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Abstract

This paper is devoted to automated sequential decision in AI. More precisely, we focus here on
the Rank Dependent Utility (RDU) model. This model is able toencompass rational decision
behaviors that the Expected Utility model cannot accomodate. However, the non-linearity of
RDU makes it difficult to compute an RDU-optimal strategy in sequential decision problems.
This has considerably slowed the use of RDU in operational contexts. In this paper, we are inter-
ested in providing new algorithmic solutions to compute an RDU-optimal strategy in graphical
models. Specifically, we present algorithms for solving decision tree models and influence di-
agram models of sequential decision problems. For decisiontree models, we propose a mixed
integer programming formulation that is valid for a subclass of RDU models (corresponding to
risk seeking behaviors). This formulation reduces to a linear program when mixed strategies are
considered. In the general case (i.e., when there is no particular assumption on the parameters of
RDU), we propose a branch and bound procedure to compute an RDU-optimal strategy among
the pure ones. After highlighting the difficulties induced by the use of RDU in influence diagram
models, we show how this latter procedure can be extended to optimize RDU in an influence
diagram. Finally, we provide empirical evaluations of all the presented algorithms.

Key words: Algorithmic decision theory, rank dependent utility, decision trees, influence
diagrams, planning under uncertainty
2000 MSC:68T37, 68T20

1. Introduction

In many AI problems, agents must act under uncertainty (e.g.in robot control, relief organi-
zation, medical diagnosis, games...). When the consequences of an action only depend on events
whose probabilities are known,decision theory under riskprovides useful tools to automate de-
cisions. The purpose of this theory is indeed to designdecision criteriato evaluate probability
distributions on outcomes (called hereafterlotteries) according to the preferences of a decision
maker. A popular criterion is the expected utility (EU) model proposed by von Neumann and
Morgenstern [50]. In this model, an agent is endowed with autility function u that assigns a
numerical value to each outcome. The evaluation of a lotteryL = (p1, x1; . . . ; pn, xn) (i.e., the
lottery that yields outcomexi with probability pi) is then performed via the computation of its

1This paper extends preliminary results of the two authors [20].
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utility expectation:EU(L) =
∑n

i=1 piu(xi). However, despite its intuitive appeal, the EU model
does not make it possible to account for all rational decision behaviors. An example of such im-
possibility is the so-called Allais’ paradox [2] (Table 1).We present below a very simple version
of this paradox due to Kahneman and Tversky [23] (Table 2).

Example 1 (Kahneman and Tverky’s example).Consider a choice situation where two op-
tions are presented to a decision maker. He chooses between lottery L1 and lottery L′1 in a first
problem, and between lottery L2 and lottery L′2 in a second problem (see Table 2). In the first
problem he prefers L1 to L′1 (he is certain to earn $3000 with L1 while he might earn nothing
with L′1), while in the second problem he prefers L′

2 to L2 (the probability of earning $4000 with
L′2 is almost the same as the probability of earning only $3000 with L2). The EU model can-
not simultaneously account for both preferences. Indeed, the preference for L1 over L′1 implies
u(3000)> 0.1u(0)+ 0.9u(4000). This is equivalent to0.1u(3000)> 0.01u(0)+ 0.09u(4000), and
therefore to0.9u(0)+ 0.1u(3000)> 0.91u(0)+ 0.09u(4000)(by adding0.9u(0) on both sides).
Hence, whatever utility function is used, the preference for L1 over L′1 implies the preference for
L2 over L′2 in the EU model.

Actually, Allais points out that this preference reversal,far from being paradoxical, is the con-
sequence of a reasonable behavior ofpreference for security in the neighbourhood of certainty
[3]. In other words, “a bird in the hand is worth two in the bush” (preference forL1 over L′1).
It is known as thecertainty effect. The preference reversal can be explained as follows: when
the probability of winning becomes low, the sensitivity to the value of earnings increases while
the sensitivity to the probabilities decreases. To encompass the certainty effect in a decision
criterion, the handling of probabilities should thereforenot be linear. Given this situation, new
models have been developped: some models are grounded on an alternative representation of
uncertainty such as the theory of possibility [12], others try to sophisticate the definition of ex-
pected utility such as prospect theory [23], cumulative prospect theory [49] or the rank dependent
utility (RDU) model introduced by Quiggin [41]. This lattermodel is one of the most popular
generalization of EU. In this model, a non-linear probability weighting functionϕ is incorpo-
rated in the expectation calculus, which gives a greater expressive power. In particular, the RDU
model is compatible with both versions of Allais’ paradox. Furthermore, the probability weight-
ing functionϕ is also useful to model the attitude of the agent towards the risk. Indeed, unlike
the EU model, the RDU model makes it possible to distinguish between weak risk aversion (i.e.,
if an option yields a guaranteed utility, it is preferred to any other risky option with the same ex-
pected utility) and strong risk aversion (i.e., if two lotteries have the same expected utility, then
the agent prefers the lottery with the minimum spread of possible outcomes). For this reason,
the RDU criterion has been used in search problems under riskin state space graphs, with the

Lottery 0.01 0.1 0.89
L1 $100M $100M $100M
L′1 $0M $500M $100M
L2 $100M $100M $0M
L′2 $0M $500M $0M

Table 1: Original Allais’ paradox. Columns repre-
sent probabilities, 100M stands for 100 millions. Most
people prefers simultaneouslyL1 to L′1 andL′2 to L2.

Lottery $0 $3000 $4000
L1 0.00 1.00 0.00
L′1 0.10 0.00 0.90
L2 0.90 0.10 0.00
L′2 0.91 0.00 0.09

Table 2: Kahneman and Tversky’s version. Columns
represent outcomes. Most people prefers simultane-
ouslyL1 to L′1 andL′2 to L2.
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aim of finding optimal paths for risk-averse agents [39]. Note that, within the AI community,
the rank dependent utility function is best known under the name ofWeighted Ordered Weighted
Averagingoperator [46, 47]. In particular, the WOWA operator has beenstudied in several fields
of AI where an aggregation function is required: synthesis of information [46], decision making
under risk [35, 37], metadata aggregation problems [10], interactive techniques in multicriteria
optimization [36].

The algorithmic issues related to the use of RDU insequential decision problemshave pre-
vented its adoption in this setting until today. In a sequential decision problem under risk, one
does not make a simple decision but one follows astrategy(i.e. a sequence of decisions con-
ditioned by events) resulting in a non deterministic outcome. This type of problem is in par-
ticular encountered indecision-theoretic planning[6, 7]. This term refers to planners involving
decision-theoretic tools. Formally, the aim of a decision-theoretic planner is to find a plan opti-
mizing a given decision criterion. For this purpose, the lottery induced by each plan is evaluated
according to a decision criterion (usually EU). Several representation formalisms can be used
for sequential decision problems, such as decision trees [e.g. 42], influence diagrams [e.g. 45]
or Markov decision processes [e.g. 11, 22]. A decision tree is an explicit representation of a
sequential decision problem, while influence diagrams or Markov decision processes are com-
pact representations and make it possible to deal with decision problems of greater size. It is
important to note that, in all these formalisms, the set of potential strategies is combinatorial
(i.e., its size increases exponentially with the size of theinstance). The computation of an opti-
mal strategy for a given representation and a given decisioncriterion is then an algorithmic issue
in itself. Contrary to the computation of a strategy maximizing EU, one cannot directly resort
to dynamic programming for computing a strategy maximizingRDU (due to its non-linearity).
Evaluating a decision tree or an influence diagram accordingto RDU (i.e., computing an optimal
strategy according to RDU) raises therefore a challenging algorithmic problem. This is precisely
the issue we tackle in this paper.

The paper is organized as follows. In Section 2, we recall themain features of RDU. In
Section 3, we place our work in the stream of research aiming at incorporating risk-sensivity in
probabilistic planning problems. Then, in Section 4, afterdetailing how the RDU criterion should
be used in a sequential decision problem, we propose two approaches for optimizing RDU in a
decision tree, and we provide numerical tests for both approaches. In Section 5, we investigate
the optimization of RDU in an influence diagram. After recalling the influence diagram formal-
ism, we highlight a difficulty that was not present in the decision tree formalism, namely that not
all strategies are considered in an influence diagram. We then propose an approach to overcome
this difficulty, and provide numerical tests that show its interest.

2. Rank Dependent Utility

Given a finite setS = {x1, . . . , xn} of outcomes, any strategy in a sequential decision problem
can be seen as alottery, characterized by a probability distributionP over S. In this paper,
unless explicitely mentioned, we assume that the outcomes are real numbers ordered as follows:
x1 < . . . < xn. We denote byL = (p1, x1; . . . ; pn, xn) the lottery that yields outcomexi with
probability pi = P({xi}). The decumulative functionGL is given byGL(α) =

∑

i:xi≥α pi , and is
denoted by (GL(x1), x1; . . . ; GL(xn), xn). For the sake of clarity, we will consider a lotteryL as a
function fromS to [0, 1] such thatL(xi) = pi . As indicated above, in decision problems, lotteries
are compared according to a decision criterion, as for instance EU.
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Rank Dependent Utility (RDU), introduced by Quiggin (1993), is among the most popular
generalizations of EU, and makes it possible to describe sophisticated rational decision behav-
iors. From the axiomatic viewpoint, the RDU model is grounded on a weakening of thesure
thing principle [44] that we now detail. It is indeed well-known that the surething principle
holds when using the EU criterion. In the framework of decision under risk, this principle can
be stated as follows: let lotteriesL1 = (p1, x1; . . . ; pn, xn) andL′1 = (p1, x′1; . . . ; pn, x′n) be such
that the outcomes are not necessarily ranked in increasing order andxi0 = x′i0 (wherei0 is an
arbitrary index in{1, . . . , n}), thenL1 preferred toL′1 impliesL2 preferred toL′2, for lotteriesL2,
L′2 obtained from lotteriesL1 andL′1 by merely replacing the common outcomexi0 by another
common outcomeyi0. In Allais’ paradox (Table 1), the sure thing principle is clearly violated.
There is indeed a 89 percent chance to win $100 millions inL1 andL′1, while there is a 89 per-
cent chance to win nothing inL2 andL′2, ceteris paribus. In order to encompass such examples,
the validity of the axiom has to be restricted to cases where the common outcome is ranked
similarly in both lotteries, and where its replacement doesnot affect the ranking in both lotter-
ies: L1 preferred toL′1 implies L2 preferred toL′2, for lotteriesL2, L′2 obtained from lotteries
L1 andL′1 by merely replacing theith0 common outcomexi0 by a common outcomeyi0, again in
ith0 rank both inL2 andL′2. This weaker version of the axiom is calledcomonotonic sure thing
principle [9]. It allows preference reversals in cases of extreme change in the level of risk. For
instance, in Allais’ paradox, there is an extreme change in the level of risk since, in the first
comparison, the probability to earn nothing is about 1 percent, while, in the second comparison,
it is about 90 percent. Comonotonic sure thing principle, together with a continuity axiom and
an axiom of compatibility with stochastic dominance, characterize the RDU model. A lottery
L = (p1, x1; . . . ; pk, xk) is said tostochastically dominatea lotteryL′ = (p′1, x

′
1; . . . ; p′k, x

′
k) if for

all α ∈ R, GL(α) ≥ GL′ (α). In other words, for allα ∈ R, the probability to get an outcome
at leastα with lottery L is at least as high as the probability with lotteryL′. Compatibility with
stochastic dominance means that lotteryL is preferred to lotteryL′ as soon asL stochastically
dominatesL′. This property is obviously desirable to guarantee a rational behavior.

