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Abstract

This paper is devoted to automated sequential decision.iiMate precisely, we focus here on
the Rank Dependent Utility (RDU) model. This model is ableetawompass rational decision
behaviors that the Expected Utility model cannot accomadatowever, the non-linearity of
RDU makes it dificult to compute an RDU-optimal strategy in sequential decigproblems.
This has considerably slowed the use of RDU in operatiomnatiecds. In this paper, we are inter-
ested in providing new algorithmic solutions to compute @1 Roptimal strategy in graphical
models. Specifically, we present algorithms for solvingisiea tree models and influence di-
agram models of sequential decision problems. For dectsggnmodels, we propose a mixed
integer programming formulation that is valid for a subsla§ RDU models (corresponding to
risk seeking behaviors). This formulation reduces to adinrogram when mixed strategies are
considered. In the general case (i.e., when there is n@pkatiassumption on the parameters of
RDU), we propose a branch and bound procedure to compute &hdpbmal strategy among
the pure ones. After highlighting thefficulties induced by the use of RDU in influence diagram
models, we show how this latter procedure can be extendegtimiae RDU in an influence
diagram. Finally, we provide empirical evaluations of b fpresented algorithms.

Key words: Algorithmic decision theory, rank dependent utility, dgcon trees, influence
diagrams, planning under uncertainty
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1. Introduction

In many Al problems, agents must act under uncertainty (e.gbot control, relief organi-
zation, medical diagnosis, games...). When the consegs@&i@n action only depend on events
whose probabilities are knowdecision theory under risgrovides useful tools to automate de-
cisions. The purpose of this theory is indeed to desigaision criteriato evaluate probability
distributions on outcomes (called hereaftdteried according to the preferences of a decision
maker. A popular criterion is the expected utility (EU) mbdeoposed by von Neumann and
Morgenstern [50]. In this model, an agent is endowed witltity function uthat assigns a
numerical value to each outcome. The evaluation of a lottegy (p1, X1;...; Pn, Xn) (i.€., the
lottery that yields outcome; with probability p;) is then performed via the computation of its

1This paper extends preliminary results of the two authaB$.[2
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utility expectation:EU(L) = Y, piu(x). However, despite its intuitive appeal, the EU model
does not make it possible to account for all rational denibiehaviors. An example of such im-
possibility is the so-called Allais’ paradox [2] (Table 1)e present below a very simple version
of this paradox due to Kahneman and Tversky [23] (Table 2).

Example 1 (Kahneman and Tverky’s example).Consider a choice situation where two op-
tions are presented to a decision maker. He chooses betwterylL; and lottery L in a first
problem, and between lottery, land lottery L in a second problem (see Table 2). In the first
problem he prefers ito L) (he is certain to earn $3000 with;Llwhile he might earn nothing
with L), while in the second problem he prefersth L, (the probability of earning $4000 with
L, is almost the same as the probability of earning only $3008 Ww4). The EU model can-
not simultaneously account for both preferences. Inddexipteference for {over L implies
u(3000)> 0.1u(0)+ 0.9u(4000) This is equivalent t6.1u(3000)> 0.01u(0)+ 0.09u(4000) and
therefore t00.9u(0) + 0.1u(3000)> 0.91u(0) + 0.09u(4000)(by adding0.9u(0) on both sides).
Hence, whatever utility function is used, the preferencd faover L implies the preference for
L over L in the EU model.

Actually, Allais points out that this preference reverdat,from being paradoxical, is the con-
sequence of a reasonable behaviopference for security in the neighbourhood of certainty
[3]. In other words, “a bird in the hand is worth two in the bugpreference for.; overL’).

It is known as thecertainty gfect The preference reversal can be explained as follows: when
the probability of winning becomes low, the sensitivity b tvalue of earnings increases while
the sensitivity to the probabilities decreases. To encasplae certainty féect in a decision
criterion, the handling of probabilities should therefor be linear. Given this situation, new
models have been developped: some models are grounded dterative representation of
uncertainty such as the theory of possibility [12], otheystd sophisticate the definition of ex-
pected utility such as prospect theory [23], cumulativespext theory [49] or the rank dependent
utility (RDU) model introduced by Quiggin [41]. This lattenodel is one of the most popular
generalization of EU. In this model, a non-linear prob&piveighting functiony is incorpo-
rated in the expectation calculus, which gives a greateresgjve power. In particular, the RDU
model is compatible with both versions of Allais’ paradoxrfRermore, the probability weight-
ing functiony is also useful to model the attitude of the agent towardsittke tndeed, unlike
the EU model, the RDU model makes it possible to distinguetivben weak risk aversion (i.e.,
if an option yields a guaranteed utility, it is preferred tyyather risky option with the same ex-
pected utility) and strong risk aversion (i.e., if two lotés have the same expected utility, then
the agent prefers the lottery with the minimum spread of iptss®utcomes). For this reason,
the RDU criterion has been used in search problems undeirristate space graphs, with the

Lottery 0.01 0.1 0.89 Lottery $0  $3000 $4000
Ly $100M  $100M  $100M Ly 0.00 1.00 0.00
4 $OM $500M  $100M L1 0.10 0.00 0.90
L, $100M  $100M $OM L, 0.90 0.10 0.00
L, $OM $500M $OM L, 0.91 0.00 0.09

Table 1: Original Allais’ paradox. Columns repre- Table 2: Kahneman and Tversky’s version. Columns
sent probabilities, 100M stands for 100 millions. Mostrepresent outcomes. Most people prefers simultane-
people prefers simultaneoudly to L} andL} to L. ouslyL; to L] andL’ to L.



aim of finding optimal paths for risk-averse agents [39]. é\tbtat, within the Al community,

the rank dependent utility function is best known under thme of\Weighted Ordered Weighted
Averagingoperator [46, 47]. In particular, the WOWA operator has b&tedied in several fields
of Al where an aggregation function is required: syntheigformation [46], decision making

under risk [35, 37], metadata aggregation problems [1@§ractive techniques in multicriteria
optimization [36].

The algorithmic issues related to the use of RDW$éguential decision problenmsve pre-
vented its adoption in this setting until today. In a seqiabuecision problem under risk, one
does not make a simple decision but one follonstrategy(i.e. a sequence of decisions con-
ditioned by events) resulting in a non deterministic outeorithis type of problem is in par-
ticular encountered idecision-theoretic planninf$, 7]. This term refers to planners involving
decision-theoretic tools. Formally, the aim of a decisibeeretic planner is to find a plan opti-
mizing a given decision criterion. For this purpose, théeglgtinduced by each plan is evaluated
according to a decision criterion (usually EU). Severafrespntation formalisms can be used
for sequential decision problems, such as decision tregs4&], influence diagrams [e.g. 45]
or Markov decision processes [e.g. 11, 22]. A decision tseani explicit representation of a
sequential decision problem, while influence diagrams orkigladecision processes are com-
pact representations and make it possible to deal with idacigoblems of greater size. Itis
important to note that, in all these formalisms, the set déptial strategies is combinatorial
(i.e., its size increases exponentially with the size ofitfsance). The computation of an opti-
mal strategy for a given representation and a given decigitarion is then an algorithmic issue
in itself. Contrary to the computation of a strategy maximizEU, one cannot directly resort
to dynamic programming for computing a strategy maximiZRigu (due to its non-linearity).
Evaluating a decision tree or an influence diagram accotdiRPU (i.e., computing an optimal
strategy according to RDU) raises therefore a challendungrithmic problem. This is precisely
the issue we tackle in this paper.

The paper is organized as follows. In Section 2, we recallntlaén features of RDU. In
Section 3, we place our work in the stream of research aimiimgcarporating risk-sensivity in
probabilistic planning problems. Then, in Section 4, adfetiailing how the RDU criterion should
be used in a sequential decision problem, we propose twmaphpes for optimizing RDU in a
decision tree, and we provide numerical tests for both aggves. In Section 5, we investigate
the optimization of RDU in an influence diagram. After reiraglthe influence diagram formal-
ism, we highlight a diiculty that was not present in the decision tree formalismmelg that not
all strategies are considered in an influence diagram. Wephmpose an approach to overcome
this difficulty, and provide numerical tests that show its interest.

