Moduli space of meromorphic differentials with marked horizontal separatrices

Corentin Boissy

To cite this version:
Corentin Boissy. Moduli space of meromorphic differentials with marked horizontal separatrices. 2015.
hal-01170878v3
We study framed translation surfaces corresponding to meromorphic differentials on compact Riemann surfaces, for which a horizontal separatrix is marked for each pole or zero. Such geometric structures naturally appear when studying flat geometry surfaces “near” the Deligne-Mumford boundary.

We provide an explicit formula for the number of connected components of the corresponding strata, and give a simple topological invariant that distinguish them.

1. Introduction

A nonzero holomorphic one-form (Abelian differential) on a compact Riemann surface naturally defines a flat metric with conical singularities on this surface. Geometry and dynamics on such flat surfaces, in relation to geometry and dynamics on the corresponding moduli space of Abelian differentials is a very rich topic and has been widely studied in the last 30 years. It is related to interval exchange transformations, billiards in polygons, Teichmüller dynamics.

A non-compact translation surface corresponds to a one-form on a non-compact Riemann surface. The dynamics and geometry on some special cases of non-compact translation surfaces have been studied more recently.

In [2], we have investigated the case of translation surfaces that come from meromorphic differentials defined on compact Riemann surfaces. In this case, we obtain non-compact translation surfaces with infinite area. Such structures naturally appear when studying compactifications of strata of the moduli space of Abelian differentials. For instance, Eskin, Kontsevich and Zorich [3], based on results of Rafi [8],
showed that when a sequence of Abelian differentials \((X_i, \omega_i)\) converges to a boundary point in the Deligne-Mumford compactification, then subsets \((Y_{i,j}, \omega_{i,j})\) corresponding to thick components of the \(X_i\), after suitable rescaling converge to meromorphic differentials (see [3], Theorem 10). Similar results were independently proved by Grushevsky and Krichever [4], by Koch and Hubbard [5] and by Smillie.

In this paper, a meromorphic differential on a compact Riemann surface will be called translation surface with poles, or simply translation surface when there is no confusion with the usual (compact) translation surfaces.

This work was suggested to the author by Smillie, as a step in a project of constructing a geometric compactification of the strata of the moduli space of Abelian differentials by using only flat geometry. A (compact) translation surface “near” the boundary, should be seen as a collection of translation surfaces with poles, glued together suitably after cutting out a neighborhood of a collection of singularities (including all the poles, in order to obtain in the end compact translation surface). However, the gluing operation requires some extra combinatorial data, that can be expressed in terms of a “frame” on the translation surfaces with poles.

As in [1], a framed translation surface is a translation surface with a choice, for each singularity of a horizontal separatrix (see Section 3 for a precise definition). When the singularity is a conical singularity (i.e., a zero of the corresponding one-form), it corresponds to a horizontal separatrix. When the singularity corresponds to a non-simple pole, it corresponds to an equivalent class of horizontal geodesics going to infinity for the flat metric. A singularity of degree \(n \in \mathbb{Z}\) will have \(|n+1|\) possible choices of horizontal separatrices. Such framed translation surface will be also called translation surface with marked horizontal separatrices.

The number of connected components of the moduli space of framed (compact) translation surfaces was computed by the author in [1]. In this paper, we do the same for the moduli space of framed translation surfaces with poles. We show the following theorems.

Theorem 1.1. Let \(g \geq 1\). Let \(\mathcal{H}\) be a stratum of the moduli space of genus \(g\) meromorphic differentials, and \(\mathcal{C} \subset \mathcal{H}\) be a nonhyperelliptic connected component. Let \(\mathcal{C}^{\text{hor}}\) be the moduli space of translation surfaces in \(\mathcal{C}\) with marked horizontal separatrices. We assume that the set of poles does not consists of a pair of simple poles. We have:

- If there exists a simple pole, or if there are only even degree singularities, then \(\mathcal{C}^{\text{hor}}\) is connected.
• Otherwise, \(\mathcal{C}^{\text{hor}} \) has two connected components that are distinguished by an invariant easily computable in terms of the flat structure.

When the set of poles consists of a pair of simple poles, we have the following result.

• If there are only even degree zeroes, then \(\mathcal{C}^{\text{hor}} \) is connected.
• Otherwise, \(\mathcal{C}^{\text{hor}} \) has two connected components that are distinguished by an invariant easily computable in terms of the flat structure.

The topological invariant that distinguish the connected components \(\mathcal{C}^{\text{hor}} \) will be defined in Section 5.1.

The case of hyperelliptic connected components is easy and studied in Section 5.3. In this case, there are more connected components for \(\mathcal{C}^{\text{hor}} \) due to the extra symmetry of the surfaces.

The genus zero case is particular: there might be much more components.

Theorem 1.2. Let \(\mathcal{H} = \mathcal{H}(n_1, \ldots, n_r) \) be stratum of genus zero translation surfaces. Let \(\mathcal{H}^{\text{hor}} \) be the moduli space of translation surfaces in \(\mathcal{H} \) with marked horizontal separatrices. Let

\[
N = \prod_{i,j} \gcd \left(\{n_k\}_{k \notin \{i,j\}} \cup \{n_i + 1, n_j + 1\} \right)
\]

• If there exists \(i \in \{1, \ldots, r\} \) such that \(n_i = -1 \), then \(\mathcal{H}^{\text{hor}} \) is connected.
• If all \(n_i \) are different from \(-1\) and if there are at most two odd degree singularities, then there are \(N \) connected components of \(\mathcal{H}^{\text{hor}} \) that are distinguished by an invariant easily computable in terms of the flat structure.
• Otherwise, there are \(2N \) connected components of \(\mathcal{H}^{\text{hor}} \) that are distinguished by an invariant easily computable in terms of the flat structure.

The topological invariant that distinguish the connected components \(\mathcal{H}^{\text{hor}} \) will be defined in Section 6.

Structure of the paper. The paper is organized as follow:

• Section 2 is devoted to generalities and background about translation surfaces with poles. The classification theorem of the connected components of moduli space of meromorphic differentials by the author is recalled, and few important statements about the structure of these connected components. We end
with the proof of a preliminary result about the existence, in each connected components, of a surface with a pole of prescribed degree and zero residue.

- Section 3 gives the precise definition of the moduli space of framed meromorphic differentials, and reduces the problem to the computation of the index of a subgroup H of a product of cyclic group.
- Section 4 describes paths in the underlying stratum that produces some particular elements in H that will be ultimately proven to the the generators of H. One key step there is to show that these elements exists for each connected components of each strata.
- Section 5 defines first a topological invariant for the positive genus, then proves Theorem 1.1.
- Section 6 defines a topological invariant for the zero genus, then proves Theorem 1.2.

Acknowledgements. I thank John Smillie for motivating the work on this paper and interesting discussions. This work is partially supported by the ANR Project "GeoDym".

2. Preliminaries

2.1. Holomorphic one-forms and flat structures. Let X be a Riemann surface and let ω be a holomorphic one-form. For each $z_0 \in X$ such that $\omega(z_0) \neq 0$, integrating ω in a neighborhood of z_0 gives local coordinates whose corresponding transition functions are translations, and therefore X inherits a flat metric, on $X \setminus \Sigma$, where Σ is the set of zeroes of ω.

In a neighborhood of an element of Σ, such metric admits a conical singularity of angle $(k + 1)2\pi$, where k is the order of the corresponding zero of ω. Indeed, a zero of order k is given locally, in suitable coordinates by $\omega = (k + 1)z^kdz$. This form is precisely the pre-image of the constant form dz by the ramified covering $z \rightarrow z^{k+1}$. In terms of flat metric, it means that the flat metric defined locally by a zero of order k appear as a connected covering of order $k + 1$ over a flat disk, ramified at zero.

When X is compact, the pair (X, ω), seen as a smooth surface with such translation atlas and conical singularities, is usually called a translation surface.

If ω is a meromorphic differential on a compact Riemann \overline{X}, we can consider the translation atlas defined defined by ω on $X = \overline{X} \setminus \Sigma'$, where Σ' is the set of poles of ω. We obtain a translation surface with infinite
area. We will call such surface translation surface with poles, or simply translation surface.

Convention 2.1. When speaking of a translation surface with poles \(S = (X, \omega)\). The surface \(S\) equipped with the flat metric is non-compact. The underlying Riemann surface \(X\) is a punctured surface and \(\omega\) is a holomorphic one-form on \(X\). The corresponding closed Riemann surface is denoted by \(\overline{X}\), and \(\omega\) extends to a meromorphic differential on \(\overline{X}\) whose set of poles is precisely \(\overline{X} \setminus X\).

Similarly to the case of Abelian differentials. A saddle connection is a geodesic segment that joins two conical singularities (or a conical singularity to itself) with no conical singularities on its interior.

We fix some terminology, that we will use during this paper.

- The order, or degree of a zero of \(\omega\) is defined as usual.
- The order of a pole of \(\omega\) is defined as usual. It is a positive integer.
- A singularity of \((X, \omega)\) is a zero or a pole of \(\omega\). By convention, the degree of the singularity \(P\) will correspond to its order if \(P\) is a zero, or the opposite of its order if \(P\) is a pole. For instance, a pole of order 2 corresponds to a singularity of degree -2. We denote by \(\deg(P) \in \mathbb{Z}\) the degree of \(P\).

With the above convention, we recall that it is well known that
\[
\sum_{i=1}^{r} n_i = 2g - 2,
\]
where \(\{n_1, \ldots, n_r\}\) is the set (with multiplicities) of degree of singularities of \((X, \omega)\).

2.2. Local model for poles.

The neighborhood of a pole of order one is an infinite cylinder with one end. Indeed, up to rescaling, the pole is given in local coordinates by \(\omega = \frac{1}{z}dz\). Writing \(z = e^{z'}\), we have \(\omega = dz'\), and \(z'\) is in an infinite cylinder.

Now we describe the flat metric in a neighborhood of a pole of order \(k \geq 2\) (see also [9, 2]). First, consider the meromorphic 1-form on \(\mathbb{C} \cup \{\infty\}\) defined on \(\mathbb{C}\) by \(\omega = \frac{1}{z}dz\). Changing coordinates \(w = 1/z\), we see that this form has a pole \(P\) of order \(k + 2\) at \(\infty\), with zero residue. In terms of translation structure, a neighborhood of the pole is obtained by taking an infinite cone of angle \((k + 1)2\pi\) and removing a compact neighborhood of the conical singularity. Since the residue is the only local invariant for a pole of order \(k\), this gives a local model for a pole with zero residue.

Now, define \(U_R = \{z \in \mathbb{C}||z| > R\}\) equipped with the standard flat metric. Let \(V_R\) be the Riemann surface obtained after removing from \(U_R\) the \(\pi\)-neighborhood of the real half line \(\mathbb{R}^-\), and identifying by the translation \(z \to z + i2\pi\) the lines \(-i\pi + \mathbb{R}^-\) and \(i\pi + \mathbb{R}^-\). The
surface V_R is naturally equipped with a holomorphic one-form ω coming from dz on V_R. We claim that this one-form has a pole of order 2 at infinity and residue -1. Indeed, start from the one-form on U_R' defined by $(1 + 1/z)dz$ and integrate it. Choosing the usual determination of $\ln(z)$ on $C \setminus \mathbb{R}^-$, one gets the map $z \to z + \ln(z)$ from $U_R' \setminus \mathbb{R}^-$ to C, which extends to an injective holomorphic map f from U_R' to V_R, if R' is large enough. Furthermore, the pullback of the form ω on V_R gives $(1 + 1/z)dz$. Then, the claim follows easily after the change of coordinate $w = 1/z$.