In order to allow preference reversals in cases of extreme change in the level of risk, the han-
dling of probabilities in the RDU model is non-linear. In this purpose, the first proposal that may
come into mind consists in distorting individual probabilities by a non-linear functionϕ, which
yields a decision criterion of the form

∑n
i=1 ϕ(pi)u(xi) whereu denotes an increasing utility func-

tion. Actually, this choice criterion has been proposed by Handa [16], but is not compatible with
stochastic dominance. For this reason, the distortion in the RDU model is not performed on the
probabilities themselves, but on reverse cumulative probabilities. The formula of rank dependent
expected utility can be easily obtained by rewritting the one of expected utility with respect to
reverse cumulative probabilities:EU(L) =

∑n
i=1 piu(xi) = u(x1) +

∑n
i=2 [u(xi) − u(xi−1)] (GL (xi))

(the utility of lottery L is at leastu(x1) with probability 1; then the utility might increase from
u(x1) to u(x2) with probability GL(x2); the same applies fromu(x2) to u(x3) with probability
GL(x3), and so on...). The rank dependent utility of a lotteryL is then defined as follows:

RDU(L) = u(x1) +
n

∑

i=2

[u(xi) − u(xi−1)] ϕ (GL (xi))

Rank dependent utility thus involves an increasing utilityfunction on consequencesu : S → R

as in EU, and also a transformation function on probabilitiesϕ : [0, 1] → [0, 1]. It is compati-
ble with stochastic dominance, i.e. RDU(L) ≥ RDU(L′) as soon asL stochastically dominates
L′. The transformation functionϕ is a non-decreasing function, proper to any agent, such that
ϕ(0) = 0 andϕ(1) = 1. Whenϕ(p) = p for all p, RDU obviously reduces to EU.
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Example 2. Coming back to Example 1, we define the utility function by u(x) = x, and we set
ϕ(0.09)= ϕ(0.1) = 0.2, ϕ(0.9) = 0.7. The preferences induced by RDU are then compatible with
Kahneman and Tversky’s example. Indeed, we have:

RDU(L1) = u(3000)= 3000
RDU(L′1) = u(0)+ ϕ(0.9)(u(4000)− u(0)) = 2800

Therefore L1 is preferred to L′1. Similarly, we have:
RDU(L2) = u(0)+ ϕ(0.1)(u(3000)− u(0)) = 600
RDU(L′2) = u(0)+ ϕ(0.09)(u(4000)− u(0)) = 800

We conclude that L′2 is preferred to L2.

In order to elicit functionϕ, various methods have been used. Several functional forms
have been proposed for functionϕ in the economic literature. As indicated by Quiggin [41],
the simplest are functions of the formϕ(p) = pγ with γ ∈ (0, 1). Actually, when trying to
exactly reproduce the behavior of human agents, there is empirical evidence that the function
ϕ is in general inverse S-shaped, i.e., first concave and then convex [49, 8]. This means that
the probabilities of best consequences are overweighted (potential effect) while the probabilities
of worst consequences are underweighted (certainty effect). The functional form proposed by
Karmarkar [24] in this purpose is:pγ/(pγ + (1− p)γ) with γ ∈ (0, 1). After setting the functional
form of ϕ, one estimates the right value for parameterγ through standard nonlinear regression
methods (maximum likehood, least squares). For a more detailed discussion about the different
possible functional forms ofϕ, the interested reader may refer to the book of Quiggin [41].
Note that there also exist parametric-free elicitation methods, i.e. that works without assuming a
prespecified shape of functionϕ [1, 13].

3. Position of the paper

By studying the use of RDU from the computational viewpoint,we place our work in the
stream of research aiming at incorporating risk-sensitivity in probabilistic planning problems.
The non-linearity of risk-sensitive criteria raises new algorithmic difficulties. A pioneering work
on this topic has been carried out by Howard and Matheson, in the framework of Markov de-
cision processes [17]. They show how risk sensitivity may betreated by evaluating a plan via
an expected utility instead of an expectation. In the case ofrisk-averse agents, the practicality
of the approach relies on the use of an exponential utility functionu (to maximize) defined by
u(x) = −γx for an outcomex ∈ R

+ (γ ∈ (0, 1)). The adoption of such a utility function involves
the agreement of the decision maker with the “∆-property”, namely that his attitude towards risk
does not depend on his wealth level. Koenig and Simmons have performed a similar work with
a slightly different representation of probabilistic planning problems,that required the design of
new algorithms [25]. The representation they use is called a“probabilistic decision graph”, and
resembles the decision trees we study here. Then, back to theframework of MDPs, Liu and
Koenig have proposed to resort to a “one-switch” utility function in order to take into account
the wealth level in the preferences. For a risk-averse agentthat becomes risk-neutral in the limit
as its level of wealth increases, the one-switch utility function u is of the formu(x) = x − Dγx,
whereD > 0 andγ ∈ (0, 1). After exhibiting conditions guaranteeing that the optimal expected
utilities of the total plan-execution reward exist and are finite for fully observable MDP models
with risk sensitive utility functions [26], the authors have proposed a functional value iteration
algorithm to approximate optimal expected utilities forone-switch utility functions[27]. Finally,
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they have also proposed a policy iteration algorithm in a subsequent paper, that enables to return
an optimal policy [28].

All these results are real advances to take into account moreaccurately risk sensitivity in
probabilistic planning problems, especially in high-stakes situations. However, the induced pref-
erences reproduce the biases of EU theory. To explain this inmore details, we need previously
to introduce the notions ofweak risk-aversionandstrong risk aversion. An agent is said to be
weakly risk-averseif, for any lotteryL, he considers that sure lottery (1;E(L)) is as least as good
asL, whereE(L) =

∑n
i=1 pi xi for L = (p1, x1; . . . ; pn, xn) [4, 40]. In EU theory, risk-aversion

means that the agent’s utility functionu on outcomes is increasing andconcave, the coefficient
of risk-aversion of any agent being measured by−u′′(x)/u′(x) [4]. Strong risk-aversion is defined
from the notion ofmean preserving spread[43]. Basically, an agent is said to be strongly risk-
averse if, between two lotteries with the same expectation,he always prefers the less spread one
(in other words, he avoids any increase in risk). Note that strong risk aversion implies weak risk
aversion. Interestingly, it has been shown that a lotteryL is a mean preserving spread of a lot-
tery L′ if and only if EU(L) ≤ EU(L′) for all increasing and concave utility functionsu, where
EU(L) =

∑n
i=1 piu(xi) [41]. Consequently, when using EU to compare lotteries, any weakly

risk-averse agent is also strongly risk-averse. A nice virtue of the RDU model is precisely that
it enables the distinction between weak and strong risk-aversion (contrary to EU). Within this
model, for a concave utility functionu, the agent is weakly risk-averse iff ϕ(p) ≤ p for all
p ∈ [0, 1], and strongly risk-averse iff ϕ is convex (this directly follows from a result of Quiggin
[41]). As stated above, rank dependent utility is thus a powerful tool for modelling risk-sensitive
agents, as illustrated by Allais’ paradox. This motivates our study.

4. Computing RDU in a Decision Tree

4.1. Decision Tree Formalism

A decision tree is an arborescence with three types of nodes:thedecision nodes(represented
by squares), thechance nodes(represented by circles), and the terminal nodes (the leaves of
the arborescence). The branches starting from a decision node correspond to different possible
decisions, while the ones starting from a chance node correspond to different possible events, the
probabilities of which are known. The values indicated at the leaves correspond to theutilities of
the consequences. Note that one omits the orientation of theedges when representing decision
trees. For the sake of illustration, a decision tree representation of a sequential decision problem
(with three strategies) is given in Figure 1.

More formally, in a decision treeT = (N ,E), the setN of nodes isND ∪ NA ∪ NU , where
ND is the set of decision nodes,NA the set of chance nodes andNU the set of terminal nodes.
The root node is denoted byNr ∈ N \ NU . The valuations are defined as follows: every edge
E = (A,N) ∈ E such thatA ∈ NA is weighted by probabilityp(E) of the corresponding event;
every terminal nodeNU ∈ NU is labelled by its utilityu(NU). Besides, we callpast(N) thepast
of N ∈ N, i.e. the set of edges along the path fromNr to N in T . Finally, we denote byS(N) the
set of successors ofN in T , and byT (N) the subtree ofT rooted inN.

Following Jaffray and Nielsen [19], one defines astrategyas a set of edges∆ = {(N,N′) :
N ∈ N∆D,N′ ∈ N∆} ⊆ E, whereN∆ ⊆ N is a set of nodes including :

• the rootNr of T ,

• one and only one successor for every decision nodeN ∈ N∆D = ND ∩ N∆,
6
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Figure 1: A decision tree representation. Figure 2: A Compound Lotery.

• all successors for every chance nodeN ∈ N∆A = NA ∩N∆.

Given a decision nodeN, the restriction of a strategy inT to a subtreeT (N), which defines a
strategy inT (N), is called asubstrategy.

In order to evaluate a strategy, it is important to note that astrategy can be associated to
a compound lottery over the utilities. For instance, in the decision tree of Figure 1, strategy
{(D1,A1), (D2,A3)} corresponds to the compound lottery depicted in Figure 2. Evaluating a
strategy amounts therefore to evaluating a compound lottery. From now on, for the ease of
presentation, we will manipulate lotteries directly defined over utilities rather than outcomes.
A lottery is then a function fromU to [0, 1] such thatL(xi) = ui , whereU = {u1, . . . , un}
with u1 < u2 < . . . < un is the image set ofS with respect tou. Coming back to our ex-
ample, it is natural to assume that the compound lottery of Figure 2 is equivalent to lottery
L = (0.5, 2; 0.25, 3; 0.25,10) (actually, this assumption is known as thereduction of compound
lotteriesaxiom [29], which is used in the axiomatizations of EU and RDU). Given a value func-
tion V that maps every lottery with a real number (e.g.V ≡ EU or V ≡ RDU), the evalu-
ation of the strategy is thenV(L). For example, ifV ≡ EU, then the evaluation of strategy
{(D1,A1), (D2,A3)} is 0.5× 2+ 0.25× 3+ 0.25× 10= 4.25.

4.2. Computing RDU in a Decision Tree: From Decision Theory to Combinatorial Optimization

In a decision treeT , the number of potential strategies may grow exponentiallywith the size
of the decision tree. For example, in a binary decision tree with n nodes and a strict alternation of
decision/chance nodes, one can easily show that the number of strategies is inΘ(2

√
n). For this

reason, it is necessary to develop an optimization algorithm to determine an optimal strategy in a
decision tree. It is well-known that the rolling back methodmakes it possible to compute in linear
time an optimal strategy w.r.t. EU. Indeed, such a strategy satisfies the optimality principle: any
substrategy of an optimal strategy is itself optimal. The optimality principle is closely related to
a condition ofmonotonicity[33] on the value function. In our context, given a value function V
(e.g.V ≡ EU), this condition can be stated as follows:

V(L) ≥ V(L′)⇒ V(αL + (1− α)L′′) ≥ V(αL′ + (1− α)L′′)

whereL, L′, L′′ are lotteries,α is a scalar in [0, 1] andαL + (1− α)L′′ is the lottery defined by
(αL+(1−α)L′′)(x) = αL(x)+(1−α)L′′(x). In the framework of decision theory, this condition can
be seen as a weak version of theindependenceaxiom used by von Neumann and Morgenstern
[50] to characterize the EU criterion. This axiom states that the mixture of two lotteriesL and

7



L′ with a third one should not reverse preferences (induced byV): if L is strictly preferred toL′,
thenαL + (1− α)L′′ should be strictly preferred toαL′ + (1− α)L′′. The monotonicity condition
holds forV ≡ EU, which justifies that the optimality principle holds for EU.

