Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting
S Acinas, L Buri, G Giubergia, F Mazzone, E Schwindt

To cite this version:

HAL Id: hal-01171091
https://hal.archives-ouvertes.fr/hal-01171091
Submitted on 6 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting

S. Acinasa,b,**, L. Buric, G. Giubergiac, F. Mazzonec,*, E. Schwindtd

\textit{a}Instituto de Matemática Aplicada San Luis (CONICET-UNSL),
(5700) San Luis, Argentina.

\textit{b}Universidad Nacional de La Pampa, (6300) Santa Rosa, La Pampa, Argentina.

\textit{c}Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, (5800) Río Cuarto, Córdoba, Argentina.

\textit{d}Université d’Orléans, Laboratoire MAPMO, CNRS, UMR 7349, Fédération Denis Poisson, FR 2964, Bâtiment de Mathématiques, BP 6759, 45067 Orléans Cedex 2, France.

Abstract

In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces $W^{1,L}_\Phi$ associated to an N-function Φ. We show that, in some sense, it is necessary for the coercitivity that the complementary function of Φ satisfy the Δ_2-condition. We conclude by discussing conditions for the existence of minima of I.

Keywords: Periodic Solution, Orlicz-Sobolev Spaces, Euler-Lagrange, N-function, Critical Points.

1. Introduction

This paper is concerned with the existence of periodic solutions of the problem

\[
\begin{aligned}
\frac{d}{dt}D_y&L(t,u(t),\dot{u}(t)) = D_xL(t,u(t),\dot{u}(t)) \quad \text{a.e. } t \in (0,T) \\
u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0
\end{aligned}
\]

(1)

*Principal correspondig author
**Corresponding author

Email addresses: sonia.acinas@gmail.com (S. Acinas), lburi@exa.unrc.edu.ar (L. Buri), ggiubergia@exa.unrc.edu.ar (G. Giubergia), fmazzone@exa.unrc.edu.ar (F. Mazzone), lesis98@gmail.com (E. Schwindt)
where $T > 0$, $u : [0, T] \to \mathbb{R}^d$ is absolutely continuous and the Lagrangian $L : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a Carathéodory function satisfying the conditions

\[|L(t, x, y)| \leq a(|x|) \left(b(t) + \Phi \left(\frac{|y|}{\lambda} + f(t) \right) \right), \]
\[|D_x L(t, x, y)| \leq a(|x|) \left(b(t) + \Phi \left(\frac{|y|}{\lambda} + f(t) \right) \right), \]
\[|D_y L(t, x, y)| \leq a(|x|) \left(c(t) + \varphi \left(\frac{|y|}{\lambda} + f(t) \right) \right). \]

In these inequalities we assume that $a \in C(\mathbb{R}^+, \mathbb{R}^+)$, $\lambda > 0$, Φ is an N-function (see section Preliminaries for definitions), φ is the right continuous derivative of Φ and the non negative functions b, c and f belong to certain Banach spaces that will be introduced later.

It is well known that problem (1) comes from a variational one, that is, a solution of (1) is a critical point of the action integral

\[I(u) = \int_0^T L(t, u(t), \dot{u}(t)) \, dt. \]

Variational problems and hamiltonian systems have been studied extensively. Classic references of these subjects are [1, 2, 3]. Problems like (1) have maintained the interest of researchers as the recent literature on the topic testifies. For lagrangian functions of the type $L(t, x, y) = \frac{|y|^p}{p} + F(t, x)$ many solvability conditions have been given expanding the results of [1]. In [4] the function F was split up into two potentials, one of them with a property of subadditivity and the other with a bounded gradient. In [5] it was required a certain sublinearity condition on the gradient of the potential F; and, in [6] it was considered a potential F given by a sum of a subconvex function and a subquadratic one. In [7] the uniform coercivity of $\int_0^T F(t, x) \, dt$ was replaced by local coercivity of F in some positive measure subset of $[0, T]$. In [8], the authors took a similar potential to that in [6] getting new solvability conditions and they also studied the case in which the two potentials do not have any convexity.

The Lagrangian $L(t, x, y) = \frac{|y|^p}{p} + F(t, x)$ for $p > 1$ was treated in more recent papers. By using the dual least action principle, in [9] it was performed the extension of some results given in [1]; and, in [10] the authors improved the work done in [6]. On the other hand, by the minimax methods in critical point theory some existence theorems were obtained. In [11] it was employed a subquadratic potential F in Rabinowitz’s sense and in [12] F was taken as in [5].

Another source of problems, close to our proposal, is the one in which a p-laplacian-like operator is involved. Assuming that the function φ is a homeomorphism from \mathbb{R}^d into itself, it is considered the differential operator $u \mapsto (\varphi(u'))'$. In [13, 14, 15, 16, 17], using the Leray-Schauder degree theory, some existence results of solutions of equations like $(\varphi(u'))' = f(t, u(t), u'(t))$ were obtained under different boundary conditions (periodic, Dirichlet, von Neumann) and where f is not necessarily a gradient. We point out that our approach differs
from that of previous articles because we tackle the direct method of the calculus of variations.

In the Orlicz-Sobolev space setting, in [18] a constrained minimization problem associated to the existence of eigenvalues for certain differential operators involving \(N \)-functions was studied. Slightly away from the problems to be treated in this paper, we can mention [19, 20] where A. Cianchi dealt with the regularity of minimizers of action integrals defined on several variable functions.

In this article we consider lagrangian functions defined on Orlicz-Sobolev spaces \(W^{1}L_{\Phi}^{\phi} \) (see [21, 22, 23, 24]) and we use the direct method of calculus of variations. The exposition is organized as follows. In Section 2 we enumerate results related to Orlicz spaces, Orlicz-Sobolev spaces and composition operators. Almost all results in this section are essentially known. Conditions (2), (3) and (4) are the means to ensure that \(I \) is finitely defined on a non trivial subset of \(W^{1}L_{\phi}^{\phi} \) and \(I \) is Gâteaux differentiable in this subset. We develop these issues in Theorem 3.2 of Section 3. In Section 4 we prove that critical points of (5) are solutions of (1). Conditions to guarantee the coercitivity of action integrals are discussed in Section 5. Finally, our main theorem about existence of solutions of (1) is introduced and proved in Section 6.

We lay emphasis on that we use \(\Delta_{2} \)-condition only when necessary in a certain sense (see, for example, Lemma 5.2).

2. Preliminaries

For reader convenience, we give a short introduction to Orlicz and Orlicz-Sobolev spaces of vector valued functions and a list of results that we will use throughout the article. Classic references for Orlicz spaces of real valued functions are [21, 22, 23]. For Orlicz spaces of vector valued functions, see [25] and the references therein.

Hereafter we denote by \(\mathbb{R}^{+} \) the set of all non negative real numbers. A function \(\Phi : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \) is called an \(N \)-function if \(\Phi \) is given by

\[
\Phi(t) = \int_{0}^{t} \varphi(\tau) \, d\tau, \quad \text{for } t \geq 0,
\]

where \(\varphi : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \) is a right continuous non decreasing function satisfying \(\varphi(0) = 0, \varphi(t) > 0 \) for \(t > 0 \) and \(\lim_{t \to \infty} \varphi(t) = +\infty \).

Given a function \(\varphi \) as above, we consider the so-called right inverse function \(\psi \) of \(\varphi \) which is defined by \(\psi(s) = \sup_{t \leq s} \varphi(t) \). The function \(\psi \) satisfies the same properties as the function \(\varphi \), therefore we have an \(N \)-function \(\Psi \) such that \(\Psi' = \psi \). The function \(\Psi \) is called the complementary function of \(\Phi \).