2. Rank Dependent Utility

Given afinite sef = {x, ..., Xy} of outcomes, any strategy in a sequential decision problem
can be seen aslattery, characterized by a probability distributidhover S. In this paper,
unless explicitely mentioned, we assume that the outconee®al numbers ordered as follows:
X1 < ... < X;. We denote by. = (p1, X1;...; Pn, Xn) the lottery that yields outcomg with
probability pi = P({x}). The decumulative functio@, is given byG(a) = Yixs. Pi, and is
denoted by G (x1), X1; .. .; GL(Xn), Xn). For the sake of clarity, we will consider a lottelryas a
function fromS to [0, 1] such thal.(x) = p;. As indicated above, in decision problems, lotteries
are compared according to a decision criterion, as forircsgt&U.
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Rank Dependent Utility (RDU), introduced by Quiggin (19918)among the most popular
generalizations of EU, and makes it possible to describbistipated rational decision behav-
iors. From the axiomatic viewpoint, the RDU model is grouthd® a weakening of theure
thing principle[44] that we now detail. It is indeed well-known that the stigng principle
holds when using the EU criterion. In the framework of demisinder risk, this principle can
be stated as follows: let lotterigs = (P1, X1, ...; Pn, Xn) @NdL] = (P1, X]; .. .; Pn, X;) be such
that the outcomes are not necessarily ranked in increastgy andx;, = X (whereig is an
arbitrary index inf1, ..., n}), thenL; preferred tal] impliesL, preferred toL, for lotteriesL.,

L/, obtained from lotteries; andL’ by merely replacing the common outcomg by another
common outcoms,. In Allais’ paradox (Table 1), the sure thing principle igatly violated.
There is indeed a 89 percent chance to win $100 millions;iandL’, while there is a 89 per-
cent chance to win nothing i, andL’, ceteris paribusIn order to encompass such examples,
the validity of the axiom has to be restricted to cases whaeecommon outcome is ranked
similarly in both lotteries, and where its replacement doeisafect the ranking in both lotter-
ies: Ly preferred toL] implies L, preferred toL), for lotteriesL,, L/, obtained from lotteries
L; andL; by merely replacing thi%h common outcome;, by a common outcoms,, again in
itoh rank both inL; andL;. This weaker version of the axiom is calledmonotonic sure thing
principle [9]. It allows preference reversals in cases of extreme gbamthe level of risk. For
instance, in Allais’ paradox, there is an extreme changéénlevel of risk since, in the first
comparison, the probability to earn nothing is about 1 petraghile, in the second comparison,
it is about 90 percent. Comonotonic sure thing principlgetber with a continuity axiom and
an axiom of compatibility with stochastic dominance, clotedze the RDU model. A lottery
L = (p1, X1; - . .; P> X) is said tostochastically dominate lotteryL’ = (p}, X; . ..; P, %) if for

all @ € R, G (@) = G (). In other words, for allr € R, the probability to get an outcome
at leasta with lottery L is at least as high as the probability with lottéry Compatibility with
stochastic dominance means that lotteris preferred to lottery” as soon a$ stochastically
dominated.’. This property is obviously desirable to guarantee a ratibehavior.

In order to allow preference reversals in cases of extrerapgdhin the level of risk, the han-
dling of probabilities in the RDU model is non-linear. Ingtpurpose, the first proposal that may
come into mind consists in distorting individual probai®$ by a non-linear functiog, which
yields a decision criterion of the forii" ; ¢(pi)u(x) whereu denotes an increasing utility func-
tion. Actually, this choice criterion has been proposed layéth [16], but is not compatible with
stochastic dominance. For this reason, the distortionarRBU model is not performed on the
probabilities themselves, but on reverse cumulative pgritiias. The formula of rank dependent
expected utility can be easily obtained by rewritting the af expected utility with respect to
reverse cumulative probabilitieEU(L) = X1, piu(x) = u(x) + XL, [u(xi) — u(xi-1)] (GL (X))
(the utility of lottery L is at leastu(x;) with probability 1; then the utility might increase from
u(xp) to u(xp) with probability G (xz); the same applies from(xz) to u(xs) with probability
GL(x3), and so on...). The rank dependent utility of a lotteng then defined as follows:

n

RDU(L) = u(a) + ) [u(x) - u(x-1)] ¢ (GL (%))
i=2
Rank dependent utility thus involves an increasing utfiitgction on consequences S — R
as in EU, and also a transformation function on probaksligie [0, 1] — [0, 1]. It is compati-
ble with stochastic dominance, i.e. ROU(> RDU(L’) as soon as stochastically dominates
L’. The transformation functiog is a non-decreasing function, proper to any agent, such that
¢(0) = 0 andy(1) = 1. Wheng(p) = p for all p, RDU obviously reduces to EU.
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Example 2. Coming back to Example 1, we define the utility function g & x, and we set
©(0.09) = ¢(0.1) = 0.2, ¢(0.9) = 0.7. The preferences induced by RDU are then compatible with
Kahneman and Tversky's example. Indeed, we have:

RDU(L;) = u(3000)= 3000

RDU(L}) = u(0) + ¢(0.9)(u(4000)- u(0)) = 2800
Therefore L is preferred to L. Similarly, we have:

RDU(L>) = u(0) + ¢(0.1)(u(3000)- u(0)) = 600

RDU(L}) = u(0) + ¢(0.09)(u(4000)- u(0)) = 800
We conclude thatlis preferred to L.

In order to elicit functiony, various methods have been used. Several functional forms
have been proposed for functignin the economic literature. As indicated by Quiggin [41],
the simplest are functions of the forg{p) = p” with y € (0,1). Actually, when trying to
exactly reproduce the behavior of human agents, there isrieaipevidence that the function
@ is in general inverse S-shaped, i.e., first concave and tbewvex [49, 8]. This means that
the probabilities of best consequences are overweigptaéiitial gfect while the probabilities
of worst consequences are underweightattéinty gfec). The functional form proposed by
Karmarkar [24] in this purpose i9”/(p” + (1 — p)*) with y € (0, 1). After setting the functional
form of ¢, one estimates the right value for parametéhrough standard nonlinear regression
methods (maximum likehood, least squares). For a morele@tdiscussion about theftirent
possible functional forms o, the interested reader may refer to the book of Quiggin [41].
Note that there also exist parametric-free elicitationhrods, i.e. that works without assuming a
prespecified shape of functign1, 13].

3. Position of the paper

By studying the use of RDU from the computational viewpoumé, place our work in the
stream of research aiming at incorporating risk-sensgjtivi probabilistic planning problems.
The non-linearity of risk-sensitive criteria raises negaalthmic dificulties. A pioneering work
on this topic has been carried out by Howard and Mathesorerframework of Markov de-
cision processes [17]. They show how risk sensitivity mayrbated by evaluating a plan via
an expected utility instead of an expectation. In the casiskfaverse agents, the practicality
of the approach relies on the use of an exponential utilibcfionu (to maximize) defined by
u(x) = —y* for an outcomex € R* (y € (0,1)). The adoption of such a utility function involves
the agreement of the decision maker with theproperty”, namely that his attitude towards risk
does not depend on his wealth level. Koenig and Simmons hesfermed a similar work with
a slightly diterent representation of probabilistic planning probletinat required the design of
new algorithms [25]. The representation they use is callgt@babilistic decision graph”, and
resembles the decision trees we study here. Then, back toatmework of MDPs, Liu and
Koenig have proposed to resort to a “one-switch” utility étion in order to take into account
the wealth level in the preferences. For a risk-averse abahbecomes risk-neutral in the limit
as its level of wealth increases, the one-switch utilityction u is of the formu(x) = x — Dy*,
whereD > 0 andy € (0, 1). After exhibiting conditions guaranteeing that the oyati expected
utilities of the total plan-execution reward exist and an@di for fully observable MDP models
with risk sensitive utility functions [26], the authors leagroposed a functional value iteration
algorithm to approximate optimal expected utilities éore-switch utility functiong27]. Finally,
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they have also proposed a policy iteration algorithm in ésglent paper, that enables to return
an optimal policy [28].

All these results are real advances to take into account mperately risk sensitivity in
probabilistic planning problems, especially in high-gtskituations. However, the induced pref-
erences reproduce the biases of EU theory. To explain thisoire details, we need previously
to introduce the notions ofieak risk-aversiomndstrong risk aversion An agent is said to be
weakly risk-aversd, for any lotteryL, he considers that sure lottery @(L)) is as least as good
asL, whereE(L) = >, pixi for L = (p1, Xa; .. .; Pn, Xn) [4, 40]. In EU theory, risk-aversion
means that the agent'’s utility functianon outcomes is increasing andncave the codicient
of risk-aversion of any agent being measured-b§(x)/u’(x) [4]. Strong risk-aversion is defined
from the notion ofmean preserving spredd3]. Basically, an agent is said to be strongly risk-
averse if, between two lotteries with the same expectaliemlways prefers the less spread one
(in other words, he avoids any increase in risk). Note thanhgt risk aversion implies weak risk
aversion. Interestingly, it has been shown that a lottery a mean preserving spread of a lot-
tery L’ if and only if EU(L) < EU(L’) for all increasing and concave utility functionswhere
EU(L) = X, piu(x) [41]. Consequently, when using EU to compare lotteriey, @aakly
risk-averse agent is also strongly risk-averse. A niceugidf the RDU model is precisely that
it enables the distinction between weak and strong risksawe (contrary to EU). Within this
model, for a concave utility function, the agent is weakly risk-avers# ip(p) < p for all
p € [0, 1], and strongly risk-aversé iy is convex (this directly follows from a result of Quiggin
[41]). As stated above, rank dependent utility is thus a phw&ol for modelling risk-sensitive
agents, as illustrated by Allais’ paradox. This motivatessiudy.

