
HAL Id: hal-01171167
https://hal.science/hal-01171167

Submitted on 3 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NONLINEAR PRECONDITIONING: HOW TO USE A
NONLINEAR SCHWARZ METHOD TO

PRECONDITION NEWTON’S METHOD
Victorita Dolean, Martin J. Gander, Walid Kheriji, F Kwok, Roland Masson

To cite this version:
Victorita Dolean, Martin J. Gander, Walid Kheriji, F Kwok, Roland Masson. NONLINEAR PRE-
CONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION
NEWTON’S METHOD. SIAM Journal on Scientific Computing, 2016. �hal-01171167�

https://hal.science/hal-01171167
https://hal.archives-ouvertes.fr

NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR
SCHWARZ METHOD TO PRECONDITION NEWTON’S METHOD

V. DOLEAN∗, M.J. GANDER†, W. KHERIJI‡, F. KWOK§, R. MASSON¶

Abstract. For linear problems, domain decomposition methods can be used directly as iterative
solvers, but also as preconditioners for Krylov methods. In practice, Krylov acceleration is almost
always used, since the Krylov method finds a much better residual polynomial than the stationary
iteration, and thus converges much faster. We show in this paper that also for non-linear problems,
domain decomposition methods can either be used directly as iterative solvers, or one can use them as
preconditioners for Newton’s method. For the concrete case of the parallel Schwarz method, we show
that we obtain a preconditioner we call RASPEN (Restricted Additive Schwarz Preconditioned Exact
Newton) which is similar to ASPIN (Additive Schwarz Preconditioned Inexact Newton), but with all
components directly defined by the iterative method. This has the advantage that RASPEN already
converges when used as an iterative solver, in contrast to ASPIN, and we thus get a substantially
better preconditioner for Newton’s method. The iterative construction also allows us to naturally
define a coarse correction using the multigrid full approximation scheme, which leads to a convergent
two level non-linear iterative domain decomposition method and a two level RASPEN non-linear
preconditioner. We illustrate our findings with numerical results on the Forchheimer equation and a
non-linear diffusion problem.

Key words. Non-Linear Preconditioning, Two-Level Non-Linear Schwarz Methods, Precondi-
tioning Newton’s Method

AMS subject classifications. 65M55, 65F10, 65N22

1. Introduction. Non-linear partial differential equations are usually solved af-
ter discretization by Newton’s method or variants thereof. While Newton’s method
converges well from an initial guess close to the solution, its convergence behaviour
can be erratic and the method can lose all its effectiveness if the initial guess is too far
from the solution. Instead of using Newton, one can use a domain decomposition iter-
ation, applied directly to the non-linear partial differential equations, and one obtains
then much smaller subdomain problems, which are often easier to solve by Newton’s
method than the global problem. The first analysis of an extension of the classical
alternating Schwarz method to non-linear monotone problems can be found in [24],
where a convergence proof is given at the continuous level for a minimization formu-
lation of the problem. A two-level parallel additive Schwarz method for non-linear
problems was proposed and analyzed in [12], where the authors prove that the non-
linear iteration converges locally at the same rate as the linear iteration applied to
the linearized equations about the fixed point, and also a global convergence result is
given in the case of a minimization formulation under certain conditions. In [25], the
classical alternating Schwarz method is studied at the continuous level, when applied

∗DEPT. OF MATHS AND STATS, UNIV. OF STRATHCLYDE, GLASGOW, UK. VIC-
TORITA.DOLEAN@STRATH.AC.UK
†SECTION DE MATHÉMATIQUES, UNIVERSITÉ DE GENÈVE, CP 64, 1211 GENÈVE,

MARTIN.GANDER@MATH.UNIGE.CH
‡LABORATOIRE J.-A. DIEUDONNÉ, UNIVERSITÉ NICE SOPHIA ANTIPOLIS AND

PROJECT COFFEE INRIA SOPHIA ANTIPOLIS MÉDITERRANÉE, FRANCE, KHER-
IJI.WALID@GMAIL.COM
§DEPARTMENT OF MATHEMATICS, HONG KONG BAPTIST UNIVERSITY, HONG

KONG, FELIX KWOK@HKBU.EDU.HK
¶LABORATOIRE J.-A. DIEUDONNÉ, UNIVERSITÉ NICE SOPHIA ANTIPOLIS

AND PROJECT COFFEE INRIA SOPHIA ANTIPOLIS MÉDITERRANÉE, FRANCE,
ROLAND.MASSON@UNICE.FR

1

2

to a Poisson equation whose right hand side can depend non-linearly on the function
and its gradient. The analysis is based on fixed point arguments; in addition, the
author also analyzes linearized variants of the iteration in which the non-linear terms
are relaxed to the previous iteration. A continuation of this study can be found in
[26], where techniques of super- and sub-solutions are used. Results for more general
subspace decomposition methods for linear and non-linear problems can be found in
[31, 29]. More recently, there have also been studies of so-called Schwarz waveform
relaxation methods applied directly to non-linear problems: see [18, 20, 11], where
also the techniques of super- and sub-solutions are used to analyze convergence, and
[22, 4] for optimized variants.

Another way of using domain decomposition methods to solve non-linear problems
is to apply them within the Newton iteration in order to solve the linearized problems
in parallel. This leads to the Newton-Krylov-Schwarz methods [7, 6], see also [5].
We are however interested in a different way of using Newton’s method here. For
linear problems, subdomain iterations are usually not used by themselves; instead,
the equation at the fixed point is solved by a Krylov method, which greatly reduces
the number of iterations needed for convergence. This can also be done for non-
linear problems: suppose we want to solve F (u) = 0 using the fixed point iteration
un+1 = G(un). To accelerate convergence, we can use Newton’s method to solve
F(u) := G(u)− u = 0 instead. We first show in Section 2 how this can be done for a
classical parallel Schwarz method applied to a non-linear partial differential equation,
both with and without coarse grid, which leads to a non-linear preconditioner we
call RASPEN. With our approach, one can obtain in a systematic fashion nonlinear
preconditioners for Newton’s method from any domain decomposition method. A
different non-linear preconditioner called ASPIN was invented about a decade ago in
[8], see also the earlier conference publication [9]. Here, the authors did not think of
an iterative method, but directly tried to design a non-linear two level preconditioner
for Newton’s method. This is in the same spirit as some domain decomposition
methods for linear problems that were directly designed to be a preconditioner; the
most famous example is the additive Schwarz preconditioner [13], which does not
lead to a convergent stationary iterative method without a relaxation parameter, but
is very suitable as a preconditioner, see [19] for a detailed discussion. It is however
difficult to design all components of such a preconditioner, in particular also the coarse
correction, without the help of an iterative method in the background. We discuss
in Section 3 the various differences between ASPIN and RASPEN. Our comparison
shows three main advantages of RASPEN: first, the one-level preconditioner came
from a convergent underlying iterative method, while ASPIN is not convergent when
used as an iterative solver without relaxation; thus, we have the same advantage as
in the linear case, see [14, 19]. Second, the coarse grid correction in RASPEN is
based on the full approximation scheme (FAS), whereas in ASPIN, a different, ad
hoc construction based on a precomputed coarse solution is used, which is only good
close to the fixed point. And finally, we show that the underlying iterative method in
RASPEN already provides the components needed to use the exact Jacobian, instead
of an approximate one in ASPIN. These three advantages, all due to the fact that
RASPEN is based on a convergent non-linear domain decomposition iteration, lead
to substantially lower iteration numbers when RASPEN is used as a preconditioner
for Newton’s method compared to ASPIN. We illustrate our results in Section 4 with
an extensive numerical study of these methods for the Forchheimer equation and a
non-linear diffusion problem.

