
Two-stage stochastic matching and spanning tree

problems: polynomial instances and approximation

Bruno Escoffier a Laurent Gourvès a Jérôme Monnot a,∗ Olivier Spanjaard b

aLAMSADE-CNRS, Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny,
F-75775 Paris Cedex 16, France

bLIP6-CNRS, Université Pierre et Marie Curie (UPMC), 104 Avenue du Président Kennedy,
F-75016 Paris, France

Abstract

This article deals with the two stage stochastic model, which aims at explicitely taking into account
uncertainty in optimization problems, that Kong and Schaefer have recently studied for the maximum
weight matching problem [10]. They have proved that the problem is NP-hard, and they have
provided a factor 1

2 approximation algorithm. We further study this problem and strengthen the
hardness results, slightly improve the approximation ratio and exhibit some polynomial cases. We
similarly tackle the maximum weight spanning tree problem in the two stage setting. Finally, we
make numerical experiments on randomly generated instances to compare the quality of several
interesting heuristics.

Key words: Stochastic programming, Approximation algorithms, Matching, Maximum spanning
tree, Combinatorial optimization

1 Introduction

Stochastic optimization aims at explicitely taking into account uncertainty in optimization
problems. Uncertainty is modeled by using probability distributions on the parameters of the
problem. Two approaches have been investigated: the open loop one where a complete solu-
tion is computed once for all at the beginning (without knowing anything but the probability
distributions on the parameters), and the closed loop one where a solution is progressively com-
pleted along several stages. In the latter approach, the most widely studied model is two-stage

∗ Corresponding author.
Email addresses: escoffier@lamsade.dauphine.fr (Bruno Escoffier),

gourves@lamsade.dauphine.fr (Laurent Gourvès), monnot@lamsade.dauphine.fr (Jérôme
Monnot), olivier.spanjaard@lip6.fr (Olivier Spanjaard).

Preprint submitted to Elsevier 24 November 2009

stochastic optimization (or more generally multi-stage stochastic optimization). We consider
here a two-stage model where the values of the different parameters are deterministic in the
first stage, and there is a discrete set of scenarios for these values in the second stage. A subset
of variables –the choice of which is open– is set during the first stage. During the second stage,
after the occurring scenario is known, the remaining variables are set so as to optimize the
overall value of the solution. Each of the possible scenarios has a probability to occur, and the
goal is to optimize the expected value of the solution built.

More precisely, we consider two stage stochastic versions of classical deterministic problems
defined on subsets of edges of a given edge-weighted graph (such as maximum matching problem
or maximum spanning tree problem). The underlying problem Π can be defined as follows: We
are given a graph G with vertex set V and edge set E. Each edge e ∈ E has a weight w(e) ∈ R.
Let π : 2E 7→ {true, false} be a given graph property checkable in polynomial time (e.g. being
a matching of G). The goal of Π is to find E ′ ⊆ E such that π(E ′) = true and

∑

e∈E′ w(e) is
maximum.

Then, the two-stage stochastic version of Π, denoted by Π̃, is defined as follows. The number
of possible scenarios at the second stage is r. We consider uncertainties on edge weights (the
underlying graph is fixed). More precisely, we are given r + 1 weight functions wi : E 7→ R,
i = 0, . . . , r. Each edge e ∈ E has a deterministic weight w0(e) at the first stage. Subsequently,
one of the r scenarios occurs, say s, with a known probability ps. The second stage weight of
an edge e when s occurs is ws(e). A feasible solution consists of choosing a (possibly empty) set
E0 of edges at the first stage, and completing this set E0 into a feasible solution by choosing a
set Es (1 ≤ s ≤ r) at the second stage. Formally, a feasible solution is a collection of edge sets
(E0, E1, . . . , Er) such that

∀s ∈ {1, . . . , r}, E0 ∩ Es = ∅ ∧ π(E0 ∪ Es) = true. (1)

An edge chosen in the first stage (in E0) has value w0(e), while if scenario s occurs, and edge
chosen at the second stage (in Es) has a weight ws(e). Then the goal is to maximize the
expected value val(E0, . . . , Er) of a solution (E0, E1, . . . , Er), where:

val(E0, . . . , Er) =
∑

e∈E0

w0(e) +
r
∑

s=1

∑

e∈Es

ps ws(e).

Throughout the article, to avoid confusion, a solution to the deterministic problem Π is called a
Π-solution. A solution to the associated two-stage stochastic problem Π̃ is called a Π̃-solution.
A Π-solution is a set of edges whereas a Π̃-solution is a collection of r + 1 edge sets. Note also
that for the ease of presentation for a set of edges E ′, we sometimes write w(E ′) instead of
∑

e∈E′ w(e) (and ws(E
′) instead of

∑

e∈E′ ws(e)).

As mentioned above we focus on two-stage stochastic versions of the maximum weight match-
ing and spanning tree problems. It suffices to give an appropriate definition of π (the graph
property) to turn Π and Π̃ into the problems under study. For the maximum weight matching
problem, π is defined as π(E ′) = true iff E ′ ⊆ E and edges of E ′ are pairwise non-adjacent.
For the maximum weight spanning tree problem, π is defined as π(E ′) = true iff E ′ ⊆ E and

2

G[E ′] = (V, E ′) is a spanning tree of G (in particular, |E ′| = |V | − 1 and G[E ′] is acyclic).

1.1 Related work

Stochastic programming is a well established domain in operations research and management
(see Kall and Wallace [8], Birge and Louveaux [1] for an introduction). Problems in stochastic
programming are typically hard from a computational point of view. Therefore approximation
comes naturally. Besides heuristic methods, approximation algorithms (i.e. polynomial time
algorithms with a performance guarantee) are valuable tools to tackle hard problems. For a
maximization problem, we say that an algorithm is a ρ-approximation if it always returns a
solution with value at least ρ times the optimum value (0 < ρ ≤ 1).

The use of approximation algorithms for problems with uncertain data is quite recent. Here
we briefly review recent contributions dealing with approximation algorithms for stochastic
versions of well known combinatorial optimization problems.

Ravi and Sinha [13] study several paradigmatic combinatorial problems (shortest path, vertex
cover, bin packing, facility location, set cover) in the two-stage stochastic framework and pro-
vide approximation algorithms and hardness results. Independently Immorlica, Karger, Minkoff
and Mirrokni [7] study two-stage stochastic versions of min cost flow, bin packing, vertex cover,
shortest path and Steiner tree.

The problems investigated in [13,7] are characterized by a “monotonicity” property: a partial
solution built at the first stage cannot invalidate a possible second stage solution. This is
in constrast with the two-stage stochastic versions of the maximum weight matching and
maximum cost spanning tree studied in this article. For the matching problem, selecting an
edge [i, j] at the first stage precludes all other edges incident to i and j at the second stage.
For the spanning tree, selecting [i, j] at the first stage precludes all paths having i and j as
endpoints at the second stage.

Gupta, Pàl, Ravi and Sinha [5] propose a general method called boosted sampling. Given an
approximation algorithm A for a deterministic problem Π, boosted sampling turns A into an
approximation algorithm for the two-stage stochastic version of Π. The authors suppose that
Π satisfies a sub-additivity property (the union of two feasible solutions is a solution for the
union of the two instances) which is similar to the monotonicty requirement in [7]. Morevover
the cost of any resource (e.g. an edge) increases by a given multiplicative factor when the actual
scenario is known. The authors deal with the following problems: Steiner tree, vertex cover,
facility location, Steiner network. They subsequently generalize boosted sampling to multiple
stages [6].

Kong and Schaefer [10] introduce the stochastic two-stage maximum matching problem defined
upon the well known maximum matching problem (the one studied in this article). They prove
that the problem is NP-hard when the number of scenarios is an input of the problem, provide
a simple and quite general 1/2-approximation algorithm and conduct numerical experiments

3

on randomly generated instances.

More recently Katriel, Mathieu and Upfal [9] study two stochastic minimum cost maximum
matching problems in bipartite graphs. In their two variants, the uncertainty is respectively
on the second stage edge cost of the edges and on the set of vertices to be matched. Those
problems are abstraction of many real world situations but they are not sub-additive. The
authors present approximation algorithms and inapproximability results.