Hence, starting from the leaves, one can compute recursively for each node the expected
utility of an optimal substrategy: the optimal expected utility for a chance node equals the expec-
tation of the optimal utilities of its successors; the optimal expected utility for a decision node
equals the maximum expected utility of its successors.

Example 3. In Figure 1, the optimal expected utility at node D2 is max{6.5, 6} = 6.5. Con-
sequently, the optimal expected utility at node A1 is 4.25. The expected utility at node A2 is
0.3× 1+ 0.45× 2+ 0.25× 11= 3.95. The optimal expected utility at the root node D1 is there-
fore max{4.25, 3.95} = 4.25, and the correspond strategy is{(D1,A1), (D2,A3)}. Note that this
strategy can be suboptimal when using RDU to evaluate lotteries (see below).

In decision theory, the behavior of an agent that adopts sucha recursively computed strategy
is calledconsequentialist. More precisely, consequentialism means that the preferences between
substrategies in a subtree does not depend on the rest of the decision tree. Besides, an agent is
said to bedynamically consistentwhenever at any decision node he is willing to carry out the
plan of action that he determined to be optimal ex-ante. It has been proved that the preferences of
an agent that is both consequentialist and dynamically consistent follow the EU model [14, 15].
An agent whose preferences follow the RDU model (named hereafter RDU-maximizer) should
therefore renounce either consequentialism or dynamic consistency. Assume first that the agent
adopts a consequentialist behavior, that is, he computes recursively a strategy from the leaves by
selecting optimal substrategies for RDU, and then follows this strategy. As shown by Example 4,
this strategy, determined ex-ante, could be suboptimal since the monotonicity condition does not
hold for V ≡ RDU, as already noticed by Nielsen and Jensen [34]. By committing himself to
consequentialism, the agent thus renounces dynamic consistency (he does not follow the strategy
that is optimal ex-ante).

Example 4. Consider lotteries L= (0.5, 3; 0.5, 10) (corresponding to chance node A3 in Fig-
ure 1), L′ = (0.5, 1; 0.5, 11) (corresponding to chance node A4 in Figure 1) and L′′ = (1, 2).
Assume that the decision maker preferences follow the RDU model with the followingϕ func-
tion:

ϕ(p) =































































0, if p = 0

0.45, if 0 < p ≤ 0.25

0.6, if 0.25< p ≤ 0.5

0.75, if 0.5 < p ≤ 0.7

0.8, if 0.7 < p ≤ 0.75

1, if p > 0.75

The RDU values of lotteries L and L′ are:

RDU(L)=3+(10-3)ϕ(0.5)=7.2
RDU(L′)=1+(11-1)ϕ(0.5)=7

Thus, we have RDU(L) ≥ RDU(L′) (substrategy{(D2,A3)} is preferred to substrategy{(D2,A4)}
in D2 in Figure 1). By the monotonicity condition forα = 0.5, one should therefore have
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RDU(0.5L + 0.5L′′) ≥ RDU(0.5L′ + 0.5L′′). However, we have:

RDU(0.5L+0.5L′′)=2+(3-1)ϕ(0.5)+(10-3)ϕ(0.25)=5.75
RDU(0.5L′+0.5L′′)=1+(2-1)ϕ(0.75)+(11-2)ϕ(0.25)=6.65

Therefore RDU(0.5L + 0.5L′′) < RDU(0.5L′ + 0.5L′′) (strategy{(D1,A1), (D2,A4)} is preferred
to strategy{(D1,A1), (D2,A3)} in Figure 1). Consequently, the monotonicity property doesnot
hold.

More seriously, a consequentialist RDU-maximizer could even follow a stochastically dom-
inated strategy, as shown by the following example.

Example 5. Consider the decision tree of Figure 1. In this decision tree, the RDU values of the
different strategies are (at the root):

RDU({(D1,A2)}) = 5.8
RDU({(D1,A1), (D2,A3)}) = 5.75
RDU({(D1,A1), (D2,A4)}) = 6.65

Thus, the optimal strategy at the root is{(D1,A1), (D2,A4)}. However, by recursion, one gets
at node D2: RDU({(D2,A3)}) = 7.2 and RDU({(D2,A4)}) = 7. This is therefore substrategy
{(D2,A3)} that is obtained at node D2 (see Example 4). At node D1, this is thereafter the strategy
{(D1,A2)} (5.8 vs 5.75 for{(D1,A1), (D2,A3)}), stochastically dominated by{(D1,A1), (D2,A4)}),
which is finally obtained.

At first sight, such an example could be misinterpreted as illustrating a weakness of the
RDU model in sequential decision situations. Actually, it primarily shows that the RDU model
is inappropriate for consequentialist agents. Conversely, the EU model is unable to reproduce
non-consequentialist behaviors. This type of behaviors ishowever routinely displayed by many
rational agents. An intuitive example of a non-consequentialist behavior has been proposed by
Machina [30]. Assume that Mom has a single treat which she cangive to either daughter Abigail
or son Benjamin. She is indifferent between Abigail getting the treat and Benjamin getting the
treat, but she strictly prefers a coin flip over either of the sure outcomes. Assume that Abigail
wins the coin flip. We are in a different state than before the coin flip, and Mom now prefers
Abigail getting the treat over a new flip. History, in this case, matters as far as preferences:
Benjaminhad his chance, and therefore the fact that Benjamin could have won still matters after
the coin is flipped. This is the very justification of non-consequentialism. More generally, a
non-consequentialist agent still gives importance to events that could have occured, contrary to a
consequentialist agent that does not take a risk into account once it has been borne.

In this paper, we consider therefore a dynamically consistent agent (he sets a plan initially
and never deviates from it later) with a non-consequentialist behavior (the optimal strategy at the
root can include substrategies that appear suboptimal in their subtrees). In other words, we study
in the sequel how to compute an RDU-optimal plan viewed from the initial situation, and comply
to it. By doing so, we are sure to never encounter a stochastically dominated substrategy, contrary
to a method that would consist in performing backward induction with RDU. Unfortunately, the
determination of an RDU-optimal strategy in a decision treeis an NP-hard problem (where the
size of an instance is the number of involved decision nodes):

Proposition 1 (Jeantet and Spanjaard, 2008 [20]).The determination of an RDU-optimal strat-
egy (problemRDU-OPT) in a decision tree is an NP-hard problem.
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Proof. This is proved by polynomial reduction from 3-SAT (see Appendix A). �

Note that Jaffray and Nielsen also studied the use of RDU in decision trees [19]. Nevertheless,
their approach differs from ours, since they focus on how RDU should be used by agents close
to be consequentialist. Consequently, they do not compute an optimal strategy viewed from the
initial situation.

4.3. Two Approaches for Computing RDU
We propose here two approaches for determining an RDU-optimal strategy in a decision tree.

One approach uses a mixed integer linear programming formulation, and the other one proceeds
by implicit enumeration (neither exhaustive enumeration nor backward induction are conceivable
since RDU-OPT is NP-hard).

4.3.1. A Mixed Integer Linear Programming Formulation
We now present a Mixed Integer Linear Programming (MIP) formulation of problem RDU-

OPT, in the case where functionϕ is concave piecewise linear. Consider a decision treeT . We
first detail the set of constraints defining feasible strategies. For this purpose, a boolean variable
y(i, j) is created in the MIP formulation for every decision branch (Di ,A j). The |ND| constraints
defining the set of feasible strategies are then:

∑

j y(1, j) = 1
∑

j y(i, j) = yprevD(i) ∀i ∈ {2, . . . , |ND|}

wherey(i, j) = 1 (resp.y(i, j) = 0) if (Di ,A j) is selected (resp. not selected), andprevD(i) is the last
decision branch precedingDi on the path from the root (in the temporal order).

Example 6. For the decision tree represented in Figure 3, the constraints defining the set of
feasible strategies are:

y(1,1) + y(1,2) = 1
y(2,3) + y(2,4) = y(1,1)

y(3,5) + y(3,6) = y(1,1)

y(4,7) + y(4,8) = y(1,2)

y(5,9) + y(5,10) = y(1,2)

We now detail the modelling of the objective function. The set of utilities at the leaves ofT
is denoted byU = {u1, u2, ..., un}, with u1 ≤ u2 ≤ ... ≤ un, and the probability to obtain utilityuh

is denoted byph. Probabilityph is the product of all probabilities on the path from the root to
utility uh. The rank dependent utility is then written as follows:

u1 +

n
∑

h=2

(uh − uh−1)ϕ

















∑

j≥h

p jyprevu( j)

















whereyprevu( j) is the last decision branch precedingu j on the path from the root. By introducing
(n− 1) variablesϕh, it can be rewritten as follows:

u1 +

n
∑

h=2

(uh − uh−1)ϕh

whereϕh = ϕ(
∑

j≥h p jyprevu( j)) for h = 2, . . . , n.
10



D1

A1
y(1,1)

D20.6

A3
y(2,3)

bu3 = 6, p3 = 0.300.5
bu13 = 31, p13 = 0.300.5

A4y(2,4)
bu5 = 10, p5 = 0.480.8
bu2 = 4, p2 = 0.120.2

D3
0.4

A5
y(3,5)

bu1 = 1, p1 = 0.120.3
bu14 = 31, p14 = 0.280.7

A6y(3,6)
bu8 = 20, p8 = 0.160.4
bu12 = 25, p12 = 0.240.6

A2

y(1,2)

D40.1

A7
y(4,7)

bu4 = 7, p4 = 0.020.2
bu11 = 23, p11 = 0.080.8

A8y(4,8)
bu7 = 18, p7 = 0.050.5
bu6 = 15, p6 = 0.050.5

D5
0.9

A9y(5,9)
bu10 = 22, p10 = 0.540.6
bu15 = 31, p15 = 0.360.4

A10y(5,10)
bu9 = 21, p9 = 0.810.9
bu16 = 40, p16 = 0.090.1

Figure 3: A decision tree and the corresponding variables and parameters in the MIP formulation.

Example 7. For the decision tree represented in Figure 3, the objectivefunction is written:

1+ (4− 1)ϕ2 + . . . + (31− 25)ϕ13+ (31− 31)ϕ14+ (31− 31)ϕ15+ (40− 31)ϕ16

= 1+ 3ϕ2 + 2ϕ3 + ϕ4 + 3ϕ5 + 5ϕ6 + 3ϕ7 + 2ϕ8 + ϕ9 + ϕ10 + 2ϕ11+ 2ϕ12+ 6ϕ13 + 9ϕ16

Note that variablesϕ14 andϕ15 do not appear in the final objective function, and can therefore
be eliminated from the program.