4. Computing RDU in a Decision Tree

4.1. Decision Tree Formalism

A decision tree is an arborescence with three types of nakdedecision nodefepresented
by squares), thehance node¢represented by circles), and the terminal nodes (the $eafre
the arborescence). The branches starting from a deciside carrespond to fferent possible
decisions, while the ones starting from a chance node qreksto diferent possible events, the
probabilities of which are known. The values indicated atldaves correspond to thélities of
the consequences. Note that one omits the orientation afdges when representing decision
trees. For the sake of illustration, a decision tree remitesien of a sequential decision problem
(with three strategies) is given in Figure 1.

More formally, in a decision tre@& = (N, &), the setN of hodes isNp U Na U Ny, where
Ny is the set of decision nodea/, the set of chance nodes ang, the set of terminal nodes.
The root node is denoted by, € N\ My. The valuations are defined as follows: every edge
E = (A, N) € & such thatA € Na is weighted by probabilityp(E) of the corresponding event;
every terminal nod&ly € Ny is labelled by its utilityu(Ny). Besides, we calpas{N) the past
of N € N, i.e. the set of edges along the path frbirto N in 7. Finally, we denote b%(N) the
set of successors of in 77, and by7 (N) the subtree of” rooted inN.

Following Jdtray and Nielsen [19], one definesstrategyas a set of edges = {(N,N’) :

N e N5, N € N} C & whereN® C N is a set of nodes including :

e the rootN; of 7,

e one and only one successor for every decision mb@teNé = Np N N2,
6
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Figure 1: A decision tree representation. Figure 2: A Compldwotery.

o all successors for every chance ndde N§ = Nan NA.

Given a decision nodBl, the restriction of a strategy i to a subtree(N), which defines a
strategy in7 (N), is called asubstrategy

In order to evaluate a strategy, it is important to note thatrategy can be associated to
a compound lottery over the utilities. For instance, in tleeision tree of Figure 1, strategy
{(D1, A1), (D2, A3)} corresponds to the compound lottery depicted in Figure 2all&ting a
strategy amounts therefore to evaluating a compound yottBrom now on, for the ease of
presentation, we will manipulate lotteries directly defirmver utilities rather than outcomes.
A lottery is then a function fronJ to [0, 1] such thatL(x) = u;, whereU = {us,...,Un}
with u; < Uy < ... < U, is the image set o8 with respect tou. Coming back to our ex-
ample, it is natural to assume that the compound lottery géifé 2 is equivalent to lottery
L = (0.5,2;0.25, 3;0.25,10) (actually, this assumption is known as tieduction of compound
lotteriesaxiom [29], which is used in the axiomatizations of EU and RDGliven a value func-
tion V that maps every lottery with a real number (ed.= EU or V = RDU), the evalu-
ation of the strategy is the(L). For example, iV = EU, then the evaluation of strategy
{(D1, A1), (D2, Ag)} is 0.5x 2+ 0.25%x 3+ 0.25x 10 = 4.25.

4.2. Computing RDU in a Decision Tree: From Decision Theor€bmbinatorial Optimization

In a decision tred”, the number of potential strategies may grow exponentigilly the size
of the decision tree. For example, in a binary decision trige mnodes and a strict alternation of
decisiorichance nodes, one can easily show that the number of seatiegh®(2"). For this
reason, it is necessary to develop an optimization algortthdetermine an optimal strategy in a
decision tree. Itis well-known that the rolling back mettmoakes it possible to compute in linear
time an optimal strategy w.r.t. EU. Indeed, such a strategjgfes the optimality principle: any
substrategy of an optimal strategy is itself optimal. Tharoglity principle is closely related to
a condition ofmonotonicity{33] on the value function. In our context, given a value fimctV
(e.g.V = EU), this condition can be stated as follows:

V(L) > V(L) = V(L + (1 - @)L”) > V(aL’ + (1 - a)L”)

whereL, L’,L” are lotteriesg is a scalar in [01] andal + (1 — @)L” is the lottery defined by
(aL+(1-a)L")(X) = aL(X)+(1-a)L”(X). In the framework of decision theory, this condition can
be seen as a weak version of thdependencaxiom used by von Neumann and Morgenstern
[50] to characterize the EU criterion. This axiom stateg tha mixture of two lotteries and
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L’ with a third one should not reverse preferences (induced)bif L is strictly preferred td.’,
thenal + (1 — a)L” should be strictly preferred L’ + (1 — a)L”. The monotonicity condition
holds forV = EU, which justifies that the optimality principle holds for EU.

Hence, starting from the leaves, one can compute recwydiweleach node the expected
utility of an optimal substrategy: the optimal expecteditytfor a chance node equals the expec-
tation of the optimal utilities of its successors; the omtiraxpected utility for a decision node
equals the maximum expected utility of its successors.

Example 3. In Figure 1, the optimal expected utility at node 3 max6.5,6} = 6.5. Con-
sequently, the optimal expected utility at nodei®\4.25. The expected utility at node; As
0.3x1+045%x2+0.25%x 11 = 3.95. The optimal expected utility at the root node iB there-
fore max4.25,3.95} = 4.25, and the correspond strategy D1, A1), (D2, Az)}. Note that this
strategy can be suboptimal when using RDU to evaluate ietgsee below).

In decision theory, the behavior of an agent that adopts awebursively computed strategy
is calledconsequentialistMore precisely, consequentialism means that the predessnetween
substrategies in a subtree does not depend on the rest oé¢istoth tree. Besides, an agent is
said to bedynamically consistenwhenever at any decision node he is willing to carry out the
plan of action that he determined to be optimal ex-ante.dtieen proved that the preferences of
an agent that is both consequentialist and dynamicallyistamg follow the EU model [14, 15].
An agent whose preferences follow the RDU model (hamed ferd@DU-maximizer) should
therefore renounce either consequentialism or dynamisistamcy. Assume first that the agent
adopts a consequentialist behavior, that is, he computessigely a strategy from the leaves by
selecting optimal substrategies for RDU, and then folldvis $trategy. As shown by Example 4,
this strategy, determined ex-ante, could be suboptimaédime monotonicity condition does not
hold forV = RDU, as already noticed by Nielsen and Jensen [34]. By committimself to
consequentialism, the agent thus renounces dynamic temsyghe does not follow the strategy
that is optimal ex-ante).

Example 4. Consider lotteries L= (0.5, 3; 0.5, 10) (corresponding to chance node & Fig-
ure 1), ' = (0.5,1;05,11) (corresponding to chance node & Figure 1) and I = (1, 2).
Assume that the decision maker preferences follow the RDdé&hvath the followingy func-
tion:

o, ifp=0

0.45 if0<p=<0.25

06, if0.25<p<05

0.75, if05<p<07

08, if0.7<p=<075

1, if p>0.75

e(p) =

The RDU values of lotteries L and are:

RDU(L)=3+(10-3)¢(0.5)=7.2
RDU(L")=1+(11-1)¢(0.5)=7

Thus, we have RD{) > RDU(L") (substrategy(D,, A3)} is preferred to substratedyDo, A4)}
in D2 in Figure 1). By the monotonicity condition far = 0.5, one should therefore have
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RDU(0.5L + 0.5L”) > RDU(0.5L" + 0.5L"). However, we have:

RDU(0.5L+0.5L")=2+(3-1)¢(0.5)+(10-3)¢(0.25)=5.75
RDU(0.5L"+0.5L")=1+(2-1)p(0.75)+(11-2)(0.25)=6.65

Therefore RDWO0.5L + 0.5L") < RDU(0.5L" + 0.5L") (strategy{(D1, A1), (D2, A4)} is preferred
to strategy{(D1, A1), (D2, A3)} in Figure 1). Consequently, the monotonicity property doets
hold.

More seriously, a consequentialist RDU-maximizer couldrefollow a stochastically dom-
inated strategy, as shown by the following example.

Example 5. Consider the decision tree of Figure 1. In this decision tthe RDU values of the
different strategies are (at the root):

RDU({(D1, A2)}) =58
RDU({(D1, A1), (D2, As)}) =5.75
RDU({(D1, A1), (D2, As)}) = 6.65

Thus, the optimal strategy at the root{iD1, A1), (D2, A4)}. However, by recursion, one gets
at node D: RDU({(D2, A3)}) = 7.2 and RDU{(D2, A4)}) = 7. This is therefore substrategy
{(D2, A3)} that is obtained at node fXsee Example 4). At node [This is thereafter the strategy
{(Dq, A2)} (5.8 vs 5.75 fof(D1, Ap), (D2, A3)}), stochastically dominated B{Dj, A1), (D2, A4)}),
which is finally obtained.