Flaxman, Frieze and Krivelevich [2] study a stochastic minimum spanning tree problem. The
first stage price of an edge is a given value in [0, 1]. The second stage price is an independent
variable uniformly distributed in [0, 1]. The problem is to select some edges at both stages which
form a tree so that the expected cost at the second stage is minimum. The authors propose a
parameterized heuristic and show which value of the parameter optimizes the expected cost.
They also generalize their result to the oriented case. Actually the stochastic problem studied
by Flaxman et al has infinitely many second stage scenarios which are given implicity. For the
two-stage stochastic maximum spanning tree problem studied in this article, we have a finite
number of explicitely given scenarios.

1.2 Contribution and organization of the article

We study the two-stage stochastic maximum weight matching as introduced by Kong and
Schaefer [10] and a similarly defined maximum weight spanning tree problem. Our problems
are respectively denoted by 2-Stage max Mat and 2-Stage max ST.

We begin with preliminary remarks in Section 2. Afterwards Section 3 is devoted to the compu-
tational complexity of 2-stage max Mat and 2-stage max ST. In particular we strengthen Kong
and Schaefer’s result by showing that 2-stage max Mat is APX-complete even in bipartite
graphs of maximum degree 4. Some other classes of graphs (maximum degree 3 and planar)
are investigated. The 2-stage max ST is also shown APX-complete.

In Section 4 we exhibit polynomial cases of 2-Stage max Mat, namely chains and trees when
the number of scenarios is bounded.

An approximation algorithm with performance guarantee r/(2r − 1) (where r is the number
of possible scenarios at the second stage) is given for problem Π̃ in Section 5 (the algorithm
being polynomial as soon as Π is polynomially solvable). The result applies for 2-stage max
ST and 2-stage max Mat since Π̃ generalizes them. Moreover this is an improvement of the
1/2-approximation algorithm of Kong and Schaefer [10] (because r/(2r− 1) > 1/2). Moreover,
for the special case of 2-stage max Mat, we also propose another approximation algorithm with
performance guarantee (∆+1)/(2∆+1) for general graphs and ∆/(2∆−1) for bipartite graphs
where ∆ is the maximum degree of the graph. It is interesting to notice that these latter ratios
do not depend on the number of scenarios.

Sections 6 and 7 deal with practical experiments. We propose in Section 6 a heuristic improving

4

the approximation algorithm analyzed in Section 5. Then, in Section 7, we compare the behavior
of several heuristics including the approximation algorithms of Kong and Schaefer [10] on
randomly generated instances. Finally open problems and concluding remarks are given in
Section 8.

2 Preliminary remarks

Let us introduce three quite straightforward preliminary remarks. In particular, Claim 2 will
be used in the practical experiments in order to preprocess the graph.

Claim 1. Assume that the problem Π is polynomial. Then the problem Π̃ is polynomial for
r = 1.

Indeed, it reduces to Π on the graph where every edge e is valued by max{w0(e), w1(e)}.

Note also that the following dominance rule holds (whatever the value of r):

Claim 2. If
∑r

s=1 psws(e) ≥ w0(e), then there exists an optimal Π̃-solution in which edge e is
not chosen in the first stage.

Indeed, for every feasible solution in which edge e is chosen in the first stage, there exists
another feasible solution, differing only on edge e, the value of which is at least as good. This
can be proved as follows. First, if Π̃-solution (E0, E1, . . . , Er) is feasible and e ∈ E0, then the
Π̃-solution (E0 \ {e}, E1 ∪ {e}, . . . , Er ∪ {e}) is feasible. Consequently, choosing edge e in the
second stage under all scenarios (instead of in the first stage) has no negative impact on the
global feasibility of the solution. Furthermore, the value of the objective function is increased
by (

∑r
s=1 psws(e)) − w0(e) ≥ 0, which concludes the proof.

We conclude by the following observation.

Claim 3. All probabilities ps can be set to 1/r if ws(e) is replaced by r ps ws(e).

3 Computational complexity

3.1 The case of the maximum spanning tree problem

A spanning tree T of a connected graph G = (V, E) with n vertices is a set of edges T ⊆ E
such that subgraph (V, T) is connected and acyclic. The problem of computing a spanning tree
T of a weighted graph (G, w) maximizing w(T) =

∑

e∈T w(e) is known to be polynomial (see
for instance [4]) and usually called the maximum spanning tree problem. To the best of our
knowledge, the two Stage stochastic maximum spanning tree problem, denoted 2-Stage max ST,

5

has not been studied so far. On the other hand, the two Stage stochastic minimum spanning
tree problem has been proved not O(log n)-approximable unless P=NP in [2]. Although both
problems maximum spanning tree and minimum spanning tree are equivalent from a complexity
point of view (modify the weight function w(e) by w′(e) = wmax − w(e) for any edge e ∈ E,
where wmax = maxe∈E w(e)), this property does not seem to hold for 2-Stage min ST and
2-Stage max ST. Thus, we can not conclude from [2] that 2-Stage max ST is NP-hard. Here,
we prove that this problem is actually APX-complete.

Theorem 1 2-Stage max ST is APX-complete.

PROOF. The proof will be done via an approximation preserving reduction from the maxi-
mum independent set problem, MaxIS for short. An instance G = (V, E) of MaxIS consists in
a connected graphs. The goal is to find a subset V ′ ⊆ V of pairwise non-adjacent vertices that
minimizes |V ′|. Its restriction to connected graphs of maximum degree 3, denoted MaxIS3 has
been shown APX-complete in [12].

Let G = (V, E) where V = {v1, . . . , vn} and E = {e1, . . . , em} be an instance of MaxIS3. We
build r and I = (G′, wi, pi) instance of 2-Stage max ST as follows:

• In G = (V, E), we add a new vertex v0 and n new edges [v0, vi] for i = 1, . . . , n. Let G′ be
the resulting graph.

• There are m scenarios (i.e., r = m) and let pi = 1
m

for i = 1, . . . , r be the probabilities
associated to these scenarios.

• The different weight functions are given by: for the new edges, we set w0([v0, vi]) = 1 and
wj([v0, vi]) = 0 for i = 1, . . . , n, j = 1, . . . , m. Finally, for the edges of G, wi(ej) = m if i = j
and wi(ej) = 0 otherwise, for i = 0, . . . , n, j = 1, . . . , m.

We claim that there exists an independent set of G of size k if and only if there exists (T0, . . . , Tr)
feasible solution of I for 2-Stage max ST with value m + k.

Let V ′ be an independent set of G. We build the subgraph Gi for any i = 1, . . . , m in two
steps: firstly, we consider the subgraph of G induced by V \ V ′ and secondly, we contract in
this subgraph the edge ei. Now, we build (T0, . . . , Tr) as follows: T0 = {[v0, vi] : vi ∈ V ′} and
for any i = 1, . . . , r, Ti = {ei} ∪ Ei where Ei is a spanning tree on Gi. Clearly, T0 ∪ Ti is a
spanning tree of G′ since V ′ is an independent set of G and by construction T0∩Ti = ∅. Hence,
(T0, . . . , Tr) is a feasible solution of I for 2-Stage max ST with value apx(I) and we get:

apx(I) =
r
∑

i=0

pi wi(Ti) = |V ′| +
1

m
m2 = |V ′| + m (2)

Conversely, let (T0, . . . , Tr) be a feasible solution of I for 2-Stage max ST with value apx(I).
Let us prove that we can always assume that the following hold for any k = 1, . . . , m:

6

(i) ek /∈ T0.
(ii) If ek = [vi, vj], then {[vi, v0], [v0, vj]} * T0.

(iii) ek ∈ Tk.

For (i), assume that ek ∈ T0. We build a feasible solution (T ′
0, . . . , T

′
r) by setting T ′

0 = T0 \{ek},
and T ′

i = Ti ∪ {ek} for all i = 1, . . . , m. Obviously, (T ′
0, . . . , T

′
r) is feasible, and if val denotes

the value of (T ′
0, . . . , T

′
r), we get val = apx(I) + 1.

For (ii), assume that {[vi, v0], [v0, vj]} ⊆ T0 while ek = [vi, vj] ∈ E. In this case, we construct
another feasible solution (T ′

0, . . . , T
′
r) by setting T ′

0 = T0 \ {[vi, v0]}, and T ′
i = Ti ∪ {ek} for all

i = 1, . . . , m. Using Property (i), we deduce that (T ′
0, . . . , T

′
r) is a feasible solution and its value

is apx(I).

For (iii), assume that ek /∈ Tk. T0 ∪ Tk ∪ {ek} contains a cycle µ because of Property (i) and
T0 ∪Tk is a spanning tree of G′. Hence, there exists an edge ej ∈ Tk ∩µ because of Property (i)
and (ii). Thus, by setting T ′

k = (Tk \ {ej})∪{ek} and T ′
i = Ti for all i 6= k, we obtain a feasible

solution (T ′
0, . . . , T

′
r). Finally, if val denotes the value of (T ′

0, . . . , T
′
r), we get val = apx(I) + 1.