Let $k \geq 2$. The pullback of the form $(1 + 1/z)dz$ by the map $z \to z^{k-1}$ gives $((k-1)z^{k-2} + (k-1)/z)dz$, i.e. we get at infinity a pole of order k with residue $-(k-1)$. In terms of flat metric, a neighborhood of a pole of order k and residue $-(k-1)$ is just the natural cyclic $(k-1)$–covering of V_R. Then, suitable rotating and rescaling gives the local model for a pole of order k with a nonzero residue.

2.3. Moduli space. If (X, ω) and (X', ω') are such that there is a biholomorphism $f : X \to X'$ with $f^* \omega' = \omega$, then f is an isometry for the metrics defined by ω and ω'. Even more, for the local coordinates defined by ω, ω', the map f is in fact a translation.

As in the case of Abelian differentials, we consider the moduli space of meromorphic differentials, where $(X, \omega) \sim (X', \omega')$ if there is a biholomorphism $f : X \to X'$ such that $f^* \omega' = \omega$. A stratum corresponds to prescribed degree of zeroes and poles. We denote by $\mathcal{H}(n_1^{a_1}, \ldots, n_r^{a_r})$ the stratum that corresponds to meromorphic differentials with a_i singularities of order n_i. Such stratum is nonempty if and only if $\sum_{i=1}^r a_i n_i = 2g - 2$ for some integer $g \geq 0$ and if there is not just one simple pole.

We define the topology on this space in the following way: a small neighborhood of S, with conical singularities Σ, is defined to be the equivalent classes of surfaces S' for which there is a differentiable injective map $f : S' \setminus V(\Sigma) \to S'$ such that $V(\Sigma)$ is a (small) neighborhood of Σ, Df is close the identity in the translation charts, and the complement of the image of f is a union on disks. One can easily check that this topology is Hausdorff.

2.4. Connected components of the moduli space of meromorphic differentials. The connected components of the moduli space of meromorphic differentials were classified by the author in [2]. Here we recall this classification, and state some technical facts that appear in the proof, and that are necessary for this paper. First, recall the well known fact that any stratum of genus zero meromorphic differentials is
connected since it corresponds more or less to a moduli space of marked points on the sphere.

Let γ be a simple closed curve parametrized by the arc length on a translation surface that avoids the singularities. Then $t \to \gamma'(t)$ defines a map from S^1 to S^1. We denote by $\text{Ind}(\gamma)$ the index of this map.

Assume that the surface has genus one. Let a, b be a pair of closed curves representing a symplectic basis of the homology of S, then we define the rotation number of S as

$$\text{rot}(S) = \gcd(\text{Ind}(a), \text{Ind}(b), n_1, \ldots, n_r, p_1, \ldots, p_s)$$

where n_1, \ldots, n_r are the order of zeroes of S and p_1, \ldots, p_s are the order of poles of S. We can show that it is an invariant of connected components. We have the following result.

Theorem 2.2. Let $\mathcal{H}(n_1, \ldots, n_r, \ldots, p_1, \ldots, p_s)$, with $n_i > 0$, $p_j > 0$ and $\sum_j p_j > 1$ be a stratum of genus one meromorphic differentials. Let d be a positive divisor of $N = \gcd(n_1, \ldots, n_r, p_1, \ldots, p_s)$. There is a unique connected component of $\mathcal{H}(n_1, \ldots, n_r, p_1, \ldots, p_s)$ with rotation number d, except when $r = s = 1$ and $d = N$, where such component does not exists.

A translation surface $S = (X, \omega)$ is hyperelliptic if the underlying Riemann surface is hyperelliptic, i.e. there is an involution i such that X/i is the Riemann sphere, and if ω satisfies $i^*\omega = -\omega$.

Assume that the translation surface S has only even degree singularities $S \in \mathcal{H}(2n_1, \ldots, 2n_r, -2p_1, \ldots, -2p_s)$. Let $(a_i, b_i)_{i \in \{1, \ldots, g\}}$ be a collection of simple closed curves representing a symplectic basis of the homology of S. We define the spin structure of S as

$$\sum_{i=1}^{g} (\text{ind}(a_i) + 1)(\text{ind}(b_i) + 1) \mod 2$$

It is an invariant of connected components of the moduli space of meromorphic differentials. When the surface S has only a pair of poles that are simple, and with even degree zeroes, i.e. S is in the stratum $\mathcal{H}(2n_1, \ldots, 2n_r, -1, -1)$, it is also possible to define a “spin structure” invariant by considering a surface in $\mathcal{H}(2n_1, \ldots, 2n_r)$ obtained after cutting the ends of the two infinite cylinders, and gluing them together (see [2]).

Note that an elementary computation shows that, when a surface of genus one has only even degree singularities, then it has an even spin structure if and only if its rotation number is odd.

In the next theorem, we say that the set of poles and zeroes is:
• of hyperelliptic type if the degree of zeroes are or the kind \{2n\} or \{n, n\}, for some positive integer \(n\), and if the degree of the poles are of the kind \{-2p\} or \{-p, -p\}, for some positive integer \(p\).
• of even type if the degrees of zeroes are all even, and if the degrees of the poles are either all even, or are \{-1, -1\}.

Theorem 2.3. Let \(H = \mathcal{H}(n_1, \ldots, n_r, -p_1, \ldots, -p_s)\), with \(n_i, p_j > 0\) be a stratum of genus \(g \geq 2\) meromorphic differentials. We have the following.

1. If \(\sum_i p_i\) is odd and greater than two, then \(H\) is nonempty and connected.
2. If \(\sum_i p_i = 2\) and \(g = 2\), then:
 • if the set of poles and zeroes is of hyperelliptic type, then there are two connected components, one hyperelliptic, the other not (in this case, these two components are also distinguished by the parity of the spin structure)
 • otherwise, the stratum is connected.
3. If \(\sum_i p_i > 2\) or if \(g > 2\), then:
 • if the set of poles and zeroes is of hyperelliptic type, there is exactly one hyperelliptic connected component, and one or two nonhyperelliptic components that are described below. Otherwise, there is no hyperelliptic component.
 • if the set of poles and zeroes is of even type, then \(H\) contains exactly two nonhyperelliptic connected components that are distinguished by the parity of the spin structure. Otherwise \(H\) contains exactly one nonhyperelliptic component.

The proof of these theorem involve some constructions, introduced first by Kontsevich and Zorich in [7]. These constructions are called *breaking up a zero* and *bubbling a handle*. We do not give a precise definition here since we will generalize them in Section 4.1, but we summarize the important properties.

• **Breaking up a zero** is a local surgery in a neighborhood of a singularity of order \(n > 0\) (the metric is unchanged outside that neighborhood), that replaces that singularity by a pair of singularities of order \(n_1, n_2\), with \(n_1 + n_2 = n\). We can show (see [2]) that each connected component of the moduli space of meromorphic differentials can be obtained from a connected component of a stratum of the form \(H(n, -p_1, \ldots, -p_r)\) (called a minimal component) after successive use of that surgery.
• **Bubbling a handle** is a local surgery in a neighborhood of a singularity of order \(n > 0\), that replaces that singularity by
a singularity of order $n + 2$. Since the metric is not changed outside that neighborhood, the genus of the surface increases by one. We can show (see [2]) that each minimal connected component can be obtained starting from a genus zero stratum, and after successive use of that surgery.

2.5. **Poles with zero residues.** The geometric constructions involved in Section 4 often require the use of a pole with zero residue. Here we give a necessary and sufficient condition for a connected component of stratum to contain a surface with a pole of a given order with zero residue.

The following lemma lists some well known cases when a pole necessarily have a nonzero residue.

Lemma 2.4. Let ω be a meromorphic one-form on a closed Riemann surface S and P be a (non-simple) pole. Then, P has necessarily nonzero residue in the following two cases.

- $S = \mathbb{C}P^1$ and ω has exactly two poles and a zero.
- There exists exactly one other pole, which is simple.

Proof. For the first case: let p and q be the order of the poles. We identify $\mathbb{C}P^1$ with $\mathbb{C} \cup \{\infty\}$, and can assume that $P = 0$, the other pole is 1, and the zero of ω is at ∞. Then, up to a multiple constant, $\omega = \frac{1}{z^p (1-z)^q} dz$, and we easily check that the residue at 0 is nonzero.

For the second case, the residue of a simple pole is nonzero and if P is the only other pole, it has opposite residue by Stokes’ theorem. □

Proposition 2.5. Let $C \subset \mathcal{H}(n_1, \ldots, n_r, -p_1, \ldots, -p_s)$, with $n_i, p_j > 0$ be a connected component of the moduli space of meromorphic differentials. We assume that there exists $p \in \{p_1, \ldots, p_s\}$, such that $p > 1$. We assume that we are not in the case of the previous lemma. Then, there exists in C a flat surface with a pole of order p with zero residue.

Proof. The case is trivial when there is only one pole. In this proof, we will assume first that there are exactly two poles of order p and q, (by assumption, we must have $p, q > 1$). This leads to the study of three cases, depending on the genus. Then, we will deal with the case of when there are at least three poles.

Case 1: two poles, genus zero: Since we are not in the case of the previous lemma, there are necessarily at least two zeroes. We start from $(\mathbb{C}P^1, z^{p-2} dz)$, $(\mathbb{C}P^1, z^{p-2} dz)$, then break the zero P of the first one (resp. Q of the second one) into a pair of zeroes P_1, P_2 of order p_1, p_2 (resp. Q_1, Q_2 of order q_1, q_2), so that there is a vertical saddle connexion γ_1 (resp. γ_2) of length ε joining the two singularities. We
obtain two surfaces S_1 and S_2. Then, cut the γ_i, and paste the left part of each one to the right part of the other one (see Figure 1). We obtain a flat surface in $\mathcal{H}(-p, -q, p_1 + q_1 + 1, p_2 + q_2 + 1)$. Choosing suitably p_i, q_i, we can obtain any stratum with two zeroes. The other ones are obtained from these ones after suitably breaking up zeroes. Since each stratum in genus zero is connected, the case is proven.

![Figure 1. Surface of genus zero with two poles and no residue](image)

Case 2: two poles, genus one: We first build suitable surface in any component of the stratum $\mathcal{H}(-p, -q, p + q)$ of genus one surfaces. We start from $S_0 = (\mathbb{CP}^1, z^{p-2}dz)$ and S_2 as previously. The surface S_0 has a zero P of order $p - 2$, and the surface S_2 has a pair of zeroes Q_1, Q_2 of orders q_1, q_2 with $q_1 + q_2 = q - 2$.