The expression defining the value ofϕh is of course non-linear, due to the presence of func-
tion ϕ. This difficulty can be overcome in the case whereϕ is concave piecewise linear. Recall
that a concave functionϕ reflects a risk-seeking behavior for certain forms of utility function
(e.g., convex).By using a concave piecewise linear function ϕ, one can approximate any con-
cave regular function. This family of functions is therefore interesting to study. It is well-
known that any concave piecewise linear function can be written as the lower envelope of a
set of affine functions. Let{ f1, f2, ..., fm} denote this set, wherefk(p) = akp + bk. We have
ϕ(p) = min{ f1(p), f2(p), ..., fm(p)}. The value ofϕh can be obtained by optimization:

ϕh = maxα α
α ≤ fk

(

∑

j≥h p jyprevu( j)

)

∀k ∈ {1, ...,m}
α ≥ 0

The above problem is a linear program for a given strategyy.

Example 8. Assume thatϕ(p) = 1.8p for p ≤ 0.5, andϕ(p) = 0.4p+ 0.6 for p > 0.5. We have
thenϕ(p) = min{ f1(p), f2(p)} with f1(p) = 1.8p and f2(p) = 0.4p+ 0.6. For a given assignment
of boolean values to variables y(i, j) in the decision tree represented in Figure 3, the value ofϕ13
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can be written as the result of the following linear program:

ϕ13 = maxα α
α ≤ 1.8(0.30y(2,3)+ 0.28y(3,5) + 0.36y(5,9) + 0.09y(5,10))
α ≤ 0.4(0.30y(2,3)+ 0.28y(3,5) + 0.36y(5,9) + 0.09y(5,10)) + 0.6
α ≥ 0

Sinceuh−uh−1 ≥ 0, the objective function (to maximize) will benefit from maximizing every
ϕh, and the MIP formulation is therefore the following in the concave piecewise case:

maxϕ u1 +
∑n

h=2(uh − uh−1)ϕi

ϕh ≤ fk
(

∑

j≥h p jyprevu( j)

)

∀h ∈ {2, ..., n}∀k ∈ {1, ...,m}
∑

j y(1, j) = 1
∑

j y(i, j) = yprevD(i) ∀i ∈ {2, . . . , |ND|}
y(i, j) ∈ {0, 1} ϕh ≥ 0

This program includes (n− 1) continuous variables,|ND| binary variables, and (n− 1)m+ |ND |
constraints (sincem constraints are created for every variableϕh). Its size is therefore linear in
the size ofT for a fixed numberm of pieces inϕ. We recall however that the complexity of the
solution procedure is of course exponential in the number ofbinary variables in the worst case
(for a fixed numberm of pieces inϕ).

Let us now briefly study a relaxation of the problem, where oneconsiders not onlypure
strategiesbut alsomixed strategies. In a mixed strategy, one chooses randomly (according to
a predefined probability distribution) the decision taken at each decision node. When using ex-
pected utility to evaluate a strategy, it is not worth considering mixed strategies since there always
exists a pure strategy yielding the same expected utility than the best mixed strategy. This is no
longer the case when using rank dependent utility to evaluate a strategy. Consider a decision
tree with a single decision node leading to two different options: a sure outcome lottery (1, 5),
and a lottery (0.5, 1; 0.5, 10). Assume that the probability transformation function is defined by
ϕ(0) = 0, ϕ(p) = 0.45 if p ∈ (0; 0.7) andϕ(p) = 1 if p > 0.7. The RDU values of the two pure
strategies are respectively 5 and 5.05. Comparatively, the mixed strategy where one chooses the
sure outcome lottery with probability 0.6, and the other one with probability 0.4, results in a
RDU value of 7.25. We now show that the optimal mixed strategy can be polynomially com-
puted in the two previous cases (concave piecewise linearϕ, piecewise constantϕ), by slighting
modifying the MIP formulations so that no boolean variablesappear anymore (and the number
of constraints remains the same). It yields of course a linear programming formulation. In a
mixed strategy, the probability of obtaining utilityuh equals the product of the probabilities on
the chanceand decisionbranches along the path from the root touh. For this reason, a real
variablep(i, j) is created in the MIP formulation for every decision branch (Di ,A j), instead of a
boolean variable. However, to obtain linear constraints, this variable does not represent proba-
bility P((Di,A j)|Di) (probability to make decision (Di ,A j) conditionally to reach nodeDi) but
the product of the probabilities of the decision branches from the root to nodeA j . There is a
one-to-one correspondence between assignments of probabilities P((Di ,A j)|Di) andp(i, j), since
P((Di ,A j)|Di) equalsp(i, j)/pprevD(i). This is illustrated in Figure 4. The probability of obtaining
utility uh is thenphpprevu(h) (on the path touh, ph is the product of the probabilities on the chance
branches, andpprevu(h) is the product of the probabilities on the decision branches). The objective
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P((Di,A j)|Di) p(i, j)

D1

A1

3/5

D20.6

A31/3

A42/3

D3
0.4

A51/2

A61/2

A2

2/5
D40.1

A71/2

A81/2

D5
0.9

A93/4

A101/4

D1

A1

3/5

D20.6

A31/5

A42/5

D3
0.4

A53/10

A63/10

A2

2/5
D40.1

A71/5

A81/5

D5
0.9

A93/10

A101/10

Figure 4: One-to-one correspondence between assignments of probabilitiesP((Di , A j)|Di ) andp(i, j).

function is therefore written:

u1 +

n
∑

h=2

(uh − uh−1)ϕ

















∑

j≥h

p j pprevu( j)

















Let us now study the constraints that must satisfy variablesp(i, j). By definition, we have
∑

j p(i, j) =
∑

j pprevD(i)P((Di ,A j)|Di). Then,
∑

j pprevD(i)P((Di,A j)|Di) = pprevD(i)
∑

j P((Di,A j)|Di) = pprevD(i).
Consequently,

∑

j p(i, j) = pprevD(i). The constraints on variablesp(i, j) are thus very similar to the
previous constraints on variablesy(i, j):

∑

j p(1, j) = 1
∑

j p(i, j) = pprevD(i) ∀i ∈ {2, . . . , |ND|}

wherep(i, j) ∈ [0, 1]. All the other constraints are identical to the ones in pure strategies (with
y(i, j) replaced byp(i, j)). This proves the polynomial solvability of the determination of an RDU-
optimal mixed strategy in the case where functionϕ is concave piecewise linear (since the size
of the linear program is linear in the size of the decision tree).

4.3.2. Implicit Enumeration Algorithm
We now present a branch and bound method for determining an RDU-optimal (pure) strat-

egy. Unlike the previous approach, this method has the advantage of remaining valid for any
probability transformation functionϕ. The branching principle is to partition the set of strategies
in several subsets according to the choice of a given edge (N,N′) at a decision nodeN. More
formally, the nodes of the enumeration tree are characterized by apartial strategy, that defines a
subset of strategies. Consider a decision treeT and a set of nodesNΓ including:

• the rootNr of T ,

• one and only one successor for every decision nodeN ∈ NΓD = ND ∩ NΓ.

The set of edgesΓ = {(N,N′) : N ∈ NΓD,N′ ∈ NΓ} ⊆ E defines apartial strategyof T if
the subgraph induced byNΓ is a tree. A strategy∆ is saidcompatiblewith a partial strategy
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Algorithm 1 : BB(Γ,RDUopt)

N1← {N1 ∈ ND : N1 is candidate};
Nmin← arg minN∈N1 rk(N);
Emin← {(Nmin,A) ∈ E : A ∈ S(Nmin)};
for each (N,A) ∈ Emin do

if ev(Γ ∪ {(N,A)}) > RDUopt then
RDUtemp← BB(Γ ∪ {(N,A)},RDUopt);
if RDUtemp> RDUopt then

RDUopt← RDUtemp;
end

end
end
return RDUopt

Γ if Γ ⊆ ∆. The subset of strategies characterized by a partial strategy corresponds to the set
of compatible strategies. At each iteration of the search, one chooses an edge among the ones
starting from a given decision node. The order in which the decision nodes are considered is
given by a priority functionrk : ND → {1, 2, . . . , |ND|}: if several decision nodes are candidates
to enterNΓ, the one with the lowest priority rank will be considered first. The ranking function
rk is defined by:



























rk(Nr ) = 1

|past(N)| > |past(N′)| ⇒ rk(N) > rk(N′)

|past(N)| = |past(N′)| andEU(T (N)) > EU(T (N′))⇒ rk(N) < rk(N′)

whereEU(T (N)) is the optimal value of EU inT (N) (we recall thatT (N) is the subtree rooted
in N).

Example 9. For the decision tree in Figure 3, there is a unique ranking function rk defined by
: rk(D1) = 1, rk(D2) = 5, rk(D3) = 3, rk(D4) = 4 and rk(D5) = 2 (since EU(T (D5)) <
EU(T (D3)) < EU(T (D4)) < EU(T (D2))).

Algorithm 1 describes formally the implicit enumeration procedure that we propose. It takes
as an argument a partial strategyΓ and the best RDU value found so far, denoted byRDUopt.
The search is depth-first. The decision nodes that are candidates to enterNΓ are denoted byN1.
Among them, the node with the lowest priority rank is denotedby Nmin. The set of its incident
edges is denoted byEmin. It defines the set of possible extensions ofΓ considered in the search (in
other words, the children of the node associated toΓ in the enumeration tree). For every partial
strategyΓ (in other words, at every node of the enumeration tree), one has an evaluation function
evthat gives an upper bound of the RDU value of any strategy compatible withΓ. The optimality
of the returned valueRDUopt is guaranteed since only suboptimal strategies are pruned during
the search as soon asev is an upper bound.

We give below the main features of our algorithm.

Initialization. A branch and bound procedure is notoriously more efficient when a good solution
is known before starting the search. In our method, the lowerbound (RDUopt) is initially set to
the RDU value of the EU-optimal strategy.
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Computing the lower bound. At each node of the search, one computes the EU-optimal strat-
egy among strategies that are compatible withΓ. When its RDU value is greater than the best
found so far, we updateRDUopt. This makes it possible to prune the search more quickly.