Using Properties (i) and (iii), we get that T0 ⊆ {[v0, vi] : i = 1, . . . , n} and wk(Tk) = 1 for any
k = 1, . . . , m. Hence, w0(T0) = apx(I) − m. We also deduce that V ′ = {vi ∈ V : [v0, vi] ∈ T0}
is an independent set of G because of Property (ii) and we get:

|V ′| = apx(I) − m (3)

Using (2) and (3), we deduce that opt(I) = optMaxIS(G) + m ≤ 7optMaxIS(G) since G is of
maximum degree 3. Moreover, we have optMaxIS(G)− |V ′| = opt(I)− apx(I), which concludes
the proof. 2

Remark 2 By slightly modifying the proof of Theorem 1, one can show that 2-Stage max ST
remains APX-complete in graphs of maximum degree 4. Actually, we delete edges [v0, vi] and
we replace vertex v0 by a path on n vertices, ui for i = 1, . . . , n, and we link each vertex vi to
ui. Finally, we set w0([ui, ui+1]) = 1 for i = 1, . . . , n − 1, and w0([ui, vi]) = 1 for i = 1, . . . , n.
It is easy to observe that the path on vertices ui is included in T0, and then w0(T0) = n + |V ′|
where V ′ is an independent set of G′.

3.2 The case of the maximum matching problem

A matching M of a graph G = (V, E) is a set of edges M ⊆ E such that any two edges of M are
not adjacent. The problem of computing a matching of a weighted graph (G, w) maximizing
w(M) =

∑

e∈M w(e) is known to be polynomial (see for instance [4]) and called the maximum
matching problem. The two stage stochastic maximum problem, denoted here by 2-Stage max
Mat, has been studied from a complexity and approximation point of view in [10]. In this
latter article, the authors show that 2-Stage max Mat is NP-hard in bipartite graphs and is

7

vj vi vjvek
vi

ek

Fig. 1. The gadget H(ek).

1/2-approximable within polynomial time. Here, we improve this first result by establishing
the APX-completeness of this problem.

Theorem 3 2-Stage max Mat is APX-complete, even in bipartite graphs of maximum de-
gree 4.

PROOF. The reduction is quite similar to the one given in Theorem 1 and is also done via a
L-reduction from MaxIS3.

Let G = (V, E) where V = {v1, . . . , vn} and E = {e1, . . . , em} be an instance of MaxIS3. We
build r and I = (G′, wi, pi) instance of 2-Stage max Mat as follows:

• From G = (V, E), we add n new vertices ui for i = 1, . . . , n and n new edges [ui, vi] for
i = 1, . . . , n. Moreover, we replace each edge ek = [vi, vj] ∈ E by the gadget H(ek) depicted
in Figure 1, which consists in adding a new vertex vek

in edge ek. Let G′ = (V ′, E ′) be the
resulting graph.

• There are m scenarios (i.e., r = m) and let pi = 1
m

for i = 1, . . . , r be the probabilities
associated to these scenarios.

• The different weight functions are given by: for the new edges [ui, vi], , we set w0([ui, vi]) = 1
and wj([ui, vi]) = 0 for i = 1, . . . , n, j = 1, . . . , m. Finally, for the edges of G′ (ie., [vi, vek

]
and [vek

, vj] where ek = [vi, vj] ∈ E), wk([vi, vek
]) = wk([vek

, vj]) = m if ek = [vi, vj] ∈ E and
wk(e

′) = 0 with e′ ∈ E ′ \ {[vi, vek
], [vek

, vj]} otherwise, for k = 1, . . . , m.

By construction G′ is bipartite (using gadget H(ek)) and of maximum degree 4 since G has a
maximum degree 3.

We claim that there exists an independent set of G of size k if and only if there exists a feasible
solution (M0, . . . , Mr) of I for 2-Stage max Mat with value m + k.

Let V ′ be an independent set of G. For M0 we set M0 = {[ui, vi] : vi ∈ V ′} and for any
k = 1, . . . , m Mk = {[vj , vek

]} where ek = [vi, vj] and vj /∈ V ′ (if both vi, vj are not in V ′ we
arbitrarily pick one of them). By construction M0∪Mk is a matching of G′. Hence, (M0, . . . , Mr)
is a feasible solution of I for 2-Stage max Mat with value ap(I) and we get:

apx(I) = |V ′| + m (4)

Conversely, let (M0, . . . , Mr) be a feasible solution of I for 2-Stage max Mat with value apx(I).
Let us prove that we can always assume that the following holds:

(i) M0 ⊆ {[ui, vi] : i = 1, . . . , n}.

8

vl

vi vi,2vi,1

vj

vk

vl

vj vj

vk

Fig. 2. The gadget H(vi).

(ii) For any k = 1, . . . , m, if ek = [vi, vj] ∈ E, then {[ui, vi], [uj, vj]} * M0.
(iii) For any k = 1, . . . , m, if ek = [vi, vj] ∈ E, then either Mk = {[vi, vek

]} or Mk = {[vek
, vj]}.

For (i), by setting M ′
0 = M0 ∩ {[ui, vi] : i = 1, . . . , n} and M ′

k = Mk for any k = 1, . . . , m, we
obtain another feasible solution (M ′

0, . . . , M
′
r) with the same value as (M0, . . . , Mr).

For (ii), assume that {[ui, vi], [uj, vj]} ⊆ M0 and ek = [vi, vj] ∈ E. We build another feasible
solution (M ′

0, . . . , M
′
r) by setting M ′

0 = M0 \ {[ui, vi]}, M ′
k = {[vi, vek

} and M ′
l = Ml for all l =

1, . . . , m, j 6= k. Obviously, (M ′
0, . . . , M

′
r) is a feasible solution and val(M ′

0, . . . , M
′
r) = apx(I).

By repeating this procedure while it is possible, Property (ii) holds.

For (iii), let ek = [vi, vj] ∈ E. From Property (ii), we know that [ui, vi] /∈ M0 (or [uj, vj] /∈
M0). Thus, by setting M ′

l = Ml for any l = 0, . . . , m, l 6= k, we obtain a feasible solution
(M ′

0, . . . , M
′
r). Moreover, by construction val(M ′

0, . . . , M
′
r) ≥ apx(I). In conclusion, by operat-

ing this modification while it is possible, Property (iii) holds.

Now, let (M0, . . . , Mr) be a feasible solution with value apx(I) and satisfying Properties (i), (ii),
and (iii). From Property (iii), we get apx(I) = w0(M0)+m. Moreover, V ′ = {vi : [ui, vi] ∈ M0}
is an independent set because of Property (ii). Finally, |V ′| = w0(M0) = |M0| from Property
(i). In conclusion, we obtain:

|V ′| = apx(I) − m (5)

Since equalities (4) and (5) are the same as in Theorem 1, and since the reduction starts from
the same problem, we obtain the expected result. 2

Theorem 4 2-Stage max Mat is APX-complete, even in graphs of maximum degree 3.

PROOF. The proof is a slight modification of the one given in Theorem 3. Instead of adding
vertices ui and edges [ui, vi] to G for all vi ∈ V , we make a local replacement of vi by a gadget
H(vi). H(vi) is a path of length 3 with endpoints vi,1 and vi,2, see Figure 2 for an illustration,
where vj , vk, vl are the neighbors of vi in G. If vi has a degree less than three, we always delete
edge [vi,1, vj] (thus, we assume that vk, vl are the neighbors of vi in G) and maybe we delete
edge [vi,2, vk] if the degree of vi in G is one.

The weight of the edges in this path has a cost 1 in scenario 0 and 0 in scenario k for all
k = 1, . . . , r.

9

The rest of the reduction is similar to the one given in Theorem 3. From this way, we obtain a
graph G′ which has a maximum degree 3. Now, the important point to observe is that we can
always assume that the matching M0 takes for each gadget H(vi), either 2 edges (the extreme
edges of the path of length 3) or one edge (the middle edge of the path). Thus, the equality
(5) becomes now:

|V ′| = apx(I) − m − n (6)

Finally, since G has a maximum degree 3, we deduce n ≤ 3m. Thus, opt(I) = optMaxIS(G) +
m + n ≤ optMaxIS(G) + 4m ≤ 10optMaxIS(G). The rest of the proof is similar to Theorem 3. 2

When the graph is planar, MaxIS3 is known to be NP-hard [3]. Since the reductions given in
Theorem 3 and Theorem 4 conserve the planarity of the graph, we conclude:

Corollary 1 2-Stage max Mat is NP-hard, even in planar graphs of maximum degree 3, or
planar bipartite graphs of maximum degree 4.