At first sight, such an example could be misinterpreted astilating a weakness of the
RDU model in sequential decision situations. Actually,ringarily shows that the RDU model
is inappropriate for consequentialist agents. ConversedyEU model is unable to reproduce
non-consequentialist behaviors. This type of behaviom®igever routinely displayed by many
rational agents. An intuitive example of a non-conseqaistibehavior has been proposed by
Machina [30]. Assume that Mom has a single treat which sheyoanto either daughter Abigail
or son Benjamin. She is indierent between Abigail getting the treat and Benjamin ggttire
treat, but she strictly prefers a coin flip over either of theesoutcomes. Assume that Abigail
wins the coin flip. We are in a fferent state than before the coin flip, and Mom now prefers
Abigail getting the treat over a new flip. History, in this easnatters as far as preferences:
Benjaminhad his chancegand therefore the fact that Benjamin could have won stittens after
the coin is flipped. This is the very justification of non-cegaeentialism. More generally, a
non-consequentialist agent still gives importance to es/évat could have occured, contrary to a
consequentialist agent that does not take a risk into ac@mae it has been borne.

In this paper, we consider therefore a dynamically consisigent (he sets a plan initially
and never deviates from it later) with a non-consequestibéhavior (the optimal strategy at the
root can include substrategies that appear suboptimatinghbtrees). In other words, we study
in the sequel how to compute an RDU-optimal plan viewed froenitial situation, and comply
toit. By doing so, we are sure to never encounter a stocladigtadominated substrategy, contrary
to a method that would consist in performing backward inunctvith RDU. Unfortunately, the
determination of an RDU-optimal strategy in a decision ise@n NP-hard problem (where the
size of an instance is the number of involved decision nodes)

Proposition 1 (Jeantet and Spanjaard, 2008 [20]) The determination of an RDU-optimal strat-
egy (problemrRDU-OPT) in a decision tree is an NP-hard problem.
9



Proof. This is proved by polynomial reduction from 3-SAT (see ApgierA). |

Note that J&ray and Nielsen also studied the use of RDU in decision trE#s Nevertheless,
their approach diers from ours, since they focus on how RDU should be used bytagtse
to be consequentialist. Consequently, they do not computgptmal strategy viewed from the
initial situation.

4.3. Two Approaches for Computing RDU

We propose here two approaches for determining an RDU-apsitrategy in a decision tree.
One approach uses a mixed integer linear programming faionl and the other one proceeds
by implicit enumeration (neither exhaustive enumerationbackward induction are conceivable
since RDU-OPT is NP-hard).

4.3.1. A Mixed Integer Linear Programming Formulation

We now present a Mixed Integer Linear Programming (MIP) falation of problem RDU-
OPT, in the case where functignis concave piecewise linear. Consider a decisionire&Ve
first detail the set of constraints defining feasible stiged-or this purpose, a boolean variable
Yi.j) Is created in the MIP formulation for every decision branth Aj). The|Np| constraints
defining the set of feasible strategies are then:

Ziyap = 1 _
2iYip) = Yprew(@ VYie{2,...,INol}

wherey; j) = 1 (resp.ygj) = 0) if (D, A)) is selected (resp. not selected), gdw (i) is the last
decision branch precedirigj on the path from the root (in the temporal order).

Example 6. For the decision tree represented in Figure 3, the constmdefining the set of
feasible strategies are:

Yoy +Yaz = 1
Y23y tYes = Yai
Va5 tYEe) = Ya
Yarn +Yas = Y2
Y9 T Y5100 = Y2

We now detail the modelling of the objective function. Thedfautilities at the leaves of”
is denoted byJ = {uy, Uy, ..., Un}, With uy < up < ... < up, and the probability to obtain utility,
is denoted byps. Probability py, is the product of all probabilities on the path from the rawt t
utility u,. The rank dependent utility is then written as follows:

n
Ui + Z(Uh — Un_1)g [Z ptirth(j)J
ho2 i=h

whereyyreyj) is the last decision branch precedimgon the path from the root. By introducing
(n— 1) variablespy, it can be rewritten as follows:

n
u; + Z(Uh — Un-1)¢h
h=2

wherepn = ¢(Xjzn PjYprey()) forh=2,....n.
10
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Figure 3: A decision tree and the corresponding variablélspamameters in the MIP formulation.

Example 7. For the decision tree represented in Figure 3, the objedtivetion is written:

1+ (4 - 1)(,02 + ...+ (31— 25)(,013 + (31— 31)(,014 + (31— 31)(,015 + (40— 31)(,015
= 1+3‘;02+2‘;03+‘;04+3‘;05+5906+3‘P7+2‘,08+909+9010+2‘;011+2‘,012"'6‘,013"'9‘;016

Note that variableg14 and 15 do not appear in the final objective function, and can theefo
be eliminated from the program.

The expression defining the valuegf is of course non-linear, due to the presence of func-
tion ¢. This difficulty can be overcome in the case wheris concave piecewise linear. Recall
that a concave functioa reflects a risk-seeking behavior for certain forms of wtifitnction
(e.g., convex).By using a concave piecewise linear fungtioone can approximate any con-
cave regular function. This family of functions is therefdnteresting to study. It is well-
known that any concave piecewise linear function can betewias the lower envelope of a
set of dfine functions. Leffy, fo, ..., fn} denote this set, wher&(p) = akp + bx. We have
e(p) = min{fy(p), f2(p), ..., fm(P)}. The value ofp, can be obtained by optimization:

¢h = MmaxXa
a < f (ijh ptirew(i)) Vke{l,..,m
a > 0

The above problem is a linear program for a given strategy

Example 8. Assume thap(p) = 1.8p for p < 0.5, and¢(p) = 0.4p + 0.6 for p > 0.5. We have
theng(p) = min{fy(p), f2(p)} with fi(p) = 1.8p and §(p) = 0.4p + 0.6. For a given assignment
of boolean values to variableg y in the decision tree represented in Figure 3, the valug.af
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can be written as the result of the following linear program:

Y13 = Maxa
a < 1.8(0.305/(2,3) + 0.28y(3,5) + 0.36y(5,g) + 0.09y(5,10))
a < 0.4(0.30)/(2,3) + 0.28)/(3,5) + 0.36y(5,9) + 0.09)/(5,10)) + 0.6
a > 0

Sinceun — U1 > 0, the objective function (to maximize) will benefit from niamzing every
¢n, and the MIP formulation is therefore the following in thencave piecewise case:

max, Uy + Xn_o(Un — Un-1)¢i

on < f(ZisnPiYprew) Yhe (2 ..nivke {1,...m}
Ziyap = 1 _
ZiYih) = Yprew@ Yie{2,...,|Npl}

Yi.p €10,1} ¢n >0

This program includes(— 1) continuous variable$Np| binary variables, andh(— 1)m + |Np|
constraints (sincen constraints are created for every variapjg. Its size is therefore linear in
the size of7” for a fixed numbem of pieces inp. We recall however that the complexity of the
solution procedure is of course exponential in the numbdirtdry variables in the worst case
(for a fixed numbem of pieces iny).

Let us now briefly study a relaxation of the problem, where coesiders not onlypure
strategiesbut alsomixed strategiesIn a mixed strategy, one chooses randomly (according to
a predefined probability distribution) the decision takerach decision node. When using ex-
pected utility to evaluate a strategy, it is not worth corsilaig mixed strategies since there always
exists a pure strategy yielding the same expected utilay the best mixed strategy. This is no
longer the case when using rank dependent utility to evalaadtrategy. Consider a decision
tree with a single decision node leading to twéfelient options: a sure outcome lottery g},
and a lottery ((, 1; 0.5, 10). Assume that the probability transformation functisrléfined by
©(0) = 0,¢(p) = 0.45if p € (0;0.7) andp(p) = 1 if p > 0.7. The RDU values of the two pure
strategies are respectively 5 an% Comparatively, the mixed strategy where one chooses the
sure outcome lottery with probability.® and the other one with probability4) results in a
RDU value of 725. We now show that the optimal mixed strategy can be polyakyrcom-
puted in the two previous cases (concave piecewise lipgaiecewise constant), by slighting
modifying the MIP formulations so that no boolean varialdppear anymore (and the number
of constraints remains the same). It yields of course a lipeagramming formulation. In a
mixed strategy, the probability of obtaining utility, equals the product of the probabilities on
the chanceand decisiorbranches along the path from the rootugp For this reason, a real
variablep,j is created in the MIP formulation for every decision branbi 4,), instead of a
boolean variable. However, to obtain linear constraithiis, Yariable does not represent proba-
bility P((D;i, Aj)IDi) (probability to make decisiori}j, A;) conditionally to reach nodB;) but
the product of the probabilities of the decision branchesfthe root to nodé\;. There is a
one-to-one correspondence between assignments of pliibalft((D;, A;)IDi) and pg.j), since
P((Di, Aj)ID;) equalspy, j)/ Pprew()- This is illustrated in Figure 4. The probability of obtaigi
utility up is thenpn Pprey,ny (0N the path tai, py is the product of the probabilities on the chance
branches, angpreyn) is the product of the probabilities on the decision brankhEse objective