Computing the upper bound. The evaluation function is denoted byev. It returns an upper
bound on the RDU value of any strategy compatible withΓ. The principle of this evaluation is to
determine a lottery that stochastically dominates any lottery corresponding to a strategy compat-
ible with Γ, and then to evaluate this ideal lottery according to RDU. This yields an upper bound
since RDU is compatible with stochastic dominance, i.e. ifL stochastically dominatesL′ then
RDU(L) ≥ RDU(L′). In order to compute such a lottery, one proceeds by dynamicprogram-
ming in the decision tree. Actually, one can indifferently manipulate decumulative functions or
lotteries, since both sets are in bijection (we recall that alottery on utilities is considered as a
function fromU to [0, 1] in this paper). For the sake of clarity, we describe the recursion by
refering to decumulative functions. The initialization isperformed as follows: at each terminal
nodeT ∈ NU is assigned a decumulative functionGLT = (1, u(T)). Next, at each nodeN ∈ N,
one computes the decumulative function of a lottery that stochastically dominates all the lotteries
of subtreeT (N). More precisely, at a chance nodeA, one computes the decumulative function
GLA induced by the decumulative functions of its children as follows:

∀u,GLA(u) =
∑

N∈S(A)

p((A,N))GLN(u)

whereGLN corresponds to the decumulative function assigned to nodeN ∈ N. Besides, at each
decision nodeD, we apply the following recurrence relation on the decumulative functions:

{

∀u,GLD(u) = GLN (u) if ∃N ∈ S(D) : (D,N) ∈ Γ
∀u,GLD(u) = maxN∈S(D) GLN (u) otherwise

Finally, the value returned byev is RDU(LNr ) whereLNr corresponds to the lottery of decu-
mulative functionGLNr . The complexity of this recursive procedure forΓ = ∅ is in O(|N|.|U |)
(where|U | is the number of distinct utilities at the leaves) since eachnode inN is examined
once, and the support set of a lottery is upper bounded by|U |. However, during the branch and
bound procedure, when an edge (Di ,N j) is inserted intoΓ, it is not necessary to recomputeGLN

in every nodeN. One can indeed use functionsGLN already computed for evaluatingev(Γ): it is
sufficient to update functionsGLN only on nodesN that belong to the path fromNr to Di . Since
the length of a path inT is upper bounded by heighth, the complexity of computingev(Γ) for
Γ , ∅ is therefore inO(h.|U |). To prove the validity of the recursive procedure, one proceeds by
induction:

• At a chance node A:consider a tuple (LN)N∈S(A) of lotteries such thatLN stochastically
dominatesLN for all N ∈ S(A). We have:
GLA(u) = G∑

N∈S(A) p((A,N))LN (u) =
∑

N∈S(A) p((A,N))GLN(u) ≥ ∑

N∈S(A) p((A,N))GLN(u) ∀u

where
∑

N∈S(A) p((A,N))LN denotes a compound lottery. This proves thatLA stochastically
dominates any lottery corresponding to a strategy inT (A).

• At a decision node D:if there existsN ∈ S(D) with (D,N) ∈ Γ, then the validity is
obvious. In the other case, consider again a tuple (LN)N∈S(D) of lotteries such thatLN

stochastically dominatesLN for all N ∈ S(D). By definition,GLD (u) = maxN∈S(D) GLN (u)
∀u. ThusGLD (u) ≥ GLN (u) ≥ GLN (u) ∀u for any lotteryLN of the tuple. This proves that
LD stochastically dominates any lottery corresponding to a strategy inT (D).
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Figure 5: Computation of a stochastically dominating lottery.

Consequently, lotteryLNr stochastically dominates all lotteries corresponding to astrategy com-
patible withΓ.

Example 10. Let us come back to the decision tree of Figure 1. Assume thatΓ = {(D1,A1)}.
The decumulative functions assigned to nodes A3 and A4 are GLA3 = (1, 3; 1

2 , 10) and GLA4 =

(1, 1; 1
2 , 11). They are represented in the left part of Figure 5. The decumulative function GLD2

computed by dynamic programming is then the upper envelope of GLA3 and GLA4 . More formally,
the decumulative function computed in D2 is defined by:∀x,GLD2 (x) = max{GLA3 (x),GLA4 (x)}.
This decumulative function is represented in bold in the right part of Figure 5. Then we have:
GLD2 = (1, 3; 1

2 , 11). Similarly, one computes:

- GLA1 = 0.5GLD2 + 0.5GLu(2) = (1, 2; 1
2 , 3; 1

4 , 11)where GLu(2) is the decumulative function associ-
ated to the node of utility u(2),
- GLD1 = GLA1 = (1, 2; 1

2 , 3; 1
4 , 11)sinceΓ = {(D1,A1)}.

Decumulative function GLD1 corresponds to lottery( 1
2 , 2; 1

4 , 3; 1
4 , 11). The upper bound forΓ =

{(D1,A1)} is therefore ev(Γ) = RDU(( 1
2 , 2; 1

4 , 3; 1
4 , 11)).

4.4. Numerical Tests

Algorithms were implemented in C++ and the computational experiments were carried out
on a PC with a Pentium IV CPU 2.13Ghz processor and 3.5GB of RAM.

Tests on random instances.We have first compared the performances of the MIP approach
with the ones of the implicit enumeration approach. Our tests were performed on complete bi-
nary decision trees of even height. The height of these decision trees varies from 4 to 12, with
an alternation of decision nodes and chance nodes. The utilities at the leaves are real numbers
randomly drawn within interval [1, 1000], and the conditional probabilities at the chance nodes
are randomly drawn positive real numbers summing up to 1. Since the MIP approach requires a
concave piecewise linear functionϕ, we used functionϕ defined byϕ(p) = min{ f1(p), ..., f5(p)}
with: f1(p) = 4p, f2(p) = 2p + 0.2, f3(p) = p + 0.5, f4(p) = 1

2 p + 0.7, f5(p) = 1
4 p + 0.85.

Table 3 shows the average execution CPU times obtained by both approaches. The mixed inte-
ger linear programs are solved using the ILOG CPLEX v11.1.0 solver. Note that the solution
times indicated in Table 3 for the MIP approach do not take into account the preprocessing
time. When it is informative, the min and max values are indicated under the following format:
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Approach\Height (nodes) 4 (11) 6 (127) 8 (511) 10 (2047) 12 (8191)

MIP < 1 < 1 < 1 2.1− 2.3− 2.8 79.4− 86.0− 107.3
Implicit enumeration < 1 < 1 < 1 < 0.1− 2.5− 5.0 0.3− 5.6− 20.2

Table 3: Execution times for a concave piecewise linear function ϕ (in seconds).

depth (nodes) 5 (11) 7 (127) 9 (511) 11 (2047) 13 (8191) 15 (32767)

γ = 0.2 < 0.1 < 0.1 < 0.1 < 0.1 − 0.4 − 1.1 0.3 − 4.3 − 13.8 3.0 − 62.1 − 512.9

γ = 0.5 < 0.1 < 0.1 < 0.1 < 0.1 − 0.1 − 0.5 0.1 − 2.7 − 7.4 1.2 − 17.3 − 99.4

γ = 0.8 < 0.1 < 0.1 < 0.1 < 0.1 − 0.1 − 0.5 0.1 − 1.6 − 8.0 0.6 − 10.9 − 101.4

Table 4: Execution time.

min − average− max. Both approaches instantly give an optimal strategy for trees of height
less than 8. However, when height exceeds 12, the implicit enumeration approach is much more
efficient than the MIP approach.

Next, we have gone further into the study of our implicit enumeration algorithm. For this
purpose, we have measured the performances of the implicit enumeration approach with function
ϕ defined by:ϕ(p) = pγ/(pγ + (1− p)γ). This function is not concave nor piecewise linear. This
is the one usually proposed to model sophisticated behaviors that the EU model is unable to
describe [24]. Parameterγ takes value in interval [0, 1]. For γ = 1, we haveϕ(p) = p and
RDU reduces to EU. We have tested our algorithm for several values of parameterγ, namely
γ = 0.2, γ = 0.5 andγ = 0.8. Table 4 presents the performances of the algorithm with respect to
parameterγ and the height of the decision tree. When it is informative, the min and max values
are indicated. For each value ofγ and height, we give the average performance computed over
50 decision trees. Unsurprisingly, the performances improve whenγ is near 1 (i.e. RDU is close
to EU). Note that, for bigger instances (i.e. the height of which is greater than 14), some hard
instances begin to appear for which the solution time becomes high.

Finally, in order to evaluate the quality of the lower bound and the upper bound, we have
investigated ratiosRDU(LEU)/RDU∗ and RDU(LS D)/RDU∗ with respect to parameterγ and
the height of the decision tree, whereLEU is the lottery correspondig to an optimal strategy for
EU, LS D is the lottery computed for evaluating the upper bound andRDU∗ is the value of the
optimal strategy for RDU. The results are presented in Table5, where each value is an average
over 50 instances. One can observes thatRDU(LEU) provides a good lower bound that naturally
deteriorates whenγ becomes close to 0 (i.e. the probabilities are very distorted). The upper
bound appears to be within 10% of the optimal value on most instances.

However, the complete binary trees considered here are actually the “worst cases” that can
be encountered. In fact, in many applications, the decisiontrees are much less balanced and
therefore, for the same number of decision nodes, an RDU-optimal strategy will be computed
faster, as illustrated now on a TV game example.

Application to Who wants to be a millionaire? Who wants to be a millionaire?is a popular
game show, where a contestant must answer a sequence of multiple-choice questions (four pos-
sible answers) of increasing difficulty, numbered from 1 to 15. This is a double or nothing game:
if the answer given to questionk is wrong, then the contestant quits with no money. However,
at each questionk, the contestant can decide to stop instead of answering: he then quits the
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γ = 0.2

Bound\ Height (nodes) 4 (11) 6 (127) 8 (511) 10 (2047) 12 (8191)

RDU(LEU∗ )/RDU* 95.1% 92.46% 90.0% 91.2% 90.9%

RDU(LS D)/RDU* 104.4% 105.1% 106.9% 112.4% 117.5%

γ = 0.5

Bound\ Height (nodes) 4 (11) 6 (127) 8 (511) 10 (2047) 12 (8191)

RDU(LEU∗ )/RDU* 99.6% 99.3% 99.0% 98.8% 98.2%

RDU(LS D)/RDU* 105.5% 109.6% 109.4% 109.1% 110.2%

γ = 0.8

Bound\ Height (nodes) 4 (11) 6 (127) 8 (511) 10 (2047) 12 (8191)

RDU(LEU∗ )/RDU* 99.8% 99.5% 99.4% 98.9% 98.6%

RDU(LS D)/RDU* 106.4% 106.3% 108.8% 107.8% 107.2%

Table 5: Quality of upper and lower bound.

game with the monetary value of question (k − 1). Following Perea and Puerto [38], we study
the Spanish version of the game in 2003, where the monetary values of the questions were 150,
300, 450, 900, 1800, 2100, 2700, 3600, 4500, 9000, 18000, 36000, 72000, 144000 and 300000
Euros respectively. Note that, actually, after the 5th and 10th questions, the money is banked
and cannot be lost even if the contestant gives an incorrect response to a subsequent question:
for example, if the contestant gives a wrong answer to question 7, he quits the game with 1800
Euros. Finally, the contestant has threelifelines that can be used once during the game: Phone a
friend (call a friend to ask the answer), 50:50 (two of the three incorrect answers are removed),
Ask the audience (the audience votes and the percentage of votes each answer has received is
shown).

We applied our algorithm to compute an RDU-optimal strategyfor this game. For this pur-
pose, we first used the model proposed by [38] to build a decision tree representing the game.
In this model, a strategy is completely characterized by giving the question numbers where the
different lifelines are used, and the question number where the contestant quits the game. We
have carried out experimentations for various probabilitytransformation functions, modelling
different attitudes towards risk. The identity (resp. square, square root) function corresponds to
an expected reward maximizer (resp. a risk averse, risk seeker decision maker). The results are
reported in Table 6. For each functionϕ, we give the expected reward (column Exp.) of the
optimal strategy, as well as the maximum possible reward (column Max.) and the probability
to win at least 2700 Euros (columnGL(2.7K)). Note that, in all cases, the response time of our
procedure is less than one second while there are 14400 decision nodes and the height is 30. This
good behavior of the algorithm is linked to the shape of the decision tree, that strongly impacts
on the number of potential strategies.