3

2. Main Ideas for a Simple Problem. To explain the main ideas, we start
with a one dimensional non-linear model problem

L(u) = f, in Ω := (0, L),
u(0) = 0,
u(L) = 0,

(2.1)

where for example L(u) = −∂x((1 + u2)∂xu). One can apply a classical parallel
Schwarz method to solve such problems. Using for example the two subdomains
Ω1 := (0, β) and Ω2 := (α,L), α < β, the classical parallel Schwarz method is

L(un1) = f, in Ω1 := (0, β),
un1 (0) = 0,
un1 (β) = un−12 (β),
L(un2) = f, in Ω2 := (α,L),
un2 (α) = un−11 (α),
un2 (L) = 0.

(2.2)

This method only gives a sequence of approximate solutions per subdomain, and it is
convenient to introduce a global approximate solution, which can be done by glueing
the approximate solutions together. A simple way to do so is to select values from
one of the subdomain solutions by resorting to a non-overlapping decomposition,

un(x) :=

{
un1 (x) if 0 ≤ x < α+β

2 ,

un2 (x) if α+β
2 ≤ x ≤ L, (2.3)

which induces two extension operators P̃i (often called R̃Ti in the context of RAS);

we can write un = P̃1u
n
1 + P̃2u

n
2 .

Like in the case of linear problems, where one usually accelerates the Schwarz
method, which is a fixed point iteration, using a Krylov method, we can accelerate the
non-linear fixed point iteration (2.2) using Newton’s method. To do so, we introduce
two solution operators for the non-linear subdomain problems in (2.2),

un1 = G1(un−1), un2 = G2(un−1), (2.4)

with which the classical parallel Schwarz method (2.2) can now be written in compact
form, even for many subdomains i = 1, · · · , I, as

un =

I∑
i=1

P̃iGi(u
n−1) =: G1(un−1). (2.5)

As shown in the introduction, this fixed point iteration can be used as a precondi-
tioner for Newton’s method, which means to apply Newton’s method to the non-linear
equation

F̃1(u) := G1(u)− u =

I∑
i=1

P̃iGi(u)− u = 0, (2.6)

because it is this equation that holds at the fixed point of iteration (2.5). We call
this method one level RASPEN (Restricted Additive Schwarz Preconditioned Exact
Newton). We show in Figure 2.1 as an example the residual of the nonlinear RAS

4

0 10020 40 60 80 120 140 160 180

0

−10

−18

−16

−14

−12

−8

−6

−4

−2

2

0 10020 40 60 80 120 140 160 180

0

−10

−18

−16

−14

−12

−8

−6

−4

−2

Fig. 2.1: Illustration of the residual when RAS is used as a nonlinear solver (left), or
as a preconditioner for Newton’s method (right).

iterations and using RASPEN as a preconditioner for Newton when solving the Forch-
heimer equation with 8 subdomains from the numerical section. We observe that the
residual of the non-linear RAS method is concentrated at the interfaces, since it must
be zero inside the subdomains by construction. Thus, when Newton’s method is used
to solve (2.6), it only needs to concentrate on reducing the residual on a small num-
ber of interface variables. This explains the fast convergence of RASPEN shown on
the right of Figure 2.1, despite the rather slow convergence of the underlying RAS
iteration.

Suppose we also want to include a coarse grid correction step in the Schwarz
iteration (2.2), or equivalently in (2.5). Since the problem is non-linear, we need to
use the Full Approximation Scheme (FAS) from multigrid to do so, see for example
[3, 23]: given an approximate solution un−1, we compute the correction c by solving
the non-linear coarse problem

Lc(R0u
n−1 + c) = Lc(R0u

n−1) +R0(f − L(un−1)), (2.7)

where Lc is a coarse approximation of the non-linear problem (2.1) and R0 is a re-
striction operator. This correction c := C0(un−1) is then added to the iterate to get
the new corrected value

un−1new = un−1 + P0C0(un−1), (2.8)

where P0 is a suitable prolongation operator. Introducing this new approximation
from (2.8) at step n − 1 into the subdomain iteration formula (2.5), we obtain the
method with integrated coarse correction

un =

I∑
i=1

P̃iGi(u
n−1 + P0C0(un−1)) =: G2(un−1). (2.9)

This stationary fixed point iteration can also be accelerated using Newton’s method:
we can use Newton to solve the non-linear equation

F̃2(u) := G2(u)− u =

I∑
i=1

P̃iGi(u+ P0C0(u))− u = 0. (2.10)

5

We call this method two level FAS-RASPEN.
We have written the coarse step as a correction, but not the subdomain steps.

This can however also be done, by simply rewriting (2.5) to add and subtract the
previous iterate,

un = un−1 +

I∑
i=1

P̃i (Gi(u
n−1)−Riun−1)︸ ︷︷ ︸
=:Ci(un−1)

= un−1 +

I∑
i=1

P̃iCi(u
n−1), (2.11)

where we have assumed that
∑
i P̃iRi = IV , the identity on the vector space, see

Assumption 1 in the next section. Together with the coarse grid correction (2.8), this
iteration then becomes

un = un−1 + P0C0(un−1) +

I∑
i=1

P̃iCi(u
n−1 + P0C0(un−1)), (2.12)

which can be accelerated by solving with Newton the equation

F̃2(u) := P0C0(u) +

I∑
i=1

P̃iCi(u+ P0C0(u)) = 0. (2.13)

This is equivalent to F̃2(u) = 0 from (2.10), only written in correction form.

3. Definition of RASPEN and Comparison with ASPIN. We now define
formally the one- and two-level versions of the RASPEN method and compare it with
the respective ASPIN methods. We consider a non-linear function F : V → V , where
V is a Hilbert space, and the non-linear problem of finding u ∈ V such that

F (u) = 0. (3.1)

Let Vi, i = 1, . . . , I be Hilbert spaces, which would generally be subspaces of V . We
consider for all i = 1, . . . , I the linear restriction and prolongation operators

Ri : V → Vi, Pi : Vi → V,

as well as the “restricted” prolongation P̃i

P̃i : Vi → V.

Assumption 1. We assume that Ri and Pi satisfy for i = 1, . . . , I

RiPi = IVi , the identity on Vi,

and that Ri and P̃i satisfy

I∑
i=1

P̃iRi = IV .

These are all the assumptions we need in what follows, but it is helpful to think
of the restriction operators Ri as classical selection matrices which pick unknowns
corresponding to the subdomains Ωi, of the prolongations Pi as RTi , and of the P̃i
as R̃Ti , the extensions corresponding to restrictions R̃i based on a non-overlapping
decomposition.