Consider a metric segment $[P_2, P_3]$ on S_0, with P on its middle, and such that one of the angular sectors at P defined by this segment has angle π (see Case a- of Figure 2). Similarly, we consider a segment $[Q_2, Q_3]$ on S_2, with Q_2 on its middle and the same condition on the angular sector at Q_1. We remark that such segment exists, since Q_1, Q_2 are obtained after breaking up a singularity, and in this case, there is by construction (see [7]) a segment joining Q_1 to Q_2 that we can assume to be arbitrarily small. We can assume that the two segments are vertical, isometric, and with opposite orientation. Then, cutting the surfaces along these segments, and gluing them accordingly to Figure 2, one gets a surface S in $\mathcal{H}(-p, -q, p + q)$. We must check that all connected components of this stratum are obtained. We first consider a basis for the homology of S: we take a smooth path η_b homotopic to the segment b. We can arrange so that its index is $p + q_2$. Similarly, we have a smooth path η_c, homotopic to the segment c with index p, and η_b, η_c define a symplectic basis of S. So the rotation number of the surface is $\gcd(q_2, p, q)$, with q_2 that can be any integer in $\{0, \ldots, q-2\}$. If $q > p$, we can clearly obtain any divisor of $\gcd(-p, -q, p + q)$, so we obtain any connected component. When $p = q$, one cannot obtain
is this way the component with rotation number $p - 1$. But since the rotation number must divide p, we are in the case $p = q = 2$. In this case, we glue two Euclidean planes as in Figure 2, b). Here, paths η_a and η_c define a symplectic basis of S, and we see that the rotation number is 1, since the index of η_a is 1. Finally, once obtained any connected component of $\mathcal{H}(-p, -q, p + q)$, breaking up the zero in a suitable way gives any component of any stratum of genus one with two non-simple poles.

Case 3: two poles, higher genus. Here, suitably bubbling handles from genus one surfaces leads to any minimal connected component in higher genus, and breaking up the zero leads to any connected component of the moduli space of meromorphic differentials.

Case 4: at least three poles

We first built a genus zero surface with three poles of order p, q, r respectively. We assume $p, q, r > 1$. We start from three spheres S_p, S_q, S_r with exactly one pole of order p, q, r respectively and one zero (of order
Consider on \(S_q \) an infinite horizontal segment \(l_q \) joining the zero to the pole \(Q \) (\(l_q \) is chosen so that it identifies by a translation map to the half-line \(] - \infty, 0[\)), then consider the infinite horizontal band of width 1 with bottom side \(l_q \). Cut this band, and glue together by translation the two horizontal sides. One obtains a surface, still denoted \(S_q \) with a small vertical boundary component of length 1, and the pole \(Q \) has now a nonzero residue. We do the same for \(S_r \), but starting from an half-line \(l_r \) that identifies to \(]0, \infty[\). Then, on \(S_p \), we cut along a small vertical segment of length 1, that is attached to a singularity. Then, as in Figure 3, we glue by translation the vertical boundary component of \(S_q \) to the corresponding one of \(S_p \), and the vertical boundary component of \(S_r \) to the corresponding one of \(S_p \). This defines a (closed) flat sphere with a pole \(P \) of zero residue, two poles \(Q, R \) of nonzero residue, and a single singularity of positive degree. The case when \(Q \) or \(R \) are simple poles is easy and left to the reader. Note also that we can easily add other poles (with non zero residues) by a similar construction: we start from an infinite line joining, say \(Q \) to the singularity of positive degree, and consider the band of width \(\varepsilon << 1 \). Then, glue the small vertical boundary component to a sphere with a pole of order \(m \) and a vertical boundary component, constructed as before, and iterate this construction until we have the required collection of poles. Note that this does not change the residue of \(P \).

Now, suitably bubbling handles and breaking up zeroes, we obtain any connected component with at least three poles, and this does not change the residue of \(P \).

3. Moduli spaces of framed meromorphic differentials

As in [1], a frame on a translation surface \(S \) is a map \(F_S \) from a finite alphabet \(\mathcal{A} \) to a discrete combinatorial data of \(S \).
For a suitable collection of frames on translation surfaces in a stratum \(\mathcal{H}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \), we define the corresponding moduli space of framed surface by identifying \((S, F_S)\) and \((S', F_{S'})\) if there is a translation mapping from \(S\) to \(S'\) that is consistent with the frames.

We are interested in two cases. The first case is when the alphabet \(\mathcal{A} \) admits a partition \(\sqcup_{i=1}^r \mathcal{A}_i \) with \(|\mathcal{A}_i| = \alpha_i \) and the collection of frames we consider are all possible one-to-one maps \(F_S \) from \(\mathcal{A} \) to the set of singularities of \(S \) such that, for all \(i \), for all \(a \in \mathcal{A}_i \), \(F_S(a) \) is a singularity of \(S \) of degree \(n_i \). We obtain the moduli space of translation surface with named singularities \(\mathcal{H}^{\text{sing}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \).

The following proposition will be useful.

Proposition 3.1. The connected components of \(\mathcal{H}^{\text{sing}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \) are in one-to-one correspondance with the connected components of \(\mathcal{H}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \).

Proof. This is clearly the case for genus zero stratum. Otherwise, we use the fact that each connected component of \(\mathcal{H}^{\text{sing}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \) is adjacent to the minimal stratum obtained by collapsing all singularities of positive degree. Then the proof is similar the the proof of Proposition 7.2 of [2]. See also the connected sum construction of this paper in Section 4.1. □

Now we define a more specific combinatorial datum for a singularity.

Definition 3.2. Let \(P \) be a singularity of \(S \) which is not a simple pole. An **horizontal separatrix** for \(P \) is an equivalent class of (horizontal) geodesics \(\gamma : [a, b] \to S \), satisfying \(\gamma' = 1 \), \(\lim_{t \to a} \gamma(t) = P \) with the following conditions:

- if \(\deg(P) > 0 \): \(a = 0 \) and \(\gamma_1 \sim \gamma_2 \) if they coincide on a subinterval of the form \([0, \varepsilon] \).
- if \(\deg(P) < -1 \): \(a = -\infty \), and \(\gamma_1 \sim \gamma_2 \) if the distance for the euclidean metric between \(\gamma_1(t) \) and \(\gamma_2(t) \) is bounded as \(t \) tends to \(-\infty \).

Definition 3.3. For a singularity \(P \), we denote by \(h_P \) the number of possible choices of horizontal separatrices. Note that we clearly have \(h_P = |\deg(P) + 1| \).

Now we define the second moduli space of framed meromorphic differentials. It corresponds choosing a horizontal separatrix for each singularity. More precisely, we still assume that \(\mathcal{A} \) admits a partition \(\sqcup_{i=1}^r \mathcal{A}_i \) with \(|\mathcal{A}_i| = \alpha_i \) and the collection of frames we consider are all possible maps \(F_S \) such that:
• if \(n_i \neq -1 \) then for all \(a \in A_i \), \(\tilde{F}_S(a) \) is a horizontal separatrix for a singularity of degree \(n_i \).

• if \(n_i = -1 \) then for all \(a \in A_i \), \(\tilde{F}_S(a) \) is a singularity of degree \(-1 \).

• if \(a \neq b \), then the singularity corresponding to \(\tilde{F}_S(a) \) is different from the singularity corresponding to \(\tilde{F}_S(b) \).

We obtain the moduli space of translation surface with marked horizontal separatrices \(\mathcal{H}^{\text{hor}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \).

Denote by \(\pi_h : \mathcal{H}^{\text{hor}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \rightarrow \mathcal{H}^{\text{sing}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \) and \(\pi_s : \mathcal{H}^{\text{sing}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \rightarrow \mathcal{H}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \) the coverings obtained by forgetting the frames.

Let \(C \) be a connected component of \(\mathcal{H}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \). From Proposition 3.1, \(\mathcal{C}^{\text{sing}} = \pi_s^{-1}(C) \) is connected. We want to compute the number of connected components of \(\mathcal{C}^{\text{hor}} = (\pi_h)^{-1}\mathcal{C}^{\text{sing}} \subset \mathcal{H}^{\text{hor}}(n_1^{\alpha_1}, \ldots, n_r^{\alpha_r}) \).

We choose \(S_b^{\text{hor}} \) a base element of \(\mathcal{C}^{\text{hor}} \) and \(S_b^{\text{sing}} = \pi_h(S_b^{\text{hor}}) \) the corresponding flat surface (with marked singularities). For each singularity \(P \) of \(S_b^{\text{sing}} \) which is not a simple pole, the set of horizontal separatrices is naturally identified to the cyclic group \(\mathbb{Z}/h_P\mathbb{Z} \). The elements of fiber \(\pi_h^{-1}(S_b^{\text{sing}}) \), i.e. all the possible frames on the surface \(S_b^{\text{sing}} \), are therefore identified with the group

\[
\text{Hor} = \prod_P \mathbb{Z}/h_P\mathbb{Z},
\]

where the product is taken over all singularities of degree different from \(-1\).

The number of connected component of \(\mathcal{C}^{\text{hor}} \) is clearly the index of the subgroup \(\text{Mon} \) of \(\text{Hor} \), defined as the image of monodromy group of the covering \(\pi_h \), restricted to \(\mathcal{C}^{\text{hor}} \).

Definition 3.4. Let \(\text{Hor} \) be the group defined above, and let \(P \) be a singularity of the surface \(S_b^{\text{hor}} \). We denote by \(\delta_P \) the element in \(\text{Hor} \) which is 1 on the factor corresponding to \(P \), and zero everywhere else. If \(P \) is a simple pole, then \(\delta_P = 0 \).

The goal of the next section is to prove the following two propositions, which gives a collection of elements that are in \(\text{Mon} \).

Proposition 3.5. Let \(S_b^{\text{hor}} \) be a framed genus zero translation surface.

Let \(P, Q \) be a pair of singularities of \(S_b^{\text{hor}} \). We have

\[
\tau_{P,Q} := \deg(Q)\delta_P + \deg(P)\delta_Q \in \text{Mon}.
\]

Note that \(\tau_{P,Q} = (\deg(P) + \deg(Q) + 1)(\delta_P + \delta_Q) \).
Proposition 3.6. Let S_{b}^{hor} be a framed translation surface of genus $g \geq 1$, such that the underlying translation surface is not in a hyperelliptic connected component, or in a stratum of the kind $\mathcal{H}(-1, -1, n_{1}, \ldots, n_{r})$, with $n_{i} > 0$.

(1) Let P, Q be a pair of singularities of S_{b}^{hor}. We assume that neither P nor Q is the only pole of S_{b}^{hor}. We have
$$\tau_{P,Q} := \deg(Q)\delta_{P} + \deg(P)\delta_{Q} \in \text{Mon.}$$

(2) Let P be a singularity of S_{b}^{hor}. We have
$$\sigma_{P} := 2\delta_{P} \in \text{Mon.}$$

If the underlying translation surface is in a nonhyperelliptic connected component of a stratum of the kind $\mathcal{H}(-1, -1, n_{1}, \ldots, n_{r})$, with $n_{i} > 0$, then the previous statement is still true if we assume that neither P or Q are poles.

