Analysis and design of channel interleavers for terrestrial broadcast
Ronald Garzon Bohorquez, Charbel Abdel Nour, Catherine Douillard

To cite this version:
Ronald Garzon Bohorquez, Charbel Abdel Nour, Catherine Douillard. Analysis and design of channel interleavers for terrestrial broadcast. M3 Open Event: projet ANR Mobile MultiMedia, May 2013, Issy Le Moulineaux, France. 2013. <hal-01170386>

HAL Id: hal-01170386
https://hal.archives-ouvertes.fr/hal-01170386
Submitted on 12 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Motivations

- In terrestrial broadcast standards such as DVB-T2, channel interleaving is achieved through stacking several specific interleavers
- Aim: propose design criteria for channel interleavers based on span properties in the time and frequency domains and on the distribution of mutual information (MI)

Span properties

- **Frequency span**: $S_f(i) = \min \{|f_i - f_j| + |f_{i(0)} - f_{j(0)}|\}$
- **Time span**: $S_t(i) = \min \{|t_i - t_j| + |t_{i(0)} - t_{j(0)}|\}$
- **Design criterion**: maximize time and frequency spans

Analysis of DVB-T2 interleaver

- $N_f = 357$ OFDM symbols
- $N_f = 1705$ carriers

Design of interleavers with good span and MI distribution properties

- **Studied interleavers**
 - Regular interleaver (RI): $\Pi(i) = P \times i \mod N_f$ with $P = P_t \times N_f + P_f$, N_f being the number of cells in an OFDM frame
 - Double regular interleaver (2RI): $\Pi(i) = N_f \times f_{i(0)} + f_{i(0)}$ with $f_{i(0)} = (P_t \times i \mod N_f) + S_f \times i \mod N_f$ and $f_{i(0)} = P_f \times i \mod N_f$
 - Almost regular permutation (ARP): same as RI with cyclic shift in $\Pi(i)$ expression
 - Double almost regular permutation (2ARP): same as 2RI with cyclic shifts in $f_{i(0)}$ and $f_{i(0)}$ expressions

Mutual information distribution

- **Average mutual information (MI) per FEC block**
 \[AMI = \log 2 - \frac{1}{N} \sum_{i=1}^{N} \left(\max \{0, z_i \times (-1)^b \} \right) \]
- **Design criterion**: minimize the variance of MI distribution over FEC blocks in the OFDM frame => uniform distribution of the MI

Analysis and Design of Channel Interleavers for Terrestrial Broadcast

FEC block number
No Interleaver
CI
TI
FI
T2-Interleaver

BER
Es/N0 (dB)

Frequency histogram
Time histogram

TU6 channel

P1 channel

TU6 channel, LDPC code rate 37/45
P1 channel, LDPC code rate 37/45