12



P((Di, A))IDi)

Figure 4: One-to-one correspondence between assignigmsbabilities P((D;, A;j)|Di) and pg,j)-

function is therefore written:

n
Ui + Z(Uh — Un-1)@
h=2

b Dprevum]

i=h

Let us now study the constraints that must satisfy varigiylgs By definition, we have;; p.j) =
2 Pprew i) P((Di, Aj)IDi). Then,3; pprev (i) P((Di, A)IDi) = Pprew(iy 2 P((Di, A)IDi) = Pprewy(i)-

Consequentlyy.; pi.j) = Pprew()- The constraints on variablgs j) are thus very similar to the
previous constraints on variablgg;):

ZiPap = 1 _

2iPi) = Pprewi Yi€{2...,INbl}

wherepg,j) € [0,1]. All the other constraints are identical to the ones inepsirategies (with
Yi.j replaced bypg j)). This proves the polynomial solvability of the determipatof an RDU-
optimal mixed strategy in the case where functois concave piecewise linear (since the size
of the linear program is linear in the size of the decisioe}re

4.3.2. Implicit Enumeration Algorithm

We now present a branch and bound method for determining dg-&fimal (pure) strat-
egy. Unlike the previous approach, this method has the adgarof remaining valid for any
probability transformation functiop. The branching principle is to partition the set of stragsgi
in several subsets according to the choice of a given elgi’j at a decision nod®&l. More
formally, the nodes of the enumeration tree are charaeihby apartial strategy that defines a
subset of strategies. Consider a decision freend a set of nodes'™ including:

e the rootN; of 7,
« one and only one successor for every decision nddeNT = Ap N AT,

The set of edgeF = {(N,N’) : N € N[N € N'} c & defines apartial strategyof 7 if
the subgraph induced by" is a tree. A strategy is saidcompatiblewith a partial strategy
13



Algorithm 1: BB(I', RDUq)

N1« {N1e Np : N; is candidatE

Nmin < arg mirney, rk(N);

Emin < {(Nmin, A) € & : A€ S(Nmin)};

for each (\, A) € Emin do

if eI" U {(N, A)}) > RDUgpt then
RDUemp <= BB(I' U {(N, A)}, RDUpp);
if RDUiemp> RDUgp: then
RDUOpt — RDUtemp

end
end
end

return RDUgp

'if T € A. The subset of strategies characterized by a partial giraterresponds to the set
of compatible strategies. At each iteration of the searale, @hooses an edge among the ones
starting from a given decision node. The order in which theigien nodes are considered is
given by a priority functiorrk : Np — {1,2,...,|Npl}: if several decision nodes are candidates
to enterN', the one with the lowest priority rank will be consideredtfifEhe ranking function

rk is defined by:

rk(Ny) =1
|[pas{N)| > |[pas{N’)| = rk(N) > rk(N")
[pas(N)| = [pas({N’)] andEU(7 (N)) > EU(7(N’)) = rk(N) < rk(N")

whereEU(7(N)) is the optimal value of EU i (N) (we recall that (N) is the subtree rooted
in N).

Example 9. For the decision tree in Figure 3, there is a unique rankingdiion rk defined by
: 1k(D1) = 1, rk(D2) = 5, rk(D3) = 3, rk(Ds) = 4 and rkDs) = 2 (since EU7 (Ds)) <
EU(T(Ds)) < EU(7 (D)) < EU(7 (D2))).

Algorithm 1 describes formally the implicit enumeratioropedure that we propose. It takes
as an argument a partial strateyand the best RDU value found so far, denotedRiyUq .
The search is depth-first. The decision nodes that are cateditb enteN™ are denoted byv;.
Among them, the node with the lowest priority rank is dendigdNmin. The set of its incident
edges is denoted &n. It defines the set of possible extension§ ebnsidered in the search (in
other words, the children of the node associated ito the enumeration tree). For every partial
strategyl” (in other words, at every node of the enumeration tree), aseh evaluation function
evthat gives an upper bound of the RDU value of any strategy etilsip withI". The optimality
of the returned valu®DU,; is guaranteed since only suboptimal strategies are pruneadg
the search as soon asis an upper bound.

We give below the main features of our algorithm.

Initialization. A branch and bound procedure is notoriously mdfeient when a good solution
is known before starting the search. In our method, the Idweind RDU,y) is initially set to
the RDU value of the EU-optimal strategy.
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Computing the lower bound. At each node of the search, one computes the EU-optimal strat
egy among strategies that are compatible withWhen its RDU value is greater than the best
found so far, we updat@ DU, ;. This makes it possible to prune the search more quickly.

Computing the upper bound. The evaluation function is denoted ley. It returns an upper
bound on the RDU value of any strategy compatible Wit he principle of this evaluation is to
determine a lottery that stochastically dominates angtgttorresponding to a strategy compat-
ible withT', and then to evaluate this ideal lottery according to RDUsVields an upper bound
since RDU is compatible with stochastic dominance, i.6. gtochastically dominates’ then
RDU(L) > RDU(L’). In order to compute such a lottery, one proceeds by dynanaigram-
ming in the decision tree. Actually, one can ifidirently manipulate decumulative functions or
lotteries, since both sets are in bijection (we recall thittery on utilities is considered as a
function fromU to [0, 1] in this paper). For the sake of clarity, we describe theirgion by
refering to decumulative functions. The initializationperformed as follows: at each terminal
nodeT € Ny is assigned a decumulative functi@r = (1, u(T)). Next, at each nodd € N,
one computes the decumulative function of a lottery thattsstically dominates all the lotteries
of subtreer (N). More precisely, at a chance noAgone computes the decumulative function
G induced by the decumulative functions of its children atfos:

VUG = > P(A N)GL(Y)

NeS(A)

whereG ~ corresponds to the decumulative function assigned to hbdeV. Besides, at each
decision nod®, we apply the following recurrence relation on the decunixgdunctions:

YU,Gio(u) = Gn(u) if AN € S(D) : (D,N) e T’
Yu, Gro(U) = maxvesp) G~ (U) otherwise

Finally, the value returned bgvis RDU(L™) whereL" corresponds to the lottery of decu-
mulative functionG ~. The complexity of this recursive procedure for= 0 is in O(|N|.|U])
(where|U| is the number of distinct utilities at the leaves) since eactle inN is examined
once, and the support set of a lottery is upper boundgtd byHowever, during the branch and
bound procedure, when an edd®,(N;) is inserted intd’, it is not necessary to recompuEen

in every nodeN. One can indeed use functio@gn already computed for evaluatimy(I'): it is
suficient to update functionS ~ only on nodesN that belong to the path froMN; to D;. Since
the length of a path ifi” is upper bounded by height the complexity of computinguT’) for

I' # 0 is therefore inO(h.|U|). To prove the validity of the recursive procedure, one peats by
induction:

e At a chance node Aconsider a tuplel(y)nes(a) Of lotteries such thatN stochastically
dominated_y for all N € S(A). We have:
GLa(U) = Gy pAN)LN (U) = Zinesay P(A N))GLv(U) = Xnes(a) PI(A, N))GL, (u) Yu
where nesa) P((A, N))LN denotes a compound lottery. This proves ttastochastically
dominates any lottery corresponding to a strategy {A).

e At a decision node Diif there existsN € S(D) with (D,N) e T, then the validity is
obvious. In the other case, consider again a tupl@esp) of lotteries such thatM
stochastically dominatesy for all N € S(D). By definition, G0 (u) = maxyeso) G~ (U)
Yu. ThusGio(u) > Gin(u) = G (u) Yu for any lotteryLy of the tuple. This proves that
LP stochastically dominates any lottery corresponding toaesgy in7 (D).
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Figure 5: Computation of a stochastically dominating Igtte

Consequently, lotteriz™- stochastically dominates all lotteries correspondingstrategy com-
patible withI".