4. Some elementary moves

4.1. Connected sums. Let S, S' be translation surfaces. Let $N \in S$, be a singularity of degree $n \geq 0$ and let $N' \in S'$ be a singularity of degree $n' = -2-n < 0$. We assume that N' has zero residue. A pointed neighborhood $V \setminus \{N'\}$ of N' is isometric to the complement of a metric disk centered in 0, in the cone defined by the form $z^{-2-n'}dz = z^{n}dz$. Hence, after scaling (shrinking) appropriately the surface S' so that this metric disk is isometric (as a translation surface) to a neighborhood U of P, we can glue together $S \setminus U$ and $S' \setminus V$ along their boundary to get a translation surface. This surgery is a flat version of the topological connected sum of two surfaces. If $n \leq -2$, $n' \geq 0$, the construction is the same by reversing the roles of S, S'. If $n = -1$, then $n' = -1$, we must assume that the two simple poles have opposite residues, and the construction is easy.

We are interested in some particular cases for S', where it generalizes the two surgeries introduced by Kontsevich and Zorich in [7], breaking up a singularity and bubbling a handle.

If S' is a sphere with three singularities, i.e. $S' \in H(-n - 2, n_{1}, n_{2})$, the above construction, when possible, replaces the singularity of degree n to a pair of singularities of degree n_{1}, n_{2} with $n = n_{1} + n_{2}$.

- If $n \geq 0$ and $n_{1}, n_{2} \geq 0$, the construction is always possible and is precisely “breaking up a singularity” (see [7]).
- If $n \leq -1$, the construction is always possible, and breaks up the pole of degree n into a pair of singularities of degree n_{1} and n_{2}.
• If \(n \geq 0 \) and either \(n_1 \) or \(n_2 \) is negative. Say \(n_1 < 0 \) and \(n_2 \geq 0 \).

The above construction is not possible since, \(S' \) is a sphere with two poles (of respective degree \(-n - 2\) and \(n_1 \)) and a zero, and in the case, the pole of degree \(-n - 2\) should have zero residues which contradicts Lemma 2.5.

If \(S' \) is a torus in \(\mathcal{H}(-n - 2, n + 2) \). The surgery, when possible, adds a handle to the surface \(S \), and the singularity of degree \(n \) is replaced by a singularity of degree \(n + 2 \).

• For \(n \geq 0 \), the construction is always possible, and if we choose \(S' \) that contains a cylinder, this is precisely the surgery “bubbling a handle” (see [7]).

• For \(n = -3 \) or \(n = -1 \), \(\mathcal{H}(-n - 2, n + 2) = H(-1, 1) = \emptyset \), so the construction does not make sense.

• In all the other cases, the construction works well as soon as the pole of degree \(n \) has zero residue.

Remark 4.1. When \(n' < 0 \) and \(N' \) has nonzero residue, the above construction is not possible since the boundary of a pointed neighborhood of \(N' \) is never isometric to the boundary of a neighborhood of \(N \). However, once a proper rescaling (shrinking) of the surface \(S' \) is done, it is possible to perform a surgery on \(S \) that creates a geodesic boundary component (“hole”) adjacent to the singularity \(N \), so that the boundary of a neighborhood of \(N \) becomes isometric to the boundary of a neighborhood of \(N' \), making the construction doable, see Section 4.3. Note that if \(S \) has no poles, then due to Stokes theorem, this necessarily creates on \(S \) at least one other boundary component.

4.2. A realization of \(\tau_{P,Q} \), local case. Consider a translation surface \(S_{\text{hor}} \) with labeled horizontal separatrices. Let \(P \) and \(Q \) be two singularities of degree \(p \) and \(q \) respectively. Assume that \(P, Q \) are obtained after the surgery “breaking up a singularity” above, with either \(p, q \geq 0 \), or \(p + q \leq -2 \), in the zero residue case. By construction, the singularities \(P, Q \) are on a metric disc whose boundary is a covering of Euclidean circle. Cutting the surface along the circle and rotating the disc by an angle \(\theta \), one gets a family of surfaces \((S_\theta)_{\theta} \). For \(\theta = 2\pi(p + q + 1) \), one has \(S_\theta = S \). Keeping track of the marked horizontal separatrices, we see at the end that the marked horizontal separatrices for \(P, Q \) have changed by an angle \(2\pi(p + q + 1) \), and the horizontal separatrices of the other singularities have not changed.

Now assume that \(S_{b\text{hor}} \) is in the same connected component as a translation surface \(S_{\text{hor}} \) as above. Then, conjugating the above transformation with a path joining \(S_{b\text{hor}} \) to \(S_{\text{hor}} \) gives the element \((p + q + 1)(\delta_P + \delta_Q) = q\delta_P + p\delta_Q = \tau_{P,Q} \) in \(\text{Mon} \).
4.3. **A realization of** $\tau_{P,Q}$, **nonlocal case.** The above transformation fails if $p + q \geq 0$ and either p or q is negative.

Here we describe a (non local) surgery that gives the same result on the set of separatrices. We must first describe a way to do a connected sum of a with a surface in $H(p, q, -2 - p - q)$. The idea is to make a “hole” (i.e. a geodesic boundary component) adjacent to the singularity of degree $p + q$. The transformation is then obtained by continuously rotating the hole by an angle $2\pi(p + q + 1)$.

We start from a surface S_0 in the stratum obtained by collapsing P and Q. We assume that this is not a stratum of holomorphic differentials. We can assume that S_0 does not have any vertical saddle connection. Then, it is obtained by the *infinite zippered rectangle construction*. We refer to [2], Section 3.3 for a precise construction, and present this on an example (see Figure 4).

![Infinite zippered rectangle representation of a surface in $H(-2, -2, 2, 2)$](image)

We choose a vertical separatrix l adjacent to a singularity of degree $p + q$ (the dashed line in the above picture). Then, insert an horizontal saddle connection as in Figure 5. This creates a hole on the surface according to l. This resulting surface, for a suitable rescaling and a parameter h small enough, can be glued as in Section 4.1 to a flat sphere S_1 in $H(p, q, -2 - p - q)$, where the pole of degree $-2 - p - q$ has residue $-h$.

Now, it is easy to see that rotating the segment h by an angle π, and after a suitable cut and paste, one obtain the surface with a hole that would be obtained from the separatrix l' obtained after rotating l by π.
Hence a rotation of the separatrix by the angle \((p + q + 1)2\pi\) defines a continuous family \(S_{0,\theta}\), that we glue as in Section 4.1 to the surface \(r_{\theta},S_1\).

This path is a closed path in the moduli space of meromorphic differentials. The corresponding transformation on the marked horizontal separatrix is \(\tau_{P,Q}\).

4.4. **A realization of \(\sigma_P\).** Similarly as in Section 4.2, let \(P\) be a singularity of degree \(n \neq \pm1\), obtained after bubbling a handle as above, i.e. we started from a singularity \(P'\) of degree \(n - 2\) (with zero residue if \(n < 0\)), and attached a torus in \(\mathcal{H}(-n,n)\). A metric circle \(C\) around \(P'\) is preserved by the construction. Now we cut \(S\) along \(C\) and rotate the disc by an angle \(\theta\), one gets a family of surfaces \((S_{\theta})\). For \(\theta = 2\pi(|n - 2 + 1|)\), \(S_\theta = S\). Keeping track of the marked horizontal separatrices, we see that the marked horizontal separatrix for \(P\) have changed by an angle \(\pm2\pi(n - 1)\), hence \(\pm4\pi\), while all the other horizontal separatrices are unchanged. Similarly, if \(S_{b}^{\text{hor}}\) is in the same connected component as a surface were the singularity \(P\) is obtained after the bubbling a handle, one gets the element \(2\delta_P = \sigma_P\) of \(\text{Hor}\).

4.5. **Existence of the elementary moves.** The goal of this section is to prove Proposition 3.5 and Proposition 3.6. We first give general facts.

In order to prove these two propositions, we would like to check that the transformation given in Sections 4.2, 4.3 and 4.4 can be realized. Unfortunately, this is true only for “most” cases as we will see. Hence, when it is not the case, we need to produce the maps \(\tau_{P,Q}\) or \(\sigma_P\) by other means.
Denote by $H = H(p, q, n_1, \ldots, n_r)$ the ambient stratum. There are two reasons for which $\tau_{P,Q}$ cannot be obtained in this way. First, a “stratum” reason: the construction given in Sections 4.2 and 4.3 starting from a surface in $H_0 = H(p + q, n_1, \ldots, n_r)$ cannot be realized, for instance because one cannot fulfill the condition on the residue, or because the stratum H_0 is empty. The other reason is a “connected component” reason: the above constructions starting from H_0 are possible, but we never fall into the suitable connected component of H.

We first review the cases when these transformations can be realized in the stratum. The transformation $\tau_{P,Q}$ given in Sections 4.2 and 4.3 can be realized, for a surface in H if and only if H_0 is nonempty and one of the following condition is satisfied.

- if p and q are positive.
- if $p + q \geq 0$ and $p < 0$ and the stratum $H(p + q, n_1, \ldots, n_r)$ is not a stratum of holomorphic differentials, i.e. $p + q, n_1, \ldots, n_r$ are not all positive (the case $q < 0$ is symmetric).
- if $p + q < -1$, and if we can find a surface in the stratum $H(p + q, n_1, \ldots, n_r)$ with the singularity of degree $p + q$ with zero residue.

Note that when $p + q = -1$, $\tau_{P,Q}$ is trivial, so there is nothing to prove. Also, if $p + q \neq -1$, we see that H_0 is necessary nonempty (of course, we assume that H is nonempty).

Similarly, the transformation given in Section 4.4 that realize σ_P is doable in the stratum if and only if all the following conditions are satisfied:

- $p \notin \{-1, 0, 1\}$.
- The stratum obtained by removing 2 to p is nonempty and, if $p < 0$ it is possible to find there a flat surface with a singularity of degree $p - 2$ with zero residue.

Proof of Proposition 3.5. The case with three singularities is particular. Here $H = H(p, q, r)$, rotating the surface by 2π and keeping track of the horizontal separatrices gives the element $\delta_P + \delta_Q + \delta_R \in \text{Mon}$. Remark that, $(r + 1)\delta_R = 0$, and $r + 1 = -1 - p - q$, so

$$-(r + 1)(\delta_P + \delta_Q) = (p + q + 1)(\delta_P + \delta_Q) = \tau_{P,Q} \in \text{Mon}$$

In the general case, the stratum is connected, so the conditions above are sufficient. According to Proposition 2.5, $\tau_{P,Q}$ is directly given by the constructions except in the following cases:

- $p + q \geq 0$ and $p < 0$ and the stratum $H(p + q, n_1, \ldots, n_r)$ is a stratum of holomorphic differentials. This case does not appear since $p + q + \sum_i n_i = -2$.

• $p + q < -1$, the stratum has four singularities, and a pole which is neither P nor Q. It means that we cannot find on the base stratum a singularity of degree $p + q$ with zero residue. Denote respectively by R, N the two other singularities, and respectively by r, n their degree. Without loss of generality, we can assume that $r < 0$. We have $n + r = -2 - (p + q) = 0$ so $\tau_{R,N} \in \text{Mon}$. As before, the element $\rho = \delta_P + \delta_Q + \delta_R + \delta_N$ is in Mon. Then, the condition $p + q + r + n = -2$ implies $\tau_{R,N} - (n + r + 1) \rho = -\tau_{P,Q}$, so $\tau_{P,Q} \in \text{Mon}$.

