γ,
figure 5. The obtained values as well as the meshes characteristics are reported in table 1, and time
evolutions are plot on figure 6. The case of the overkilling mesh 3 is considered as the reference. Clearly,
the mesh with a size gradient is not the most suited to estimate the exponential decay; this is due to
the fact that at a long term evolution, the temperature field (i.e. the mode associated to the eigenvalue
giving the spectral radius of A) is no more a boundary layer, but spreads on the whole cell, figure 7. A
uniform mesh is therefore suited to capture it.

The second set of simulation is performed along a shorter time interval but with a much fine time
discretization, also reported in table 1. The obtained memory functions are depicted on figure 8.

The result obtained with mesh 5 is considered as a reference. For this simulation, an adapted mesh
such as mesh 4 is now suited to capture the solution, figure 7. The asymptotic solution for small
time values is still a good approximation of the reference solution up to t/τF ≤ 0.2. τF0 is still a

Mesh Nb of elem. h/τF τF0/τF LF0/L̃

1 (uniform) 230 0.25 0.905 2.55
2 (uniform) 1894 0.25 0.968 2.64
3 (uniform, ref.) 1.24 106 0.25 0.991 2.67
4 (not uniform) 2123 0.25 0.935 2.59

4 (not uniform) 2123 1/75 - -
5 (not uniform, ref.) 0.295 106 1/1500 - -

Table 1: Discretized problem characteristics and obtained exponential decay.
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Figure 6: Obtained evolutions of the memory function at large time, using coarse time steps. Influence
of the spatial discretization.

Figure 7: Left: mode for the long term temperature evolution, as computed on mesh 2. Right: transient
solution at t/τF = 2.67 10−2, as computed on mesh 4.

Figure 8: Obtained evolutions of the memory function at small time. Influence of the spatial discretization
and comparison with the approximation for small time values.
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quantity to estimate, or to evaluate using the previous iterative power method on a uniform mesh an
a coarse time step. Once obtained, it can be used to determine its associated characteristic length
LF0 = π

√
τF0ρF cF /k′F ; then one may choose τF = τF0 and LF = LF0, which, together with the

previously proposed estimation of L̃ allows to reconstruct the asymptotic solution.

5 Applications

The applications of the proposed numerical modeling approach participate to the material design theme.
Indeed, memory effects may be viewed as either a goal for design of functional materials (indeed, closed-
form expressions also allows optimization for goal-oriented design microstructures), or as a drawback
that have to be checked for structural integrity.

For instance, thermal delayed effects obtained by highly heterogeneous materials can be a simpler
alternative than those obtained by phase changes for applications in building thermal efficiency [25, 26].
If the characteristic time of memory function could be of the order of the day, the contrast in day and
night temperatures could be counterbalanced.

Other diffusion-involved physics are also under concern: for instance the porous media flows [9] that
may exhibit such delayed effects at several scales, for double permeability media, to be taken into account
for contaminant dispersion in soils, or for oil recovery [27], the blood perfusion in biological tissues or
the compact bone porous media [28].

For the case of multifunctional designs, some microstructured composite materials may be used for
other purpose-oriented applications, leading to material phase selections that exhibit a large contrast
in thermal properties [29]. The thermomechanical behavior of these materials have to be checked and
memory effects have to be taken into account for application with thermal transient loadings. Indeed,
analyses for a phenomenological model (without memory effect) and an homogenized one may lead to
quantitative different responses [30].

6 Conclusions

This article proposes a systematic numerical approach to derive the macroscopic memory effect function
for composite material with two phases and a large contrast in their thermal properties. Using the
periodic homogenization procedure, it derives the associated microscopic transient problem on a repre-
sentative cell. The proposed numerical algorithm is related to the spectral properties of the incremental
operator traducing the thermal transient behavior of the low thermal conduction phase.

Approximate simple forms of the memory function are provided, one for the short time memory effect,
and one for the vanishing time effect. They do not require any 3D simulation, but they condense the
microstructure complexity in two scalar parameters, namely a characteristic length and a characteristic
time. Though estimates of these two parameters are provided, their validity on a large range of various
complex microstructures is still to be validated. This validation is nevertheless exemplified in this article
for two different cases: a simple 1D problem for which an exact analytical solution is available, and a 3D
problem for which a 3D numerical simulation is performed.
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