We say that \(\Phi \) satisfies the \(\Delta_{2} \)-condition, denoted by \(\Phi \in \Delta_{2} \), if there exist constants \(K > 0 \) and \(t_{0} \geq 0 \) such that

\[
\Phi(2t) \leq K\Phi(t)
\]

for every \(t \geq t_{0} \). If \(t_{0} = 0 \), we say that \(\Phi \) satisfies the \(\Delta_{2} \)-condition globally (\(\Phi \in \Delta_{2} \) globally).
Let \(d \) be a positive integer. We denote by \(\mathcal{M}_d := \mathcal{M}_d([0,T]) \) the set of all measurable functions defined on \([0,T]\) with values on \(\mathbb{R}^d \) and we write \(u = (u_1, \ldots, u_d) \) for \(u \in \mathcal{M}_d \). In this paper we adopt the convention that bold symbols denote points in \(\mathbb{R}^d \).

Given an \(N \)-function \(\Phi \) we define the modular function \(\rho_\Phi : \mathcal{M}_d \to \mathbb{R}^+ \cup \{+\infty\} \) by

\[
\rho_\Phi(u) := \int_0^T \Phi(|u|) \, dt.
\]

Here \(| \cdot |\) is the euclidean norm of \(\mathbb{R}^d \). The Orlicz class \(C^\Phi_d = C^\Phi_d([0,T]) \) is given by

\[
C^\Phi_d := \{ u \in \mathcal{M}_d | \rho_\Phi(u) < \infty \}.
\] (7)

The Orlicz space \(L^\Phi_d = L^\Phi_d([0,T]) \) is the linear hull of \(C^\Phi_d \); equivalently,

\[
L^\Phi_d := \{ u \in \mathcal{M}_d | \exists \lambda > 0 : \rho_\Phi(\lambda u) < \infty \}.
\] (8)

The Orlicz space \(L^\Phi_d \) equipped with the Orlicz norm

\[
\|u\|_{L^\Phi} := \sup \left\{ \int_0^T u \cdot v \, dt | \rho_\Psi(v) \leq 1 \right\},
\]

is a Banach space. By \(u \cdot v \) we denote the usual dot product in \(\mathbb{R}^d \) between \(u \) and \(v \). The following alternative expression for the norm, known as Amemiya norm, will be useful (see [22, Thm. 10.5] and [26]). For every \(u \in L^\Phi_d \),

\[
\|u\|_{L^\Phi} = \inf_{k > 0} \frac{1}{k} \left(1 + \rho_\Phi(ku) \right).
\] (9)

The subspace \(E^\Phi_d = E^\Phi_d([0,T]) \) is defined as the closure in \(L^\Phi_d \) of the subspace \(L^\infty_d \) of all \(\mathbb{R}^d \)-valued essentially bounded functions. It is shown that \(E^\Phi_d \) is the only one maximal subspace contained in the Orlicz class \(C^\Phi_d \), i.e. \(u \in E^\Phi_d \) if and only if \(\rho_\Phi(\lambda u) < \infty \) for any \(\lambda > 0 \).

A generalized version of Hölder’s inequality holds in Orlicz spaces. Namely, if \(u \in L^\Phi_d \) and \(v \in L^\Psi_d \) then \(u \cdot v \in L^1_1 \) and

\[
\int_0^T v \cdot u \, dt \leq \|u\|_{L^\Phi} \|v\|_{L^\Psi}.
\] (10)

If \(X \) and \(Y \) are Banach spaces such that \(Y \subset X^* \), we denote by \(\langle \cdot, \cdot \rangle : Y \times X \to \mathbb{R} \) the bilinear pairing map given by \(\langle x^*, x \rangle = x^*(x) \). Hölder’s inequality shows that \(L^\Psi_d \subset [L^\Phi_d]^* \), where the pairing \(\langle v, u \rangle \) is defined by

\[
\langle v, u \rangle = \int_0^T v \cdot u \, dt
\] (11)

with \(u \in L^\Phi_d \) and \(v \in L^\Psi_d \). Unless \(\Phi \in \Delta_2 \), the relation \(L^\Psi_d = [L^\Phi_d]^* \) will not hold. In general, it is true that \([E^\Phi_d]^* = L^\Psi_d \).
Like in [22], we will consider the subset $\Pi(E_d^\Phi, r)$ of L_d^Φ given by

$$\Pi(E_d^\Phi, r) := \{ u \in L_d^\Phi | d(u, E_d^\Phi) < r \}.$$

This set is related to the Orlicz class C_d^Φ by means of inclusions, namely,

$$\Pi(E_d^\Phi, r) \subset rC_d^\Phi \subset \Pi(E_d^\Phi, r) \quad (12)$$

for any positive r. If $\Phi \in \Delta_2$, then the sets L_d^Φ, E_d^Φ, $\Pi(E_d^\Phi, r)$ and C_d^Φ are equal.

We define the Sobolev-Orlicz space $W^{1}L_d^\Phi$ (see [21]) by

$$W^{1}L_d^\Phi := \{ u | u \text{ is absolutely continuous and } u, \dot{u} \in L_d^\Phi \}.$$

$W^{1}L_d^\Phi$ is a Banach space when equipped with the norm

$$\|u\|_{W^1L^\Phi} = \|u\|_{L^\Phi} + \|\dot{u}\|_{L^\Phi}.$$

For a function $u \in L^1([0,T])$, we write $u = \overline{u} + \tilde{u}$ where $\overline{u} = \frac{1}{T} \int_0^T u(t) \, dt$ and $\tilde{u} = u - \overline{u}$.

As usual, if $(X, \| \cdot \|_X)$ is a Banach space and $(Y, \| \cdot \|_Y)$ is a subspace of X, we write $Y \hookrightarrow X$ and we say that Y is embedded in X when the restricted identity map $i_Y : Y \to X$ is bounded. That is, there exists $C > 0$ such that for any $y \in Y$ we have $\|y\|_X \leq C \|y\|_Y$. With this notation, Hölder’s inequality states that $L^\Phi_d \hookrightarrow [L^\Phi_d]^*$; and, it is easy to see that for every N-function Φ we have that $L^\infty_d \hookrightarrow L^1_d \hookrightarrow L^\Phi_d$.

Recall that a function $w : \mathbb{R}^+ \to \mathbb{R}^+$ is called a modulus of continuity if w is a continuous increasing function which satisfies $w(0) = 0$. For example, it can be easily shown that $w(s) = s\Phi^{-1}(1/s)$ is a modulus of continuity for every N-function Φ. We say that $u : [0,T] \to \mathbb{R}^d$ has modulus of continuity w when there exists a constant $C > 0$ such that

$$|u(t) - u(s)| \leq Cw(|t-s|). \quad (13)$$

We denote by $C^w([0,T], \mathbb{R}^d)$ the space of w-Hölder continuous functions. This is the space of all functions satisfying (13) for some $C > 0$ and it is a Banach space with norm

$$\|u\|_{C^w([0,T], \mathbb{R}^d)} := \|u\|_{L^\infty} + \sup_{t \neq s} \frac{|u(t) - u(s)|}{w(|t-s|)}.$$

An important aspect of the theory of Sobolev spaces is related to embedding theorems. There is an extensive literature on this question in the Orlicz-Sobolev space setting, see for example [27, 28, 29, 30, 31]. The next simple lemma is essentially known and we will use it systematically. For the sake of completeness, we include a brief proof of it.

Lemma 2.1. Let $w(s) := s\Phi^{-1}(1/s)$. Then, the following statements hold:
1. \(W^1 \Phi \hookrightarrow C^\infty([0, T], \mathbb{R}^d) \) and for every \(u \in W^1 \Phi \)
\[
|u(t) - u(s)| \leq \| \dot{u} \|_{L^\Phi} w(|t - s|),
\]
\[
\|u\|_{L^\infty} \leq \Phi^{-1} \left(\frac{1}{T} \right) \max\{1, T\} \|u\|_{W^1 \Phi} \quad \text{(Sobolev’s inequality).}
\]
2. For every \(u \in W^1 \Phi \) we have \(\tilde{u} \in L^\infty \) and
\[
\|\tilde{u}\|_{L^\infty} \leq T \Phi^{-1} \left(\frac{1}{T} \right) \|\dot{u}\|_{L^\Phi} \quad \text{(Wirtinger’s inequality).}
\]

Proof. For \(0 \leq s \leq t \leq T \), we get}
\[
|u(t) - u(s)| \leq \int_s^t |\dot{u}(\tau)| \, d\tau
\leq \|\chi_{[s,t]}\|_{L^\Phi} \|\dot{u}\|_{L^\Phi}
= \|\dot{u}\|_{L^\Phi} (t - s) \Phi^{-1} \left(\frac{1}{t - s} \right),
\]
using Hölder’s inequality and [22, Eq. (9.11)]. This proves the inequality (14).