4 Polynomial instances

4.1 Dynamic programming in chains

We now show that 2-stage max Mat can be solved in polynomial time in chains, even with
an unbounded number of scenarios. Given a chain denoted by G, we assume that the vertices
are numbered from 1 to n when traversing G from left to right. The subgraph of G on ver-
tices {i, . . . , j} is denoted by G(i, j). In the resolution method, the set of feasible solutions is
partitioned into two subsets:

(1) subset S1 of solutions including no edge chosen in the first stage,
(2) subset S2 of solutions including at least one edge chosen in the first stage.

The handling of subset S1 is very basic: an optimal solution in S1 is computed by solving r
maximum matching problems (one problem for each scenario). More formally, if we denote by
opt1 the value of an optimal solution in S1, we have:

opt1 =
r
∑

s=1

psz
s
2

where zs
2 is the value of an optimal matching on graph G under scenario s.

The handling of subset S2 is more elaborated, and relies on dynamic programming. For sim-
plicity, we only present here how to compute the value of an optimal solution, but the solution

10

itself can be easily determined by using standard bookkeeping techniques that do not affect the
complexity of the algorithm. Let Sk

2 ⊆ S2 denote the subset of solutions where [k − 1, k] is the
rightmost edge selected in the first stage. The method is based on the following idea: the value
of an optimal solution in Sk

2 equals the value W (k) of an optimal solution on G(1, k) among
solutions that includes edge [k − 1, k] in the first stage, plus the expected weight in the second
stage when choosing a maximal matching on G(k + 1, n) under every scenario. Consequently,
the value opt2 of an optimal solution in S2 equals:

opt2 = max
2≤k≤n

(

W (k) +
r
∑

s=1

psz
s
2(k + 1, n)

)

where zs
2(k+1, n) is the value of an optimal matching on subgraph G(k+1, n) under scenario s,

and zs
2(k+1, n) = 0 if k+1 ≥ n. The computation of W (k) is performed in a recursive manner.

Two cases must be distinguished: either (i) edge [k − 1, k] is the only edge chosen in the first
stage, or (ii) there exists at least one other edge in G(1, k − 2) that is chosen in the first
stage. Let us denote by W1(k) and W2(k) the value of an optimal solution in cases (i) and (ii)
respectively. In case (i), the equation defining W1(k) writes:

W1(k) = w0([k − 1, k]) +
r
∑

s=1

psz
s
2(1, k − 2) (k ≥ 2) (7)

In case (ii), if edge [j − 1, j] is the rightmost first stage edge on G(1, k − 2) in a solution S on
G(1, k), then S is compounded of a subsolution on G(1, j) with edge [j − 1, j] chosen in the
first stage, a subsolution on G(j + 1, k − 2) with only edges chosen in the second stage, and
edge [k − 1, k]. The recurrence relation defining W2(k) directly follows:

W2(k) = w0([k − 1, k]) + max
2≤j≤k−2

(

W (j) +
r
∑

s=1

psz
s
2(j + 1, k − 2)

)

(k ≥ 4) (8)

Finally, the value of an optimal solution on G(1, k) (under the constraint that edge [k − 1, k]
is chosen in the first stage) is therefore:

W (k) = max(W1(k), W2(k))

For initialization, one sets W1(2) = w0([1, 2]), W2(2) = −∞, W1(3) = w0([2, 3]) and W2(3) =
−∞.

The value of an optimal solution of 2-stage max Mat in a chain is of course max{opt1, opt2}.

Example 1 Consider the chain of Figure 3 with two scenarios of equal probabilities. Every
edge e is valued by a vector (w0(e), w1(e), w2(e)). We have opt1 = 1

2
8 + 1

2
9 = 8.5 since z1

2 = 8
and z2

2 = 9. We now need the W (k)’s to compute opt2. The dynamic programming process is
indicated in Table 1. For the sake of brevity, we only detail here the computation at node 7. For
the computation of W1(7), one proceeds as follows: the value of an optimal matching on G(1, 5)
is 6 under scenario 1 (z1

2(1, 5) = 6), and it is also 6 under scenario 2 (z2
2(1, 5) = 6). The

expected value in the second stage is therefore 6 and consequently W1(7) = w0([6, 7]) + 6 = 12.
For the computation of W2(7), one proceeds as follows: the rightmost first stage edge (edge

11

(5, 2, 4)
2

(3, 2, 2)
1 3

(2, 1, 2)
4

(6, 4, 1)
5

(4, 1, 1)
6

(6, 2, 3)
7

Fig. 3. A two-stage stochastic matching problem on a chain.

k W1(k) W2(k) W (k)

2 5 −∞ 5

3 3 −∞ 3

4 2 + 1
26 = 5 2 + max{5} + 0 = 7 7

5 6 + 1
22 + 1

24 = 9 6 + max{5, 3} = 11 11

6 4 + 1
23 + 1

26 = 8.5 4 + max{3 + 1
21 + 1

22, 3, 7} = 11 11

7 6 + 1
26 + 1

26 = 12 6 + max{5 + 1
24 + 1

22, 3 + 1
24 + 1

21, 7, 11} = 17 17

Table 1
Dynamic programming table for Example 1.

[6, 7] excepted) is either [1, 2], [2, 3], [3, 4] or [4, 5]. If the rightmost first stage edge is [1, 2], then
the optimal value is 6 + W (2) + 1

2
4 + 1

2
2 = 14 since z1

2 = 4 (an optimal matching in G(3, 5)
under scenario 1 is edge [4, 5]), or z2

2 = 2 (an optimal matching in G(3, 5) under scenario
2 is edge [3, 4]). Similarly, if the rightmost first stage edge is [2, 3], then the optimal value
is 6 + W (3) + 1

2
4 + 1

2
1 = 11.5 since one completes with edge [4, 5] under scenario 1 and 2

(optimal matching in G(4, 5)). When edge [3, 4] or [4, 5] is the rightmost first stage edge, then
graph G(5, 5) (resp. G(6, 5)) has no edge and thus the optimal value is 6 + W (4) = 13 (resp.
6+W (5) = 17). As displayed in the corresponding cell of Table 1, the value of W2(7) is therefore
max{14, 11.5, 13, 17} = 17. The determination of opt2 now requires to compute 1

2
z1
2(k + 1, 7) +

1
2
z2
2(k+1, 7) (k = 2, . . . , 7). One obtains 5.5 for k = 2, 5 for k = 3, 2.5 for k = 4, 2.5 for k = 5

and 0 for k = 6, 7. The overall value is opt2 = max{5+5.5, 3+5, 7+2.5, 11+2.5, 11+0, 17+0} =
17. The value of an optimal solution in G is finally max{opt1, opt2} = max{8.5, 17} = 17. The
corresponding optimal solution is (M0, M1, M2) = ({[1, 2], [4, 5], [6, 7]}, ∅, ∅).

Proposition 2 Let W ∗(k) denote the value of an optimal solution in G(1, k). We have: W ∗(k) =
W (k).

PROOF. Consider subgraph G(1, k). We distinguish between case (ii) and case (i).

(ii) Consider the subset S of solutions in G(1, k) where edges [j−1, j] and [k−1, k] are chosen
in the first stage (and no other edges between them). Clearly, every feasible solution in
S can be partitioned into three parts: the subsolution on G(1, j), the subsolution on
G(j + 1, k − 2) (edges [j, j + 1] and [k − 2, k − 1] cannot be chosen in the first or second
stage), and edge [k − 1, k]. Note that the matchings on G(1, j) and G(j + 1, k − 2) are
independent as soon as edge [j − 1, j] is assumed to be chosen in the first stage, i.e. the
choice of an edge in G(1, j) has no impact on the feasibility of the choice of an edge in
G(j+1, k−2), and conversely. Consequently, the projection on G(1, j) (resp. G(j+1, k−2))
of an optimal solution in S is an optimal solution on G(1, j) (resp. G(j +1, k− 2)). Thus,

12

the marginal contribution of the subsolution on G(1, j) to an optimal solution on G(1, k)
is W (j). In addition, since the part on G(j + 1, k − 2) includes only edges chosen in the
second stage, the edge chosen under scenario s in an optimal solution corresponds to a
maximum-weight matching on graph G(j + 1, k − 2) valued by ws, the value of which
is zs

2(j + 1, k − 2). The marginal contribution of the subsolution on G(j + 1, k − 2) to
an optimal solution on G(1, k) is therefore

∑r
s=1 psz

s
2(j + 1, k − 2). Finally, the marginal

contribution of edge [k − 1, k] is of course w0([k − 1, k]). Equation (8) follows.
(i) The proof is similar to the one of (ii), except that the solution is partitioned into two

parts: the subsolution on G(1, k − 2) and edge [k − 1, k]. 2

The polynomiality of the dynamic programming procedure directly follows from the polynomial
number (rn3) of maximal matching routines performed by the algorithm. However, a simpler
procedure makes it possible to determine in polynomial time an optimal solution in a tree when
the number of scenarios is bounded. This is the topic of the next subsection.