• $p + q < -1$, and the stratum is of the form $\mathcal{H}(p, q, r_1, \ldots, r_k, -1)$ with $k \geq 1$ and $r_1, \ldots, r_k > 0$. Denote by S the simple pole, and by R_1, \ldots, R_k the singularities of degree respectively r_1, \ldots, r_k. If $p, q \neq -1$ then $\tau_{P,S}, \tau_{Q,S} \in \text{Mon}$ and $\tau_{P,Q} = -q \tau_{P,S} - p \tau_{Q,S}$. If $p = q = -1$, $\tau_{P,Q}$ is trivial, so there is nothing to do. If $p = -1$ and $q \neq -1$, we see that $\tau_{P,Q} = -\delta_Q = -\rho - \sum_k \tau_{S,R_k} \in \text{Mon}$ since all the τ_{S,R_k} are in Mon.

Before proving Proposition 3.6, we state the following lemma

Lemma 4.2. Assume that $p \neq q$ and that $\tau_{P,Q}$ is realized by the constructions above. Then the ambient surface S is not in a hyperelliptic component.

Proof. In the local case, it is easy to see that if $S = S_0 \oplus S_1$ is in the hyperelliptic component, then the hyperelliptic involution induces an involution on S_0 and S_1. But $S_1 \in \mathcal{H}(-p - q - 2, p, q)$, which is not a hyperelliptic component.

In the nonlocal case, we see that the length of saddle connection corresponding to the small hole is unique (no other saddle connection has the same length), so the saddle connection is globally preserved. Hence if S is in a hyperelliptic connected component, it also induces an involution on the two pieces of surfaces, which is not possible. □

Proof of Proposition 3.6. The case when the stratum is of the form $\mathcal{H}(-1, -1, n_1, \ldots, n_r)$, with $n_i > 0$ is easy and left to the reader.

We assume first that the genus is at least 2. We first look at the element $\tau_{P,Q}$. Denote by $\mathcal{H}(p, q, n_1, \ldots, n_r)$ the ambient stratum. As before, the cases where the transformation realizing $\tau_{P,Q}$ is not directly possible in the stratum are the following

• $p + q \geq 0$ and $p < 0$ and the stratum $\mathcal{H}(p + q, n_1, \ldots, n_r)$ is a stratum of holomorphic differentials. This case does not appear by hypothesis.
• \(p + q < -1 \), and the stratum is of the form \(\mathcal{H}(p, q, r_1, \ldots, r_k, -1) \) with \(r_i > 0 \), then we construct \(\tau_{P,Q} \) as in the proof of the previous proposition.

Observe that breaking up a singularity preserves the parity of the spin structure when it is well defined. From Lemma 4.2, if \(p \neq q \), we are not in the hyperelliptic connected component. When \(p = q \), and the stratum contains a hyperelliptic connected component, the case is easy. Finally, \(\tau_{P,Q} \in \text{Mon} \) in each case.

Now we look at the element \(\sigma_P \). Denote by \(\mathcal{H} = \mathcal{H}(p, n_1, \ldots, n_r) \) the ambient stratum with \(\deg(P) = p \in \{-1, 0, 1\} \). We only need to find in each nonhyperelliptic component of \(\mathcal{H} \) a surface obtained after bubbling a handle on a surface \(S_0 \in \mathcal{H}(p-2, n_1, \ldots, n_r) \), with the condition that, if \(p < 0 \), the residue of the pole of degree \(p - 2 \) is zero. Since the genus is at least two, the only case when we cannot find \(S_0 \) is when \(n_i = -1 \) and \(n_i > 0 \) for all \(i \geq 2 \). In this case, \(\sigma_P = 2\tau_{P,N_1} \).

So, from now, we can assume that the construction is possible. For a surface \(S_0 \in \mathcal{H}' \) and a surface \(S_1 \in \mathcal{H}(-p, p) \), denote by \(S_0 \oplus S_1 \) the surface in \(\mathcal{H} \) obtained after bubbling on \(S_0 \) the handle \(S_1 \). Observe also that if \(S_0 \oplus S_1 \) is in a hyperelliptic connected component, then necessarily \(S_0 \) and \(S_1 \) are in hyperelliptic connected components.

Assume that \(p \) is odd, then the stratum \(\mathcal{H} \) has only one nonhyperelliptic connected component. If \(S = S_0 \oplus S_1 \), the surface \(S_1 \) is in \(\mathcal{H}(-p,p) \), which do not contain a hyperelliptic component. Hence \(S \) is never in a hyperelliptic component.

Assume that \(p \) is even and positive. If \(p \geq 6 \), \(S_1 \in \mathcal{H}(-m,m) \) which has a nonhyperelliptic component of even and odd spin structure. Hence, for any choice of \(S_0 \), we can obtain nonhyperelliptic components with even and odd spin structure. If \(p = 4 \), \(S_1 \in \mathcal{H}(-4,4) \) which has two component: a nonhyperelliptic one, with has even spin structure (the rotation number is one), and the hyperelliptic one, with odd spin structure (the rotation number is two). If there exists in \(\mathcal{H}' \) a nonhyperelliptic component, we use it and we obtain \(S \) in the required components of \(\mathcal{H} \). Otherwise, \(\mathcal{H}' = \mathcal{H}(2,-2) \) or \(\mathcal{H}(2,-1,-1) \), so \(\mathcal{H} = \mathcal{H}(4,-2) \) or \(\mathcal{H} = \mathcal{H}(4,-1,-1) \), which has only one nonhyperelliptic component. If \(p = 2 \), \(S \) cannot be in a hyperelliptic component (since bubbling a handle starts from a marked point), and the parity of its spin structure is given by the one of \(S_0 \), which can be odd or even.

The case \(p \) even and negative is analogous and left to the reader.

Now we assume that the genus is one. As before, the cases when the stratum cannot be obtained after breaking up a singularity of degree \(p + q \) into a pair of singularities of degree \(p, q \) are easy. Now, we
look at connected components. Let C_d be the connected component of $H(p,q,n_1,\ldots,n_r)$ corresponding to the rotation number d (recall that by definition, d is a positive number that divides p,q,n_1,\ldots,n_r). Then, clearly, starting from a surface in $H(p+q,n_1,\ldots,n_r)$ with the same rotation number d, and breaking up the zero of degree $p+q$ into singularities of degree p,q gives the required surface. This is possible as soon as the component in $H(p+q,n_1,\ldots,n_r)$ with rotation number d exists. Hence the only problem is when $H(p+q,n_1,\ldots,n_r) = H(-n,n)$ and $d = n$. In this case, $H(p,q,n_1,\ldots,n_r)$ is of the form $H(kn,(1-k)n,-n)$ (for some $k > 1$) or $H(kn,-(1+k)n,n)$ (for some $k > 0$). We postpone the study of these cases to the end of the proof.

Now we look for the element σ_P. It is enough to find a surface obtained after bubbling a handle. It is possible except in the following cases:

a) the stratum is of the kind $H(p,q,n)$, with $\deg(P) = p$, and $p,q < 0$.

b) the stratum is of the kind $H(\pm n,k_1n,\ldots,k_rn)$ and $\deg(P) = \pm n$ and we are in the connected component corresponding to rotation number n. Indeed, the rotation number of a surface $S = S_0 \oplus S_1$, with $S_1 \in H(-n,n)$, is the same as the one of S_1, which can be any divisor of m, except n.

We look at Case a). The stratum is $H(p,q,r)$, with $\deg(P) = p$, and $p,q < 0$. Denote by Q,R the other singularities. First observe that $\sigma_R \in \text{Mon}$. Also, we have $\sigma_R + \sigma_P + \sigma_Q = 2\rho \in \text{Mon}$ so $\sigma_P \in \text{Mon}$ if and only if $\sigma_Q \in \text{Mon}$. Assume that $\tau_{P,R} \in \text{Mon}$, then

$$(r+p-1)\rho - \tau_{P,R} + \sigma_R = (p-1)\delta_P + (-q-1)\delta_Q + (r+1)\delta_R = -\sigma_P \in \text{Mon}$$

Now assume that $\tau_{P,R} \notin \text{Mon}$. From the above study, this implies that $p = (-1+k)q$ and $r = -kq$, for some $k > 1$, but then, $\tau_{Q,R} \in \text{Mon}$, so $\sigma_Q \in \text{Mon}$ by the same computation as previously. Hence, $\sigma_P \in \text{Mon}$.

Now we look at Case b). The stratum is $H(\pm n,k_1n,\ldots,k_rn)$, and $\deg(P) = \pm n$. In this case, as before, we produce σ_P as a combination of “r” elements. If there is a singularity Q of degree $-\deg(P)$, then observe that $\tau_{P,Q} \in \text{Mon}$, hence $\sigma_P = (1-\deg(P))\tau_{P,Q} \in \text{Mon}$. If there are at least two other singularities P',P'' of degree $\deg(P)$, then we have $\tau_{P,P'} + \tau_{P,P''} - \tau_{P',P''} = \sigma_P \in \text{Mon}$. So we can assume that there are at most two singularities of degree $\deg(P)$ and no singularities of degree $-\deg(P)$.

If there are two singularities P,P' of degree $\deg(P)$. Observe that $\tau_{P,Q}$ exists for each $Q \neq P$. Indeed from the previous study, this is false only in $H(n,n,-2n)$ and in $H(-n,-n,2n)$. But in these cases,
the connected component with rotation number \(n \) is precisely the hyperelliptic connected component. We have

\[
\sum_{Q \neq P, P'} (2\tau_{P,Q} - \deg(P)\sigma_Q) = 2\sigma_P \in \text{Mon}.
\]

Hence if \(\deg(P) \) is even, \(\sigma_P \in \text{Mon} \). If \(\deg(P) \) is odd, we have

\[
\sigma_P = \rho + \tau_{P,P'} + \sum_{Q \neq P, P'} \left(\tau_{P,Q} - \frac{\deg(P) + 1}{2}\sigma_Q \right) \in \text{Mon}.
\]

If \(P \) is the only singularity of degree \(\deg(P) \), we have

\[
\sigma_P = \sum_{Q \neq P} (2\tau_{P,Q} - \deg(P)\sigma_Q) \in \text{Mon}.
\]

Now, we come back to a stratum of the kind \(\mathcal{H}(kn, (1-k)n, -n) \) (for some \(k > 1 \)), and we look at the component of rotation number \(n \). We want to produce \(\tau_{P,Q} \), where \(\deg(P) = kn \) and \(\deg(Q) = (1-k)n \). Note if \(k = 2 \) we are in the hyperelliptic connected component of \(\mathcal{H}(2n, -n, -n) \). Denote by \(R \) the other singularity. We have

1. if \(n \) is even, \(\sigma_P = 2\delta_P \in \text{Mon} \), hence \(\delta_P \in \text{Mon} \). Similarly, \(\delta_Q \in \text{Mon} \), so \(\tau_{P,Q} \in \text{Mon} \).
2. if \(n \) is odd \(\tau_{P,Q} = n\rho - \frac{n+1}{2}\sigma_R \in \text{Mon} \)

The case with a stratum of the kind \(\mathcal{H}(kn, -(1+k)n, n) \) is similar. This concludes the proof. \(\square \)

5. Positive genus

5.1. A topological invariant. Here, we describe a topological invariant for connected components of \(\mathcal{H}^{hor} \), in the following cases:

- there are no simple poles, and there are singularities of odd degree.
- there are exactly two poles that are simple, and some odd singularities of positive degree.