Since \(u_i \) is continuous, from Mean Value Theorem for integrals, there exists \(s_i \in [0, T] \) such that \(u_i(s_i) = 1 \). Using this \(s_i \) value in (14) with \(u_i \) instead of \(u \) and taking into account that \(s \Phi^{-1}(1/s) \) is increasing, we obtain Wirtinger’s inequality for each \(u_i \). The inequality (16) follows easily from the corresponding result for each component of \(u \).

On the other hand, again by Hölder’s inequality and [22, Eq. (9.11)], we have}
\[
|\overline{u}| = \frac{1}{T} \int_0^T |u(s)| ds \leq \Phi^{-1} \left(\frac{1}{T} \right) \|u\|_{L^\Phi}.
\]
From (16), (18) and the fact that \(u = \overline{u} + \tilde{u} \), we obtain (15). This completes the proof of item 1.

Remark 1. As a consequence of the previous lemma, there exists a constant \(C \), only dependent on \(T \), such that
\[
\|u\|_{W^1 \Phi} \leq C (|\overline{u}| + \|\dot{u}\|_{L^\Phi})
\]
for every \(u \in W^1 \Phi \).

The Arzelà-Ascoli Theorem implies that \(C^\infty([0, T], \mathbb{R}^d) \hookrightarrow C([0, T], \mathbb{R}^d) \) is a compact embedding (see [32, Ch. 5] for the case \(w(s) = |s|^{\alpha} \) with \(0 < \alpha \leq 1 \); and, if \(w \) is arbitrary, the proof follows with some obvious modifications). Therefore we have the subsequent result.

Corollary 2.2. Every bounded sequence \(\{u_n\} \) in \(W^1_\Phi \) has an uniformly convergent subsequence.
Given a continuous function \(a \in C(\mathbb{R}^+,\mathbb{R}^+) \), we define the composition operator \(a : \mathcal{M}_d \to \mathcal{M}_d \) by \(a(u)(t) = a(|u(t)|) \). We will often use the following elementary consequence of Lemma 2.1.

Corollary 2.3. If \(a \in C(\mathbb{R}^+,\mathbb{R}^+) \) then \(a : W^{1,L}_d^{\Phi} \to L_1^{\infty}([0,T]) \) is bounded. More concretely, there exists a non decreasing function \(A : \mathbb{R}^+ \to \mathbb{R}^+ \) such that \(\|a(u)\|_{L_1^{\infty}([0,T])} \leq A(\|u\|_{W^{1,L}_d^{\Phi}}) \).

Proof. Let \(\alpha \in C(\mathbb{R}^+,\mathbb{R}^+) \) be a non decreasing majorant of \(a \), for example \(\alpha(s) := \sup_{0 \leq t \leq s} a(t) \). If \(u \in W^{1,L}_d^{\Phi} \), then, by Lemma 2.1,

\[
\alpha(\|u\|_{L^{\infty}}) \leq \alpha \left(\Phi^{-1} \left(\frac{1}{T} \right) \max\{1,T\}\|u\|_{W^{1,L_d^{\Phi}}} \right) =: A(\|u\|_{W^{1,L_d^{\Phi}}}).
\]

\(\square \)

The next lemma is an immediate consequence of principles related to operators of Nemitskii type, see [22, §17].

Lemma 2.4. The composition operator \(\varphi \) acts from \(\Pi(E_d^{\Phi},1) \) into \(C_1^{\Phi} \).

Proof. From [22, Lemma 9.1] we have that \(\varphi (B_{L^{\Phi}}(0,1)) \subset C_1^{\Phi} \), where \(B_X(u_0,r) \) is the open ball with center \(u_0 \) and radius \(r > 0 \) in the space \(X \). Now, applying [22, Lemma 17.1], we deduce that \(\varphi \) acts from \(\Pi(E_d^{\Phi},1) \) into \(C_1^{\Phi} \).

We also need the following technical lemma.

Lemma 2.5. Let \(\lambda > 0 \) and let \(\{u_n\}_{n \in \mathbb{N}} \) be a sequence of functions in \(\Pi(E_d^{\Phi},\lambda) \) converging to \(u \in \Pi(E_d^{\Phi},\lambda) \) in the \(L^{\Phi} \)-norm. Then, there exist a subsequence \(u_{n_k} \) and a real valued function \(h \in \Pi(E_d^{\Phi}([0,T]),\lambda) \) such that \(u_{n_k} \to u \ a.e. \) and \(|u_{n_k}| \leq h \ a.e. \).

Proof. Let \(r := d(u,E_d^{\Phi}) \), \(r < \lambda \). As \(u_n \) converges to \(u \), there exists a subsequence \((n_k) \) such that

\[
\|u_{n_k} - u\|_{L^{\Phi}} < \frac{\lambda - r}{2} \quad \text{and} \quad \|u_{n_k} - u_{n_{k+1}}\|_{L^{\Phi}} < 2^{-(k+1)}(\lambda - r).
\]

Let \(h : [0,T] \to \mathbb{R} \) be defined by

\[
h(x) = |u_{n_1}(x)| + \sum_{k=2}^{\infty} |u_{n_k}(x) - u_{n_{k-1}}(x)|.
\]

(20)

As a consequence of [22, Lemma 10.1] (see [25, Thm. 5.5] for vector valued functions), we have that \(d(v,E_d^{\Phi}) = d(|v|,E_d^{\Phi}) \) for any \(v \in L_d^{\Phi} \). Now

\[
d(|u_{n_1}|,E_1^{\Phi}) = d(u_{n_1},E_d^{\Phi}) \leq d(u_{n_1},u) + d(u,E_d^{\Phi}) < \frac{\lambda + r}{2}.
\]

Then

\[
d(h,E_1^{\Phi}) \leq d(h,|u_{n_1}|) + d(|u_{n_1}|,E_1^{\Phi}) < \lambda.
\]
Therefore, \(h \in \Pi(E_\Phi^\Phi, \lambda) \) and \(|h| < \infty \) a.e. We conclude that the series \(u_{n_1}(x) + \sum_{k=2}^\infty (u_{n_k}(x) - u_{n_{k-1}}(x)) \) is absolutely convergent a.e. and this fact implies that \(u_{n_k} \to u \) a.e. The inequality \(|u_{n_k}| \leq h \) follows straightforwardly from the definition of \(h \).

A common obstacle in Orlicz spaces, that distinguishes them from \(L^p \) spaces, is that a sequence \(u_n \in L^\Phi_d \) which is uniformly bounded by \(h \in L^\Phi_1 \) and a.e. convergent to \(u \) is not necessarily norm convergent. Fortunately, the subspace \(E_d \) has this property.

Lemma 2.6. Suppose that \(u_n \in L^\Phi_d \) is a sequence such that \(u_n \to u \) a.e. and assume that there exists \(h \in E^\Phi_1 \) with \(|u_n| \leq h \) a.e., then \(\|u_n - u\|_{L^\Phi} \to 0 \).

Proof. [23, p. 84] and [22, Thm. 10.3].

We recall some useful concepts.