6

3.1. One- and two-level RASPEN. We can now formulate precisely the
RASPEN method from the previous section: we define the local inverse Gi : V → Vi
to be solutions of

RiF (PiGi(u) + (I − PiRi)u) = 0. (3.2)

In the usual PDE framework, this corresponds to solving locally on the subdomain i
the PDE problem on Vi with Dirichlet boundary condition given by u outside of the
subdomain i, see (2.4). Then, one level RASPEN solves the non-linear equation

F̃1(u) =

I∑
i=1

P̃iGi(u)− u, (3.3)

using Newton’s method, see (2.6). The preconditioned nonlinear function (3.3) corre-
sponds to the fixed point iteration

un =

I∑
i=1

P̃iGi(u
n−1), (3.4)

see (2.5). Equivalently, the RASPEN equation (3.3) can be written in correction form
as

F̃1(u) =

I∑
i=1

P̃i(Gi(u)−Riu) =:

I∑
i=1

P̃iCi(u), (3.5)

where we define the corrections Ci(u) := Gi(u)−Riu. This way, the subdomain solves
(3.2) can be written in terms of Ci(u) as

RiF (u+ PiCi(u)) = 0. (3.6)

To define the two-level variant, we introduce a coarse space V0 and the linear
restriction and prolongation operators

R0 : V → V0 and P0 : V0 → V. (3.7)

Let F0 : V0 → V0 be the coarse non-linear function, which could be defined by using a
coarse discretization of the underlying problem, or using a Galerkin approach we use
here, namely

F0(u0) = R0F (P0(u)). (3.8)

In two-level FAS-RASPEN, we use the well established non-linear coarse correction
C0(u) from the full approximation scheme already shown in (2.7), which in the rigorous
context of this section is defined by

F0(C0(u) +R0u) = F0(R0u)−R0F (u). (3.9)

This coarse correction is used in a multiplicative fashion in RASPEN, i.e. we solve
with Newton the preconditioned non-linear system

F̃2(u) = P0C0(u) +

n∑
i=1

P̃iCi(u+ P0C0(u)) = 0. (3.10)

7

This corresponds to the non-linear two-level fixed point iteration

un+1 = un + P0C0(un) +

n∑
i=1

P̃iCi(u
n + P0C0(un)),

with C0(un) defined in (3.9) and Ci(u
n) defined in (3.6). This iteration is convergent,

as we can see in the next section in Figure 3.1 in the right column.

3.2. Comparison of one-level variants. In order to compare RASPEN with
the existing ASPIN method, we recall the precise definition of one-level ASPIN from
[8], which gives a different reformulation F1(u) = 0 of the original equation (3.1) to be
solved. In ASPIN, one also defines for u ∈ V and for all i = 1, · · · , I the corrections
as in (3.6), i.e., we define Ci(u) ∈ Vi such that

RiF (u+ PiCi(u)) = 0,

where PiCi(u) are called Ti in [8]. Then, the one-level ASPIN preconditioned function
is defined by

F1(u) =

I∑
i=1

PiCi(u), (3.11)

and the preconditioned system F1(u) = 0 is solved using a Newton algorithm with an
inexact Jacobian, see Section 3.4. The ASPIN preconditioner also has a corresponding
fixed point iteration: adding and subtracting PiRiu in the definition (3.6) of the
corrections Ci, we obtain

RiF (u+ PiCi(u)) = RiF (Pi(Riu+ Ci(u)) + u− PiRiu) = 0,

which implies, by comparing with (3.2) and assuming existence and uniqueness of the
solution to the local problems, that

Gi(u) = Riu+ Ci(u).

We therefore obtain for one-level ASPIN

F1(u) =
I∑
i=1

PiCi(u) =
I∑
i=1

PiGi(u)−
I∑
i=1

PiRiu, (3.12)

which corresponds to the non-linear fixed point iteration

un = un−1 +

I∑
i=1

PiCi(u
n−1) = un−1 −

I∑
i=1

PiRiu
n−1 +

I∑
i=1

PiGi(u
n−1). (3.13)

This iteration is not convergent in the overlap, already in the linear case, see [14,
19], and needs a relaxation parameter to yield convergence, see for example [12] for
the non-linear case. This can be seen directly from (3.13): if an overlapping region
belongs to K subdomains, then the current iterate un is subtracted K times there,
and then the sum of the K respective subdomain solutions are added to the result.
This redundancy is avoided in our formulation (3.4). The only interest in using an
additive correction in the overlap is that in the linear case, the preconditioner remains
symmetric for a symmetric problem.

8

0 20102 4 6 8 12 14 16 18 22 24

0

−10

−8

−6

−4

−2

2

4

6

−9

−7

−5

−3

−1

1

3

5

Iteration n

Newton
One Level AS
Two level AS
One Level ASPIN
Two level ASPIN

0 20102 4 6 8 12 14 16 18 22 24

0

−10

−8

−6

−4

−2

2

4

6

−9

−7

−5

−3

−1

1

3

5

Iteration n

Newton
One Level RAS
Two level RAS
One Level RASPEN
Two level FA−RASPEN

0 10020 40 60 80 120 140 160 180

0

−10

−8

−6

−4

−2

2

4

6

−9

−7

−5

−3

−1

1

3

5

Linear subdomain solves

Newton
One Level AS
Two level AS
One Level ASPIN
Two level ASPIN

0 10020 40 60 80 120 140 160 180

0

−10

−8

−6

−4

−2

2

4

6

−9

−7

−5

−3

−1

1

3

5

Linear subdomain solves

Newton
One Level RAS
Two level RAS
One Level RASPEN
Two level FA−RASPEN

Fig. 3.1: Error as function of non-linear iteration numbers in the top row, and as
number of subdomain solves in the bottom row, for ASPIN (left), and RASPEN
(right).

We show in Figure 3.1 a numerical comparison of the two methods, together with
Newton’s method applied directly to the non-linear problem, for the first example of
the Forchheimer equation from Section 4.1 on a domain of unit size with 8 subdomains,
overlap 3h, with h = 1/100. In these comparisons, we use ASPIN first as a fixed-point
iterative solver (labelled AS for Additive Schwarz), and then as a preconditioner. We
do the same for our new nonlinear iterative method, which in the figures are labelled
RAS for Restricted Additive Schwarz. We see from this numerical experiment that
ASPIN as an iterative solver (AS) does not converge, whereas RASPEN used as an
iterative solver (RAS) does, both with and without coarse grid. Also note that two-
level RAS is faster than Newton directly applied to the non-linear problem for small
iteration counts, before the superlinear convergence of Newton kicks in. The fact
that RASPEN is based on a convergent iteration, but not ASPIN, has an important
influence also on the Newton iterations when the methods are used as preconditioners:
the ASPIN preconditioner requires more Newton iterations to converge than RASPEN

9

does. At first sight, it might be surprising that in RASPEN, the number of Newton
iterations with and without coarse grid is almost the same, while ASPIN needs more
iterations without coarse grid. In contrast to the linear case with Krylov acceleration,
it is not the number of Newton iterations that depends on the number of subdomains,
but the number of linear inner iterations within Newton, which grows when no coarse
grid is present. We show this in the second row of Figure 3.1, where now the error
is plotted as a function of the maximum number of linear subdomain solves used in
each Newton step, see Subsection 4.1.1. With this more realistic measure of work, we
see that both RASPEN and ASPIN converge substantially better with a coarse grid,
but RASPEN needs much fewer subdomain solves than ASPIN does.

3.3. Comparison of two-level variants. We now compare two-level FAS-
RASPEN with the two-level ASPIN method of [27]. Recall that the two-level FAS-
RASPEN consists of applying Newton’s method to (3.10),

F̃2(u) = P0C0(u) +

n∑
i=1

P̃iCi(u+ P0C0(u)) = 0,

where the corrections C0(u) and Ci(u) are defined in (3.9) and (3.6) respectively.
Unlike FAS-RASPEN, two-level ASPIN requires the solution u∗0 ∈ V0 to the coarse
problem, i.e., F0(u∗0) = 0, which can be computed in a preprocessing step.

