Multi-dimensional Ratings for Research Paper Recommender Systems: A Qualitative Study

Shaikhah Alotaibi 1, * Julita Vassileva 1
* Auteur correspondant
Abstract : Research paper recommender systems (RSs) aim to alleviate information overload for researchers. Existing approaches using collaborative filtering or hybrid approaches typically allow only one rating criterion (overall liking) for users to evaluate papers. We conducted a focus group qualitative study to explore the most important criteria for rating research papers that can be used to control the paper recommendation by enabling users to set the weight for each criterion. We investigate also the effect of using different rating criteria on the user interface design and how the user can control the weight of the criteria.
Type de document :
Communication dans un congrès
International Symposium on Web AlGorithms, Jun 2015, Deauville, France. Proceedings of the first International Symposium on Web AlGorithms, 2015
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01171132
Contributeur : Thomas Largillier <>
Soumis le : jeudi 2 juillet 2015 - 21:31:29
Dernière modification le : lundi 6 juillet 2015 - 15:26:46
Document(s) archivé(s) le : mardi 25 avril 2017 - 22:28:06

Fichier

fullpaper2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01171132, version 1

Collections

Citation

Shaikhah Alotaibi, Julita Vassileva. Multi-dimensional Ratings for Research Paper Recommender Systems: A Qualitative Study. International Symposium on Web AlGorithms, Jun 2015, Deauville, France. Proceedings of the first International Symposium on Web AlGorithms, 2015. 〈hal-01171132〉

Partager

Métriques

Consultations de
la notice

63

Téléchargements du document

224