Definition 2.7. Given a function \(I : U \to \mathbb{R} \) where \(U \) is an open set of a Banach space \(X \), we say that \(I \) has a Gateaux derivative at \(u \in U \) if there exists \(u^* \in X^* \) such that for every \(v \in X \)

\[
\lim_{s \to 0} \frac{I(u + sv) - I(u)}{s} = \langle u^*, v \rangle.
\]

See [33] for details.

Definition 2.8. Let \(X \) be a Banach space and let \(D \subset X \). A non linear operator \(T : D \to X^* \) is called demicontinuous if it is continuous when \(X \) is equipped with the strong topology and \(X^* \) with the weak* topology (see [34]).

3. Differentiability of action integrals in Orlicz spaces

We take a moment for discussing the relevance of the function \(f \) in the inequalities (2), (3) and (4), which are a direct generalization of the conditions [1, Eq (a), p. 10]. In particular, we are interested in seeing when for every \(f \in E_1^\Phi \) there exist \(b \in L_1^\Phi \) and a constant \(C > 0 \) such that

\[
\Phi(s + f(t)) \leq C\Phi(s) + b(t) \text{ for every } s > 0. \tag{21}
\]

If (21) is true, then we can suppose \(f = 0 \) in the equations (2) and (3) and the same considerations should be done with \(\varphi(s + f(t)) \).

The convexity of \(\Phi \) allows us to bound \(\Phi(s + f(t)) \) by the expression \(\frac{1}{2} \Phi(2s) + b(t) \) where \(b(t) := \frac{1}{2} \Phi(2f(t)) \in L_1^\Phi \) and \(f \in E_1^\Phi \). Therefore, we can always assume \(f = 0 \) in (2) and (3) at the price of making the value of \(\lambda \) smaller. In the special case that \(\Phi \in \Delta_2 \), the inequality (6) implies (21).

If \(\Phi \notin \Delta_2 \), then (21) may not be true. In fact, if we consider the \(N \)-function \(\Phi(s) = e^s - s - 1 \) which does not satisfy the \(\Delta_2 \)-condition and \(f(t) = \ln|\ln(t)| \)
for \(t \in [0, e^{-1}] \), then (21) does not hold. First, note that \(f(t) \geq 0 \) on \([0, e^{-1}]\) and
\[
\int_0^{e^{-1}} \Phi(\lambda f(t)) \, dt \leq \int_0^{e^{-1}} e^{\lambda f(t)} \, dt \leq \int_0^{e^{-1}} |\ln(t)|^\lambda \, dt < \infty
\]
for \(\lambda > 1 \), hence \(f \in E_1^\Phi \). Now, suppose that there exist \(b \in L_1^1 \) and \(C > 0 \) satisfying (21). From the inequality \(2/e^s \leq \Phi(s) + 1 \), we obtain
\[
\frac{1}{2} e^{s f(t)} \leq \Phi(s + f(t)) + 1 \leq Ce^s + b(t) + 1;
\]
next, dividing by \(e^s \) and taking \(s \to \infty \), we get \(\frac{1}{2} |\ln(t)| \leq C \) which is a contradiction.

Before addressing the main results of this section, we recall a definition.

Definition 3.1. We say that a function \(\mathcal{L} : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \) is a Carathéodory function if for fixed \((x, y) \) the map \(t \mapsto \mathcal{L}(t, x, y) \) is measurable and for fixed \(t \) the map \((x, y) \mapsto \mathcal{L}(t, x, y) \) is continuously differentiable for almost everywhere \(t \in [0, T] \).

Theorem 3.2. Let \(\mathcal{L} \) be a Carathéodory function satisfying (2), (3) and (4). Then the following statements hold:

1. The action integral given by (5) is finitely defined on \(E_d^\Phi(\lambda) := W^1L_d^\Phi \cap \{u|\dot{u} \in \Pi(E_d^\Phi, \lambda)\} \).
2. The function \(I \) is Gâteaux differentiable on \(E_d^\Phi(\lambda) \) and its derivative \(I' \) is demicontinuous from \(E_d^\Phi(\lambda) \) into \([W^1L_d^\Phi]^* \). Moreover, \(I' \) is given by the following expression
 \[
 \langle I'(u), v \rangle = \int_0^T \left\{ D_x\mathcal{L}(t, u, \dot{u}) \cdot v + D_u\mathcal{L}(t, u, \dot{u}) \cdot \dot{v} \right\} \, dt. \tag{22}
 \]
3. If \(\Psi \in \Delta_2 \) then \(I' \) is continuous from \(E_d^\Phi(\lambda) \) into \([W^1L_d^\Phi]^* \) when both spaces are equipped with the strong topology.

Proof. Let \(u \in E_d^\Phi(\lambda) \). Since \(\lambda \Pi(E_d^\Phi, r) = \Pi(E_d^\Phi, \lambda r) \), we have \(\dot{u}/\lambda \in \Pi(E_d^\Phi, 1) \).
Thus, as \(f \in E_1^\Phi \) and attending to (12), we get
\[
|\dot{u}|/\lambda + f \in \Pi(E_1^\Phi, 1) \subset C_1^\Phi.
\tag{23}
\]
By Corollary 2.3 and (2), we get
\[
|\mathcal{L}(\cdot, u, \dot{u})| \leq A(\|u\|_{W^1L^\Phi}) \left(b + \Phi \left(\frac{|\dot{u}|}{\lambda} + f \right) \right) \in L_1^1.
\]
This fact proves item 1.

We split up the proof of item 2 into four steps.

Step 1. The non linear operator \(u \mapsto D_x\mathcal{L}(t, u, \dot{u}) \) is continuous from \(E_d^\Phi(\lambda) \) into \(L_1^1([0, T]) \) with the strong topology on both sets.
If $u \in \mathcal{E}_d^\phi(\lambda)$, from (3) and (23), we obtain
\[
|D_x\mathcal{L}(\cdot, u, \dot{u})| \leq A(\|u\|_{W^1L^\phi} + \Phi \left(\frac{|\dot{u}|}{\lambda} + f\right)) \in L_1^1.
\]
(24)

Let $\{u_n\}_{n \in \mathbb{N}}$ be a sequence of functions in $\mathcal{E}_d^\phi(\lambda)$ and let $u \in \mathcal{E}_d^\phi(\lambda)$ such that $u_n \to u$ in $W^1L_\lambda^\phi$. From $u_n \to u$ in L_λ^ϕ, there exists a subsequence $\{u_{n_k}\}$ such that $u_{n_k} \to u$ a.e.; and, as $\dot{u}_n \to \dot{u} \in \mathcal{E}_d^\phi(\lambda)$, by Lemma 2.5, there exist a subsequence of $\{u_{n_k}\}$ (again denoted u_{n_k}) and a function $h \in \Pi(E_1^\phi, \lambda)$ such that $\dot{u}_{n_k} \to \dot{u}$ a.e. and $|\dot{u}_{n_k}| \leq h$ a.e. Since u_{n_k}, $k = 1, 2, \ldots$, is a strongly convergent sequence in $W^1L_\lambda^\phi$, it is a bounded sequence in $W^1L_\lambda^\phi$. According to Lemma 2.1 and Corollary 2.3, there exists $M > 0$ such that $\|a(u_{n_k})\|_{L^\infty} \leq M$, $k = 1, 2, \ldots$. From the previous facts and (24), we get
\[
|D_x\mathcal{L}(\cdot, u_{n_k}, \dot{u}_{n_k})| \leq M \left(b + \Phi \left(\frac{|h|}{\lambda} + f\right)\right) \in L_1^1.
\]

On the other hand, by the Carathéodory condition, we have
\[
D_x\mathcal{L}(t, u_{n_k}(t), \dot{u}_{n_k}(t)) \to D_x\mathcal{L}(t, u(t), \dot{u}(t)) \quad \text{for a.e. } t \in [0, T].
\]

Applying the Dominated Convergence Theorem we conclude the proof of step 1.

Step 2. The non-linear operator $u \mapsto D_y\mathcal{L}(t, u, \dot{u})$ is continuous from $\mathcal{E}_d^\phi(\lambda)$ with the strong topology into $[L_\lambda^\phi]^*$ with the weak* topology.