We first assume that there are no simple poles. The invariant is inspired from the well known parity of spin structure for translation surfaces with even degree singularities ([7]). See also [1].

For a smooth closed curve \(\gamma \) in \(S \) that does not pass through any singularity, define \(\text{ind}(\gamma) \) to be the index of the Gauss map defined by \(\gamma' \). Choose \((\alpha_i, \beta_i)_{i \in \{1...g\}} \) a collection of smooth simple closed curves representing a symplectic basis for the homology of \(S \), and define

\[
\phi(\alpha, \beta) = \sum_{i=1}^{g} (\text{ind}(\alpha_i) + 1)(\text{ind}(\beta_i) + 1) \mod 2
\]
When S has no odd degree singularities, $\phi(\alpha, \beta)$ does not depend on the choices of (α, β) and is the parity of the spin structure of S (see [2, 7]).

When there are odd degree singularities, $\phi(\alpha, \beta)$ clearly depends on the choice of (α, β): indeed, if we continuously deform an element α_i or β_i until we “cross an odd singularity”, its index changes by an odd value.

Now we choose once for all an ordered pairing of the set of odd degree singularities, i.e. we denote by $(P^-_1, P^+_1), \ldots, (P^-_s, P^+_s)$ these singularities. For a simple curve γ joining P^-_j to P^+_j, we define $\text{ind}(\gamma)$ to be the index (mod 2) of the Gauss map defined by a simple smooth path $\tilde{\gamma}$, whose image is in a small neighborhood of the image of γ, and such that:

- $\tilde{\gamma}$ is tangent in its starting point to the fixed horizontal separatrix of P^-_j.
- $\tilde{\gamma}$ is tangent in its ending point to the fixed horizontal separatrix of P^+_j, rotated by π.

Since P^+_j, P^-_j are both of odd degree, the total euclidean angle in their neighborhood is an even multiple of 2π, and hence $\text{ind}(\gamma)$ does not depend on the choice of $\tilde{\gamma}$.

Now, for a fixed choice of $(\alpha_i, \beta_i)_i$, let $\gamma_1, \ldots, \gamma_s$ be a collection of simple curves, with no intersection pairwise, with γ_j joining P^-_j to P^+_j, and each γ_j do not intersect the $(\alpha_i, \beta_i)_i$. Then, we define

$$Sp(\alpha, \beta, \gamma) = \phi(\alpha, \beta) + \sum_j \text{ind}(\gamma_j) \mod 2$$

It is obvious that $Sp(\alpha, \beta, \gamma)$ can take two values, for different choices of horizontal separatrices. We will prove $Sp(\alpha, \beta, \gamma)$ does not depend on the choice of α, β, γ (only on the choice of the oriented pairing of the odd degree singularities). Hence, Sp defines a topological invariant for the connected components of H_{hor}.

Lemma 5.1. $Sp(\alpha, \beta, \gamma)$ does not depend on the choice of γ.

Proof. Let γ, γ' be two collections of simple curves as above. The surface $D = S \setminus \cup_i (\alpha_i \cup \beta_i)$ is a topological disc with $g - 1$ holes. By definition γ_1 and γ'_1 have the same end points. If they do not intersect in their interior, then $\text{ind}(\gamma_1) = \text{ind}(\gamma'_1) + k$, where k is the number of odd singularity of a component of $D \setminus (\gamma_1 \cup \gamma'_1)$. In this case, the number of intersection points (mod 2) between γ'_1 and the $(\gamma_j)_{j \neq 1}$ is k. This is also true if γ_1 and γ'_1 have intersection points by considering a sequence
\[\gamma = \gamma^{(0)}, \ldots, \gamma^{(m)} = \gamma' \] such that \(\gamma^{(i)} \) and \(\gamma^{(i+1)} \) have no intersection points.

In particular replacing \(\gamma_1 \) by \(\gamma_1' \) preserves the value:

\[\sum_i \text{ind}(\gamma_i) + N(\gamma) \mod 2 \]

where \(N(\gamma) \) is the number of self intersection of the family \(\gamma \).

Hence, successively replacing \(\gamma_i \) by \(\gamma_i' \), we obtain:

\[\sum_i \text{ind}(\gamma_i) = \sum_i \text{ind}(\gamma_i') \mod 2. \]

Lemma 5.2. \(Sp(\alpha, \beta, \gamma) = Sp(\alpha, \beta) \) does not depend on the choice of the symplectic basis \(\alpha, \beta \).

Proof. Let \((\alpha, \beta, \gamma) \) and \((\alpha', \beta', \gamma') \) two families of curves as above. We first show that, there exists \(\alpha'', \beta'' \) homotopic to \(\alpha, \beta \), that do not intersect \(\gamma' \) and such that:

\[Sp(\alpha, \beta, \gamma) = Sp(\alpha', \beta', \gamma') \]

By the previous lemma, we can choose \(\gamma \) so that it does not intersect \(\gamma' \). Let \(\gamma'_1 \in \gamma' \), and we assume that it intersects \(\alpha, \beta \). Consider the last intersection point, i.e. \(x_0 = \gamma'_1(t_0) \), and \(\alpha, \beta \) do not intersect \(\gamma'_1(t) \) for \(t > t_0 \).

We assume for instance that the intersection is with \(\alpha_1 \).

Now, we push \(\alpha_1 \) until it crosses the endpoint \(P^+ \). So, \(\text{ind}(\alpha_1) \) is replaced by \(\text{ind}(\alpha_1) + \text{deg}(P^+) \). But now, \(\alpha_1 \) intersects \(\gamma_1 \), so we must modify \(\gamma_1 \) so that it does not intersect \(\alpha_1 \) anymore (see Figure 6). This replaces \(\text{ind}(\gamma_1) \) by \(\text{ind}(\gamma_1) + \text{ind}(\beta_1) + 1 \). In particular \(Sp(\alpha, \beta, \gamma) \) is not changed by this procedure, and the new family \((\alpha, \beta, \gamma) \) has one less intersection points with \(\gamma' \).

Iterating the process, we eventually obtain \(\alpha'', \beta'' \) that do not intersect \(\gamma' \).

Now, we consider the canonical continuous map \(\phi : S \to \overline{S} \), where \(\overline{S} \) is the surface obtained by collapsing each curve \(\gamma'_i \) to a single point. The map \(\phi \) induces an homeomorphism from \(S \setminus \gamma' \) to its image.

For a simple closed curve \(\tau = \phi(c) \) in \(\overline{X} \), that does not pass through the image of a singularity, we define \(\text{ind}(\tau) = \text{ind}(c) \). One easily checks that the map \(\theta(\overline{\tau}) = \text{ind}(\overline{\tau}) + 1 \mod 2 \) defines a quadratic form on \(H_1(\overline{S}, \mathbb{Z}/2\mathbb{Z}) \) (see [6, 7]). Hence its Arf invariant is

\[\sum_i (\text{ind}(\alpha'_i) + 1)(\text{ind}(\beta'_i) + 1) = \sum_i (\text{ind}(\alpha'_i) + 1)(\text{ind}(\beta'_i) + 1) \mod 2 \]

Hence \(Sp(\alpha', \beta', \gamma') = Sp(\alpha'', \beta'', \gamma') = Sp(\alpha, \beta, \gamma) \). \(\square \)
Figure 6. Decreasing the number of intersection points

When the stratum is of the form $\mathcal{H}(-1, -1, n_1, \ldots, n_r)$, with $n_i > 0$ for all i. We define the invariant after first cutting the two infinite cylinder, and gluing them together to make a finite cylinder, on a surface in the stratum $\mathcal{H}(n_1, \ldots, n_r)$.

Remark 5.3. The invariant Sp obtained depends on the choice of the pairing $\{(P_1^-, P_1^+), (P_2^-, P_2^+), \ldots, (P_s^-, P_s^+)\}$ of the odd degree singularities. We can wonder how $Sp(S)$ changes when we replace the pairing by another one. It is enough to study the case when we interchange P_1^- with P_1^+ and when we interchange P_1^- with P_2^-.

(1) For the first case (P_1^- with P_1^+). $Sp(S)$ is clearly replaced by $Sp(S) + 1$.

(2) For the second case, we replace again $Sp(S)$ by $Sp(S) + 1$. Indeed, consider as before two nonintersecting curves γ_1, γ_2 joining P_1^- to P_1^+ and P_2^- to P_2^+ respectively. Then, deform them until γ_1, γ_2 are tangent on a unique intersection point. Then, we obtain a new pair γ'_1, γ'_2 joining P_1^- to P_2^+ and P_2^- to P_1^+ such
that \(\text{Ind}(\gamma_1) + \text{Ind}(\gamma_2) = \text{Ind}(\gamma'_1) + \text{Ind}(\gamma'_2) \). But \(\gamma'_1, \gamma'_2 \) intersect (transversally) on one point. From the proof of Lemma 5.2, modifying \(\gamma'_1, \gamma'_2 \) so that they don’t intersect will change the invariant by adding 1.

In particular, the invariant \(Sp \) can be seen as a function from the set of pairings of odd degree singularities to \(\mathbb{Z}/2\mathbb{Z} \), satisfying the above conditions.

5.2. **Proof of Theorem 1.1.** We assume first that there are only even degree singularities (or even degree zeroes, and a pair of simple poles.) We also assume that the underlying connected component is not a hyperelliptic one.

Let \(P \) be a singularity of the base surface \(S_p \). From Proposition 3.6, the element \(\sigma_P = 2\delta_P \) is in \(\text{Mon} \). Since the singularity has even degree, \(\delta_P \in \text{Mon} \). Hence, \(\text{Mon} = \text{Hor} \).

Now we assume that there are odd degree singularities. First observe that if there is a simple pole \(P \) (except the case of two simple poles and no other poles), then for any \(Q \neq P \), \(\tau_{P,Q} = \delta_Q \in \text{Mon} \). Hence \(\text{Mon} = \text{Hor} \).

So, we can assume that there are no simple poles. As before, for each singularity \(P \) of even degree, we use \(\sigma_P \) to see that \(\delta_P \in \text{Mon} \). Now, fix a frame, and consider \(P_1, \ldots, P_{2r} \) the singularities of odd degree. Then, for \(i \) from 1 to \(2r - 1 \) successively, we use \(\sigma_{P_i} \) and \(\tau_{P_i, P_{i+1}} \) to obtain an element of the form \(\delta_{P_i} + k_i \delta_{P_{i+1}} \in \text{Mon} \). For, \(P_{2r} \), we can only get half of possible horizontal separatrices, by using \(\tau_{P_{2r}} \). Hence, we see that \(\text{Mon} \) is a subgroup of \(\text{Hor} \) of index at most 2. Observe that if there is only one pole \(Q \) we first fix its separatrix by using \(\rho \) (since \(\sigma_{Q,P} \) is not necessarily possible), and continue as above.

