N. J. Holroyd, Environment-Induced Cracking of High-Strength Aluminum Alloys, EICM Proceedings Environment-Induced Cracking of Metals, p.311, 1990.

P. Sofronis and H. Birnbaum, Mechanics of the hydrogendashdislocationdashimpurity interactions???I. Increasing shear modulus, Journal of the Mechanics and Physics of Solids, vol.43, issue.1, p.49, 1996.
DOI : 10.1016/0022-5096(94)00056-B

H. Birnbaum, I. Robertson, P. Sofornis, and D. Teter, Mechanisms of Hydrogen Related Fracture-a review, Second International Conference on Corrosion Deformation Interactions The Institute of Materials, p.172, 1997.

A. M. Brass and A. Chanfreau, Accelerated diffusion of hydrogen along grain boundaries in nickel, Acta Materialia, vol.44, issue.9, p.3823, 1996.
DOI : 10.1016/1359-6454(95)00446-7

A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou et al., Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel, Acta Materialia, vol.60, issue.19, p.6814, 2012.
DOI : 10.1016/j.actamat.2012.09.004

J. Ai and J. R. Scully, Hydrogen Diffusivity During Corrosion of High-Purity Aluminum, CORROSION, vol.69, issue.8, p.752, 2013.
DOI : 10.5006/0826

T. Zakroczymski, Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals, Electrochimica Acta, vol.51, issue.11, p.2261, 2006.
DOI : 10.1016/j.electacta.2005.02.151

R. Kirchheim and U. Stolz, Modelling tracer diffusion and mobility of interstitials in disordered materials, Journal of Non-Crystalline Solids, vol.70, issue.3, p.323, 1985.
DOI : 10.1016/0022-3093(85)90104-8

Y. A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer et al., -Fe, Physical Review B, vol.84, issue.14, p.144121, 2011.
DOI : 10.1103/PhysRevB.84.144121

URL : https://hal.archives-ouvertes.fr/medihal-00758550

Y. A. Du, J. Rogal, and R. Drautz, Diffusion of hydrogen within idealized grains of bcc Fe: A kinetic Monte Carlo study, Physical Review B, vol.86, issue.17, p.174110, 2012.
DOI : 10.1103/PhysRevB.86.174110

M. Yamaguchi, M. Shiga, and H. Kaburaki, Response to Comment on "Grain Boundary Decohesion by Impurity Segregation in a Nickel-Sulfur System", Science, vol.309, issue.5741, p.1677, 2005.
DOI : 10.1126/science.1112218

S. Zhang, O. Y. Kontsevoi, A. J. Freeman, and G. B. Olson, Cohesion enhancing effect of magnesium in aluminum grain boundary: A first-principles determination, Applied Physics Letters, vol.100, issue.23, p.231904, 2012.
DOI : 10.1063/1.4725512

L. Zhong, R. Wu, A. J. Freeman, and G. B. Olson, Charge transfer mechanism of hydrogen-induced intergranular embrittlement of iron, Physical Review B, vol.62, issue.21, p.13938, 2000.
DOI : 10.1103/PhysRevB.62.13938

P. Lej?ek, M. ?ob, V. Paidar, and V. Vitek, Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low, Scripta Materialia, vol.68, issue.8, p.547, 2013.
DOI : 10.1016/j.scriptamat.2012.11.019

N. Holroyd and D. Hardie, Strain-rate effects in the environmentally assisted fracture of a commercial high-strength aluminium alloy (7049), Corrosion Science, vol.21, issue.2, p.129, 1981.
DOI : 10.1016/0010-938X(81)90097-4

J. Chene and A. M. Brass, Role of temperature and strain rate on the hydrogen-induced intergranular rupture in alloy 600, Metallurgical and Materials Transactions A, vol.37, issue.3, p.457, 2004.
DOI : 10.1007/s11661-004-0356-5

E. Pouillier, A. F. Gourgues, D. Tanguy, and E. P. Busso, A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement, International Journal of Plasticity, vol.34, p.139, 2012.
DOI : 10.1016/j.ijplas.2012.01.004

URL : https://hal.archives-ouvertes.fr/hal-00701032

Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, calculations, Physical Review B, vol.59, issue.5, p.3393, 1999.
DOI : 10.1103/PhysRevB.59.3393

J. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/PhysRevLett.77.3865

J. Kresse and J. Hafner, molecular dynamics for liquid metals, Physical Review B, vol.47, issue.1, p.558, 1993.
DOI : 10.1103/PhysRevB.47.558

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.59, issue.3, p.1758, 1999.
DOI : 10.1103/PhysRevB.59.1758

C. Wolverton, V. Ozoli¸n?ozoli¸n?, and M. Asta, Hydrogen in aluminum: First-principles calculations of structure and thermodynamics, Physical Review B, vol.69, issue.14, p.144109, 2004.
DOI : 10.1103/PhysRevB.69.144109

Y. Chen, C. Fu, K. Ho, and B. Harmon, -point phonons in bcc Zr, Nb, and Mo, Physical Review B, vol.31, issue.10, p.6775, 1985.
DOI : 10.1103/PhysRevB.31.6775

URL : https://hal.archives-ouvertes.fr/hal-00109057

J. D. Rittner and D. N. Seidman, ???110??? symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies, Physical Review B, vol.54, issue.10, p.6999, 1996.
DOI : 10.1103/PhysRevB.54.6999

L. Wan and S. Wang, symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods, Physical Review B, vol.82, issue.21, p.214112, 2010.
DOI : 10.1103/PhysRevB.82.214112

M. J. Mills, High resolution transmission electron microscopy and atomistic calculations of grain boundaries in metals and intermetallics, Materials Science and Engineering: A, vol.166, issue.1-2, p.35, 1993.
DOI : 10.1016/0921-5093(93)90308-2

Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, 2003.
DOI : 10.1007/978-3-662-02801-8

J. Song and W. A. Curtin, A nanoscale mechanism of hydrogen embrittlement in metals, Acta Materialia, vol.59, issue.4, p.1557, 2011.
DOI : 10.1016/j.actamat.2010.11.019

J. Von-pezold, L. Lymperakis, and J. Neugebeauer, Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H???H interactions and the formation of local hydrides, Acta Materialia, vol.59, issue.8, p.2969, 2011.
DOI : 10.1016/j.actamat.2011.01.037

D. Jiang and E. Carter, First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals, Acta Materialia, vol.52, issue.16, p.4801, 2004.
DOI : 10.1016/j.actamat.2004.06.037

X. Pang, N. Ahmed, R. Janisch, and A. Hartmaier, The mechanical shear behavior of Al single crystals and grain boundaries, Journal of Applied Physics, vol.112, issue.2, p.23503, 2012.
DOI : 10.1063/1.4736525

D. Tanguy, Constrained molecular dynamics for quantifying intrinsic ductility versus brittleness, Physical Review B, vol.76, issue.14, p.144115, 2007.
DOI : 10.1103/PhysRevB.76.144115

URL : https://hal.archives-ouvertes.fr/hal-00294021

M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo et al., First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems, Metallurgical and Materials Transactions A, vol.31, issue.2, p.330, 2011.
DOI : 10.1007/s11661-010-0380-6

R. Stumpf, H-Induced Reconstruction and Faceting of Al Surfaces, Physical Review Letters, vol.78, issue.23, p.4454, 1997.
DOI : 10.1103/PhysRevLett.78.4454