In two-level ASPIN, the coarse correction CA0 : V → V0 is defined by

F0(CA0 (u) + u∗0) = −R0F (u), (3.14)

and the associated two-level ASPIN function uses the coarse correction in an additive
fashion, i.e. Newton’s method is used to solve

F2(u) = P0C
A
0 (u) +

I∑
i=1

PiCi(u) = 0, (3.15)

with CA0 (un) defined in (3.14) and Ci(u
n) defined in (3.6). This is in contrast to

two-level FAS-RASPEN, where the coarse correction C0(u) is computed from the well
established full approximation scheme, and is applied multiplicatively in (3.10). The
fixed point iteration corresponding to (3.15) is

un+1 = un + P0C
A
0 (un) +

I∑
i=1

PiCi(u
n).

Just like its one-level counterpart, two-level ASPIN is not convergent as a fixed-point
iteration without a relaxation parameter, see Figure 3.1 in the left column. Moreover,
because the coarse correction is applied additively, the overlap between the coarse
space and subdomains leads to slower convergence in the Newton solver, which does
not happen with FAS-RASPEN.

3.4. Computation of Jacobian matrices. When solving (3.5), (3.10), (3.12)
and (3.15) using Newton’s method, one needs to repeatedly solve linear systems in-
volving Jacobians of the above functions. If one uses a Krylov method such as GMRES
to solve these linear systems, like we do in this paper, then it suffices to have a pro-
cedure for multiplying the Jacobian with an arbitrary vector. In this section, we
derive the Jacobian matrices for both one-level and two-level RASPEN in detail. We

10

compare these expressions with ASPIN, which approximates the exact Jacobian with
an inexact one in an attempt to reduce the computational cost, even though this can
potentially slow down the convergence of Newton’s method. Finally, we show that
this approximation is not necessary in RASPEN: in fact, all the components involved
in building the exact Jacobian have already been computed elsewhere in the algo-
rithm, so there is little additional cost in using the exact Jacobian compared with the
approximate one.

3.4.1. Computation of the one-level Jacobian matrices. We now show
how to compute the Jacobian matrices of ASPIN and RASPEN. To simplify notation,
we define

u(i) := PiGi(u) + (I − PiRi)u and J(v) :=
dF

du
(v) (3.16)

By differentiating (3.2),

RiJ(u(i))Pi
dGi
du

(u) = −RiJ(u(i))(I − PiRi),

we obtain

dGi
du

(u) = −(RiJ(u(i))Pi)
−1RiJ(u(i)) +Ri. (3.17)

We deduce for the Jacobian of RASPEN from (3.3)

dF̃1

du
(u) =

I∑
i=1

P̃i
dGi
du

(u)− I = −
I∑
i=1

P̃i(RiJ(u(i))Pi)
−1RiJ(u(i)), (3.18)

since the identity cancels. Similarly, we obtain for the Jacobian of ASPEN (Additive
Schwarz Preconditioned Exact Newton) in (3.12)

dF1

du
(u) =

I∑
i=1

Pi
dGi
du

(u)−
I∑
i=1

PiRi = −
I∑
i=1

Pi(RiJ(u(i))Pi)
−1RiJ(u(i)), (3.19)

since now the terms
∑I
i=1 PiRi cancel. In ASPIN, this exact Jacobian is replaced by

the inexact Jacobian

dF1

du

inexact

(u) = −

(
I∑
i=1

Pi(RiJ(u)Pi)
−1Ri

)
J(u).

We see that this is equivalent to preconditioning the Jacobian J(u) of F (u) by the
additive Schwarz preconditioner, up to the minus sign. This can be convenient if one
has already a code for this, as it was noted in [8]. The exact Jacobian is however
also easily accessible, since the Newton solver for the non-linear subdomain system
RiF (PiGi(u) + (I − PiRi)u) = 0 already computes and factorizes the local Jacobian
matrix RiJ(u(i))Pi. Therefore, the only missing ingredient for computing the exact
Jacobian of F1 is the matrices RiJ(u(i)), which only differ from RiJ(u(i))Pi by a few
additional columns, corresponding in the usual PDEs framework to the derivative
with respect to the Dirichlet boundary conditions. In contrast, the computation of
the inexact ASPIN Jacobian requires one to recompute the entire Jacobian of F (u)
after the subdomain non-linear solves.

11

3.4.2. Computation of the two-level Jacobian matrices. We now compare
the Jacobians for the two-level variants. For RASPEN, we need to differentiate F̃2

with respect to u, where F̃2 is defined in (3.10):

F̃2(u) = P0C0(u) +

n∑
i=1

P̃iCi(u+ P0C0(u)).

To do so, we need dC0

du and dCi

du for i = 1, . . . , I. The former can be obtained by
differentiating (3.9):

F ′0(R0u+ C0(u))

(
R0 +

dC0

du

)
= F ′0(R0u)R0 −R0F

′(u).

Thus, we have

dC0

du
= −R0 + Ĵ−10 (J0R0 −R0J(u)), (3.20)

where

J0 = F ′0(R0u), Ĵ0 = F ′0(R0u+ C0(u)).

Note that the two Jacobian matrices are evaluated at different arguments, so no
cancellation is possible in (3.20) except in special cases (e.g., if F0 is an affine function).
Nonetheless, they are readily available: Ĵ0 is simply the Jacobian for the non-linear
coarse solve, so it would have already been calculated and factorized by Newton’s
method. J0 would also have been calculated during the coarse Newton iteration if
R0u is used as the initial guess.

We also need dCi

du from the subdomain solves. From the relation Gi(u) = Riu +
Ci(u), we deduce immediately from (3.17) that

dCi
du

=
dGi
du
−Ri = −(RiJ(u(i))Pi)

−1RiJ(u(i)), (3.21)

where u(i) = u+ PiCi(u). Thus, the Jacobian for the two-level RASPEN function is

dF̃2

du
= P0

dC0

du
−
∑
i

P̃i(RiJ(v(i))Pi)
−1RiJ(v(i))

(
I + P0

dC0

du

)
, (3.22)

where dC0

du is given by (3.20) and

v(i) = u+ P0C0(u) + PiCi(u+ P0C0(u)).

For completeness, we compute the Jacobian for two-level ASPIN. First, we obtain
dCA

0

du by differentiating (3.14):

F ′0(CA0 (u) + u∗0)
dCA0
du

= −R0F
′(u),

which gives

dCA0
du

= −Ĵ−10 R0J(u), (3.23)

12

where Ĵ0 = F ′0(CA0 (u) + u∗0). In addition, two-level ASPIN uses as approximation for
(3.21)

dCi
du
≈ −(RiJ(u)Pi)

−1R̃iJ(u). (3.24)

Thus, the inexact Jacobian for the two-level ASPIN function is

dF2

du
≈ −P0Ĵ

−1
0 R0J(u)−

∑
i

Pi(RiJ(u)Pi)
−1RiJ(u). (3.25)

Comparing (3.22) with (3.25), we see two major differences. First, dC0/du only
simplifies to −R0J(u) if J0 = Ĵ0, i.e., if F0 is affine. Second, (3.22) resembles a two-
stage multiplicative preconditioner, whereas (3.25) is of the additive type. This is due
to the fact that the coarse correction in two-level RASPEN is applied multiplicatively,
whereas two-level ASPIN uses an additive correction.