A limitation of the model introduced by Perea and Puerto [38]is that the choice to use a
lifeline is not dependent on whether the contestant knows the answer or not. For this reason, we
introduced the following refinement of the model: if the contestant knows the answers to question
k, he directly gives the correct answer, else he has to make a decision. A small part of the decision
tree for this new modelling is represented in Figure 6 (the dotted lines represent omitted parts of
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ϕ(p) 50:50 Phone Ask QuitExp. Max. GL(2.7K)
p 9 10 12 13 2387 36K 0.10
p2 4 5 5 8 1536 2.7K 0.35√

p 14 15 13 X 1987 300K 0.06

Table 6: Optimal strategies for variousϕ functions.
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Figure 6: Refined decision tree for the TV game.

the tree). Chance nodesQi
1’s (resp.Qi

2’s) represent question 1 (resp. 2), with two possible events
(know the answer or not). Decision nodesDi

1’s represent the decision to use an available lifeline,
answer or quit facing question 1 (in fact, this latter opportunity becomes realistic only from
question 2). Finally, the answer is represented by a chance node (Ai

1’s) where the probabilities
of the events (correct or wrong answer) depend on the used lifelines. We used the data provided
by Perea and Puerto [38] to evaluate the different probabilities at the chance nodes. The whole
decision tree has more than 75 millions of nodes. The problembecomes therefore much harder
since the number of potential strategies explodes. Unlike previous numerical tests, we had to
use a computer with 64GB of RAM so as to be able to store the instance. Despite the high size
of the instance, the procedure is able to return an optimal strategy in 2992 sec. forϕ(p) = p2

(risk averse behavior) and 4026 sec. forϕ(p) = p(2/3) (risk seeker behavior). Note that, for risk
seeker behaviors, the solution time increases with the concavity of the probability transformation
function.
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5. Computing RDU in an Influence Diagram

The previous approaches face the main inconvenience of decision trees: their size grows
quickly when the number of decision stages increases. For this reason, we study the optimiza-
tion of RDU in influences diagrams, that provide compact representations of sequential decision
problems.

5.1. Influence Diagram Formalism

An influence diagram[18] is a graphical model for a sequential decision problem.Unlike
decision trees, the emphasis is put on the decomposability of the underlying probability structure.
By taking advantage of independences between involved random variables and utility variables,
one gets a much more compact representation than the one obtained by expliciting all possible
scenarios, as would be done in a decision tree. An influence diagram including random variables
A1, . . . ,Ap and decision variablesD1, . . . ,Dn is an acyclic digraphG = (N ,E) such that:

• setN is partitioned into three subsets: a setND = {D1, . . . ,Dn} of decision variables
(represented by squares), a setNA = {A1, . . . ,Ap} of random variables (represented by
circles), and a setNU = {U1, . . . ,Um} of utility nodes (represented by diamonds);

• setE of directed edges is partitioned into three subsets: a set offunctional edges from a
decision variable or a random variable to a random variable or a utility node (edges rep-
resenting dependences), a set of informational edges from adecision variable or a random
variable to a decision variable (edges representing the observed variables before making a
decision);

• the nodes representing random variables are endowed with a conditional probability table,
indicating the probability of every event conditionally tothe parent nodes;

• the utility nodes are endowed with a table indicating the utility conditionally to the parent
nodes.

The following structural condition on the graph must also hold: there exists a path (including
functional and informational edges) connecting all the nodes representing decision variables.

An influence diagram is represented in the left part of Figure7, where the conditional proba-
bility tables and the utility tables have been deliberatelyomitted for the sake of brevity. The two
possible decisions inD1 (resp.D2) are denoted byα andβ (resp.γ andδ). The two modalities of
random variableA1 (resp.A2) areη1 andη2 (resp.θ1 andθ2). The order in which the decisions
and the observations are made is assumed to beD1 − A1 − A2 − D2 − A3 −U. We adopt here the
convention that the temporal order of the decisions are readfrom left to right. By “unfolding”
the diagram, one obtains the decision tree represented in the right part of Figure 7 (note that the
probabilities and the utilities indicated in the tree comply with the conditionings imposed by the
diagram). Since bothA3 andU are independent fromA1 conditionally toD1, several subtrees
are identical (see Figure 7). Note that the presence of identical subtrees leads to repeat several
times the same calculations when determining a strategy maximizing EU in the decision tree.
Influence diagrams make it possible to avoid this pitfall, asdetailed in the following section.
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Figure 7: Influence diagram and corresponding decision tree.
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5.2. RDU, Influence Diagram and Consequentialism

The purpose of our work is to “solve” an influence diagram whenthe preferences of the
decision maker do not follow the EU model but the RDU model. The aim of solving the diagram
is to determine the best strategy according to a decision criterion (EU, RDU or others). In order
to define a strategy, it is necessary to know the random variables already observed when making
each decision, as well as the temporal order in which the decisions are made. A strategy consists
then in setting a value to every decision variable conditionally to its past. In a decision tree,
the past of a decision variable is simply defined as the set of random variables and decision
variables lying on the path from the root to that variable. The decision tree in the right part of
Figure 7 includes 32 feasible strategies, among which strategy {D1 = α,D1

2 = γ,D
2
2 = δ,D

3
2 =

δ,D4
2 = δ} (note that nodesD5

2, D6
2, D7

2 andD8
2 cannot be reached whenD1 = α). In an influence

diagram, the temporal order is less apparent. For this reason, setNA is partitioned into disjoint
setsI0, I1, . . . , In. SetI0 includes the random variables observed before first decision D1 is made
(corresponding to the parents ofD1), Ik the random variables observed betweenDk andDk+1

(corresponding to the parents ofDk+1), and finally In the remaining random variables, i.e. the
ones that are never observed or are observed after the last decisionDn is made (the variables that
are not parent of any decision variable). This induces a partial order≺ onND ∪ NA : I0 ≺ D1 ≺
I1 ≺ . . . ≺ Dn ≺ In. For instance, for the diagram in the left part of Figure 7, the partial order is
D1 ≺ {A1,A2} ≺ D2 ≺ {A3}. The past of a decision variableDk is then the set of variablesX such
thatX ≺ Dk. Formally, a strategy in an influence diagram is a set ofdecision rulesfor variables
Dk, where a decision rule forDk maps each instantiation of the variables in the past ofDk with
a value in the domain ofDk. However, in practice, onlyconsequentialiststrategies (i.e., where
every decision made only depends on the variables influencing parameters of the future) are
considered in influence diagrams. Therefore, it is not necessary to know the values of all variables
in the past to set the value of a decision variable. This property is crucial since the description
of a consequentialist strategy remains linear in the size ofthe diagram, which is not the case of
non-consequentialist strategies. For instance, in the diagram of Figure 7, only variablesD1 and
A2 (and notA1) have an influence on the future ofD2. Therefore, in a consequentialist strategy,
the decision made inD2 only depends onD1 andA2 (and notA1). A decision rule inD2 is for
instance{(D2 = γ|D1 = α,A2 = θ1), (D2 = δ|D1 = α,A2 = θ2), (D2 = δ|D1 = β,A2 = θ1), (D2 =

γ|D1 = β,A2 = θ2)}. It means: decisionγ is made inD2 if decisionα was made inD1 and event
θ1 occured inA2, decisionδ is made inD2 if decisionα was made inD1 and eventθ2 occured
in A2, etc. As a result, the set of strategies in the diagram of Figure 7 includes 16 strategies.
It is important to note that the set of strategies consideredin the influence diagram is only a
subset of the strategies considered in the corresponding decision tree (for instance the above-
mentioned strategy for the decision tree is not in this subset). When optimizing EU, this does
no harm since it is well-known that there always exists an EU-optimal strategy included in this
subset (since there always exists an EU-optimal strategy that is consequentialist).A contrario, a
strategy optimizing RDU is not necessarily included in thissubset (since there does not always
exist an RDU-optimal strategy that is consequentialist), as illustrated in the following example.

Example 11. Consider the decision tree in the right part of Figure 7. A strategy maximizing
EU consists in making decisionα in D1, decisionγ in D1

2 and D3
2, and decisionδ in D2

2 and
D4

2. This strategy is consequentialist. Now, assume that one adopts the following probability
transformation functionϕ:
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ϕ(p) =
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0, if 0 ≤ p < 0.175

0.09, if 0.175≤ p < 0.25

0.1, if 0.25≤ p < 0.35

0.15, if 0.35≤ p < 0.75

0.5, if 0.75≤ p < 0.825

0.9, if 0.825≤ p < 1

1, if p = 1

Then, the unique strategy maximizing RDU consists in makingdecisionα in D1, decisionγ in
D1

2 and decisionδ in D2
2, D3

2 and D4
2. This strategy is not consequentialist since two distinct

decisions are made in D12 and D3
2.

5.3. Algorithms

Note that determining an EU-optimal strategy in an influencediagram is proved NP-hard. De-
termining an RDU-optimal strategy is even harder since the description of a non-consequentialist
strategy may require a memory space whose size is exponential in the size of the diagram.

5.3.1. Two-phases method
Since an RDU-optimal strategy is not necessarily consequentialist, a first method that seems

natural consists of two phases: 1) “unfolding” the influencediagram in a decision tree, then 2)
determining an optimal strategy according to RDU directly in the decision tree. For phase 2,
one can use the implicit enumeration approach proposed in Section 4.3.2. However, although
it enables the determination of a real RDU-optimal strategy, this method is of course costly in
memory space, and becomes impracticable when the size of thedecision tree is prohibitive.

5.3.2. ∆-relaxation method
For this reason, we propose another method that takes advantage of the compact structure of

influence diagrams (without unfolding them in decision trees), at the cost of a reduction of the
set of considered strategies. For this purpose, a first idea would be to explore only the space of
consequentialist strategies, but one would then lose an important part of the descriptive power of
the RDU model. Consequently, the approach we propose here does not renounce consequential-
ism: we introduce a relaxed form of consequentialism in order to realize a compromise between
descriptive power and compactness of representation. By inserting additional functional edges
in the diagram, one enlarges the space of considered strategies. Note that creating fictitious
dependences between independent variables does not changethe problem itself but only its rep-
resentation. In Example 12 below, we illustrate the changesinduced by the insertion of a new
functional edge.

Example 12. After inserting edge(A1,U) in the influence diagram of Figure 7, one obtains the
diagram represented in Figure 8. From the point of view of compactness of the representation, it
should be noted that, if variable A1 has two modalities, it will double the number of lines in the
table assigned to variable U: the old table (before insertion of the edge) represented indeed util-
ity U(D1,D2,A3), while the new table (after insertion of the edge) represents U(D1,A1,D2,A3).
However, the benefit is that the space of considered strategies is enlarged: since A1 now influ-
ences the parameters in the future of D2, the decision made in D2 is conditioned by the value
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A1 U

D1 D2

A2 A3

Figure 8: Modified influence diagram.

of A1. Consequently, a decision rule in D2 now takes into account variables D1, A1 and A2. In
other words, in this case, the insertion of edge(A1,U) makes it possible to take into account all
the non-consequentialist strategies.