Example 10. Let us come back to the decision tree of Figure 1. Assumethat{(Dq, A1)}.
The decumulative functions assigned to nodesad A, are G~ = (1, 3; % 10)and Ga, =
(1,1; % 11). They are represented in the left part of Figure 5. The dedative function Go,
computed by dynamic programming is then the upper envelidggpand G »,. More formally,
the decumulative function computed in B defined by:Vx, G 0,(X) = maxXxG, s (X), G a (X)}.
This decumulative function is represented in bold in thétrigart of Figure 5. Then we have:
G0, = (1,3;3, 11). Similarly, one computes:

-G = 0.5G 0, + 0.5GLux = (1,2;3,3; 3, 11)where Gua is the decumulative function associ-
ated to the node of utility (@),

-Guoy = Gay = (1,2;3,3; %, 11)sincel = {(Dy, A1)}

Decumulative function G, corresponds to lottery3, 2; 2, 3;,11). The upper bound foF =

{(D1. A1)} is therefore efl’) = RDU((3, 2; 1, 3; 3, 11)).

4.4. Numerical Tests

Algorithms were implemented in-&+ and the computational experiments were carried out
on a PC with a Pentium IV CPU 2.13Ghz processor and 3.5GB of RAM

Tests on random instances.We have first compared the performances of the MIP approach
with the ones of the implicit enumeration approach. Ourstestre performed on complete bi-
nary decision trees of even height. The height of these idecieees varies from 4 to 12, with
an alternation of decision nodes and chance nodes. Thigegtiit the leaves are real numbers
randomly drawn within interval [11000], and the conditional probabilities at the chance sode
are randomly drawn positive real numbers summing up to IceSime MIP approach requires a
concave piecewise linear functignwe used functiorp defined byy(p) = min{fi(p), ..., fs(p)}
with: f(p) = 4p, f2(p) = 2p+ 0.2, f3(p) = p+ 0.5, fa(p) = 2p+ 0.7, f5(p) = 2p + 0.85.
Table 3 shows the average execution CPU times obtained byapproaches. The mixed inte-
ger linear programs are solved using the ILOG CPLEX v11.&l%es. Note that the solution
times indicated in Table 3 for the MIP approach do not take enxtcount the preprocessing
time. When it is informative, the min and max values are iated under the following format:
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ApproachHeight (nodes) 4 (11) 6(127) 8(511) 10 (2047) 12 (8191)
MIP <1 <1 <1 21-23-28 794 - 86.0 - 107.3
Implicit enumeration <1 <1 <1 <01-25-50 03-56-202

Table 3: Execution times for a concave piecewise lineartfane (in seconds).

depth (nodes) 5(11) 7(127) 9 (511) 11 (2047) 13 (8191) 15 (32767)
y=02 <01 <01 <01 <01-04-11 03-43-138 30- 621 - 5129
y=05 <01 <01 <01 <01-01-05 01-27-74 12173 - 994
y=08 <01 <01 <01 <01-01-05 01-16-80 06109 - 1014

Table 4: Execution time.

min — average— max Both approaches instantly give an optimal strategy fardref height
less than 8. However, when height exceeds 12, the impliciremation approach is much more
efficient than the MIP approach.

Next, we have gone further into the study of our implicit eruation algorithm. For this
purpose, we have measured the performances of the implioiheration approach with function
o defined by:p(p) = p”/(p” + (1 — p)*). This function is not concave nor piecewise linear. This
is the one usually proposed to model sophisticated betsathat the EU model is unable to
describe [24]. Parametertakes value in interval []. Fory = 1, we havep(p) = p and
RDU reduces to EU. We have tested our algorithm for sevedakgaof parametey, namely
v =0.2,y = 05 andy = 0.8. Table 4 presents the performances of the algorithm wipeet to
parametety and the height of the decision tree. When it is informatitae, iin and max values
are indicated. For each value pfand height, we give the average performance computed over
50 decision trees. Unsurprisingly, the performances iwgweheny is near 1 (i.e. RDU is close
to EU). Note that, for bigger instances (i.e. the height ofohtis greater than 14), some hard
instances begin to appear for which the solution time besdrigh.

Finally, in order to evaluate the quality of the lower boundiahe upper bound, we have
investigated ratioRDU(Lgy)/RDU* and RDU(Lsp)/RDU* with respect to parameter and
the height of the decision tree, whdrgy is the lottery correspondig to an optimal strategy for
EU, Lsp is the lottery computed for evaluating the upper bound RBdJ* is the value of the
optimal strategy for RDU. The results are presented in Tapighere each value is an average
over 50 instances. One can observesRat(Lgy) provides a good lower bound that naturally
deteriorates when becomes close to O (i.e. the probabilities are very disiprt& he upper
bound appears to be within 10% of the optimal value on mosaintes.

However, the complete binary trees considered here aralbcthe “worst cases” that can
be encountered. In fact, in many applications, the decisiees are much less balanced and
therefore, for the same number of decision nodes, an RDinapstrategy will be computed
faster, as illustrated now on a TV game example.

Application to Who wants to be a millionaire? Who wants to be a millionaire®?s a popular
game show, where a contestant must answer a sequence gdflaxatibice questions (four pos-
sible answers) of increasingfficulty, numbered from 1 to 15. This is a double or nothing game:
if the answer given to questidais wrong, then the contestant quits with no money. However,
at each questiok, the contestant can decide to stop instead of answeringhére dquits the
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vy=02
Bound, Height (nodes) 4(11) 6(127) 8(511) 10(2047) 12(8191)

RDU(Lgy+)/RDU* 951%  9246% 900% 912% 909%

RDU(Ls p)/RDU* 1044% 1051% 1069% 1124% 1175%
y=05

Bound, Height (nodes) 4(11) 6(127) 8(511) 10(2047) 12(8191)

RDU(Lgy+)/RDU* 99.6% 993% 990% 988% 982%

RDU(Lsp)/RDU* 1055% 1096%  1094% 1091% 1102%
y=0.8

Bound, Height (nodes) 4(11) 6(127) 8(511) 10(2047) 12(8191)

RDU(Lgy-)/RDU* 99.8% 995% 994% 989% 986%

RDU(Ls p)/RDU* 1064% 1063% 1088% 1078% 1072%

Table 5: Quality of upper and lower bound.

game with the monetary value of questidn-(1). Following Perea and Puerto [38], we study
the Spanish version of the game in 2003, where the monettugwvaf the questions were 150,
300, 450, 900, 1800, 2100, 2700, 3600, 4500, 9000, 1800@(BER000, 144000 and 300000
Euros respectively. Note that, actually, after the 5th adth fjuestions, the money is banked
and cannot be lost even if the contestant gives an incoresgionse to a subsequent question:
for example, if the contestant gives a wrong answer to questj he quits the game with 1800
Euros. Finally, the contestant has thliéglinesthat can be used once during the game: Phone a
friend (call a friend to ask the answer), 50:50 (two of thesthincorrect answers are removed),
Ask the audience (the audience votes and the percentagdesf @ach answer has received is
shown).

We applied our algorithm to compute an RDU-optimal stratimythis game. For this pur-
pose, we first used the model proposed by [38] to build a detisee representing the game.
In this model, a strategy is completely characterized byngithe question numbers where the
different lifelines are used, and the question number wheredhistant quits the game. We
have carried out experimentations for various probabiliymsformation functions, modelling
different attitudes towards risk. The identity (resp. squareare root) function corresponds to
an expected reward maximizer (resp. a risk averse, riskesekdcision maker). The results are
reported in Table 6. For each functign we give the expected reward (column Exp.) of the
optimal strategy, as well as the maximum possible rewartlifee Max.) and the probability
to win at least 2700 Euros (colun@ (2.7K)). Note that, in all cases, the response time of our
procedure is less than one second while there are 14400afec@des and the heightis 30. This
good behavior of the algorithm is linked to the shape of theigiien tree, that strongly impacts
on the number of potential strategies.

A limitation of the model introduced by Perea and Puerto [i88hat the choice to use a
lifeline is not dependent on whether the contestant knoeiaittswer or not. For this reason, we
introduced the following refinement of the model: if the emstaint knows the answers to question
k, he directly gives the correct answer, else he has to makeisial®e A small part of the decision
tree for this new modelling is represented in Figure 6 (thiteddines represent omitted parts of
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¢(p) |50:50 Phone Ask QujExp. Max. G (2.7K)
p| 9 10 12 13[2387 36K 0.10
p>| 4 5 5 81536 2.7K 0.35
VP| 14 15 13 X [1987 300K 0.06

Table 6: Optimal strategies for variogysunctions.