4. Numerical experiments. In this section, we compare the new non-linear
preconditioner RASPEN to ASPIN for the Forchheimer model, which generalizes the
linear Darcy model in porous media flow [17, 30, 10], and for a 2D non-linear diffusion
problem that appears in [1].

4.1. Forchheimer model and discretization. Let us consider the Forch-
heimer parameter β > 0, the permeability λ ∈ L∞(Ω) such that 0 < λmin ≤ λ(x) ≤
λmax for all x ∈ Ω, and the function q(g) = sgn(g)

−1+
√

1+4β|g|
2β . The Forchheimer

model on the interval Ω = (0, L) is defined by the equation (q(−λ(x)u(x)′))
′

= f(x) in Ω,
u(0) = uD0 ,
u(L) = uDL .

(4.1)

Note that at the limit when β → 0+, we recover the linear Darcy equation. We
consider a 1D mesh defined by the M + 1 points

0 = x 1
2
< · · · < xK+ 1

2
< · · · < xM+ 1

2
= L.

The cells are defined by K = (xK− 1
2
, xK+ 1

2
) for K ∈ M = {1, · · · ,M} and their

center by xK =
x
K− 1

2
+x

K+1
2

2 . The Forchheimer model (4.1) is discretized using a
Two Point Flux Approximation (TPFA) finite volume scheme. We define the TPFA
transmissibilities by

TK+ 1
2

=
1

|x
K+1

2
−xK |

λK
+
|xK+1−xK+1

2
|

λK+1

for K = 1, · · · ,M − 1

T 1
2

=
λ1

|x1 − x 1
2
|
, TM+ 1

2
=

λM
|xM+ 1

2
− xM |

,

with λK = 1
|x

K+1
2
−x

K− 1
2
|
∫ x

K+1
2

x
K− 1

2

λ(x)dx. Then, the M cell unknowns uK , K ∈ M,

are the solution of the set of M conservation equations
q(TK+ 1

2
(uK − uK+1)) + q(TK− 1

2
(uK − uK−1)) = fK , K = 2, · · · ,M − 1

q(T 3
2
(u1 − u2)) + q(T 1

2
(u1 − uD0)) = f1,

q(TM+ 1
2
(uM − uDL)) + q(TM− 1

2
(uM − uM−1)) = fM ,

13

with fK =
∫ x

K+1
2

x
K− 1

2

f(x)dx. In the following numerical tests we will consider a uniform

mesh of cell size denoted by h = L
M .

4.1.1. One level variants. We start from a non-overlapping decomposition of
the set of cells

M̃i, i = 1, · · · , I,

such that M =
⋃
i=1,··· ,I M̃i and M̃i ∩ M̃j = ∅ for all i 6= j.

The overlapping decomposition Mi, i = 1, · · · , I of the set of cells is obtained by
adding k layers of cells to each M̃i to generate overlap with the two neighbouring
subdomains M̃i−1 (if i > 1) and M̃i+1 (if i < I) in the simple case of our one
dimensional domain.

In the ASPIN framework, we set V = R#M, and Vi = R#Mi , i = 1, · · · , I. The
restriction operators are then defined by

(Riv)K = vK for K ∈Mi,

and the prolongation operators are{
(Pivi)K = vK for K ∈Mi,
(Pivi)K = 0 for K 6∈ Mi,

and {
(P̃ivi)K = vK for K ∈ M̃i,

(P̃ivi)K = 0 for K 6∈ M̃i.

The coarse grid is obtained by the agglomeration of the cells in each M̃i defining a
coarse mesh of (0, L).

Finally, we set V0 = RI . In the finite volume framework, we define for all v ∈ V

(R0v)i =
1

#M̃i

∑
K∈M̃i

vK for all i = 1, · · · , I, (4.2)

which in our case of a uniform mesh corresponds to the mean value in the coarse cell
i for cellwise constant functions on M.

For v0 ∈ V0, its prolongation v = P0v0 ∈ V is obtained by the piecewise linear
interpolation ϕ(x) on (0, x1), (x1, x2), · · · , (xI , L) where the xi are the centers of the
coarse cells, and ϕ(xi) = (v0)i, i = 1, · · · , I, ϕ(0) = 0, ϕ(L) = 0. Then, v = P0v0 is
defined by vK = ϕ(xK) for all K ∈ M. The coarse grid operator F0 is defined by
F0(v0) = R0F (P0v0) for all v0 ∈ V0.

We use for the numerical tests the domain Ω = (0, 3/2) with the boundary con-
ditions u(0) = 0 and u(1) = 1, and different values of β. As a first challenging test,
we choose the highly variable permeability field λ and the oscillating right hand side
shown in Figure 4.1. We measure the relative l1 norms of the error obtained at each
Newton iteration as a function of the parallel linear solves LSn needed in the subdo-
mains per Newton iteration, which is a realistic measure for the cost of the method.
Each Newton iteration requires two major steps:

14

0 10.2 0.4 0.6 0.8 1.2 1.4 1.6

0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

1.1

permeability

0 10.2 0.4 0.6 0.8 1.2 1.4 1.6

0

−60

−40

−20

20

40

60

−50

−30

−10

10

30

50

right hand side

0 10.2 0.4 0.6 0.8 1.2 1.4 1.6

0

−2

−3

−1

1

−2.8

−2.6

−2.4

−2.2

−1.8

−1.6

−1.4

−1.2

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8
Initial guess

Exact solution

Fig. 4.1: Permeability field (left), source term (middle), initial guess and solution
(right).

1. the evaluation of the fixed point function F , which means solving a non-
linear problem in each subdomain. This is done using Newton in an inner
iteration on each subdomain, and thus requires at each inner iteration a
linear subdomain solve performed in parallel by all subdomains. We denote
the maximum number of inner iterations needed by the subdomains at the
outer iteration j by lsinj , and it is the maximum which is relevant, because
if other subdomains finish earlier, they still have to wait for the last one to
finish.

2. the Jacobian matrix needs to be inverted, which we do by GMRES, and each
GMRES iteration will also need a linear subdomain solve per subdomain. We
denote the number of linear solves needed by GMRES at the outer Newton
iteration step j by lsGj .

Hence, the number of linear subdomain solves for the outer Newton iteration j to
complete is lsinj + lsGj , and the total number of linear subdomain solves after n outer

Newton iterations is LSn :=
∑n
j=1

(
lsinj + lsGj

)
. In all the numerical tests, we stop

the linear GMRES iterations when the relative residual falls below 10−8, and the
tolerances for the inner and outer Newton iterations are also set to 10−8. Adaptive
tolerances could certainly lead to more savings [15, 16], but our purpose here is to
compare the non-linear preconditioners in a fixed setting. The initial guess we use in
all our experiments is shown in Figure 4.1 on the right, together with the solution.

We show in Figure 4.2 how the convergence depends on the overlap and the
number of subdomains for one level ASPIN and RASPEN with Forchheimer model
parameter β = 1. In the top row on the left of Figure 4.2, we see that for ASPIN
the number of linear iterations increases much more rapidly when decreasing the
overlap than for RASPEN on the right for a fixed mesh size h = 0.003 and number
of subdmains equal 20. In the bottom row of Figure 4.2, we see that the convergence
of both one level ASPIN and RASPEN depends on the number of subdomains, but
RASPEN seems to be less sensitive than ASPIN.