4.2 Dynamic programming in trees

Consider a rooted tree T , the root of which is denoted by t. We denote by Tv the subtree rooted
at v, and by b a (r+1)-tuple of booleans (at v). Tuple b will be dedicated to indicate the status
(matched or unmatched) of vertex v in the different scenarios. Thus, b takes value in a subset
B of {0, 1}r+1, defined as follows: B = B1 ∪ B2 where B1 = {0} × {0, 1}r (v is unmatched by
the first-stage matching) and B2 = {1} × {0}r (v is matched by the first-stage matching).

The basic idea of the dynamic programming procedure is to compute recursively the value
W (v, b) of an optimal solution in S(v, b), that denotes the subset of feasible solutions in Tv

such that v is matched (resp. unmatched) in Tv by the first-stage matching if b0 = 1 (resp.
b0 = 0), and v is matched (resp. unmatched) in Tv by the second-stage matching under scenario
s if bs = 1 (resp. bs = 0).

The set of values {W (v, b) : b ∈ B} is stored in a table associated to node v. At a leaf ℓ of
tree T , the recursion is initialized by setting W (ℓ, b) = 0 for b = 0, and W (ℓ, b) = −∞ for
b ∈ B \ {0}, where 0 is the (r + 1)-tuple the components of which are all equal to zero.

The recursive case can be described as follows. Assume vertex v has a set Γ(v) = {u1, . . . , uk}
(k > 0) of children. Given a vector b of booleans, we denote by S(b) the set of s in {0, . . . , r}
for which bs = 1. Furthermore, we denote by Π(b, v) the set of mappings from S(b) to Γ(v).
For π ∈ Π(b, v) and s ∈ S(b), edge [v, π(s)] is chosen in the first-stage matching if s = 0, or in
the second-stage matching under scenario s otherwise. Note that Π(b, v) = ∅ when S(b) = ∅.
The recurrence relation is written as follows (where p0 = 1 for convenience):

W (v, b) = max
π∈Π(b,v)

∑

s∈S(b)

psws([v, π(s)]) +
k
∑

j=1

max
{

W (uj, b
′) : b′ ∈ Pπ,uj

}

 (9)

13

(5, 1, 2)

v1

v2

v4 v5 v6 v7

v3

(2, 4, 1)
(3, 2, 4)

(1, 5, 0) (3, 3, 2)

(0, 0, 1)

Fig. 4. A two-stage stochastic matching problem on a tree.

where Pπ,uj
denotes the set of possible tuples b′ for uj compatible with π. More precisely, if edge

[uj, v] is chosen at stage 1 then only b′ = 0 is possible, while otherwise for any scenario s where
[uj, v] is chosen we have b′0 = 0 and b′s = 0. By convention, W (v, b) = −∞ when Π(b, v) = ∅.
The value of the optimal solution is finally obtained at the root by computing maxb∈B W (t, b).
Here again, the optimal solution itself can be recovered easily by using standard bookkeeping
techniques. For the convenience of the reader, we now give an example of an execution of this
dynamic programming algorithm.

Example 3 Consider the tree of Figure 4. Every edge e is valued by a vector (w0(e), w1(e), w2(e)).
The probability of scenario 1 is 0.4 and the one of scenario 2 is 0.6. The dynamic pro-
gramming tables are indicated in Table 2. For the sake of brevity, we only detail here the
computation at node v1, once tables at nodes v2 and v3 are known. For b = (0, 0, 0), we
have that maxb′∈B W (v2, b

′) + maxb′∈B W (v3, b
′) = W (v2, (0, 1, 1)) + W (v3, (1, 0, 0)) = 4 +

5 = 9. For b = (1, 0, 0), one compares w0([v1, v2]) + W (v2, (0, 0, 0)) + maxb′∈B W (v3, b) =
1 + 0 + 5 = 6 (edge [v1, v2] is chosen in the first stage) with w0([v1, v3]) + W (v3, (0, 0, 0)) +
maxb′∈B W (v2, b) = 3 + 0 + 4 = 7 (edge [v1, v3] is chosen in the first stage). For b = (0, 1, 0),
one compares p1w1([v1, v2])+max{W (v2, (0, 0, 0)), W (v2, (0, 0, 1))}+maxb′∈B W (v3, b

′) = 0.4×
5 + max{0, 2.4} + 5 = 9.4 (edge [v1, v2] is chosen in the second stage under scenario 1)
with p1w1([v1, v3]) + max{W (v3, (0, 0, 0)), W (v3, (0, 0, 1))} + maxb′∈B W (v2, b

′) = 0.4 × 3 +
max{0, 1.2} + 4 = 6.4 (edge [v1, v3] is chosen in the second stage under scenario 1). For
b = (0, 0, 1), by proceeding similarly, one obtains W (v1, (0, 0, 1)) = 6.6. Finally, for b = (0, 1, 1),
one considers four cases: edge [v1, v2] is chosen in the second stage whatever scenario occurs,
edge [v1, v3] is chosen in the second stage whatever scenario occurs, edge [v1, v2] is chosen under
scenario 1 while edge [v1, v3] is chosen under scenario 2, edge [v1, v3] is chosen under scenario 1
while edge [v1, v2] is chosen under scenario 2. One obtains W (v1, (0, 1, 1)) = 7 as a maximum.
The value of the optimal solution is therefore max{9, 7, 9.4, 6.6, 7} = 9.4. The corresponding
optimal solution is (M0, M1, M2) = ({[v3, v7]}, {[v1, v2]}, {[v2, v5]}).

Note that, by applying the dominance rule given in Section 2 (Claim 2), one could have seen
that only edges [v1, v3] or [v3, v7] can be chosen in the first stage in the previous example. We
now state formally the result establishing the correctness of the algorithm:

Proposition 4 Let v be a vertex and W ∗(v, b) denote the value of an optimal solution in
S(v, b). We have: W ∗(v, b) = W (v, b).

PROOF. The main ideas of the proof are quite classic. We therefore give here only an outline

14

b0 b1 b2 W (v2, b)

0 0 0 0

1 0 0 3

0 1 0 1.6

0 0 1 2.4

0 1 1 4

b0 b1 b2 W (v3, b)

0 0 0 0

1 0 0 5

0 1 0 0.4

0 0 1 1.2

0 1 1 1.6

b0 b1 b2 W (v1, b)

0 0 0 9

1 0 0 7

0 1 0 9.4

0 0 1 6.6

0 1 1 7

Table 2
Dynamic programming tables in Example 3.

of the proof. Equation 9 encompasses the two following cases for computing W (v, b):

(i) Assume that b ∈ B2. It means that an edge [v, uh] is chosen in the first stage. Then, other
edges incident to v cannot be chosen in the first or the second stage. The matching on
Tv can therefore be partitioned between [v, uh] and matchings on trees Tu1 , . . . , Tuk

. Note
that the matchings on Tu1 , . . . , Tuk

are independent once [v, uh] is chosen, i.e. the choice
of an edge in Ti has no impact on the feasibility of the choice of an edge in Tj . Hence, by
considering all possible edges [v, uh], we have:

W ∗(v, (1, 0, . . . , 0))= max
h∈{1,...,k}

(

w0([v, uh]) + W ∗(uh, 0) +
∑

i6=h

max{W ∗(ui, b
′) : b′ ∈ B}

)

(ii) Assume that b ∈ B1. It means that an edge [v, uh] is chosen for each scenario s such that
bs = 1 (possibly with repeated edges). We denote by H the set of edges chosen in at least
one scenario, and by π the mapping from S(b) to H indicating the edge chosen for each
scenario. Similarly to the previous case, the matchings on Tu1 , . . . , Tuk

are independent
once couple (H, π) is set. Hence, by considering all possible (H, π), we have:

W ∗(v, b)= max
H∈{1,...,k}

max
π∈HS(b)

∑

h∈H

∑

s∈π−1(h)

psws([v, uh]) +
∑

h∈H

max{W ∗(uh, b) : b′ ∈ Pπ,h}

+
∑

i∈Γ(v)\H

max{W ∗(ui, b) : b′ ∈ B}

where π−1(h) denotes the set of scenarios in which edge [v, uh] is chosen, and Pπ,h = {b′ ∈
B : b′0 = 0 and b′s = 0 ∀s ∈ π−1(h)}. 2

This dynamic programming procedure makes it possible to solve the two-stage stochastic
matching problem on trees in polynomial time:

Proposition 5 The two-stage stochastic matching problem can be solved on trees in time
O(rn4r∆r+2), where ∆ is the maximum degree of a vertex.