Let $u \in \mathcal{E}_d^\phi(\lambda)$. From (23) and Lemma 2.4, it follows that
\[
\varphi\left(\frac{|\dot{u}|}{\lambda} + f\right) \in C^\psi_1;
\]
(25)

and, Corollary 2.3 implies $a(u) \in L_\lambda^\infty$. Therefore, in virtue of (4) we get
\[
|D_y\mathcal{L}(\cdot, u, \dot{u})| \leq A(\|u\|_{W^1L^\phi} + c + \varphi\left(\frac{|\dot{u}|}{\lambda} + f\right)) \in L_1^\psi.
\]
(26)

Note that (24), (26) and the imbeddings $W^1L_\lambda^\phi \hookrightarrow L_\lambda^\infty$ and $L_\lambda^\phi \hookrightarrow [L_\lambda^\phi]^*$ imply that the second member of (22) defines an element in $[W^1L_\lambda^\phi]^*$.

Let $u_n, u \in \mathcal{E}_d^\phi(\lambda)$ such that $u_n \to u$ in the norm of $W^1L_\lambda^\phi$. We must prove that $D_y\mathcal{L}(\cdot, u_n, \dot{u}_n) \rightharpoonup D_y\mathcal{L}(\cdot, u, \dot{u})$. On the contrary, there exist $v \in L_\lambda^\phi$, $\epsilon > 0$ and a subsequence of $\{u_n\}$ (denoted $\{u_{n_k}\}$ for simplicity) such that
\[
|\langle D_y\mathcal{L}(\cdot, u_{n_k}, \dot{u}_{n_k}), v \rangle - \langle D_y\mathcal{L}(\cdot, u, \dot{u}), v \rangle| \geq \epsilon.
\]
(27)

We have $u_n \to u$ in L_λ^ϕ and $\dot{u}_n \to \dot{u}$ in L_λ^ϕ. By Lemma 2.5, there exist a subsequence u_{n_k} and a function $h \in \Pi(E_1^\phi, \lambda)$ such that $u_{n_k} \to u$ a.e., $\dot{u}_{n_k} \to \dot{u}$ a.e. and $|\dot{u}_{n_k}| \leq h$ a.e. As in the previous step, since u_n is a convergent sequence, the Corollary 2.3 implies that $a(|u_{n_k}(t)|)$ is uniformly bounded by a
Consequently, as $v \in L^p_d$ and employing Hölder’s inequality, we obtain that

$$\sup_k |D_y\mathcal{L}(:, u_{n_k}, \dot{u}_{n_k}) \cdot v| \in L^1.$$

Finally, from the Lebesgue Dominated Convergence Theorem, we deduce

$$\int_0^T D_y\mathcal{L}(t, u_{n_k}, \dot{u}_{n_k}) \cdot v \, dt \to \int_0^T D_y\mathcal{L}(t, u, \dot{u}) \cdot v \, dt$$

which contradicts the inequality (27). This completes the proof of step 2.

Step 3. We will prove (22). The proof follows similar lines as [1, Thm. 1.4].

For $u \in E^d_\lambda(\cdot)$ and $0 \neq v \in W^{1, L^s}_d$, we define the function

$$H(s, t) := \mathcal{L}(t, u(t) + sv(t), \dot{u}(t) + s\dot{v}(t)).$$

From [22, Lemma 10.1] (or [25, Thm. 5.5]) we obtain that if $|u| \leq |v|$ then $d(u, E^s_d) \leq d(v, E^s_d)$. Therefore, for $|s| \leq s_0 := (\lambda - d(\dot{u}, E^s_d))/\|v\|_{W^{1, L^s}}$ we have

$$d\left(\dot{u} + s\dot{v}, E^s_d\right) \leq d\left(\dot{u} + |s|\dot{v}, E^s_d\right) \leq d\left(\dot{u}, E^s_d\right) + s\|\dot{v}\|_{L^s} < \lambda.$$

Thus $\dot{u} + s\dot{v} \in \Pi(E^s_d, \lambda)$ and $|\dot{u}| + s|\dot{v}| \in \Pi(E^s_d, \lambda)$. These facts imply, in virtue of Theorem 3.2 item 1, that $I(u + sv)$ is well defined and finite for $|s| \leq s_0$. And, using Corollary 2.3, we also see that

$$\|a((u + sv))\|_{L^\infty} \leq A(\|u + sv\|_{W^{1, L^s}}) \leq A(\|u\|_{W^{1, L^s}} + s_0\|v\|_{W^{1, L^s}}) := M$$

Now, applying Chain Rule, (24), (26) the monotonicity of φ and Φ, the fact that $v \in L^\infty_d$ and $\dot{v} \in L^s_d$ and Hölder’s inequality, we get

$$|D_sH(s, t)| = |D_x\mathcal{L}(t, u + sv, \dot{u} + s\dot{v}) \cdot v + D_y\mathcal{L}(t, u + sv, \dot{u} + s\dot{v}) \cdot \dot{v}|$$

$$\leq M \left[\left(b(t) + \Phi \left(\frac{|\dot{u}| + s_0|\dot{v}|}{\lambda} + f(t) \right) \right) |v| \right.$$

$$\left. + \left(c(t) + \varphi \left(\frac{|\dot{u}| + s_0|\dot{v}|}{\lambda} + f(t) \right) \right) |\dot{v}| \right] \in L^1.$$

Consequently, I has a directional derivative and

$$\langle I'(u), v \rangle = \frac{d}{ds}I(u + sv)|_{s=0} = \int_0^T \{D_x\mathcal{L}(t, u, \dot{u}) \cdot v + D_y\mathcal{L}(t, u, \dot{u}) \cdot \dot{v} \} \, dt.$$

Moreover, from (24), (26), Lemma 2.1 and the previous formula, we obtain

$$|\langle I'(u), v \rangle| \leq \|D_x\mathcal{L}\|_{L^1} \|v\|_{L^\infty} + \|D_y\mathcal{L}\|_{L^s} \|\dot{v}\|_{L^s} \leq C\|v\|_{W^{1, L^s}}$$
with a appropriate constant C. This completes the proof of the Gâteaux differentiability of I.

Step 4. The operator $I' : E_d^\Phi(\lambda) \to [W^1 L_d^\Phi]^*$ is demicontinuous. This is a consequence of the continuity of the mappings $u \mapsto D_x L(t, u, \dot{u})$ and $u \mapsto D_y L(t, u, \dot{u})$. Indeed, if $u_n, u \in E_d^\Phi(\lambda)$ with $u_n \to u$ in the norm of $W^1 L_d^\Phi$ and $v \in W^1 L_d^\Phi$, then

$$
\langle I'(u_n), v \rangle = \int_0^T \{ D_x L(t, u_n, \dot{u}_n) \cdot v + D_y L(t, u_n, \dot{u}_n) \cdot \dot{v} \} \, dt \\
\to \int_0^T \{ D_x L(t, u, \dot{u}) \cdot v + D_y L(t, u, \dot{u}) \cdot \dot{v} \} \, dt \\
= \langle I'(u), v \rangle.
$$

In order to prove item 3, it is necessary to see that the maps $u \mapsto D_x L(t, u, \dot{u})$ and $u \mapsto D_y L(t, u, \dot{u})$ are norm continuous from $E_d^\Phi(\lambda)$ into L^1_T and $L^\Phi_{T, Y}$ respectively. The continuity of the first map has already been proved in step 1. Let $u_n, u \in E_d^\Phi(\lambda)$ with $\| u_n - u \|_{W^1 L^\Phi} \to 0$. Therefore, there exist a subsequence $u_{n_k} \in E_d^\Phi(\lambda)$ and a function $h \in \Pi(E_d^\Phi, \lambda)$ such that (28) holds true. And, as $\Psi \in \Delta_2$ then the right hand side of (28) belongs to E_d^Φ. Now, invoking Lemma 2.6, we prove that from any sequence u_n which converges to u in $W^1 L_d^\Phi$ we can extract a subsequence such that $D_y L(t, u_{n_k}, \dot{u}_{n_k}) \to D_y L(t, u, \dot{u})$ in the strong topology. The desired result is obtained by a standard argument.