0 euros
------------ Quit
3 .............. *« Ask
""""""" Answer
............ Quit
RN R RRREE +50:50
""""""" Answer
e correct
----------- wrong
..---+Quit
RETEERAUIPPPEE +Phone
[ Ask
T Answer
..---+Quit
REETERRURRPE *Phone
...... .5050
Answe T« Answer
................. know
""""""""""" don’t know

0 euros

Figure 6: Refined decision tree for the TV game.

the tree). Chance non‘i’s (resp.Qiz’s) represent question 1 (resp. 2), with two possible events
(know the answer or not). Decision node'ss represent the decision to use an available lifeline,
answer or quit facing question 1 (in fact, this latter oppoity becomes realistic only from
guestion 2). Finally, the answer is represented by a chaode @\il’s) where the probabilities

of the events (correct or wrong answer) depend on the ussgthés. We used the data provided
by Perea and Puerto [38] to evaluate th@edent probabilities at the chance nodes. The whole
decision tree has more than 75 millions of nodes. The problecomes therefore much harder
since the number of potential strategies explodes. Unlikgipus numerical tests, we had to
use a computer with 64GB of RAM so as to be able to store thariast Despite the high size
of the instance, the procedure is able to return an optimatesly in 2992 sec. fap(p) = p?
(risk averse behavior) and 4026 sec. §¢p) = p?/? (risk seeker behavior). Note that, for risk
seeker behaviors, the solution time increases with theasatywof the probability transformation
function.
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5. Computing RDU in an Influence Diagram

The previous approaches face the main inconvenience ofidadirees: their size grows
quickly when the number of decision stages increases. kForehson, we study the optimiza-
tion of RDU in influences diagrams, that provide compactespntations of sequential decision
problems.

5.1. Influence Diagram Formalism

An influence diagranj18] is a graphical model for a sequential decision probléinlike
decision trees, the emphasis is put on the decomposalfitig ainderlying probability structure.
By taking advantage of independences between involvedrana@riables and utility variables,
one gets a much more compact representation than the origeabtey expliciting all possible
scenarios, as would be done in a decision tree. An influersggain including random variables
A4, ..., Apand decision variableBy, . . ., Dy is an acyclic digraplg = (N, E) such that:

e set N is partitioned into three subsets: a $éy = {D1,...,Dp} of decision variables
(represented by squares), a #ét = {Aq,...,Ap} of random variables (represented by
circles), and a sewy = {Uy, ..., Up} of utility nodes (represented by diamonds);

e set& of directed edges is partitioned into three subsets: a skeinational edges from a
decision variable or a random variable to a random variabke utility node (edges rep-
resenting dependences), a set of informational edges fregiaion variable or a random
variable to a decision variable (edges representing therebd variables before making a
decision);

o the nodes representing random variables are endowed withditional probability table,
indicating the probability of every event conditionallyttee parent nodes;

e the utility nodes are endowed with a table indicating thétyttonditionally to the parent
nodes.

The following structural condition on the graph must alsédhdhere exists a path (including
functional and informational edges) connecting all thegsogpresenting decision variables.
An influence diagram is represented in the left part of Figynehere the conditional proba-
bility tables and the utility tables have been deliberatehitted for the sake of brevity. The two
possible decisions iB; (resp.D;) are denoted by andg (resp.y ands). The two modalities of
random variabléy; (resp.A) aren; andn, (resp.6, anddy). The order in which the decisions
and the observations are made is assumed @ beA; — Ao — D, — Az — U. We adopt here the
convention that the temporal order of the decisions are freaud left to right. By “unfolding”
the diagram, one obtains the decision tree represented ingtht part of Figure 7 (note that the
probabilities and the utilities indicated in the tree coynplth the conditionings imposed by the
diagram). Since botlA; andU are independent fror; conditionally toD;, several subtrees
are identical (see Figure 7). Note that the presence oficrdubtrees leads to repeat several
times the same calculations when determining a strategymizirg EU in the decision tree.
Influence diagrams make it possible to avoid this pitfalidesiled in the following section.
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Figure 7: Influence diagram and corresponding decision tree
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5.2. RDU, Influence Diagram and Consequentialism

The purpose of our work is to “solve” an influence diagram whien preferences of the
decision maker do not follow the EU model but the RDU modele @hm of solving the diagram
is to determine the best strategy according to a decisioericmn (EU, RDU or others). In order
to define a strategy, it is necessary to know the random Jasaready observed when making
each decision, as well as the temporal order in which thesitets are made. A strategy consists
then in setting a value to every decision variable conddtlyrto its past. In a decision tree,
the past of a decision variable is simply defined as the seamdam variables and decision
variables lying on the path from the root to that variablee Tecision tree in the right part of
Figure 7 includes 32 feasible strategies, among whicheglygD; = «, D} = y,D3 = 6,D3 =
6, D3 = 6} (note that nodeB3, DS, D andD$§ cannot be reached whéh = «). In an influence
diagram, the temporal order is less apparent. For this neasd/Na is partitioned into disjoint
setslg, 14, ..., In. Setlg includes the random variables observed before first deci3ids made
(corresponding to the parents bf), I the random variables observed betwdanand Dy, 1
(corresponding to the parents bf,1), and finallyl, the remaining random variables, i.e. the
ones that are never observed or are observed after the @siodd, is made (the variables that
are not parent of any decision variable). This induces agbantder< on Np U Na : lg < D1 <
I < ... < Dy < Iy Forinstance, for the diagram in the left part of Figure &, plartial order is
D1 < {Ag, A2} < D2 < {Ag}. The past of a decision varialll is then the set of variable§such
thatX < Dx. Formally, a strategy in an influence diagram is a seteaafision ruledor variables
Dy, where a decision rule fddy maps each instantiation of the variables in the pa®,ofvith
a value in the domain dD. However, in practice, onlgonsequentialisstrategies (i.e., where
every decision made only depends on the variables influgnuamameters of the future) are
considered in influence diagrams. Therefore, it is not rearggo know the values of all variables
in the past to set the value of a decision variable. This pitgpe crucial since the description
of a consequentialist strategy remains linear in the sizbefliagram, which is not the case of
non-consequentialist strategies. For instance, in thgraia of Figure 7, only variable®; and
A, (and notA;) have an influence on the future bf. Therefore, in a consequentialist strategy,
the decision made iD, only depends o®; andA; (and notA;). A decision rule inD, is for
instance{(D2 = y|D1 = @, Az = 61),(D2 = 6|D1 = a, Az = 62),(D2 = 6|D1 = B, A2 = 61),(D2 =
v|D1 = B, A2 = 6;)}. It means: decision is made inD;, if decisiona was made irD; and event
61 occured inA,, decisions is made inD; if decisiona was made irD; and event, occured
in Ay, etc. As a result, the set of strategies in the diagram ofrEiguincludes 16 strategies.
It is important to note that the set of strategies considéndtie influence diagram is only a
subset of the strategies considered in the corresponditigiole tree (for instance the above-
mentioned strategy for the decision tree is not in this stibd&hen optimizing EU, this does
no harm since it is well-known that there always exists andptimal strategy included in this
subset (since there always exists an EU-optimal strategpydttonsequentialisth contrario, a
strategy optimizing RDU is not necessarily included in gibset (since there does not always
exist an RDU-optimal strategy that is consequentialistjllastrated in the following example.

Example 11. Consider the decision tree in the right part of Figure 7. Aagtgy maximizing
EU consists in making decisianin Dy, decisiony in D} and D, and decisions in D3 and
D‘Z‘. This strategy is consequentialist. Now, assume that ongtadhe following probability
transformation functionp:
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0, if0<p<0.175
0.09, if0.175<p<0.25
0.1, if0.25<p<0.35
¢(p) =40.15 if0.35< p<0.75
05 if0.75< p<0.825
09, if0.825<p<1

1, ifp=1

Then, the unique strategy maximizing RDU consists in mad@uisiona in Dy, decisiony in
D} and decisions in D3, D3 and D§. This strategy is not consequentialist since two distinct
decisions are made inJand 2.

5.3. Algorithms

Note that determining an EU-optimal strategy in an influetiagram is proved NP-hard. De-
termining an RDU-optimal strategy is even harder since #sedption of a non-consequentialist
strategy may require a memory space whose size is expoherttia size of the diagram.

5.3.1. Two-phases method

Since an RDU-optimal strategy is not necessarily consdalist, a first method that seems
natural consists of two phases: 1) “unfolding” the influed@egram in a decision tree, then 2)
determining an optimal strategy according to RDU direatl\tie decision tree. For phase 2,
one can use the implicit enumeration approach proposeddtioBet.3.2. However, although
it enables the determination of a real RDU-optimal stratélgg method is of course costly in
memory space, and becomes impracticable when the size détigon tree is prohibitive.

5.3.2. A-relaxation method

For this reason, we propose another method that takes adyeaot the compact structure of
influence diagrams (without unfolding them in decision $)eat the cost of a reduction of the
set of considered strategies. For this purpose, a first ideddibe to explore only the space of
consequentialist strategies, but one would then lose aaritaupt part of the descriptive power of
the RDU model. Consequently, the approach we propose heserax renounce consequential-
ism: we introduce a relaxed form of consequentialism in ptdeealize a compromise between
descriptive power and compactness of representation. &rting additional functional edges
in the diagram, one enlarges the space of considered sesiteljlote that creating fictitious
dependences between independent variables does not dhareblem itself but only its rep-
resentation. In Example 12 below, we illustrate the charydisced by the insertion of a new
functional edge.