15

PROOF. The soundness of the procedure follows from what has been said before. Dealing
with the computation time, there are n tables to compute, each one with O(2r) lines. In order
to compute the rightmost cell of a line (i.e, W (v, b)), we have to compare |Π(b, v)| ∈ O(∆r+1)
numbers (the number of mappings from S(b) to Γ(v)). Each number is computed by summing
at most ∆ values (summation for j from 1 to k). Each value requires itself to compare O(2r)
elements W (uj, b

′), each element being computed in O(r) (to check if b′ is in Pπ,uj
). Hence, the

overall complexity follows. 2

5 Approximation algorithms

The 1/2-approximation algorithm of Kong and Schaefer [10] for 2-stage max Mat is based
on the following idea: one considers 1) a first-stage myopic Π̃-solution where a complete Π-
solution is selected during the first stage and no edge is added during the second stage, and
2) a second-stage myopic Π̃-solution where no edge is selected during the first stage and a
complete Π-solution is selected during the second stage (according to which scenario occurs).
The optimal first-stage myopic Π̃-solution can be computed in polynomial time by applying an
optimal algorithm for problem Π on the graph valued by w0, while the optimal second-stage
myopic Π̃-solution can also be computed in polynomial time by applying an optimal algorithm
for problem Π on the graph valued by wi for i = 1, . . . , r. On the overall, (r + 1) executions of
an optimal algorithm for problem Π are therefore required. By returning the solution (among
two) with the largest value of the objective function, Kong and Schaefer show that one achieves
an approximation ratio 1

2
. We now show that the following modification of 1) makes it possible

to improve the approximation ratio: instead of a first-stage myopic Π̃-solution, one considers a
globally-feasible Π̃-solution, such that the union of all the edges selected in the first or second
stage (under the different scenarios) is a feasible Π-solution. In other words, we improve the
solution computed in step 1) and obtain this way a slightly better approximation ratio. The
improvement is interesting when the number of scenarios is small (see Theorem 6), as well as
in some particular cases such as for 2-Stage max Mat in bounded degree graphs (Theorem 7).

Our algorithm works for a large class of two-stage stochastic problems. Therefore we present
it on a general stochastic problem Π̃ defined over the deterministic Π problem (see the intro-
duction for the definition of Π and Π̃). We suppose that we have in hand a polynomial time
algorithm AΠ associated with Π. The algorithm optimally completes a given partial solution
for problem Π. Formally, it takes as inputs an edge-weighted graph G = (V, E, w), instance of
Π, and a set E ′′ ⊆ E. If the set F = {E ′ : E ⊇ E ′ ⊇ E ′′ ∧ π(E ′) = true} is nonempty then
AΠ returns an element of F , say E∗, which maximizes

∑

e∈E∗ w(e). Otherwise AΠ states that
F = ∅.

It is not difficult to adapt the known polynomial algorithms for maximum weight matching and
maximum weight spanning tree to obtain an algorithm Aπ having the properties mentioned
above.

Let us consider the following algorithm 2StageApx for Π̃:

16

(1) Use AΠ to find a maximum weight Π-solution E1 in the graph with weights w1(e) =
max(w0(e),

∑r

i=1 piwi(e)). This Π-solution can be turned into a Π̃-solution S1 = (E1
0 , · · · , E1

r)
by considering that an edge of E1 is put in E1

0 if its weight is w0(e), and put in all the
Ei’s, i = 1, . . . , r otherwise.

(2) For any i = 1, . . . , r, find a maximum weight Π-solution E2
i in the graph with weights wi.

These solutions form another Π̃-solution S2 = (∅, E2
1 , · · · , E2

r).
(3) Return the best Π̃-solution S between S1 and S2.

Theorem 6 Algorithm 2StageApx achieves an approximation ratio r
2r−1

for the two-stage
stochastic maximum-weight Π problem.

PROOF. First, notice that by definition, the Π̃-solution S1 computed in the first step of
Algorithm 2StageApx is such that val(S1) = w1(E1) (more precisely val(S1) ≥ w1(E1) if
edges are added to complete the partial solution).

Now, let S∗ = (E∗
0 , E

∗
1 , . . . , E

∗
r) be an optimal Π̃-solution, the value of which is denoted by

val(S∗).

Remark that E∗
0 ∪E∗

i is a Π-solution. Since E1 is a maximum weight Π-solution in G weighted
by w1, we get:

val(S1) = w1(E1) ≥ w1(E∗
0) + w1(E∗

i) (10)

Making the sum of Equation (10) for i = 1, . . . , r, and using the fact that w1(e) ≥ max(w0(e), piwi(e)),
we obtain:

r × val(S1)≥ r × w1(E∗
0) +

r
∑

i=1

w1(E∗
i)

≥ r × w0(E
∗
0) +

r
∑

i=1

piwi(E
∗
i) (11)

On the other hand, since E2
i (i ≥ 1) is an optimum Π-solution when the graph is weighted by

wi, wi(E
2
i) ≥ wi(E

∗
i). Hence:

val(S2) =

r
∑

i=1

piwi(E
2
i) ≥

r
∑

i=1

piwi(E
∗
i) (12)

Finally, since the algorithm outputs the better of the two Π̃-solutions S1 and S2, we get, by
adding equations (11) and (12) with coefficients 1 and r − 1:

(2r − 1)val(S)≥ r × w0(E
∗
0) + r ×

r
∑

i=1

piwi(E
∗
i) = r × val(S∗). (13)

17

The result follows. 2

It can be easily shown that the ratio given in Theorem 6 is tight. We show a tight example in
the case of 2-stage max Mat.

Consider the instance on r + 3 vertices u, v, w and ti, i = 1, · · · , r, and the following r + 1
edges:

• An edge [u, v] with weight r − 1 in the first stage and weight 0 in all second stage scenarios;
• r edges [w, ti], i = 1, · · · , r, with weight 1 + ε (ε > 0) in the first stage, r in the scenario i of

the second stage, and 0 in any other second stage scenario.

The scenario probabilities are 1
r
. The optimal Π̃-solution is clearly ({[u, v]}, {[w, t1]}, . . . , {[w, tr]}).

Its value is r − 1 +
∑r

s=1
1
r
r = 2r − 1. In addition, the Π̃-solution returned by the approxima-

tion algorithm is ({[u, v], [w, ti]}, ∅, . . . , ∅) (for some ti). Its value is r − 1 + 1 + ε = r + ε. The
approximation ratio is therefore r+ε

2r−1
, which tends to r

2r−1
when ε tends to zero.

Note that the following refinement of Algorithm 2StageApx does not achieve a better approx-
imation ratio: after determining the edges chosen in the first stage in the globally-feasible
Π̃-solution, determine the edges chosen in the second stage by optimizing separately for each
scenario i in the remaining partial subgraph valued by piwi(e). Indeed, on the previous in-
stance, no additional edge can be chosen after the ones of the first stage have been selected.

Theorem 7 For 2-stage max Mat, 2StageApx is a ∆+1
2∆+1

-approximation algorithm, where ∆

is the degree of the graph. Moreover, if the graph is bipartite, then it is a ∆
2∆−1

-approximation
algorithm.

PROOF. The result is based on the following well known property: If G has a maximum degree
∆, then its edges can be (∆ + 1)-colored, i.e. partitioned into (∆ + 1) matchings N1, . . . , N∆+1

within polynomial time (it is known as the Vizing’s theorem [14]).