4.1.2. Two level variants. In Figure 4.3, we show the dependence of two-level
ASPIN and two-level FAS-RASPEN on a decreasing size of the overlap, as we did for
the one-level variants in the top row of Figure 4.2. We see that the addition of the
coarse level improves the performance, for RASPEN when the overlap is large, and
in all cases for ASPIN.

In Figure 4.4, we present a study of the influence of the number of subdomains

15

0 200 400 600 800100 300 500 700 900

0

−10

−8

−6

−4

−2

2

4

−9

−7

−5

−3

−1

1

3

h

3h

9h

15h

20 subdomains, h=0.003

0 200 400 600 800100 300 500 700 900

0

−10

−8

−6

−4

−2

2

4

−9

−7

−5

−3

−1

1

3

h

3h

9h

15h

20 subdomains, h=0.003

0 200 400 600 800100 300 500 700 900

0

−10

−12

−8

−6

−4

−2

2

4

−11

−9

−7

−5

−3

−1

1

3

10 subdomains
20 subdomains
40 subdomains

15 cells per subdomain, overlap 3h

0 200 400 600 800100 300 500 700 900

0

−10

−12

−8

−6

−4

−2

2

4

−11

−9

−7

−5

−3

−1

1

3

10 subdomains
20 subdomains
40 subdomains

15 cells per subdomain, overlap 3h

Fig. 4.2: Error obtained with one-level ASPIN (left) and one-level RASPEN (right):
in the top row obtained with 20 subdomains, h = 0.003, and decreasing size of overlap
15h, 9h, 3h, h; in the bottom row obtained with different number of subdomains 10, 20
and 40, overlap 3h, and a fixed number of cells per subdomain. The Forchheimer
problem is defined by the permeability, source term, solution and initial guess of
Figure 4.1.

0 200 400 600 800100 300 500 700 900

0

−10

−8

−6

−4

−2

2

4

−9

−7

−5

−3

−1

1

3
h
3h
9h
15h

20 subdomains, h=0.003

0 200 400 600 800100 300 500 700 900

0

−10

−8

−6

−4

−2

2

4

−9

−7

−5

−3

−1

1

3
h
3h
9h
15h

20 subdomains, h=0.003

Fig. 4.3: Error obtained with two-level ASPIN (left) and two-level FAS RASPEN
(right) obtained with 20 subdomains, h = 0.003, and decreasing overlap 15h, 9h, 3h,
h. The Forchheimer problem is defined by the permeability, source term, solution and
initial guess of Figure 4.1.

16

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−8

−6

−4

−2

2

−9

−7

−5

−3

−1

1
10 subdomains
20 subdomains
30 subdomains
40 subdomains
50 subdomains

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−8

−6

−4

−2

2

−9

−7

−5

−3

−1

1

3
10 subdomains
20 subdomains
30 subdomains
40 subdomains
50 subdomains

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−8

−6

−4

−2

2

−9

−7

−5

−3

−1

1
10 subdomains
20 subdomains
30 subdomains
40 subdomains
50 subdomains

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−8

−6

−4

−2

2

−9

−7

−5

−3

−1

1

3
10 subdomains
20 subdomains
30 subdomains
40 subdomains
50 subdomains

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−8

−6

−4

−2

2

−9

−7

−5

−3

−1

1
10 subdomains
20 subdomains
30 subdomains
40 subdomains
50 subdomains

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−8

−6

−4

−2

2

−9

−7

−5

−3

−1

1

3
10 subdomains
20 subdomains
30 subdomains
40 subdomains
50 subdomains

Fig. 4.4: Error obtained with two-level ASPIN (left) and two-level FAS RASPEN
(right) and different number of subdomains 10, 20, 30, 40, 50. From top to bottom
with decreasing Forchheimer parameter β = 1, 0.1, 0.01. The Forchheimer problem is
defined by the permeability, source term, solution and initial guess of Figure 4.1.

17

ASPIN
Number of subdomains 10 20 40

Overlap size
type of iteration

PIN iter. LSn iter. PIN iter. LSn iter. PIN iter. LSn iter.

h 8 184 15 663 - -
3h 7 156 14 631 11 883
5h 6 130 11 479 10 744
RASPEN
Number of subdomains 10 20 40

Overlap size
type of iteration

PEN iter. LSn iter. PEN iter. LSn iter. PEN iter. LSn iter.

h 7 150 9 369 9 701
3h 7 145 8 324 9 691
5h 6 126 7 274 9 659
Two-level ASPIN

Number of subdomains 10 20 40

Overlap size
type of iteration

PIN iter. LSn iter. PIN iter. LSn iter. PIN iter. LSn iter.

h 7 184 9 316 8 285
3h 6 141 9 246 7 183
5h 6 135 8 199 7 164
Two-level FAS-RASPEN

Number of subdomains 10 20 40

Overlap size
type of iteration

PEN iter. LSn iter. PEN iter. LSn iter. PEN iter. LSn iter.

h 7 134 9 272 8 258
3h 7 133 8 220 6 136
5h 6 112 8 211 6 116

Table 4.1: Comparison in terms of non-linear and linear iterations of the different
algorithms for the Forchheimer problem defined by the permeability, source term,
solution and initial guess of Figure 4.1.

on the convergence for two-level ASPIN and two-level FAS-RASPEN with different
values of the Forchheimer parameter β = 1, 0.1, 0.01 which governs the non-linearity
of the model (the model becomes linear for β = 0). An interesting observation is
that for β = 1, the convergence of both two-level ASPIN and two-level FAS-RASPEN
depends on the number of subdomains in an irregular fashion: increasing the number
of subdomains sometimes increases iteration counts, and then decreases them again.
We will study this effect further below, but note already from Figure 4.4 that this
dependence disappears for two-level FAS-RAPSEN as the the nonlinearity diminishes
(i.e., as β decreases), and is weakened for two-level ASPIN.

We finally show in Table 4.1 the number of outer Newton iterations (PIN iter
for ASPIN and PEN iter for RASPEN) and the total number of linear iterations
(LSn iter) for various numbers of subdomains and various overlap sizes obtained with
ASPIN, RASPEN, two-level ASPIN and two-level FAS-RASPEN. We see that the
coarse grid considerably improves the convergence of both RASPEN and ASPIN.
Also, in all cases, RASPEN needs substantially fewer linear iterations than ASPIN.

We now return to the irregular number of iterations observed in Figure 4.4 for the

18

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−12

−8

−6

−4

−2

2

−11

−9

−7

−5

−3

−1

1

10 subdomains

20 subdomains

30 subdomains

40 subdomains

50 subdomains

0 20010020 40 60 80 120 140 160 180 220 240 260

0

−10

−12

−8

−6

−4

−2

2

−11

−9

−7

−5

−3

−1

1

10 subdomains

20 subdomains

30 subdomains

40 subdomains

50 subdomains

Fig. 4.5: Error obtained with two-level ASPIN (left) and two-level FAS RASPEN
(right) with overlap 3h, and different number of subdomains 10, 20, 30, 40, 50 for the
smooth Forchheimer example.