In the sequel, we name∆-relaxation of consequentialism the fact of adding∆ dependences on
every decision variable. At worst, one adds|ND |×∆ supplementary edges. Adding a dependence
on a decision variableD amounts to inserting an edge2 from V to V′ with V ≺ D ≺ V′, provided
D does not already depend onV. This latter condition can be graphically formalized as follows:
(V,W) < E ∀W < ND ∧W ≻ D. The inserted edges are of course not chosen arbitrarily. We
now detail the procedure to select them. Our aim is primarilyto keep the representation as much
compact as possible. In this purpose, our heuristic to select edges to insert consists in choosing
greedily the ones that have the least impact on the sizes of the tables in the diagram. Note first
that, given two variablesV andV′, inserting edge (V,V′) increases the size of the table inV′, i.e.
the number of entries. More precisely, the size of the table in V′ is equal to|V′|.∏W∈Pred(V′) |W|,
where|V′| is the number of modalities of variableV′ and Pred(V′) is the set of predecessors of
V′ in the influence diagram. Inserting edge (V,V′) multiplies therefore the size of the table inV′

by |V|. In other words, for a table inV′ of sizes(V′) before insertion, the size becomess(V′).|V|
after insertion, thus yielding an incrementi(V,V′) = s(V′).(|V| − 1). The aim of our heuristic in
the greedy procedure to insert edges is to minimize this increment at each step. To this end, each
time an edge has to be selected among a set of candidate edges,we choose an edge (V,V′) such
that i(V,V′) is minimum. Algorithm 2 summarizes the whole procedure, whereupdate table is
a primitive that makes the table inV′ depends onV (by duplicating the entries).

We now detail the procedure for determining a strategy maximizing RDU after a∆-relaxation
of the diagram. As for decision trees, we propose here a branch and bound procedure to solve the
influence diagram. The main differences are in the way the strategies are enumerated (branching
rule) and in the dynamic programming procedure used to compute an upper bound (more pre-
cisely, a lottery stochastically dominating all possible lotteries). We give below the main features
of the implicit enumeration scheme.

Initialization. As for decision trees, one determines a strategy optimizingEU. Several solving
algorithms have been proposed in the literature to accomplish this task [45, 21]. Schachter’s
algorithm [45] consists in eliminating incrementally the nodes of the diagram while respecting
the partial order on them. For this purpose, edge reversals (of edges representing probabilis-
tic dependences) are performed, that are sometimes very costly in computation time. Jensen et
al.’s algorithm [21] (inspired from inference algorithms used inbayesian networks) consists in

2Note that the insertion of a single edge (V,V′), with V ∈ NA∪ND andV′ ∈ NA∪NU , is likely to create additionnal
dependences on other variablesD′ such thatV ≺ D′ ≺ V′.
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Algorithm 2 : AddEdges
foreachD ∈ ND do

i ← 0;
while i < ∆ and [∃V ≺ D : (V,V′) < E ∀V′ < ND ∧ V′ ≻ D] do

V ← arg minW≺D{|W| : (W,W′) < E ∀W′ < ND ∧ V′ ≻ D};
V′ ← arg minW<ND {|W|.

∏

W′∈Pred(W) |W′| : W ≻ D};
E ← E ∪ {(V,V′)};
update table in V′;
i ← i + 1;

end
end

transforming the influence diagram in ajunction tree, and then applying nonserial dynamic pro-
gramming [5] in the junction tree. We have adopted this latter approach in our implementation,
since its performances are generally assumed better than the ones of Schachter’s algorithm.

Branching rule. The branching rule we use is to set a value to a decision variable conditionally
to the variables that influence it. For instance, for the diagram in Figure 8, one separates the set
of strategies characterized by:

(D1 = α) ∧ (D2 = γ|D1 = α,A1 = η1,A2 = θ1) ∧ (D2 = δ|D1 = α,A1 = η2,A2 = θ1) ∧ (D2 =

δ|D1 = α,A1 = η1,A2 = θ2)

into two subsets characterized respectively by:

- (D1 = α) ∧ (D2 = γ|D1 = α,A1 = η1,A2 = θ1) ∧ (D2 = δ|D1 = α,A1 = η2,A2 = θ1) ∧ (D2 =

δ|D1 = α,A1 = η1,A2 = θ2) ∧ (D2 = γ|D1 = α, A1 = η2, A2 = θ2)
- (D1 = α) ∧ (D2 = γ|D1 = α,A1 = η1,A2 = θ1) ∧ (D2 = δ|D1 = α,A1 = η2,A2 = θ1) ∧ (D2 =

δ|D1 = α,A1 = η1,A2 = θ2) ∧ (D2 = δ|D1 = α, A1 = η2, A2 = θ2)
The enumeration tree is represented in Figure 9. The instanciated nodes are indicated in bold.
The order in which the variables are considered in the enumeration tree is compatible with the
temporal order on the decision nodes (remember that there always exists a path linking all the
decision nodes in the diagram).

Computing the lower bound. This is similar to what is done in decision trees. At each nodeof
the enumeration tree, one computes a strategy optimizing EUin the subset of considered strate-
gies, and one evaluates it according to RDU.

Computing the upper bound. As for decision trees, we need to compute a lottery stochastically
dominating any lottery corresponding to a feasible strategy (so that its RDU value is an upper
bound). For this purpose, we use a dynamic programming procedure. We recursively compute
such a lottery for every decision variable and every possible instantiation of the variables in its
past (compatible with decisions already set). In the following, for simplicity, we assume that
there is only one single utility variableU, that takes value in{u1, . . . , um} with u1 ≤ . . . ≤ um.
We use a backward induction procedure. The initialization in U is performed by the following
formula:

∀i ≥ 1, P(U = ui |I0 · ·In,D1 · ·Dn) =

{

1 if U(I0 · ·In,D1 · ·Dn) = ui

0 otherwise

whereU(I0 · ·In,D1 · ·Dn) gives the value taken by variableU according to the values taken by
variablesI0, . . . , In,D1, . . . ,Dn. Consider now a decision variableDk. For a given realization of
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Figure 9: Enumeration tree.

random variablesI0, . . . , Ik−1 and a given choice of decisions inD1, . . . ,Dk−1, the stochastically
dominating lottery inDk is computed by the following reccurence relation for alli ≥ 1:

P(U ≥ ui |I0 · ·Ik−1,D1 · ·Dk−1)

= max
Dk

m
∑

j=i

∑

Ik

P(Ik|I0 · ·Ik−1,D1 · ·Dk) × P(U = u j |I0 · ·Ik−1, Ik,D1 · ·Dk)

The stochastically dominating lottery is then easily determined by the following formula:
P(U = ui |I0 · ·Ik−1,D1 · ·Dk−1)

= P(U ≥ ui |I0 · ·Ik−1,D1 · ·Dk−1) − P(U ≥ ui+1|I0 · ·Ik−1,D1 · ·Dk−1)
The value finally returned is computed by applying RDU to the lottery obtained inD1. Note
that the conditionings are in fact performed on much smallersets of variables thanks to the
independences displayed in the influence diagram. In order to optimize the calculations, we used
a junction tree, like in Jensen’s algorithm [21].

5.4. Numerical Tests

The two proposed algorithms (the two-phases method and the one operating directly in the
influence diagram endowed with fictitious dependences) havebeen implemented in C++ and the
computational experiments were carried out on a PC with a Pentium IV CPU 2.13Ghz processor
and 3.5GB of RAM (as for decision trees). We present below theresults obtained on randomly
generated influence diagrams. We first describe the mechanism of the random generator. We
then analyze the performances of the algorithms, both in terms of computation time and solution
quality. We used the same functionϕ as for decision trees:ϕ(p) = pγ/(pγ + (1 − p)γ), with
γ = 0.2 (value ofγ for which the probabilities are the most distorted).
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∆\n 4 5 6 7 8 9 10

0 0 0 0 0.21 0.85 2.78 9.11

1 0 0 0 0.23 0.62 3.94 12.15

2 0 0 0 0.38 1.10 4.79 23.36

3 0 0 0.10 0.72 2.33 9.25 29.97

4 0 0 0.56 1.07 4.46 18.61 93.52

5 0 0.08 1.91 3.43 19.84 87.40 −
2 ph. 0.17 0.93 5.02 17.38 − − −

Table 7: Execution Time (sec.).

5.5. Random Generator

In order to control the size of the generated influence diagrams, all nodes of the diagram
must be taken into account when computing an optimal strategy. For this purpose, given a fixed
numbern of decision nodes, one first creates a path of length 2n+1 alternating decision variables
and random variables, with a utility variable at the leaf node. For instance, for two decision
variables, it gives:

D1 A1 D2 A2 U

Then, to avoid that some variables in the diagram play no realrole (i.e., have no impact on
the choice of an optimal strategy), one imposes that every random variable influences another
random variable (as long as there exists at least one random variable in its future). Coming back
to the previous example, one can obtain:

D1 A1 D2 A2 U

To densify the diagram, edges are randomly inserted betweensome nodes. Concerning util-
ities and conditional probabilities, they were randomly generated. Finally, we used the greedy
algorithm described in Section 5.3 to perform the∆-relaxation of consequentialism.

5.6. Numerical Results

To evaluate the computational gain when directly working inthe influence diagram, we com-
pared the execution times of the implicit enumeration algorithm in the two-phases method with
the execution times of the algorithm performing a∆-relaxation of consequentialism for various
values of∆. Table 7 indicates the execution times obtained (average time in seconds over 40
randomly generated instances for each entry). In each column, we vary the number of decision
variables (i.e. we vary the value ofn) and in each row is varied the value of∆. The time taken by
the two-phases method is indicated in the last line of the table. Symbol “-” appears when there
exist instances for which the execution time is very important (beyond 30 minutes). Not surpris-
ingly, the moren and∆ increase, the more the execution times increase. The two-phases method
does not make it possible to solve instances with more than 7 decision nodes. In comparison,
the∆-relaxation method enables to solve instances with up to 10 decision nodes, at the cost of
optimality.
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n ∆ = 0 ∆ = 2 ∆ = 3 ∆ = 4 ∆ = 5

2 97% 100%

3 93% 96% 98% 100%

4 92% 93% 95% 97% 97%

5 93% 94% 95% 95% 97%

6 92% 93% 93% 95% 96%

Table 8: Influence of parameter∆ on strategy quality.

In order to evaluate the quality of the solutions returned bythe ∆-relaxation method, we
compared their RDU values with the optimal ones in the corresponding decision trees (obtained
by applying the two-phases method). Given an influence diagram ID, we denote byRDU∗(ID)
(resp.RDU∆(ID)) the RDU value of a strategy optimizing RDU in the corresponding decision
tree (resp. optimizing RDU inID after performing a∆-relaxation of consequentialism). In order
to evaluate the influence of parameter∆ on the strategy quality (w.r.t. RDU), we computed ratio
RDU∆(ID)/RDU∗(ID) for different values of∆ andn. For each value ofn, 200 instances were
randomly generated. Then, on these instances, we performeda∆-relaxation of consequentialism
for ∆ varying from 0 to 5. Table 8 shows the average ratio obtained (in percentage) over the
200 instances. The empty entries correspond to cases where all dependences are already present,
and therefore the value is 100%. When∆ = 0, one considers only consequentialist strategies.
One can see that, for the instances considered here, the values of the returned strategies are
significantly closer to the optimum for∆ = 5 than for∆ = 0 (thanks to the consideration of some
non-consequentialist strategies).

6. Conclusion

In this article, we have proposed algorithms for optimizingRDU in sequential decision prob-
lems represented by decision trees or influence diagrams. The problem is NP-hard for both
representations. For optimizing RDU in decision trees, we have provided a MIP formulation
(adapted to risk seeker decision makers) and a branch and bound procedure (adapted to any
attitude toward risk). The upper bound used in the branch andbound procedure is computed
by dynamic programming, and is polynomial in the number of decision nodes. Note that this
upper bound is actually customizable to any decision criterion compatible with stochastic domi-
nance. The tests performed show that the dedicated branch and bound algorithm performs better
than CPLEX applied to the MIP formulation. Our method makes it possible to solve efficiently
random instances the number of decision nodes of which is near six thousands, and real-world
instances the number of decision nodes of which is 75 millions (thanks to the particular shape of
the decision tree).