The continuity of I' follows from the continuity of $D_x L$ and $D_y L$ using the formula (22).

4. Critical points and Euler-Lagrange equations

In this section we derive the Euler-Lagrange equations associated to critical points of action integrals on the subspace of T-periodic functions. We denote by $W^1 L_d^\Phi_T$ the subspace of $W^1 L_d^\Phi$ containing all T-periodic functions. As usual, when Y is a subspace of the Banach space X, we denote by Y^\perp the annhilator subspace of X^*, i.e. the subspace that consists of all bounded linear functions which are identically zero on Y.

We recall that a function $f : \mathbb{R}^d \to \mathbb{R}$ is called strictly convex if $f \left(\frac{x + y}{2} \right) < \frac{1}{2} (f(x) + f(y))$ for $x \neq y$. It is well known that if f is a strictly convex and differentiable function, then $D_x f : \mathbb{R}^d \to \mathbb{R}^d$ is a one-to-one map (see, e.g. [35, Thm. 12.17]).

Theorem 4.1. Let $u \in E_d^\Phi(\lambda)$ be a T-periodic function. The following statements are equivalent:

1. $I'(u) \in (W^1 L_d^\Phi)^\perp$.
2. $D_y L(t, u(t), \dot{u}(t))$ is an absolutely continuous function and u solves the following boundary value problem

\[
\begin{align*}
\frac{d}{dt} D_y L(t, u(t), \dot{u}(t)) &= D_x L(t, u(t), \dot{u}(t)) \quad \text{a.e. } t \in (0, T) \\
\dot{u}(0) - u(T) &= D_y L(0, u(0), \dot{u}(0)) - D_y L(T, u(T), \dot{u}(T)) = 0.
\end{align*}
\]
Moreover if $D_y L(t, x, y)$ is T-periodic with respect to the variable t and strictly convex with respect to y, then $D_y L(0, u(0), \dot{u}(0)) - D_y L(T, u(T), \dot{u}(T)) = 0$ is equivalent to $\dot{u}(0) = \dot{u}(T)$.

Proof. The condition $I(u) \in (W^1 L^p)^\perp$ and (22) imply
\[
\int_0^T D_y L(t, u(t), \dot{u}(t)) \cdot \dot{v}(t) \, dt = -\int_0^T D_x L(t, u(t), \dot{u}(t)) \cdot v(t) \, dt,
\]
for every $v \in W^1 L^p$. By [1, pp. 6-7] we obtain that $D_y L(t, u(t), \dot{u}(t))$ is absolutely continuous and T-periodic, therefore it is differentiable a.e. on $[0, T]$ and the first equality of (31) holds true. This completes the proof of 1 implies 2. The proof of 2 implies 1 follows easily from (22) and (31).

The last part of the theorem is a consequence of $D_y L(T, u(T), \dot{u}(T)) = D_y L(0, u(0), \dot{u}(0)) = D_y L(T, u(T), \dot{u}(0))$ and the injectivity of $D_y L(T, u(T), \cdot)$.

\[
\square
\]

5. Coercivity discussion

We recall a usual definition in the context of calculus of variations.

Definition 5.1. Let X be a Banach space and let D be an unbounded subset of X. Suppose that $J : D \subset X \to \mathbb{R}$. We say that J is coercive if $J(u) \to +\infty$ when $\|u\|_X \to +\infty$.

It is well known that coercivity is a useful ingredient in the process of establishing existence of minima. Therefore, we are interested in finding conditions which ensure the coercivity of the action integral I acting on $C^2_0(\lambda)$. For this purpose, we need to introduce the following extra condition on the lagrangian function \mathcal{L}
\[
\mathcal{L}(t, x, y) \geq \alpha_0 \Phi \left(\frac{|y|}{\lambda} \right) + F(t, x), \tag{32}
\]
where $\alpha_0, \lambda > 0$ and $F : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is a Carathéodory function, i.e. $F(t, x)$ is measurable with respect to t for every fixed $x \in \mathbb{R}^d$ and it is continuous at x for a.e. $t \in [0, T]$. We observe that, from (32) and (2), we have $F(t, x) \leq a(|x|) b_0(t)$ with $b_0(t) := b(t) + \Phi(f(t)) \in L^1([0, T])$. In order to guarantee that integral $\int_0^T F(t, u) \, dt$ is finite for $u \in W^1 L^p$, we need to assume
\[
|F(t, x)| \leq a(|x|) b_0(t), \quad \text{for a.e. } t \in [0, T] \quad \text{and for every } x \in \mathbb{R}^d. \tag{33}
\]
As we shall see in Theorem 5.3, when \mathcal{L} satisfies (2), (3), (4), (32) and (33), the coercivity of the action integral I is related to the coercivity of the functional
\[
J_{C, \nu}(u) := \rho \frac{\|u\|}{\lambda} - C \|u\|^\nu_{L^p}, \tag{34}
\]
for $C, \nu > 0$. If $\Phi(x) = |x|^p/p$ then $J_{C, \nu}$ is clearly coercive for $\nu < p$. For more general Φ the situation is more interesting as it will be shown in the following lemma.
Lemma 5.2. Let Φ and Ψ be complementary N-functions. Then:

1. If $C\Lambda < 1$, then $J_{C,1}$ is coercive.
2. If $\Psi \in \Delta_2$ globally, then there exists a constant $\alpha_\Phi > 1$ such that, for any $0 < \mu < \alpha_\Phi$,

$$\lim_{\|u\|_{L^\Phi} \to \infty} \frac{\rho_\Phi \left(\frac{u}{\Lambda} \right)}{\|u\|_{L^\Phi}^\mu} = +\infty.$$ \hfill (35)

In particular, the functional $J_{C,\mu}$ is coercive for every $C > 0$ and $0 < \mu < \alpha_\Phi$. The constant α_Φ is one of the so-called Matuszewska-Orlicz indices (see [36, Ch. 11]).
3. If $J_{C,1}$ is coercive with $C > 1$, then $\Psi \in \Delta_2$.

Proof. By (9) we have

$$(1 - CA)\|u\|_{L^\Phi} + CA\|u\|_{L^\Phi} = \|u\|_{L^\Phi} \leq \Lambda + \Lambda \rho_\Phi \left(\frac{u}{\Lambda} \right),$$

then

$$\frac{(1 - CA)}{\Lambda} \|u\|_{L^\Phi} - 1 \leq \rho_\Phi \left(\frac{u}{\Lambda} \right) - C\|u\|_{L^\Phi} = J_{C,1}(u).$$

This inequality shows that $J_{C,1}$ is coercive and therefore item 1 is proved.

In virtue of [37, Eq. (2.8)], the Δ_2-condition on Ψ, [36, Thm. 11.7] and [36, Cor. 11.6], we obtain constants $K > 0$ and $\alpha_\Phi > 1$ such that

$$\Phi(rs) \geq Kr^s\Phi(s)$$ \hfill (36)

for any $0 < \nu < \alpha_\Phi$, $s \geq 0$ and $r > 1$.