Consider as previously an optimum solution S∗ = (E∗
0 , . . . , E

∗
r). For any i = 1, . . . , ∆ + 1,

we consider the subset N∗
i of Ni of edges used by S∗ in the second stage (formally, N∗

i =
Ni ∩ (∪r

i=1E
∗
i)). Each of these edges belong to some of the second-stage scenarios for S∗, hence

its contribution in val(S∗) is at most
∑r

i=1 piwi(e). In particular, since w1(e) = max{w0(e),
∑p

i=1 piwi(e)} ≥
∑p

i=1 piwi(e), we have:

r
∑

i=1

piwi(E
∗
i) ≤

∆+1
∑

i=1

w1(N∗
i).

Now, remark that E∗
0 ∪N∗

i is a matching, since on the one hand both E∗
0 and N∗

i are matchings,
and on the other hand any edge of N∗

i has been chosen in the second stage by S∗ hence cannot

18

be adjacent to an edge of E∗
0 . Since E1 is a maximum weight matching in G weighted by w1,

we get:
val(S1) = w1(E1) ≥ w1(E∗

0) + w1(N∗
i) (14)

Making the sum of equation (14) for i = 1, . . . , ∆ + 1, we obtain:

(∆ + 1)val(S1)≥ (∆ + 1)w1(E∗
0) +

∆+1
∑

i=1

w1(N∗
i)

≥ (∆ + 1)w0(E
∗
0) +

r
∑

i=1

piwi(E
∗
i) (15)

Since the algorithm outputs the better of the two solutions S1 and S2, we get, by adding
equations (15) and (12) (of course still valid) with coefficients 1 and ∆:

(2∆ + 1)apx(I)≥ (∆ + 1)w0(E
∗
0) + (∆ + 1)

r
∑

i=1

piwi(E
∗
i) = (∆ + 1)val(S∗). (16)

The result follows.

The case of bipartite graphs is completely similar, up to the fact that in this case the edges of
the graph can be partitioned into ∆ matchings (it is known as the König’s theorem [11]). This
improvement leads to the inequality (2∆ − 1)apx(I) ≥ ∆val(S∗). 2

Consider the example showing the tightness of Theorem 6. The graph is bipartite and has
degree ∆ = r. The approximation ratio is r+ε

2r−1
= ∆+ε

2∆−1
. This shows the tightness of the bound

for bipartite graphs in Theorem 7.

Concerning bound in general graphs, we now show the tightness for any even ∆ 1 . We consider
a graph G on ∆ + 3 vertices constituted by two vertices u and v linked by an edge, and a
disjoint complete graph K∆+1 on ∆ + 1 vertices. It is well known that the edges of the clique
K∆+1 can be decomposed in ∆ + 1 matchings N1, · · · , N∆+1, each of size ∆/2. We consider
r = ∆ + 1 scenarios in the second stage, each having a probability 1/r = 1/(∆ + 1), and the
following weights:

• the edge [u, v] has weight ∆2/2 in the first stage, and 0 in any scenario of the second stage.
• each edge e in Ni has weight 1 + ε in the first stage, weight ∆ + 1 in the ith scenario of the

stage, and weight 0 in all other second stage scenarios.

Since K∆+1 has an odd number of vertices, any maximum matching in K∆+1 contains ∆/2
edges. Since in the first step of the algorithm, each edge of the clique receives weight 1 + ε,

1 Note that the lower bound in bipartite graph, valid for any ∆, is already an almost tight bound for
general graphs.

19

it means that the solution S1 computed by the algorithm has value ∆2/2 + (1 + ε)∆/2 =
∆(∆ + 1)/2 + ε∆/2.

On the other hand, by construction, each matching Ni is a matching of maximum weight in
the ith scenario and has a cost |Ni|(∆+1) = (∆+1)∆/2. This implies that the second solution
computed by the algorithm has value (∆ + 1)∆/2.

Now, an optimum solution is given by taking [u, v] in the first stage, and Ni in the ith scenario
in the second stage. It has value ∆2/2 + (∆ + 1)∆/2 = ∆(2∆ + 1)/2. The approximation ratio
tends to (∆ + 1)/(2∆ + 1) when ε tends to 0.

6 Heuristic

We propose a heuristic 2StageHeur(α) where α ∈ R is a parameter such that 0 ≤ α ≤ 1. It
is an attempt to overcome a weakness of 2StageApx. Let us go back to the tight example of
2StageApx given above. When the approximation algorithm is executed, an edge incident to
w, say (w, ti′) for some i′ ∈ {1, . . . , r}, is put into E1

0 . Then edge (w, ti) cannot be put into E1
i

at the second stage when scenario i occurs. This is due to the fact that w0(w, ti′) = 1 + ε is
slightly larger than

∑r

i=1 piwi(w, ti′) = 1. The difference is just by an ε but the value of the
Π̃-solution returned by the approximation algorithm is asymptotically 1/2 times the optimum
value.

In order to overcome this drawback, we propose to introduce two potential functions Φ1 : V →
R and Φ2 : V → R, one for each stage. Actually Φ1 (resp. Φ2) assigns a value to each node
v ∈ V which corresponds to the best first stage (resp. best second stage) contribution of edges
incident to v to the value of the resulting Π̃-solution. For the tight example, Φ1(w) = 1 + ε
(when [w, ti′] is taken at the first stage) whereas Φ2(w) = r (when [w, ti] is taken at each
scenario i of the second stage). Here we see a gap between Φ1(w) and Φ2(w). Therefore it
would be interesting to define a threshold α such that no first stage edge incident to a node
v ∈ V is allowed if Φ1(v)/Φ2(v) < α.

The potential argument seems particularly relevant when the variation on the degree of a node
in all feasible Π-solutions is small. This is the case for a matching (a node has degree 1 or 0).
However this is a priori not the case for a spanning tree. Therefore we present our heuristic in
a general form (i.e. for problem Π̃) but we only test it on the 2-stage max Mat problem.

The heuristic consists in returning the best solution among three Π̃-solutions {S1, S2, S3} where
S1 and S2 are those already computed by 2StageApx and the third one takes into account the
potential function. Note that as a consequence the performance of 2StageHeur(α) is at least
as good as 2StageApx. More formally, the heuristic 2StageHeur(α) is as follows:

(1) E ′ = AΠ(G, w1, ∅) where w1(e) = max(w0(e),
∑r

i=1 piwi(e))
(2) E1

0 = {e ∈ E ′ : w0(e) >
∑r

i=1 pi wi(e)}

20

(3) For i = 1, . . . , r let E1
i = AΠ(G, wi, E

1
0) \ E1

0

(4) Let S1 = (E1
0 , E

1
1 , . . . , E

1
r)

(5) For all v ∈ V , let Φ1(v) =
∑

[u,v]∈E1
0
w0

(

[u, v]
)

\∗ we suppose that
∑

[u,v]∈E1
0
w0

(

[u, v]
)

= 0 if {[u, v] ∈ E1
0} = ∅ ∗\

(6) For i = 1, . . . , r let E2
i = AΠ(G, wi, ∅)

(7) Let S2 = (∅, E2
1 , . . . , E

2
r)

(8) For all v ∈ V , let Φ2(v) =
∑r

i=1

∑

[u,v]∈E2
i
pi ws

(

[u, v]
)

\∗ we suppose that
∑

(u,v)∈E2
i
pi ws

(

(u, v)
)

= 0 if {(u, v) ∈ E2
i } = ∅ ∗\

(9) Let E3
0 = {[u, v] ∈ E1

0 :
(

Φ1(u) ≥ αΦ2(u)
)

∧
(

Φ1(v) ≥ αΦ2(v)
)

}.
(10) Let S3 = (E3

0 , E
3
1 , . . . , E

3
r)

(11) For i = 1, . . . , r let E3
i = AΠ(G, wi, E

3
0) \ E3

0

(12) Return the best Π̃-solution S between S1, S2 and S3

As we will see in the next section, the heuristic, though not being proved better when consid-
ering the theoretical worst case performance ratio, will compute better solutions in practical
experiments.

7 Numerical experiments

The various algorithms for 2-stage max Mat have been implemented in Java and the compu-
tational tests were carried out on a PC with a Pentium IV CPU 3.6Ghz processor and 3.5GB
of RAM. Following Kong and Schaefer [10], our tests were performed on a set of randomly gen-
erated instances of the two-stage assignment problem (i.e., matching in bipartite graphs), with
10 vertices in each side of the bipartition. Each time a standard assignment problem required
to be solved (in the approximation algorithms), we used ILOG CPLEX 11.100 to compute the
solution. We compare the values of the Π̃-solutions found by the approximation algorithms
with those of the optimal Π̃-solutions obtained by using a mixed integer programming formu-
lation in CPLEX. We have studied two kind of instances: correlated ones where the weights of
an edge in the various scenarios of the second stage are correlated (which appears to be quite
natural), and the uncorrelated ones where the weights in the various scenarios are independent.