The case with two simple poles is similar and left to the reader.

5.3. **Hyperelliptic connected component.** From [2], a hyperelliptic connected component of the moduli space of meromorphic differentials is a necessarily a component of a strata of the following kind:

- \(\mathcal{H}(n, n, p, p) \)
- \(\mathcal{H}(2n, p, p) \)
- \(\mathcal{H}(n, n, 2p) \)
- \(\mathcal{H}(2n, 2p) \)

for some, \(n > 0 \) and \(p < 0 \).

Let \(\mathcal{C}_{hyp} \) be a hyperelliptic connected component of the moduli space of translation surface with poles. Let \(\mathcal{C}_{hor} \) be the set of framed translation surface whose underlying surface are in \(\mathcal{C}_{hyp} \). We assume that there are two (marked) zeroes \(N_1, N_2 \) of the same degree. Denote by \(i \)
the hyperelliptic involution. Since \(i(N_1) = N_2 \), the image by \(i \) of the marked horizontal separatrix \(l_1 \) of \(N_1 \) is a horizontal separatrix \(i(l_1) \) of \(N_2 \). The angle between the marked horizontal separatrix \(l_2 \) of \(N_2 \) and \(i(L_1) \) is an odd multiple of \(\pi \) and is between \(\pi \) and \((2n + 1)\pi \) and is invariant by continuous deformations. Hence, it is an invariant \(\Phi_{\text{zeroes}} \) of connected components, which can clearly get \(n + 1 \) values. Similarly, if there are two poles of the same degree, there is an analogous invariant \(\Phi_{\text{poles}} \) for the horizontal separatrices associated to the pair of poles, with \(|p + 1| \) values.

We have the following lemma:

Lemma 5.4. Let \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \) be a hyperelliptic connected component with framed horizontal separatrices. Let \(S_b^{\text{hor}} \in \mathcal{C}_{\text{hyp}}^{\text{hor}} \). Let \(P \in S_b^{\text{hor}} \) be a (marked) singularity.

- If there exists another singularity \(P' \) of the same degree, then \(\tau_{P,P'} \in \text{Mon} \).
- Otherwise, \(\sigma_P \in \text{Mon} \).

Proof. The proof is easy and left to the reader. \(\square \)

This lemma, associated to the definition of the invariant gives the following theorem.

Theorem 5.5. Let \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \) be a hyperelliptic connected component with marked horizontal separatrices.

- If \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \subset \mathcal{H}(n, n, p, p) \), for some \(n > 0 \) and \(p < -1 \), then \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \) has \((n + 1)|p + 1|\) connected components distinguished by the maps \(\Phi_{\text{zeroes}} \) and \(\Phi_{\text{poles}} \).
- If \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \subset \mathcal{H}(n, n, 2p) \), for some \(n > 0 \) and \(p < 0 \), or \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \subset \mathcal{H}(n, n, -1, -1) \) then \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \) has \((n + 1)\) connected components distinguished by the map \(\Phi_{\text{zeroes}} \).
- If \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \subset \mathcal{H}(2n, p, p) \), for some \(n > 0 \) and \(p < -1 \), then \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \) has \(|p + 1|\) connected components distinguished by the maps \(\Phi_{\text{poles}} \).
- If \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \subset \mathcal{H}(2n, 2p) \) for some \(n > 0 \) and \(p < -1 \) or \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \subset \mathcal{H}(2n, -1, -1) \), then \(\mathcal{C}_{\text{hyp}}^{\text{hor}} \) is connected.

Proof. The proof is easy and left to the reader. \(\square \)

6. Zero Genus

Let \(\mathcal{H} = \mathcal{H}(n_1, \ldots, n_r) \) be a stratum of genus zero translation surfaces. In this section, we count the number of connected components of \(\mathcal{H}_{\text{hor}}^{\text{hor}}(n_1, \ldots, n_r) \) and define a topological invariant separating these connected components.
We assume that there are no simple poles. Then, for \(i \neq j \), we denote by \(N_{ij} \) the (positive) integer:

\[
N_{ij} = \gcd \left(\{ n_k \}_{k \notin \{i,j\}} \cup \{ n_i + 1, n_j + 1 \} \right)
\]

Let \(S \in \mathcal{H}^{hor}(n_1, \ldots, n_r) \), and denote \(P_1, \ldots, P_r \) the (marked) singularities of degree \(n_1, \ldots, n_r \) respectively. For any \(i < j \), let \(\gamma_{ij} \) be a path joining \(P_i \) to \(P_j \) accordingly to the marked horizontal separatrices (as in Section 5.1). Then \(\text{ind}(\gamma_{ij}) \) is an integer and \(\text{ind}(\gamma_{ij}) \mod N_{ij} \) does not depend on the choice of \(\gamma_{ij} \) (only on the choice of marked directions).

Now we define \(\Phi(S) \) as:

\[
\Phi(S) = (\text{ind}(\gamma_{ij}))_{i < j} \in \prod_{i < j} \mathbb{Z}/N_{ij}\mathbb{Z}
\]

The map \(\Phi \) is clearly a locally constant map, and hence, an invariant of connected components of \(\mathcal{H}^{hor}(n_1, \ldots, n_r) \). Note that \(\Phi \) depends implicitly on the choice of the ordering of the singularities. Note that the map \(Sp \) is also well defined if there are some odd degree singularities.

Theorem 6.1. Let \(\mathcal{H} = \mathcal{H}(n_1, \ldots, n_r) \) be stratum of genus zero translation surfaces.

- If there exists \(i_0 \in \{1, \ldots, r\} \) such that \(n_{i_0} = -1 \), then \(\mathcal{H}^{hor} \) is connected.
- If all \(n_i \) are different from \(-1\) and if there are at most two odd degree singularities, then there are \(N = \prod_{i < j} N_{ij} \) connected components of \(\mathcal{H}^{hor} \), and two elements \(S_1 \) and \(S_2 \) of \(\mathcal{H}^{hor} \) are in the same connected component if and only if \(\Phi(S_1) = \Phi(S_2) \).
- Otherwise, there are \(2N \) connected components of \(\mathcal{H}^{hor} \), and two elements \(S_1 \) and \(S_2 \) of \(\mathcal{H}^{hor} \) are in the same connected component if and only if \(\Phi(S_1) = \Phi(S_2) \) and \(Sp(S_1) = Sp(S_2) \).

Note that the first part is obvious, since \(\sigma_{P_{i_0}, Q} = \delta_Q \) is in \(\text{Mon} \). So, from now, we assume that there are no simple poles.

Lemma 6.2. One has the following:

- If there are at most two odd degree singularities, the map \(\Phi \) is surjective.
- Otherwise, the map \(\Phi \times Sp \) is surjective.

Proof. Let \(i_0 \in \{1, \ldots, r\} \). When we replace the marked horizontal separatrix \(l_{i_0} \) corresponding to \(P_{i_0} \) by the one obtained by rotating \(l_{i_0} \) by \(2\pi \) counterclockwise, it adds to \(\Phi(S) \) the element \(\eta_{i_0} \) whose value is

- \(-1\) in the factor \(\mathbb{Z}/N_{i_0j}\mathbb{Z} \) for each \(j > i_0 \).
- \(+1\) in the factor \(\mathbb{Z}/N_{jia}\mathbb{Z} \) for each \(j < i_0 \).
• 0 in the other factors.

Since the integers \(\{N_{ij}\}_{i \neq j} \) are pairwise relatively prime, the element \(\eta_{i_0} \) generates \(\prod_{j \neq i_0} \mathbb{Z}/N_{i_0 j} \mathbb{Z} \). In particular, \(\eta_1, \ldots, \eta_r \) generates the group \(\prod_{i<j} \mathbb{Z}/N_{ij} \mathbb{Z} \). So the map \(\Phi \) is surjective.

When there are at least three odd degree singularities, \(N = \prod_{i<j} N_{ij} \) is odd. In particular, if choosing \(\Phi \) so that \(n_i \) is odd, and rotating \(l_i \) by \(2\pi \prod_{j \neq i} N_{ij} \) does not change \(\Phi(S) \), but changes \(Sp(S) \) by \(1 = \prod_{j \neq i} N_{ij} \) (mod 2), so the map \(\Phi \times Sp \) is surjective. \(\square \)

Lemma 6.3. Let \(k \in \{1, \ldots, r\} \), for each \(i, j \neq k \), with \(i \neq j \) the following elements are in the group \(\text{Mon} \):

- \(n_i(n_i + 1)\delta_{P_k} \)
- \(2n_i n_j \delta_{P_k} \)

Furthermore, the subgroup of \(\text{Mon} \) generated by these elements, seen as a subgroup of \(\mathbb{Z}/(n_k + 1)\mathbb{Z} \), is the subgroup generated by \(\varepsilon_k \prod_{i \neq k} N_{ki} \), where \(\varepsilon_k = 2 \) if \(n_k \) is odd and there are at least two other odd singularities, and \(\varepsilon_k = 1 \) otherwise.

Proof. A direct computation shows that the element \(n_i(n_i + 1)\delta_{P_k} \) is given by \((n_i + 1)\sigma_{P_i P_k} \), and the element \(2n_i n_j \delta_{P_k} \) is given by \(n_i \sigma_{P_j P_k} + n_i \varepsilon_k \sigma_{P_k P_j} + n_i n_j \varepsilon_k \).

The subgroup of \(\mathbb{Z}/(n_k + 1)\mathbb{Z} \) generated by these elements is \(< d_k > \), where:

\[
d_k = \gcd (\{2n_i n_j\}_{i \neq j} \cup \{n_i(n_i + 1)\}_{i \neq k} \cup \{n_k + 1\})
\]

Let \(p > 2 \) be a prime number that divides \(d_k \), \(\alpha = \nu_p(d_k) \) its \(p \)-adic valuation. By definition of \(d_k \), \(p^\alpha \) divides \(n_k + 1 \), and for each \(i \neq k \), \(p^\alpha \) divides \(n_i \) or \(n_i \pm 1 \). It cannot divides always \(n_i \) since \((n_k + 1) + \sum_{i \neq k} n_i = -1 \).

Also, if there are two indices \(i \neq j \), with \(i, j \neq k \) such that \(p^\alpha \) does not divide \(n_i \) and \(n_j \), then \(p^\alpha \) does not divide \(2n_i n_j \), which contradicts \(p^\alpha | d_k \). Hence there is exactly one index \(i \neq k \) such that \(p^\alpha \) does not divide \(n_i \), hence, divides \(n_i + 1 \). So, \(p^\alpha | N_{ki} \).

Conversely, let \(p > 2 \) be a prime number and \(\alpha = \nu_p(\varepsilon_k \prod_{i \neq k} N_{ki}) \). Since the \(\{N_{ki}\}_i \) are pairwise relatively prime, there is an index \(i_0 \) such that \(p^\alpha | N_{ki} \). Hence, we easily see that \(p^\alpha \) divides \(d_k \).