Let $1 < \mu < \nu < \alpha_\Phi$ and let $r > \Lambda$ be a constant that will be specified later. Then, from (36) and (9), we get

$$\int_0^T \Phi \left(\frac{|u|}{\Lambda} \right) dt \geq K \left(\frac{r}{\Lambda} \right)^\nu \int_0^T \Phi \left(\frac{r^{-1}|u|}{\Lambda} \right) dt \geq K \left(\frac{r}{\Lambda} \right)^\nu r^{-1} \|u\|_{L^\Phi}^\nu - 1 \|u\|_{L^\Phi}^\nu.$$

We choose $r = \|u\|_{L^\Phi}/2$. Since $\|u\|_{L^\Phi} \to +\infty$ we can assume $\|u\|_{L^\Phi} > 2\Lambda$. Thus $r > \Lambda$ and

$$\int_0^T \Phi \left(\frac{|u|}{\Lambda} \right) dt \geq K \frac{\|u\|_{L^\Phi}^\nu}{2\nu \Lambda^\nu} \to +\infty \quad \text{as} \quad \|u\|_{L^\Phi} \to +\infty,$$

because $\nu > \mu$.

With the aim of proving item 3, we suppose that $\Psi \notin \Delta_2$. By [22, Thm. 4.1], there exists a sequence of real numbers r_n such that $r_n \to \infty$ and

$$\lim_{n \to \infty} \frac{r_n \psi(r_n)}{\Psi(r_n)} = +\infty.$$ \hfill (37)
Now, we choose \(u_n \) such that \(|u_n| = \Lambda \psi(r_n)\chi_{[0, \frac{1}{r_n}]}\). Then, by [22, Eq. (9.11)], we get
\[
\|u_n\|_{L^\Phi} = \Lambda \frac{\psi(r_n)}{\Psi(r_n)} \Psi^{-1}(\Psi(r_n)) = \Lambda \frac{r_n \psi(r_n)}{\Psi(r_n)} \to \infty, \quad \text{as} \quad n \to \infty.
\]

And, using Young’s equality (see [22, Eq. (2.7)]), we have
\[
J_{C,1}(u_n) = \int_0^T \Phi \left(\frac{|u_n|}{\Lambda} \right) dt - C\|u_n\|_{L^\Phi}
\]
\[
= \frac{1}{\Psi(r_n)} [\Phi(\psi(r_n)) - C\Lambda r_n \psi(r_n)]
\]
\[
= \frac{1}{\Psi(r_n)} [r_n \psi(r_n) - \Psi(r_n) - C\Lambda r_n \psi(r_n)]
\]
\[
= \frac{(1 - C\Lambda) r_n \psi(r_n)}{\Psi(r_n)} - 1.
\]

From (37) and the condition \(C\Lambda > 1 \), we obtain \(J_{C,1}(u_n) \to -\infty \), which contradicts the coercivity of \(J_{C,1} \).

Next, we present two results that establish coercivity of action integrals under different assumptions.

Theorem 5.3. Let \(L \) be a lagrangian function satisfying (2), (3), (4), (32) and (33). We assume the following conditions:

1. There exist a non negative function \(b_1 \in L^1 \) and a constant \(\mu > 0 \) such that for any \(x_1, x_2 \in \mathbb{R}^d \) and a.e. \(t \in [0, T] \)
\[
|F(t, x_2) - F(t, x_1)| \leq b_1(t)(1 + |x_2 - x_1|^\mu).
\]

 We suppose that \(\mu < \alpha_\Psi \), with \(\alpha_\Psi \) as in Lemma 5.2, in the case that \(\Psi \in \Delta_2 \); and, we suppose \(\mu = 1 \) if \(\Psi \) is an arbitrary \(N \)-function.

2. \[
\int_0^T F(t, x) \ dt \to \infty \quad \text{as} \quad |x| \to \infty.
\]

3. \(\Psi \in \Delta_2 \) or, alternatively, \(\alpha_0^{-1} T \Phi^{-1} (1/T) \|b_1\|_{L^1} \Lambda < 1 \).

Then the action integral \(I \) is coercive.

Proof. In the subsequent estimates, we use (32), the decomposition \(u = \bar{u} + \tilde{u} \),
H"older’s inequality and Wirtinger’s inequality.

\[
I(u) \geq \alpha_0 \rho_\Phi \left(\frac{\dot{u}}{\Lambda} \right) + \int_0^T F(t, u) \, dt \\
= \alpha_0 \rho_\Phi \left(\frac{\dot{u}}{\Lambda} \right) + \int_0^T [F(t, u) - F(t, \bar{u})] \, dt + \int_0^T F(t, \bar{u}) \, dt \\
\geq \alpha_0 \rho_\Phi \left(\frac{\dot{u}}{\Lambda} \right) - \int_0^T b(t)(1 + |\tilde{u}(t)|^\mu) \, dt + \int_0^T F(t, \bar{u}) \, dt \\
\geq \alpha_0 \rho_\Phi \left(\frac{\dot{u}}{\Lambda} \right) - \|b_1\|_{L^1}(1 + \|\tilde{u}\|_{L^\infty}^\mu) + \int_0^T F(t, \bar{u}) \, dt \\
\geq \alpha_0 \rho_\Phi \left(\frac{\dot{u}}{\Lambda} \right) - \|b_1\|_{L^1} \left(1 + \left[T \Phi^{-1} \left(\frac{1}{T} \right) \right]^{\mu} \|\tilde{u}\|_{L^\infty}^\mu \right) \\
+ \int_0^T F(t, \bar{u}) \, dt \\
= \alpha_0 J_{C, \mu}(\dot{u}) - \|b_1\|_{L^1} + \int_0^T F(t, \bar{u}) \, dt,
\]

where \(C = \alpha_0^{-1} \left[T \Phi^{-1} \left(\frac{1}{T} \right) \right]^{\mu} \|b_1\|_{L^1} \). Let \(u_n \) be a sequence in \(E^\Phi_d(\lambda) \) with \(\|u_n\|_{W^{1,1}} \to \infty \) and we have to prove that \(I(u_n) \to \infty \). On the contrary, suppose that for a subsequence, still denoted by \(u_n \), \(I(u_n) \) is upper bounded. Then, from (19) and passing to a subsequence, we can assume that \(\dot{u}_n \) is unbounded in \(L^\Phi_d \) or \(\bar{u}_n \) is unbounded in \(\mathbb{R}^d \). On the other hand, (33) and (39) imply that the integral \(\int_0^T F(t, \bar{u}_n) \, dt \) is lower bounded. These observations, the lower bound of \(I \) given in (40), assumption 3 in Theorem 5.3 and Lemma 5.2 imply that \(I(u_n) \) is not upper bounded. This contradiction leads us to the desired result. \(\square \)

Based on [1] we say that \(F \) satisfies the condition (A) if \(F(t, x) \) is a Carathéodory function, \(F \) verifies (33) and \(F \) is continuously differentiable with respect to \(x \). Moreover, the next inequality holds

\[
|D_x F(t, x)| \leq a(|x|)b_0(t), \quad \text{for a.e. } t \in [0, T] \text{ and for every } x \in \mathbb{R}^d.
\] (41)

The following result was proved in [1, p. 18].

Lemma 5.4. Suppose that \(F \) satisfies condition (A) and (39), \(F(t, \cdot) \) is differentiable and convex a.e. \(t \in [0, T] \). Then, there exists \(x_0 \in \mathbb{R}^d \) such that

\[
\int_0^T D_x F(t, x_0) \, dt = 0.
\] (42)

Theorem 5.5. Let \(L \) be as in Theorem 5.3 and let \(F \) be as in Lemma 5.4. Moreover, assume that \(\Psi \in \Delta_2 \) or, alternatively \(\alpha_0^{-1} T \Phi^{-1} (1/T) a(|x_0|)b_0 \|x_0\|_{L^1} \Lambda < 1 \), with \(a \) and \(b_0 \) as in (33) and \(x_0 \in \mathbb{R}^d \) any point satisfying (42). Then \(I \) is coercive.
Lemma 6.1. Let \(\Phi \) be a non negative function, inequality (33), H"older’s inequality, Corollary 2.3 and Wirtinger’s inequality, we get
\[
I(u) = \alpha_t \rho \-F(t,x)\ dt + \int_0^T D_x F(t,x) \cdot (u - x) dt
\]
\[
= \alpha_t \rho \-F(t,x)\ dt + \int_0^T D_x F(t,x) \cdot \tilde{u} dt
\]
\[
+ \int_0^T D_x F(t,x) \cdot (\bar{u} - x) dt
\]
\[
\leq \alpha_t \rho \-F(t,x)\ dt + \int_0^T D_x F(t,x) \cdot \tilde{u} dt
\]
\[
\leq \alpha t \rho \-F(t,x)\ dt - a(\|x\|)\|b_0\|_{L^1} T \cdot \Phi^{-1} (1/T) \| \tilde{u} \|_{L^\phi}
\]
\[
= \alpha_t J \cdot (\tilde{u}) - a(\|x\|)\|b_0\|_{L^1}
\]
with \(C := \alpha_t a(\|x\|)\|b_0\|_{L^1} T \cdot \Phi^{-1} (1/T) \).