Forchheimer parameter β = 1, i.e when the non-linearity is strong. We claim that this
irregular dependence is due to strong variations in the initial guesses used by RASPEN
and ASPIN at subdomain interfaces, which is in turn caused by the highly variable
contrast and oscillating source term we used, leading to an oscillatory solution, see
Figure 4.1. In other words, we expect the irregularity to disappear when the solution
is non-oscillatory. To test this, we now present numerical results with the less variable
permeability function λ(x) = cos(x) and source term f(x) = cos(x) as well, which
leads to a smooth solution. Starting with a zero initial guess, we show in Figure 4.5
the results obtained for Forchheimer parameter β = 1, corresponding to the first row
of Figure 4.4. We clearly see that the irregular behavior has now disappeared for both
two-level ASPIN and RASPEN, but two-level ASPIN still shows some dependence of
the iteration numbers as the number of subdomains increases. We show in Table
4.2 the complete results for this smoother example, and we see that the irregular
convergence behavior of the two-level methods is no longer present. We finally give
in Tables 4.3 and 4.4, for the one-level and two-level methods respectively, a detailed
account of the linear subdomain solves needed for each outer Newton iteration n for
the case of an overlap of 3h. There, we use the format itRASPEN(itASPIN), where
itRASPEN is the iteration count for RASPEN and itASPIN is the iteration count for
ASPIN. We show in the first column the linear subdomain solves lsGn required for the
inversion of the Jacobian matrix using GMRES, see item 2 in Subsection 4.1.1, and
in the next column the maximum number of iterations lsinn needed to evaluate the
nonlinear fixed point function F , see item 1 in Subsection 4.1.1. In the next column,
we show for completeness also the smallest number of inner iterations lsmin

n any of
the subdomains needed, to illustrate how balanced the work is in this example. The
last column then contains the total number of linear iterations LSn, see Subsection
4.1.1. These results show that the main gain of RASPEN is a reduced number of
Newton iterations, i.e. it is a better non-linear preconditioner than ASPIN, and also
a reduced number of inner iterations for the non-linear subdomain solves, i.e. the

19

ASPIN
Number of subdomains 10 20 40

Overlap size
type of iteration

PIN iter. LSn iter. PIN iter. LSn iter. PIN iter. LSn iter.

h 5 118 5 228 6 520
3h 5 118 5 227 6 516
5h 5 117 5 222 6 480
RASPEN
Number of subdomains 10 20 40

Overlap size
type of iteration

PEN iter. LSn iter. PEN iter. LSn iter. PEN iter. LSn iter.

h 4 92 4 172 4 340
3h 4 87 4 172 4 331
5h 4 88 4 168 4 313
Two level ASPIN

Number of subdomains 10 20 40

Overlap size
type of iteration

PIN iter. LSn iter. PIN iter. LSn iter. PIN iter. LSn iter.

h 5 140 5 240 5 280
3h 5 130 6 170 6 200
5h 5 115 7 149 6 147
Two level FAS RASPEN

Number of subdomains 10 20 40

Overlap size
type of iteration

PEN iter. LSn iter. PEN iter. LSn iter. PEN iter. LSn iter.

h 4 77 3 87 4 131
3h 3 60 3 67 4 90
5h 3 55 3 57 3 57

Table 4.2: Comparison in terms of non-linear and linear iterations of the different
algorithms for the smooth Forchheimer example.

preconditioner is less expensive. This leads to the substantial savings observed in the
last columns, and in Table 4.2.

4.2. A non-linear Poisson problem. We now test the non-linear precondi-
tioners on the two dimensional non-linear diffusion problem (see [1])

−∇ · ((1 + u2)∇u) = f, Ω = [0, 1]2,
u = 1, x = 1,

∂u

∂n
= 0, otherwise.

(4.3)

The isovalues of the exact solution are shown in Figure 4.6. To calculate this solution,
we use a discretization with P1 finite elements on a uniform triangular mesh.

We consider a decomposition of the domain into N×N subdomains with an over-
lap of one mesh size h, and we keep the number of degrees of freedom per subdomain
fixed in our experiments. We show in Tables 4.5 and 4.6 a detailed account for each
outer Newton iteration n (Newton converged in three iterations for all examples to a
tolerance 10−10) of the linear subdomain solves needed for both RASPEN and ASPIN
using the same notation as in Tables 4.3 and 4.4. We see from these experiments that

20

Number of subdomains n lsGn lsinn lsmin
n LSn 1 level

10 1 19 (20) 4 (4) 3 (3)
2 19 (20) 3 (6) 3(3) 87 (118)
3 19 (20) 2 (4) 2 (2)
4 19 (20) 2 (2) 1 (2)
5 - (21) - (1) - (1)

20 1 40 (41) 5 (5) 3 (3)
2 40 (41) 3 (7) 2 (2) 172 (227)
3 40 (41) 2 (5) 1 (2)
4 40 (41) 2 (3) 1 (1)
5 - (41) - (2) - (1)

40 1 78 (80) 5 (5) 3 (3)
2 81 (81) 3 (6) 2 (2) 331 (516)
3 79 (82) 2 (6) 1 (2)
4 81 (82) 2 (5) 1 (1)
5 - (82) - (3) - (1)
6 - (82) - (2) - (1)

Table 4.3: Numerical results with the one level RASPEN and ASPIN for the 1D
non-linear smooth Forchheimer problem.

IsoValue
0.997804
1.0011
1.00329
1.00549
1.00768
1.00988
1.01208
1.01427
1.01647
1.01866
1.02086
1.02305
1.02525
1.02745
1.02964
1.03184
1.03403
1.03623
1.03842
1.04391

Fig. 4.6: Solution of the problem (4.3)

RASPEN, which is a non-linear preconditioner based on a convergent underlying fixed
point iteration, clearly outperforms ASPIN, which would not be convergent as a basic
fixed point iteration.

5. Conclusion. We have shown that just as one can accelerate stationary itera-
tive methods for linear systems using a Krylov method, one can also accelerate fixed
point iterations for non-linear problems using Newton’s method. This leads to a guid-
ing principle for constructing non-linear preconditioners, which we illustrated with the
systematic construction of RASPEN. While this design principle leads to good non-
linear (and linear) preconditioners, see for example [21] for a similar approach for
non-linear evolution problems, it is still an open question whether there are other

21

Number of subdomains n lsGn lsinn lsmin
n LSn 1 level

10 1 15 (20) 7 (4) 3 (3)
2 16 (21) 3 (6) 2 (3) 60 (130)
3 17 (22) 2 (3) 1 (2)
4 - (24) - (3) - (1)
5 - (25) - (2) - (1)

20 1 15 (22) 8 (5) 3 (3)
2 18 (23) 3 (6) 2 (3) 67 (170)
3 21 (24) 2 (5) 1 (2)
4 - (24) - (3) - (1)
5 - (24) - (2) - (1)
6 - (31) - (1) - (1)

40 1 14 (22) 9 (5) 3 (3)
2 17 (22) 3 (7) 1 (2) 90 (200)
3 20 (24) 2 (6) 1 (2)
4 24 (24) 1(5) 0 (1)
5 - (23) - (3) - (1)
6 - (25) - (2) - (1)
7 - (31) - (1) - (0)

Table 4.4: Numerical results with the two level FAS RASPEN and ASPIN for the 1D
non-linear smooth Forchheimer example.