However, when the number of stages grows, the decision tree formalism does not make it
possible to compactly store the problem instance. Influencediagrams, that expresses in a concise
way the problem instance by using independences between variables, are then very useful. When
optimizing RDU in influence diagrams, we aim therefore at conciliating optimality and compact-
ness issues (determining a strategy the RDU value of which isclose to optimum, and the storage
of which does not require too much memory space). We have shown that the space of strategies
considered in an influence diagram is smaller than the space of strategies considered in the cor-
responding decision tree, since it is restricted to consequentialist strategies. For this reason, we
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have proposed an approach where the influence diagram is endowed with new edges represent-
ing fictitious dependences (∆-relaxation of consequentialism). This enables to enrich the space
of strategies with non-consequentialist strategies. Thiskind of strategies are indeed appreciated
by RDU-maximizers. The numerical experiments carried out show the interest of∆-relaxation
since the RDU value of the computed strategy significantly improves the value obtained for a
consequentialist strategy.

In order to enhance the approach proposed here, the most promising research direction is to
identify crucial edges, i.e. edges whose insertion in the influence diagram would significantly in-
crease the RDU value of the returned strategy. It would indeed limit the growth of the size of the
diagram, and it would improve the quality of the returned strategy. In a different research direc-
tion, it is worth investigating a new compact graphical model able to handle non-consequentialist
decision criteria, since the influence diagram representation seems to be not very suitable for it.

A. Proofs

Proposition 1. The determination of an RDU-optimal strategy (problem RDU-OPT) in a deci-
sion tree is an NP-hard problem.

Proof. The proof relies on a polynomial reduction from problem 3-SAT, which can be stated as
follows:

INSTANCE: a setX of boolean variables, a collectionC of clauses onX such that|c| = 3 for
every clausec ∈ C.

QUESTION: does there exist an assignment of truth values to the boolean variables ofX that
satisfies simultaneously all the clauses ofC ?

Let X = {x1, . . . , xn} andC = {c1, . . . , cm}. We now show how to reduce problem 3-SAT to finding
a strategy of value greater or equal tom in a polynomially generated decision tree. The poly-
nomial generation of a decision tree from an instance of 3-SAT is performed as follows. One
defines a decision node for every variable ofX. Given xi a variable inX, the corresponding
decision node in the decision tree, also denoted byxi , has two children: the first one (chance
node denoted byTi) corresponds to the statement ’xi has truth value “true”’, and the second one
(chance node denoted byFi) corresponds to the statement ’xi has truth value “false”’. The subset
of clauses which includes the positive (resp. negative) literal ofxi is denoted by{ci1, . . . , ci j } ⊆ C
(resp. {ci′1

, . . . , ci′k
} ⊆ C). For every clausecih (1 ≤ h ≤ j) one generates a child ofTi denoted

by cih (terminal node). Besides, one generates an additionnal child of Ti denoted byc0, corre-
sponding to a fictive consequence. Similarly, one generatesa child of Fi for every clauseci′h
(1 ≤ h ≤ k), as well as an additionnal child corresponding to fictive consequencec0. NodeTi

has thereforej + 1 children, while nodeFi hask+ 1 children. In order to make a single decision
tree, one adds a chance nodeC predecessor of all decision nodesxi (1 ≤ i ≤ n). Finally, one
adds a decision node as root, withC as unique child. The obtained decision tree includesn+ 1
decision nodes, 2n+ 1 chance nodes and at most 2n(m+ 1) terminal nodes. Its size is therefore
in O(nm), which guarantees the polynomiality of the transformation. For the sake of illustra-
tion, on Figure 10, we represent the decision tree obtained for the following instance of 3-SAT:
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

Note that one can establish a bijection between the set of strategies in the decision tree and the
set of assignments in problem 3-SAT. For that purpose, it is sufficient to setxi = 1 in problem

29



3-SAT iff edge (xi ,Ti) is included in the strategy, andxi = 0 iff edge (xi , Fi) is included in the
strategy. An assignment such that the entire expression is true in 3-SAT corresponds to a strategy
such that every clauseci (1 ≤ i ≤ m) is a possible consequence (each clause appears therefore
from one to three times). To complete the reduction, we now have to define, on the one hand, the
probabilities assigned to the edges from nodesC, Ti andFi , and, on the other hand, the utilities
of the consequences and functionϕ. The reduction consists in defining them so that strategies
maximizing RDU correspond to assignments for which the entire expression is true in 3-SAT.
More precisely, we aim at satisfying the following properties:

(i) the RDU value of a strategy only depends on theset (and not the multiset) of its possible
consequences (in other words, the set of clauses that becometrue with the corresponding assign-
ment),
(ii ) the RDU value of a strategy corresponding to an assignment that makes satisfiable the 3-SAT
expression equalsm,
(iii ) if a strategy yields a set of possible consequences that is strictly included in the set of possi-
ble consequences of another strategy, the RDU value of the latter is strictly greater.

For that purpose, after assigning probability1
n to edges originating fromC, one defines the other

probabilities and utilities as follows (i , 0) :

{

pi = ( 1
10)i

u(ci) =
∑i

j=1 10j−1

wherepi is the probability assigned to all the edges leading to consequenceci . For the edges
of type (T j, c0) (or (F j , c0)), one setsu(c0) = 0 and one assigns a probability such that all the
probabilites of edges originating fromT j (or F j) sum up to 1. Note that this latter probability
is positive since the sum ofpi ’s is strictly smaller than 1 by construction. Finally, function ϕ is
defined as follows3:

ϕ(p) =



















0 if p ∈ [0; pm

n )
pi if p ∈ [ pi+1

n ; pi

n ) for i < m
1 if p ∈ [ p1

n ; 1)

For the sake of illustration, we now give functionϕ obtained for the instance of 3-SAT indicated
above:

ϕ(p) =































0, if p ∈ [0; 1
4×1000)

1
100, if p ∈ [ 1

4×1000;
1

4×100)
1
10, if p ∈ [ 1

4×100;
1

4×10)
1, if p ∈ [ 1

4×10; 1)

In the following, we consider some strategy∆, inducing a lottery denoted byL, and we denote
by I ⊆ {0, . . . ,m} the set of indices of the possible consequences of∆. Note that consequence
c0 is always present in a strategy∆. We denote byαi ∈ {1, 2, 3} the number of occurences of
consequenceci in ∆. By abuse of notation, we use indifferentlyci andu(ci) below.

Proof of(i). The RDU value of∆ is RDU(L) = c0 × ϕ(1)+
∑

i∈I (ci − cprevI (i))ϕ
(

∑

j∈I
j≥i
α j

pj

n

)

whereprevI (i) = max{ j ∈ I : j < i}. We now show that∀i ∈ I , ϕ
(

∑

j∈I
j≥i
α j

pj

n

)

= ϕ

(

∑

j∈I
j≥i

pj

n

)

3Note that functionϕ is not strictly increasing here, but the reader can easily convince himself that it can be slightly
adapted so that it becomes strictly increasing.
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Figure 10: An example of reduction.

By increasingness ofϕ, we have

ϕ























∑

j∈I
j≥i

p j

n























≤ ϕ























∑

j∈I
j≥i

α j
p j

n























≤ ϕ























∑

j∈I
j≥i

3
p j

n























Therefore

ϕ(
∑

j∈I
j≥i

1
n

(
1
10

) j) ≤ ϕ(
∑

j∈I
j≥i

α j
p j

n
) ≤ ϕ(

∑

j∈I
j≥i

3
n

(
1
10

) j)

Since

ϕ























∑

j∈I
j≥i

1
n

(

1
10

) j






















= ϕ























∑

j∈I
j≥i

3
n

(

1
10

) j






















= pi−1

we have by bounding

ϕ























∑

j∈I
j≥i

α j
p j

n























= ϕ























∑

j∈I
j≥i

p j

n























Hence

RDU(L) =
∑

i∈I

(

ci − cprevI (i)

)

ϕ























∑

j∈I
j≥i

p j

n























sincec0 × ϕ(1) = 0

31



Proof of (ii ). Consider a strategy∆∗ corresponding to an assignment that makes the expression
true, and the induced lotteryL∗ where all the consequencesci of C are possible. By (i), we have

RDU(L∗) =
m

∑

i=1

(ci − ci−1)ϕ

















m
∑

j=i

p j

n

















We note that for alli ≤ m, (ci−ci−1)ϕ(
∑m

j=i
pj

n ) = 10i−1×pi−1 = 10i−1×( 1
10)i−1 = 1. Consequently,

RDU(L∗) = m.

Proof of (iii ). Let ∆ (resp.∆′) denote some strategy the induced lottery of which isL (resp.L′)
and letI ⊆ {0, . . . ,m} (resp.J = I ∪ {k}) denote the set of indices of its possible consequences.
We assume here thatk < maxI , the casek = maxI being obvious. By definition,{i ∈ I : i , k} =
{i ∈ J : i , k}. We can therefore state the RDU value as a sum of three terms:

RDU(L) =
∑

i∈J
i≤k−1

(ci − cprevJ(i))ϕ























∑

j∈I
j≥i

p j

n























+ (ck − cprevJ(k))ϕ























∑

j∈I
j≥k

p j

n























+
∑

i∈J
i≥k+1

(ci − cprevJ(i))ϕ























∑

j∈J
j≥i

p j

n























Similarly, the RDU value of strategy∆′ can also be stated as a sum of three terms:

RDU(L′) =
∑

i∈J
i≤k−1

(ci − cprevJ(i))ϕ























∑

j∈J
j≥i

p j

n























+ (ck − cprevJ(k))ϕ























∑

j∈J
j≥k

p j

n























+
∑

i∈J
i≥k+1

(ci − cprevJ(i))ϕ























∑

j∈J
j≥i

p j

n























By increasingness ofϕ, we have

I ⊆ J⇒ ∀i ≤ k− 1, ϕ























∑

j∈I
j≥i

p j

n























≤ ϕ























∑

j∈J
j≥i

p j

n























Thus the first term ofRDU(L) is smaller or equal to the first term ofRDU(L′). One checks easily
thatϕ(

∑

j∈I
j≥k

pj

n ) = psuccI (k)−1 andϕ(
∑

j∈J
j≥k

pj

n ) = pprevJ(k) = pk−1, wheresuccI (i) = min{ j ∈ I : j >

i}. But psuccI (k)−1 < pk−1 sincesuccI (k) − 1 > k − 1. Therefore the second term ofRDU(L) is
strictly smaller than the second term ofRDU(L′). Finally, the third term ofRDU(L) is of course
equal to the third term ofRDU(L′). ConsequentlyRDU(L) < RDU(L′).

From (i), (ii ) and (iii ) we conclude that any strategy corresponding to an assignment that does
not make the expression true has a RDU value strictly smallerthanm, and that any strategy cor-
responding to an assignment that makes the expression true has a RDU value exactly equal tom.
Solving 3-SAT reduces therefore to determining a strategy of valuem in RDU-OPT. �
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