We have proven that \(\nu_p(d_k) = \nu_p(\varepsilon_k \prod_{i \neq k} N_{ki}) \) for \(p > 2 \). Now, we prove the same for the case \(p = 2 \). If \(n_k \) is even, then both \(d_k \) and \(\varepsilon_k \prod_{i \neq k} N_{ki} \) are odd.

If \(n_k \) is odd, and if there are at least three odd singularities. Denote by \(i_0, j_0 \neq k \) the indices of two odd degree singularities different from \(P_k \). We see that the \(2 \)-adic valuation of \(d_k \) is 1 by considering \(2n_{i_0} n_{j_0} \),
and the 2-adic valuation of $\varepsilon_k \prod_{i \neq k} N_{ki}$ is also 1 since $\varepsilon_k = 2$ and all the N_{ki} are odd.

If n_k is odd and there are exactly two odd degree singularities P_k, P_{i_0} on the surface. Let $\alpha > 0$ such that $2^\alpha | d_k$. Then 2^α divides $n_k + 1$, and $n_i(n_i + 1)$ for each $i \neq k$. In particular, it divides $(n_{i_0} + 1)$ (since n_{i_0} is odd), and for each $i \notin \{k, i_0\}$, it divides n_i (since $n_i + 1$ is odd). So, $2^\alpha | N_{ki_0}$.

Conversely, let $\alpha > 0$ such that $2^\alpha | \prod_{i \neq k} N_{ki}$. The integer N_{ki} is even if and only if $i = i_0$. Hence, $2^\alpha | N_{ki_0}$ and 2^α divides each n_i, for $i \notin \{k, i_0\}$. So, it divides n_in_j, for each $i, j \neq k$ with $i \neq j$. Finally, $2^\alpha | d_k$.

Hence, we have proven that $d_k = \varepsilon_k \prod_{i \neq k} N_{ki}$. \Box

Proof of Theorem 6.1. We first assume that there are at most two odd degree singularities, so that for each i $\varepsilon_i = 1$ in the above lemma. In order to simplify notation, we set $N_{ii} = 1$ for each i.

From Lemma 6.2, Mon has at most $N = \prod_{i \in \{1, \ldots, r\}} |n_i + 1| \prod_{1 \leq i < j \leq r} N_{ij}$ elements. The theorem will follow if we prove that Mon has exactly this number of elements.

Since for each i, j, $N_{ij}|(n_i+1)$, there is a canonical map $\mathbb{Z}/(n_i + 1) \rightarrow \mathbb{Z}/N_{ij}\mathbb{Z}$, so it induces a canonical map:

$$
\Psi : \prod_{i=1}^r \mathbb{Z}/(n_i + 1) \mathbb{Z} \rightarrow \prod_{i,j \in \{1, \ldots, r\}} \mathbb{Z}/N_{ij}\mathbb{Z} \quad (x_i) \mapsto (x_i \mod N_{ij})_{i,j}
$$

Since $\{N_{ij}\}_{i,j}$ are relatively prime, by the Chinese Lemma, the kernel of Ψ is $\prod_i d_i \mathbb{Z}/(n_i + 1) \mathbb{Z}$, where $d_i = \prod_{j \neq i} N_{ij}$ and is a subgroup of Mon by the previous lemma.

For a pair (i_0, j_0) of distinct indices, the image by Ψ of the element $-\sigma_{n_{i_0}n_{j_0}}$ is the element $E_{i_0j_0} + E_{j_0i_0}$, where E_{ij} is the element which is 1 for the indices (i, j) and 0 everywhere else.

In particular, the image $\Phi(\text{Mon})$ contains at least $\prod_{i < j} N_{ij}$ elements. So Mon contains at least, so exactly

$$
\frac{\prod_{i=1}^r |n_i + 1|}{\prod_{i=1}^r d_i} \prod_{1 \leq i < j \leq r} N_{ij} \geq \frac{\prod_{i=1}^r |n_i + 1|}{\prod_{1 \leq i < j \leq r} N_{ij}}
$$

elements.

Now we assume that there are at least three odd degree singularities. In order to simplify the notation, we define, for $i \neq 0$ $N_{i0} = N_{0i} = \varepsilon_i$, for $i = 0$ $N_{00} = 2^\alpha$. The lemma above shows that $d_k = \varepsilon_k \prod_{i \neq k} N_{ki}$. \Box
where, $\varepsilon_i = 2$ if n_i is odd and $\varepsilon_i = 1$ otherwise. From Lemma 6.2, Mon has at most
\[
N' = \frac{1}{2} \prod_{1 \leq i < j \leq r} |n_i + 1| N_{ij}
\]
elements. We proceed as before, but replace the map Ψ by the map $\tilde{\Psi}$
\[
\tilde{\Psi} : \prod_{i=1}^r \mathbb{Z}/(n_i + 1) \to \prod_{i=1}^r \prod_{j=0}^{r} \mathbb{Z}/N_{ij} \times \mathbb{Z}/N_{ij}.
\]
Since all N_{ij} are odd and pairwise relatively prime, we see as before
that the kernel is $\prod_{i} d_i \mathbb{Z}/(n_i + 1) \mathbb{Z}$, where $d_i = \prod_{j \neq i} N_{ij}$
and is a subgroup of Mon by the previous lemma.

If i_0 or j_0 is even, the image by $\tilde{\Psi}$ of the element $\sigma_{i_0}P_{j_0}$
is the element $E_{i_0j_0} + E_{j_0i_0}$. If both i_0 or j_0 are odd, we get
$\sigma_{i_0}P_{j_0} + E_{i_0j_0} + E_{j_0i_0}$. Then $\tilde{\Psi}(n_{i_0}P_{j_0} + \sigma_{i_0}P_{j_0}) = -2(E_{i_0j_0} + E_{j_0i_0})$. Since $N_{i_0j_0}$ is odd, there is
a multiple of $\sigma_{i_0}P_{j_0}$ whose image by $\tilde{\Psi}$ is $E_{i_0j_0} + E_{j_0i_0}$. Finally, we obtain
that the image by $\tilde{\Psi}$ of Mon contains at least $2^{n-1} \prod_{i<j} N_{ij}$ elements,
where n is the number of odd degree singularities, and therefore, Mon has at least, so exactly N' elements.

\section{Partially marked surfaces}

Coming back to the initial motivation of this paper. It is natural to study the moduli space of surfaces where only a subset of the singularities have a marked horizontal separatrix.

Let $g \geq 1$. Let $\mathcal{H}(n_1, \ldots, n_r)$ be a stratum of the moduli space of genus g meromorphic differentials, and let $C \subset \mathcal{H}(n_1, \ldots, n_r)$ be a nonhyperelliptic connected component. Let $\{P_1, \ldots, P_r\}$ denote the singularities, with $\{P_1, \ldots, P_s\}$, $s < r$ the marked ones. Now we define $\Phi_{\text{part}}(S)$ as:
\[
\Phi_{\text{part}}(S) = (\text{ind}(\gamma_{ij}))_{1 \leq i < j \leq s} \in \prod_{1 \leq i < j \leq s} \mathbb{Z}/N_{ij} \mathbb{Z}
\]
i.e. we restrict the map Φ to the marked singularities.

The following Theorem is an easy corollary of Theorem 6.1.
Corollary 7.2. Let \(\mathcal{H} = \mathcal{H}((n_1, \ldots, n_r)) \) be stratum of genus zero translation surfaces, such that \(\mathcal{H}^{\text{hor}} \) is not connected.

- If there are some non-marked odd degree singularities, or if there are at most two odd degree singularities, then two elements \(S_1 \) and \(S_2 \) of \(\mathcal{H}^{\text{part}} \) are in the same connected component if and only if \(\Phi^{\text{part}}(S_1) = \Phi^{\text{part}}(S_2) \).
- Otherwise, two elements \(S_1 \) and \(S_2 \) of \(\mathcal{H}^{\text{hor}} \) are in the same connected component if and only if \(\Phi^{\text{part}}(S_1) = \Phi^{\text{part}}(S_2) \) and \(\text{Sp}(S_1) = \text{Sp}(S_2) \).

Appendix A. More about connected sums

We look back at the construction described in Section 4.1. Let \(S, S' \) be translation surfaces, and let \(N \in S, \) be a singularity of degree \(n \geq 0 \) and let \(N' \in S' \) be a singularity of degree \(n' = -2 - n < 0 \).

First, we observe once fixed the scaling of \(S' \), the neighborhood \(U \) of \(N \) and the pointed neighborhood \(V \) of \(N' \), there remains a combinatorial choice for gluing together \(S \setminus U \) and \(S' \setminus V \). There are exactly \(n + 1 \) choices. If \(S, S' \) are translation surfaces with marked horizontal separatrices, we can fix this choice by imposing that the separatrix corresponding to \(N \) coincides with the separatrix corresponding to \(N' \). Once fixed this combinatorial choice, other choices involved in the construction (scaling, \(U, V \)) gives a connected set of surfaces.

One would like to glue \(S \) and \(S' \) along several pairs \((N_i, N'_i) \in S \times S' \). We assume that for each \(i \) the singularity \(N_i \) has degree \(n_i > 0 \), and the singularity \(N'_i \) has degree \(-2 - n_i < 0 \). It is natural to glue successively along \((N_1, N'_1) \) then \((N_2, N'_2) \) and so on. However, after the first step, the singularities belong to the same surface. Self gluing construction is made analogously, but in general it is not easy any more to shrink one side to make space. However, in this case, shrinking sufficiently \(S' \) at first solves this issue (since all singularities \(N'_i \) have negative degree). As before, there is a combinatorial choice for each pair which is fixed if the initial surfaces are with marked horizontal separatrices, and two gluings with the same combinatorial choices give surfaces in the same connected component.

Computing the \(\text{Sp} \) invariant of the new surface is easy. It is enough to consider simple gluings and self-gluings.

1. For simple gluing, there are two cases: either the two singularities are even, or they are odd. In the first case, the \(\text{Sp} \) invariant of the new surface is clearly the sum of the \(\text{Sp} \) invariant of the two surfaces. In the second case, following Remark 5.3 we first
choose a suitable pairing of odd degree singularities: we consider pairings of the form \(\{(P^-, P^+)\} \cup P\) with \(P^+ = N\) for \(S\) and \(\{(P'^-, P'^+)\} \cup P'\) with \(P'^- = N'\). We consider the following pairing for the new surface
\[
\{(P_1^-, P_1'^+)\} \cup P \cup P'
\]
Then, we easily see that, with these pairings, the \(Sp\) invariant of the new surface is the sum of the \(Sp\) invariant of \(S\) and \(S'\).

(2) For self gluing, the new surface has genus one more than the initial surface. We easily see that the \(Sp\) invariant does not change for any pairing when glued singularities are of even order, and for a pairing containing \((N, N') = (P^-_1, P'^+_1)\) when the glued singularities have odd order.

REFERENCES

Université de Toulouse, CNRS, Institut Mathématique de Toulouse, UMR5219, UPS IMT, F-31062 Toulouse Cedex 9, France

E-mail address: corentin.boissy@math.univ-toulouse.fr

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille France