M. Mark, N. B. Ghyselinck, and P. Chambon, Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis, Annu. Rev. Pharmacol. Toxicol, vol.46, pp.451-480, 2006.

J. D. Sabella, H. A. Bern, and R. H. Kahn, Effects of locally applied vitamin A and estrogen on rat epidermis, Proc. Soc. Exp. Biol. Med, vol.76, pp.499-503, 1951.

E. L. Wilson and E. Reich, Plasminogen activator in chick fibroblasts: induction of synthesis by retinoic acid; synergism with viral transformation and phorbol ester, Cell, vol.15, pp.385-392, 1978.

S. B. Wolbach and P. R. Howe, Tissue changes following deprivation of fat-soluble a vitamin, J. Exp. Med, vol.42, pp.753-777, 1925.

S. H. Yuspa and C. C. Harris, Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro, Exp. Cell Res, vol.86, pp.95-105, 1974.

C. L. Mummery, A. Feyen, E. Freund, and S. Shen, Characteristics of embryonic stem cell differentiation: a comparison with two embryonal carcinoma cell lines, Cell Differ. Dev, vol.30, pp.195-206, 1990.

, Nucleic Acids Research, vol.43, issue.10, p.4853, 2015.

N. Ivanova, R. Dobrin, R. Lu, I. Kotenko, J. Levorse et al., Dissecting self-renewal in stem cells with RNA interference, Nature, vol.442, pp.533-538, 2006.

K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, vol.126, pp.663-676, 2006.

W. Wang, J. Yang, H. Liu, D. Lu, X. Chen et al., Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.18283-18288, 2011.

S. Mader, P. Leroy, J. Y. Chen, and P. Chambon, Multiple parameters control the selectivity of nuclear receptors for their response elements. Selectivity and promiscuity in response element recognition by retinoic acid receptors and retinoid X receptors, J. Biol. Chem, vol.268, pp.591-600, 1993.

T. Perlmann, P. N. Rangarajan, K. Umesono, and R. M. Evans, Determinants for selective RAR and TR recognition of direct repeat HREs, Genes Dev, vol.7, pp.1411-1422, 1993.

K. Umesono and R. M. Evans, Determinants of target gene specificity for steroid/thyroid hormone receptors, Cell, vol.57, pp.1139-1146, 1989.

R. M. Evans and D. J. Mangelsdorf, Nuclear Receptors, RXR, and the Big Bang, Cell, vol.157, pp.255-266, 2014.

D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schutz et al., The nuclear receptor superfamily: the second decade, Cell, vol.83, pp.835-839, 1995.

J. E. Balmer and R. Blomhoff, A robust characterization of retinoic acid response elements based on a comparison of sites in three species, J. Steroid Biochem. Mol. Biol, vol.96, pp.347-354, 2005.

K. Umesono, K. K. Murakami, C. C. Thompson, and R. M. Evans, Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors, Cell, vol.65, pp.1255-1266, 1991.

Y. S. Chang, J. Y. Cho, H. A. Cho, H. J. Kim, J. Chang et al., 9-cis retinoic acid induces insulin-like growth factor binding protein-3 through DR-8 retinoic acid responsive elements, Cancer Biol. Ther, vol.5, pp.586-592, 2006.

K. Fujisawa, K. Umesono, Y. Kikawa, Y. Shigematsu, A. Taketo et al., Identification of a response element for vitamin D3 and retinoic acid in the promoter region of the human fructose-1,6-bisphosphatase gene, J. Biochem, vol.127, pp.373-382, 2000.

M. E. Carter, T. Gulick, D. D. Moore, and D. P. Kelly, A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs, Mol. Cell. Biol, vol.14, pp.4360-4372, 1994.

C. H. Lee and L. N. Wei, Characterization of an inverted repeat with a zero spacer (IR0)-type retinoic acid response element from the mouse nuclear orphan receptor TR2-11 gene, Biochemistry, vol.38, pp.8820-8825, 1999.

S. Hua, R. Kittler, and K. P. White, Genomic antagonism between retinoic acid and estrogen signaling in breast cancer, Cell, vol.137, pp.1259-1271, 2009.

S. Mahony, E. O. Mazzoni, S. Mccuine, R. A. Young, H. Wichterle et al., Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis, Genome Biol, vol.12, p.2, 2011.

J. H. Martens, A. B. Brinkman, F. Simmer, K. J. Francoijs, A. Nebbioso et al., PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia, Cancer Cell, vol.17, pp.173-185, 2010.

M. A. Mendoza-parra, M. Walia, M. Sankar, and H. Gronemeyer, Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics, Mol. Syst. Biol, vol.7, p.538, 2011.

E. Moutier, T. Ye, M. A. Choukrallah, S. Urban, J. Osz et al., Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology, J. Biol. Chem, vol.287, pp.26328-26341, 2012.

X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss et al., Integration of external signaling pathways with the core transcriptional network in embryonic stem cells, Cell, vol.133, pp.1106-1117, 2008.

J. C. Heng, B. Feng, J. Han, J. Jiang, P. Kraus et al., The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells, Cell. Stem Cell, vol.6, pp.167-174, 2010.

V. Kashyap and L. J. Gudas, Epigenetic regulatory mechanisms distinguish retinoic acid-mediated transcriptional responses in stem cells and fibroblasts, J. Biol. Chem, vol.285, pp.14534-14548, 2010.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle et al., The human genome browser at UCSC, Genome Res, vol.12, pp.996-1006, 2002.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS), Genome Biol, vol.9, p.137, 2008.

A. Kowalczyk, J. Bedo, T. Conway, and B. Beresford-smith, The poisson margin test for normalization-free significance analysis of NGS data, J. Comput. Biol, vol.18, pp.391-400, 2011.

B. E. Bernstein, E. Birney, I. Dunham, E. D. Green, C. Gunter et al., An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.

T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant et al., MEME SUITE: tools for motif discovery and searching, Nucleic Acids Res, vol.37, pp.202-208, 2009.

M. J. De-hoon, S. Imoto, J. Nolan, and S. Miyano, Open source clustering software, Bioinformatics, vol.20, pp.1453-1454, 2004.

J. Han, P. Yuan, H. Yang, J. Zhang, B. S. Soh et al., Tbx3 improves the germ-line competency of induced pluripotent stem cells, Nature, vol.463, pp.1096-1100, 2010.

A. Marson, S. S. Levine, M. F. Cole, G. M. Frampton, T. Brambrink et al., Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells, Cell, vol.134, pp.521-533, 2008.

C. Xu, X. Lu, E. Z. Chen, Z. He, B. Uyunbilig et al., Genome-wide roles of Foxa2 in directing liver specification, J. Mol. Cell. Biol, vol.4, pp.420-422, 2012.

M. Yamaji, J. Ueda, K. Hayashi, H. Ohta, Y. Yabuta et al., PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells, Cell. Stem Cell, vol.12, pp.368-382, 2013.

I. Aksoy, R. Jauch, J. Chen, M. Dyla, U. Divakar et al., Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm, EMBO J, vol.32, pp.938-953, 2013.

A. Acland, R. Agarwala, T. Barrett, J. Beck, D. A. Benson et al., Database resources of the National Center for Biotechnology Information, Nucleic Acids Res, vol.41, pp.8-20, 2013.

P. G. Giresi and J. D. Lieb, Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements), Methods, vol.48, pp.233-239, 2009.

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.25, pp.1105-1111, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq --A Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

J. Rambaud, G. Triqueneaux, I. Masse, B. Staels, V. Laudet et al., Rev-erbalpha2 mRNA encodes a stable protein with a potential role in circadian clock regulation, Mol. Endocrinol, vol.23, pp.630-639, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00720064

X. Ji, W. Li, J. Song, L. Wei, and X. S. Liu, CEAS: cis-regulatory element annotation system, Nucleic Acids Res, vol.34, pp.551-554, 2006.

S. Lalevee, Y. N. Anno, A. Chatagnon, E. Samarut, O. Poch et al., Genome-wide in silico identification of new conserved and functional retinoic acid receptor response elements (direct repeats separated by 5 bp), J. Biol. Chem, vol.286, pp.33322-33334, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647235

E. H. Margulies, M. Blanchette, D. Haussler, and E. D. Green, Identification and characterization of multi-species conserved sequences, Genome Res, vol.13, pp.2507-2518, 2003.

G. Bour, J. L. Plassat, A. Bauer, S. Lalevee, and C. Rochette-egly, Vinexin beta interacts with the non-phosphorylated AF-1 domain of retinoid receptor gamma (RARgamma) and represses RARgamma-mediated transcription, J. Biol. Chem, vol.280, pp.17027-17037, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187460

E. Gaillard, N. Bruck, Y. Brelivet, G. Bour, S. Lalevee et al., Phosphorylation by PKA potentiates retinoic acid receptor alpha activity by means of increasing interaction with and phosphorylation by cyclin H/cdk7, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.9548-9553, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187915

S. Lalevee, G. Bour, M. Quinternet, E. Samarut, P. Kessler et al., Vinexinß, an atypical 'sensor' of retinoic acid receptor gamma signaling: union and sequestration, separation, and phosphorylation, FASEB J, vol.24, pp.4523-4534, 2010.

E. Samarut, I. Amal, G. V. Markov, R. Stote, A. Dejaegere et al., Evolution of nuclear retinoic acid receptor alpha (RARalpha) phosphorylation sites. Serine gain provides fine-tuned regulation, Mol. Biol. Evol, vol.28, pp.2125-2137, 2011.

H. De-the, A. Marchio, P. Tiollais, and A. Dejean, Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes, EMBO J, vol.8, pp.429-433, 1989.

H. De-the, M. M. Vivanco-ruiz, P. Tiollais, H. Stunnenberg, and A. Dejean, Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene, Nature, vol.343, pp.177-180, 1990.

H. M. Sucov, K. K. Murakami, and R. M. Evans, Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene, Proc. Natl. Acad. Sci. U.S.A, vol.87, pp.5392-5396, 1990.

T. N. Faria, C. Mendelsohn, P. Chambon, and L. J. Gudas, The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid-associated growth arrest, J. Biol. Chem, vol.274, pp.26783-26788, 1999.

N. Bruck, D. Vitoux, C. Ferry, V. Duong, A. Bauer et al., A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARalpha to target promoters, EMBO J, vol.28, pp.34-47, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00357399

P. Machanick and T. L. Bailey, MEME-ChIP: motif analysis of large DNA datasets, Bioinformatics, vol.27, pp.1696-1697, 2011.

T. L. Bailey, DREME: motif discovery in transcription factor ChIP-seq data, Bioinformatics, vol.27, pp.1653-1659, 2011.

D. Cotnoir-white, D. Laperriere, and S. Mader, Evolution of the repertoire of nuclear receptor binding sites in genomes, Mol. Cell. Endocrinol, vol.334, pp.76-82, 2011.

I. Aksoy, R. Jauch, V. Eras, W. B. Chng, J. Chen et al., Sox transcription factors require selective interactions with oct4 and specific transactivation functions to mediate reprogramming, Stem Cells, vol.31, pp.2632-2646, 2013.

L. A. Boyer, T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine et al., Core transcriptional regulatory circuitry in human embryonic stem cells, Cell, vol.122, pp.947-956, 2005.

H. Niwa, T. Burdon, I. Chambers, and A. Smith, Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3, Genes Dev, vol.12, pp.2048-2060, 1998.

Q. L. Ying, J. Nichols, I. Chambers, and A. Smith, BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3, Cell, vol.115, pp.281-292, 2003.

K. Okita and S. Yamanaka, Intracellular signaling pathways regulating pluripotency of embryonic stem cells, Curr. Stem. Cell. Res. Ther, vol.1, pp.103-111, 2006.

E. Samarut and C. Rochette-egly, Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development, Mol. Cell. Endocrinol, vol.348, pp.348-360, 2012.

C. Eifert, N. Sangster-guity, L. M. Yu, S. V. Chittur, A. V. Perez et al., Global gene expression profiles associated with retinoic acid-induced differentiation of embryonal carcinoma cells, Mol. Reprod. Dev, vol.73, pp.796-824, 2006.

Z. Ouyang, Q. Zhou, and W. H. Wong, ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.21521-21526, 2009.

T. Frum, M. A. Halbisen, C. Wang, H. Amiri, P. Robson et al., Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst, Dev. Cell, vol.25, pp.610-622, 2013.

H. Chiba, J. Clifford, D. Metzger, and P. Chambon, Specific and redundant functions of retinoid X Receptor/Retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells, J. Cell Biol, vol.139, pp.735-747, 1997.

H. Chiba, J. Clifford, D. Metzger, and P. Chambon, Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells, Mol. Cell. Biol, vol.17, pp.3013-3020, 1997.

R. Nielsen, T. A. Pedersen, D. Hagenbeek, P. Moulos, R. Siersbaek et al., Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes Dev, vol.22, pp.2953-2967, 2008.

C. Solomon, J. H. White, and R. Kremer, Mitogen-activated protein kinase inhibits 1,25-dihydroxyvitamin D3-dependent signal transduction by phosphorylating human retinoid X receptor alpha, J. Clin. Invest, vol.103, pp.1729-1735, 1999.

A. J. Cooney, S. Y. Tsai, B. W. O'malley, and M. J. Tsai, Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors, Mol. Cell. Biol, vol.12, pp.4153-4163, 1992.

E. Ben-shushan, H. Sharir, E. Pikarsky, and Y. Bergman, A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells, Mol. Cell. Biol, vol.15, pp.1034-1048, 1995.

G. Fuhrmann, A. C. Chung, K. J. Jackson, G. Hummelke, A. Baniahmad et al., Mouse germline restriction of Oct4 expression by germ cell nuclear factor, Dev. Cell, vol.1, pp.377-387, 2001.

P. Gu, D. Lemenuet, A. C. Chung, M. Mancini, D. A. Wheeler et al., Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation, Mol. Cell. Biol, vol.25, pp.8507-8519, 2005.

I. Sylvester and H. R. Scholer, Regulation of the Oct-4 gene by nuclear receptors, Nucleic Acids Res, vol.22, pp.901-911, 1994.

Y. Zhuang and L. J. Gudas, Overexpression of COUP-TF1 in murine embryonic stem cells reduces retinoic acid-associated growth arrest and increases extraembryonic endoderm gene expression, Differentiation, vol.76, pp.760-771, 2008.

P. Gu, X. Xu, D. Le-menuet, A. C. Chung, and A. J. Cooney, Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4, Stem Cells, vol.29, pp.1041-1051, 2011.

N. Sato, M. Kondo, and K. Arai, The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing, Biochem. Biophys. Res. Commun, vol.344, pp.845-851, 2006.

R. Gallais, F. Demay, P. Barath, L. Finot, R. Jurkowska et al., Deoxyribonucleic acid methyl transferases 3a and 3b associate with the nuclear orphan receptor COUP-TFI during gene activation, Mol. Endocrinol, vol.21, pp.2085-2098, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00179636