N ×N n lsGn lsinn lsmin
n LSn 1 level

2× 2 1 15(20) 4(4) 3(3)
2 17(23) 3(3) 3(3) 60(78)
3 18(26) 2(2) 2(2)

4× 4 1 32(37) 3(3) 3(3)
2 35(41) 3(3) 2(2) 113(132)
3 38(46) 2(2) 2(2)

8× 8 1 62(71) 3(3) 2(2)
2 67(77) 3(3) 2(2) 211(240)
3 74(84) 2(2) 1(2)

16× 16 1 125(141) 3(3) 2(2)
2 136(155) 2(2) 2(2) 418(471)
3 150(167) 2(2) 1(1)

Table 4.5: Numerical results with the one level RASPEN and ASPIN for the non-
linear diffusion problem

properties a preconditioner should have that would make it even more effective. In
the linear case, sometimes clustering the spectrum into a few clusters is better than
having a small spectral radius, see for example the results for the HSS preconditioner
in [2]. For non-linear preconditioning, maybe it is possible to greatly increase the
basin of attraction of the non-linearly preconditioned Newton method, or to improve
its preasymptotic convergence, before quadratic convergence sets in. It also remains
to carefully compare RASPEN with linear preconditioning inside Newton’s method;

22

N ×N n lsGn lsinn lsmin
n LSn 2 level

2× 2 1 13(23) 4(4) 3(3)
2 15(26) 3(3) 3(3) 54(86)
3 17(28) 2(2) 2(2)

4× 4 1 18(33) 3(3) 3(3)
2 22(39) 3(3) 2(2) 74(126)
3 26(46) 2(2) 2(2)

8× 8 1 18(35) 3(3) 3(2)
2 23(44) 3(3) 2(2) 77(139)
3 28(53) 2(2) 2(1)

16× 16 1 18(35) 3(3) 3(2)
2 23(44) 2(2) 2(2) 75(140)
3 27(54) 2(2) 2(1)

Table 4.6: Numerical results with the two-level RASPEN and ASPIN for the non-
linear diffusion problem

promising results for ASPIN can be found already in [28].

Acknowledgments. We would like to thank TOTAL for partially supporting
this work.

REFERENCES

[1] G. W. Anders Logg, Kent-Andre Mardal, editor. Automated Solution of Differential Equa-
tions by the Finite Element Method: The FEniCS Book, volume 84 of Lecture Notes in
Computational Science and Engineering. Springer, 2012.

[2] M. Benzi, M. J. Gander, and G. H. Golub. Optimization of the Hermitian and skew-Hermitian
splitting iteration for saddle-point problems. BIT Numerical Mathematics, 43(5):881–900,
2003.

[3] W. L. Briggs, S. F. McCormick, et al. A multigrid tutorial. SIAM, 2000.
[4] F. Caetano, M. J. Gander, L. Halpern, and J. Szeftel. Schwarz waveform relaxation algorithms

for semilinear reaction-diffusion equations. NHM, 5(3):487–505, 2010.
[5] X.-C. Cai and M. Dryja. Domain decomposition methods for monotone nonlinear elliptic

problems. Contemporary mathematics, 180:21–27, 1994.
[6] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin, and D. P. Young. Parallel Newton–Krylov–

Schwarz algorithms for the transonic full potential equation. SIAM Journal on Scientific
Computing, 19(1):246–265, 1998.

[7] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Newton-Krylov-Schwarz methods
in CFD. In Numerical methods for the Navier-Stokes equations, volume 47, pages 17–30.
Vieweg+Teubner, 1994.

[8] X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM
Journal on Scientific Computing, 24(1):183–200, 2002.

[9] X.-C. Cai, D. E. Keyes, and D. P. Young. A nonlinear additive Schwarz preconditioned inexact
Newton method for shocked duct flow. In Proceedings of the 13th International Conference
on Domain Decomposition Methods, pages 343–350. DDM.org, 2001.

[10] Z. Chen, G. Huan, and Y. Ma. Computational Methods for Multiphase flows in porous media.
SIAM, 2006.

[11] S. Descombes, V. Dolean, and M. J. Gander. Schwarz waveform relaxation methods for systems
of semi-linear reaction-diffusion equations. In Domain Decomposition Methods in Science
and Engineering XIX, pages 423–430. Springer, 2011.

[12] M. Dryja and W. Hackbusch. On the nonlinear domain decomposition method. BIT Numerical
Mathematics, 37(2):296–311, 1997.

[13] M. Dryja and O. B. Widlund. An additive variant of the Schwarz alternating method for the

23

case of many subregions. Technical Report 339, also Ultracomputer Note 131, Department
of Computer Science, Courant Institute, 1987.

[14] E. Efstathiou and M. J. Gander. Why Restricted Additive Schwarz converges faster than
Additive Schwarz. BIT Numerical Mathematics, 43(5):945–959, 2003.

[15] L. El Alaoui, A. Ern, and M. Vohraĺık. Guaranteed and robust a posteriori error estimates
and balancing discretization and linearization errors for monotone nonlinear problems.
Computer Methods in Applied Mechanics and Engineering, 200(37):2782–2795, 2011.

[16] A. Ern and M. Vohraĺık. Adaptive inexact Newton methods with a posteriori stopping criteria
for nonlinear diffusion PDEs. SIAM Journal on Scientific Computing, 35(4):A1761–A1791,
2013.

[17] P. Forchheimer. Wasserbewegung durch Boden. Zeitschrift des Vereines Deutscher Ingenieuer,
45:1782–1788, 1901.

[18] M. J. Gander. A waveform relaxation algorithm with overlapping splitting for reaction diffusion
equations. Numerical Linear Algebra with Applications, 6:125–145, 1998.

[19] M. J. Gander. Schwarz methods over the course of time. Electronic Transactions on Numerical
Analysis, 31:228–255, 2008.

[20] M. J. Gander and C. Rohde. Overlapping Schwarz waveform relaxation for convection domi-
nated nonlinear conservation laws. SIAM J. Sci. Comp., 27(2):415–439, 2005.

[21] F. Haeberlein, L. Halpern, and A. Michel. Newton-Schwarz optimised waveform relaxation
Krylov accelerators for nonlinear reactive transport. In Domain Decomposition Methods
in Science and Engineering XX, pages 387–394. Springer, 2013.

[22] L. Halpern and J. Szeftel. Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear
wave propagation. Mathematics of Computation, 78(266):865–889, 2009.

[23] V. E. Henson. Multigrid methods nonlinear problems: an overview. In Electronic Imaging
2003, pages 36–48. International Society for Optics and Photonics, 2003.

[24] P.-L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H. Golub, G. A. Meu-
rant, and J. Périaux, editors, First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, pages 1–42, Philadelphia, PA, 1988. SIAM.

[25] S.-H. Lui. On Schwarz alternating methods for nonlinear elliptic PDEs. SIAM Journal on
Scientific Computing, 21(4):1506–1523, 1999.

[26] S.-H. Lui. On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs.
Numerische Mathematik, 93(1):109–129, 2002.

[27] L. Marcinkowski and X.-C. Cai. Parallel performance of some two-level ASPIN algorithms.
In Domain Decomposition Methods in Science and Engineering, pages 639–646. Springer,
2005.

[28] J. O. Skogestad, E. Keilegavlen, and J. M. Nordbotten. Domain decomposition strategies for
nonlinear flow problems in porous media. Journal of Computational Physics, 234:439–451,
2013.

[29] X.-C. Tai and M. Espedal. Rate of convergence of some space decomposition methods for linear
and nonlinear problems. SIAM journal on numerical analysis, 35(4):1558–1570, 1998.

[30] J. C. Ward. Turbulent flow in porous media. J. Hydr. Div. ASCE, 90:1–12, 1964.
[31] J. Xu. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM Journal on

Numerical Analysis, 33(5):1759–1777, 1996.