The weights of the edges for the first stage were randomly drawn using a gaussian distribution
N(10, 15) (i.e., a gaussian distribution of mean 10 and standard deviation 15). For the correlated
instances, the weight of an edge e under scenario s in the second stage are set using the
formula xe + Ys, where xe is a value randomly drawn (once for each edge e) using a gaussian
distribution N(10, 15) and Ys is a random variable following a gaussian distribution N(0, 5).
For the uncorrelated instances, the weights of the edges for both the first and the second stage
were randomly drawn using a gaussian distribution N(10, 15) (the random variables for the
first stage and the various scenarios of the second stage are assumed to be independent). Note
that, in all cases, weights are set to 0 when negative values are drawn.

We compare here the following approximation algorithms for 2-stage max Mat:

21

#sc CPLEX (1/2)-Apx 2StageApx R-2StageApx 2StageHeur(0.8)

% 1st stage deviation ratio deviation ratio

2
(0,48,90) (0,42,70) (0.807,0.905,1) (0,4,20) (0.985, 0.999, 1) (0.99,1,1) (0.99,1,1)

1/100 80/100 91/100 91/100

3
(0,48,90) (0,46,80) (0.803,0.9,1) (0,6,30) (0.974, 0.998, 1) (0.974,0.999,1) (0.974,0.999,1)

2/100 78/100 90/100 92/100

5
(10,46,90) (10,43,70) (0.765,0.894,0.992) (0,7,30) (0.976, 0.996, 1) (0.984,0.999,1) (0.985,0.999,1)

0/100 52/100 79/100 80/100

10
(10,47,90) (10,45,70) (0.805,0.904,0.981) (0,8,50) (0.974, 0.997, 1) (0.99,0.999,1) (0.99,0.999,1)

0/100 56/100 80/100 83/100

20
(10,45,100) (0,41,70) (0.816,0.904,1) (0,8,50) (0.972, 0.997, 1) (0.987,0.999,1) (0.987,0.999,1)

1/100 34/100 77/100 78/100

Table 3
Results on correlated instances.

- (1/2)-Apx: the 1
2
-approximation algorithm of Kong and Schaefer [10],

- 2StageApx: the r
2r−1

-approximation algorithm proposed in Section 5,

- R-2StageApx: the refined version of 2StageApx, where, after determining the edges chosen
in the first stage in the globally-feasible Π̃-solution, one determines the edges chosen in the
second stage by optimizing separately for each scenario,

- 2StageHeur(α): the heuristic algorithm described in Section 6.

Tables 3 and 4 present the practical approximation ratios obtained by the various algorithms on
100 random instances. Column #sc displays the number of scenarios. Column CPLEX displays
the (min, average, max) percentage of edges chosen in the first stage in the optimal Π̃-solutions
computed by CPLEX on the 100 random instances. Column (1/2)-Apx (resp. 2StageApx)
displays the deviation in the percentage of first stage edges in the Π̃-solution returned by
(1/2)-Apx (resp. 2StageApx) compared to the optimal solution computed by CPLEX. For
all the approximation algorithms, the practical approximation ratios are indicated, as well as
the number x of times an optimal Π̃-solution has been returned (value x/100 on the second
line). One can observe that 2StageApx outperforms (1/2)-Apx on correlated instances. This
can be explained by the fact that, for such instances, it is interesting to mix edges taken in
the first and second stage. (1/2)-Apx is not able to do that, contrarily to 2StageApx. Hence,
the structure (i.e., the proportions of first and second stage edges) of the Π̃-solution returned
by 2StageApx is closer to the structure of an optimal Π̃-solution than the one returned by
(1/2)-Apx. This is illustrated by the results in columns ‘deviation’: for correlated instances,
one can see that the deviation is much smaller for 2StageApx than for (1/2)-Apx. Refined
version R-2StageApx as well as heuristic version 2StageHeur(0.8) make it possible to even
slightly improve the obtained results. For uncorrelated instances, the conclusions are similar
to those for correlated instances, but the differences are less pronounced.

22

#sc CPLEX (1/2)-Apx 2StageApx R-2StageApx 2StageHeur(0.8)

% 1st stage deviation ratio deviation ratio

2
(0,45,80) (0,42,80) (0.796,0.916,1) (0,25,60) (0.867, 0.956, 1) (0.875,0.966,1) (0.902,0.971,1)

2/100 4/100 9/100 9/100

3
(10,48,100) (0,42,70) (0.849,0.931,1) (0,28,60) (0.896, 0.959, 1) (0.907,0.968,1) (0.907,0.970,1)

2/100 6/100 11/100 11/100

5
(10,45,100) (0,41,80) (0.856,0.944,1) (0,36,80) (0.885, 0.957, 1) (0.91,0.962,1) (0.91,0.965,1)

5/100 6/100 7/100 8/100

10
(0,46,100) (0,38,80) (0.865,0.953,1) (0,35,70) (0.896, 0.961, 1) (0.896,0.966,1) (0.896,0.967,1)

7/100 13/100 14/100 14/100

20
(0,46,100) (0,39,80) (0.877,0.955,1) (0,35,80) (0.897, 0.962, 1) (0.91,0.967,1) (0.91,0.968,1)

4/100 9/100 10/100 10/100

Table 4
Results on uncorrelated instances.

8 Concluding remarks

In this article we studied the two-stage stochastic versions of two classical polynomial problems
in combinatorial optimization: maximum weight matching and maximum weight spanning tree.
Our contribution is computational complexity results, polynomial cases, a general approxima-
tion algorithm and an empirical analysis of the algorithm. Those results improve the one of
Kong and Schaefer [10].

Some questions remain open, in particular the computational complexity of 2-Stage max Mat
and 2-Stage max ST if the number of scenarios is a fixed constant (e.g. r = 2). It would also be
interesting to close the gap between our negative results (APX-completeness) and the positive
result (r/(2r − 1)-approximation). We believe that an approximation algorithm with a ratio
better than r/(2r − 1) can be built.

References

[1] J. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer, 1997.

[2] A. D. Flaxman, A. M. Frieze, M. Krivelevich, On the random 2-stage minimum spanning tree,
Random Struct. Algorithms 28 (1) (2006) 24–36.

[3] M. R. Garey, D. S. Johnson, L. J. Stockmeyer, Some simplified NP-complete graph problems,
Theor. Comput. Sci. 1 (3) (1976) 237–267.

[4] M. Gondran, M. Minoux, Graphes et algorithmes, Eyrolles, Paris, 1979.

[5] A. Gupta, M. Pál, R. Ravi, A. Sinha, Boosted sampling: approximation algorithms for stochastic
optimization, Proc. of the 36th Annual ACM Symposium on Theory of Computing (STOC’04)
(2004) 417–426.

23

[6] A. Gupta, M. Pál, R. Ravi, A. Sinha, What about wednesday? approximation algorithms for
multistage stochastic optimization, Proc. of APPROX-RANDOM’05, Springer LNCS 3624 (2005)
86–98.

[7] N. Immorlica, D. R. Karger, M. Minkoff, V. S. Mirrokni, On the costs and benefits of
procrastination: approximation algorithms for stochastic combinatorial optimization problems,
Proc. of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004)
(2004) 691–700.

[8] P. Kall, S. Wallace, Stochastic Programming, John Wiley and Sons, 1994.

[9] I. Katriel, C. Kenyon-Mathieu, E. Upfal, Commitment under uncertainty: Two-stage stochastic
matching problems, Proc. of ICALP’07, Springer LNCS 4596 (2007) 171–182.

[10] N. Kong, A. J. Schaefer, A factor 1/2 approximation algorithm for two-stage stochastic matching
problems, European Journal of Operational Research 172 (3) (2006) 740–746.

[11] D. König, Über graphen und iher anwendung auf determinantentheorie und mengenlehre, Math.
Ann. 77 (1916) 453–465.

[12] C. H. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J.
Comput. Syst. Sci. 43 (3) (1991) 425–440.

[13] R. Ravi, A. Sinha, Hedging uncertainty: Approximation algorithms for stochastic optimization
problems, Math. Program. 108 (1) (2006) 97–114.

[14] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25–30.

24