Let \(\alpha \) be as in Corollary 2.3, i.e. \(\alpha \) is a non decreasing majorant of \(a \). Using that \(F(t, \bar{u}/2) \leq (1/2) F(t, u) + (1/2) F(t, -\bar{u}) \) and taking into account that \(\Phi \) is a non negative function, inequality (33), H"older’s inequality, Corollary 2.3 and Wirtinger’s inequality, we obtain
\[
I(u) \geq \alpha_t \rho \-F(t, \bar{u}/2)\ dt - \int_0^T F(t, -\bar{v}) dt
\]
\[
\geq 2 \int_0^T F(t, \bar{u}/2) dt - \|b_0\|_{L^1} \|a(\tilde{u})\|_{L^\infty}
\]
\[
\geq 2 \int_0^T F(t, \bar{u}/2) dt - \|b_0\|_{L^1} \alpha(\|\tilde{u}\|_{L^\infty})
\]
\[
\geq 2 \int_0^T F(t, \bar{u}/2) dt - C_1 \alpha(C_2\|\tilde{u}\|_{L^\phi})
\]
for certain constants \(C_1, C_2 > 0 \).

Finally, reasoning in a similar way to that developed in the end of the proof of Theorem 5.3 we have that \(I(u_n) \to \infty \).

6. Main result

In order to find conditions for the lower semicontinuity of \(I \), we perform a little adaptation of a result of [3].

Lemma 6.1. Let \(\mathcal{L}(t,x,y) \) and \(F(t,x) \) be Carathéodory functions satisfying
\[
\mathcal{L}(t,x,y) \geq \Phi(|y|) + F(t,x),
\]
where \(\Phi \) is an \(N \)-function. In addition, suppose that \(F \) satisfies inequality (33) and \(\mathcal{L}(t,x,\cdot) \) is convex in \(\mathbb{R}^d \) for each \((t,x) \in [0,T] \times \mathbb{R}^d \). Let \(\{u_n\} \subset W^1 L^p \)
be a sequence such that u_n converges uniformly to a function $u \in W^1L^\Phi$ and u_n converges in the weak topology of L^1_d to \dot{u}. Then

$$I(u) \leq \liminf_{n \to \infty} I(u_n).$$

(46)

Proof. First, we point out that (45) and (33) imply that I is defined on W^1L^Φ taking values on the interval $(-\infty, +\infty]$. Let $\{u_n\}$ be a sequence satisfying the assumptions of the theorem. We define the Carathéodory function $\dot{L} = L - F$ and we denote by \dot{I} its associated action integral. Using [3, Thm. 2.1, p. 243], we get

$$\int_0^T \dot{L}(t, u, \dot{u}) \ dt \leq \liminf_{n \to \infty} \int_0^T \dot{L}(t, u_n, \dot{u}_n) \ dt.$$

(47)

Taking account of the uniform convergence of u_n and the fact that F is a Carathéodory function, we obtain that $F(t, u_n(t)) \to F(t, u(t))$ a.e. $t \in [0, T]$. Since the sequence u_n is uniformly bounded, from (33) follows that there exists $g \in L^1([0, T])$ such that $|F(t, u_n(t))| \leq g(t)$. Now, by the Dominated Convergence Theorem, we have that

$$\lim_{n \to \infty} \int_0^T F(t, u_n(t)) \ dt = \int_0^T F(t, u(t)) \ dt.$$

(48)

Finally, as a consequence of (47) and (48), we obtain (46).

\[\square\]

Theorem 6.2. Let Φ and Ψ be complementary N-functions. Suppose that the Carathéodory function $L(t, x, y)$ is strictly convex at y, D_yL is T-periodic with respect to T and (2), (3), (4), (32), (33) and (39) are satisfied. In addition, assume that some of the following statements hold (we recall the definitions and properties of α_0, b_1, x_0 and b_0 from (32), (38), (42) and (41) respectively):

1. $\Psi \in \Delta_2$ and (38).
2. (38) and $\alpha_0^{-1}T\Phi^{-1}(1/T)\|b_1\|_{L^1} \Lambda < 1$.
3. $\Psi \in \Delta_2$, F satisfies condition (A) and $F(t, \cdot)$ is convex a.e. $t \in [0, T]$.
4. As item 3 but with $\alpha_0^{-1}T\Phi^{-1}(1/T)\alpha(|x_0|)\|b_0\|_{L^1} \Lambda < 1$ instead of $\Psi \in \Delta_2$.

Then, problem (1) has a solution.

Proof. First of all, note that (32), (33) and (39) imply that I is lower bounded on $W^1L^\Phi_T$. Let $\{u_n\} \subset W^1L^\Phi_T$ be a minimizing sequence for the problem $\min\{I(u) | u \in W^1L^\Phi_T\}$. Since $I(u_n)$, $n = 1, 2, \ldots$ is bounded, Theorem 5.3 (or Theorem 5.5 according to which of the items 1-4 hold true) implies that $\{u_n\}$ is norm bounded in $W^1L^\Phi_T$. Hence, in virtue of Corollary 2.2, we can assume that u_n converges uniformly to a T-periodic continuous function u. The space L^Φ_d is a predual space, concretely $L^\Phi_d = [E^\Phi_d]^*$. Thus, by [23, Cor. 5, p. 148] and since \dot{u}_n is bounded in L^Φ_d, there exists a subsequence (again denoted by
such that \(\hat{u}_n \) converges to a function \(v \in L^\Phi_T \) in the weak* topology of \(L^\Phi_T \).

From this fact and the uniform convergence of \(u_n \) to \(u \), we obtain that

\[
\int_0^T \dot{\xi} \cdot u \, dt = \lim_{n \to \infty} \int_0^T \dot{\xi} \cdot u_n \, dt = -\lim_{n \to \infty} \int_0^T \xi \cdot \dot{u}_n \, dt = -\int_0^T \xi \cdot v \, dt
\]

for every \(T \)-periodic function \(\xi \in C^\infty([0, T], \mathbb{R}^d) \subset E^\Psi_d \). Thus \(v = \dot{u} \) a.e. \(t \in [0, T] \) (see [1, p. 6]) and \(u \in W^{1, L}_T \).

Now, taking into account the relations \([L^1_d]^* = L^\infty_d \subset E^\Psi_d \) and \(L^\Phi_d \subset L^1_d \), we have that \(\hat{u}_n \) converges to \(\dot{u} \) in the weak topology of \(L^1_d \). Consequently, Theorem 6.1 applied to the \(N \)-function \(\alpha_0 \Phi (\frac{\cdot}{\Lambda}) \) implies that

\[
I(u) \leq \liminf_{n \to \infty} I(u_n) = \min_{u \in W^{1, L}_T} I(u).
\]

Hence, \(u \) is a minimum and therefore a critical point of \(I \). Finally, invoking Theorem 4.1, the proof concludes.

\[\square\]

Acknowledgments

The first four authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223. The third and fourth authors are partially supported by a CONICET grant number 11220090100714CO. The fifth author is supported by a AVEN- TURES - ANR-12-BLAN-BS01-0001-01 and ECOS-CONICyT grant number C13E05.

References