Example 12. After inserting edgé€A;, U) in the influence diagram of Figure 7, one obtains the
diagram represented in Figure 8. From the point of view of paniness of the representation, it
should be noted that, if variable;Aas two modalities, it will double the number of lines in the
table assigned to variable U: the old table (before insertid the edge) represented indeed util-
ity U(D1, D2, A3), while the new table (after insertion of the edge) repres&€i{D1, A1, D2, Az).
However, the benefit is that the space of considered stegagienlarged: since /Anow influ-
ences the parameters in the future of, the decision made in Dis conditioned by the value
23



Figure 8: Modified influence diagram.

of A;. Consequently, a decision rule impDow takes into account variablesDA; and A. In
other words, in this case, the insertion of edde, U) makes it possible to take into account all
the non-consequentialist strategies.

In the sequel, we namerelaxation of consequentialism the fact of addindependences on
every decision variable. At worst, one ad8$ | x A supplementary edges. Adding a dependence
on a decision variabl® amounts to inserting an edgieom V to V’ with V < D < V', provided
D does not already depend ¥ This latter condition can be graphically formalized asdak:
(V\W) ¢ EYW ¢ Np AW > D. The inserted edges are of course not chosen arbitrarily. We
now detail the procedure to select them. Our aim is prim&oikeep the representation as much
compact as possible. In this purpose, our heuristic to seliges to insert consists in choosing
greedily the ones that have the least impact on the sizesdatiies in the diagram. Note first
that, given two variable¥ andV’, inserting edge\(, V') increases the size of the tableMn i.e.
the number of entries. More precisely, the size of the tab\é is equal tdV’|. [Ty.predy:) WI,
where|V’| is the number of modalities of variabl& and Predy’) is the set of predecessors of
V’ in the influence diagram. Inserting edg&Y’) multiplies therefore the size of the table\i
by |V|. In other words, for a table i’ of sizes(V’) before insertion, the size beconsy").|V|
after insertion, thus yielding an increme(¥, V') = s(V’).(IV| — 1). The aim of our heuristic in
the greedy procedure to insert edges is to minimize thigment at each step. To this end, each
time an edge has to be selected among a set of candidate sdgespose an edg®,(V’) such
thati(V, V’) is minimum. Algorithm 2 summarizes the whole procedureerelupdate tableis
a primitive that makes the table W depends oV (by duplicating the entries).

We now detail the procedure for determining a strategy mepximg RDU after aA-relaxation
of the diagram. As for decision trees, we propose here a hramg bound procedure to solve the
influence diagram. The mainftitrences are in the way the strategies are enumerated (brgnch
rule) and in the dynamic programming procedure used to ctengru upper bound (more pre-
cisely, a lottery stochastically dominating all possildries). We give below the main features
of the implicit enumeration scheme.

Initialization. As for decision trees, one determines a strategy optimigldgSeveral solving
algorithms have been proposed in the literature to accampliis task [45, 21]. Schachter’s
algorithm [45] consists in eliminating incrementally thedes of the diagram while respecting
the partial order on them. For this purpose, edge reversélsdges representing probabilis-
tic dependences) are performed, that are sometimes vetty gosomputation time. Jensen et
al.'s algorithm [21] (inspired from inference algorithmsad inbayesian networlsconsists in

2Note that the insertion of a single edgé\’), with V e Na U Np andV’ € NaU Ny, is likely to create additionnal
dependences on other variab@ssuch thatv < D’ < V’.
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Algorithm 2 : AddEdges
foreachD € Np do
i« 0;
whilei <Aand @V <D : (V,V) ¢ EVYV ¢ Np AV’ > D] do
V « arg miny<p{|W| : W.W') ¢ EYW' ¢ Np AV’ > D};
V"« arg mitwgay {IWI. [Tw epreqw) W[ : W > D};
E < EU{(V,V))
update tablein V’;
i —i+1;
end
end

transforming the influence diagram irjumction tree and then applying nonserial dynamic pro-
gramming [5] in the junction tree. We have adopted this tafgroach in our implementation,
since its performances are generally assumed better tham#s of Schachter’s algorithm.

Branching rule. The branching rule we use is to set a value to a decision Jar@@mditionally

to the variables that influence it. For instance, for the diagin Figure 8, one separates the set
of strategies characterized by:

(D1 =a) A (D2 =¥|D1 = a,A1 = n1,A2 = 01) A (D2 = 6|D1 = @, A1 = 172, A2 = 61) A (D2
6|D1 = qQ, Al =i, Az = 92)

into two subsets characterized respectively by:

-(D1=a) A (D2 =yID1 = a,A; = n1,A2 = 61) A (D2 = 8|D1 = a, A1 = 112, A2 = 61) A (D2
0ID1 = a,A1 =11, A2 = 62) A (D2 = 7ID1 = @, Ay = 112, Az = 6)

-(D1=a)A(D2=yID1 = a,A; = n1,A2 = 61) A (D2 = 8|D1 = a, A1 = 112, A2 = 61) A (D2
0|D1=a, A = T]]_,Az = 02) A (Dz =0|D1=a, A1 = n2, As = 02)

The enumeration tree is represented in Figure 9. The inigt@ocnodes are indicated in bold.
The order in which the variables are considered in the enatioertree is compatible with the
temporal order on the decision nodes (remember that theseyalexists a path linking all the
decision nodes in the diagram).

Computing the lower bound. This is similar to what is done in decision trees. At each noide
the enumeration tree, one computes a strategy optimizingnEue subset of considered strate-
gies, and one evaluates it according to RDU.

Computing the upper bound. As for decision trees, we need to compute a lottery stoatedbti
dominating any lottery corresponding to a feasible stra{sg that its RDU value is an upper
bound). For this purpose, we use a dynamic programming grwee We recursively compute
such a lottery for every decision variable and every possditdtantiation of the variables in its
past (compatible with decisions already set). In the foitay for simplicity, we assume that
there is only one single utility variabld, that takes value ifug, ..., uUyn} With up < ... < Unp.
We use a backward induction procedure. The initializatrobl iis performed by the following
formula:

1if U(lo - “In, D1 - D) = U

Yi>1, P(U=ullp--ln,D1--Dp) = { 0 otherwise

whereU(lp - -1y, D1 - -Dp) gives the value taken by variable according to the values taken by
variablesly, ..., Iy, Dy, ..., Dy. Consider now a decision varialli. For a given realization of
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Dz\Al 12:A2 = b2 || DalAy =12, A2 =62 || DalAy =12, Ap = 2 || Da2lAy =n2.A2 = b2 |

60 00 00 OO

Figure 9: Enumeration tree.

random variable, . .., lx-1 and a given choice of decisionsih, ..., Di_1, the stochastically
dominating lottery irDy is computed by the following reccurence relation foriatl 1:

PU Z Uillp - “lk-1, D1 - -Dy-1)

= maxzz P(lllo - k-1, D1 - -Di) X P(U = ujllo - lk-1, Ik, D1 - -Di)
= Ik
The stochastically dominating lottery is then easily deieed by the following formula:
P(U = uillo - “lk-1, D1 - -Dk-1)
= P(U > uillo - -lk-1, D1 - -Di-1) = P(U > Uisallo - “lk-1, D1 - -Dk-1)
The value finally returned is computed by applying RDU to thigely obtained inD;. Note
that the conditionings are in fact performed on much smalkgs of variables thanks to the
independences displayed in the influence diagram. In oodgstimize the calculations, we used
a junction tree, like in Jensen’s algorithm [21].

5.4. Numerical Tests

The two proposed algorithms (the two-phases method andritb@perating directly in the
influence diagram endowed with fictitious dependences) baga implemented in-&+ and the
computational experiments were carried out on a PC with &lrenV CPU 2.13Ghz processor
and 3.5GB of RAM (as for decision trees). We present belowékalts obtained on randomly
generated influence diagrams. We first describe the mechasfishe random generator. We
then analyze the performances of the algorithms, both mdef computation time and solution
quality. We used the same functignas for decision treesp(p) = p”/(p” + (1 — p)*), with
v = 0.2 (value ofy for which the probabilities are the most distorted).
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A\n 4 5 6 7 8 9 10
0 0 0 0 0.21 0.85 2.78 9.11

1 0 0 0 0.23 0.62 394 | 1215

2 0 0 0 0.38 110 | 479 | 2336

3 0 0| 0.10 0.72 2.33 9.25 | 29.97

4 0 0 | 0.56 107 4.46 | 1861 | 9352

5 0] 008 | 191 343 | 1984 | 8740 -
2ph. | 017 | 093 | 502 | 17.38 - - -

Table 7: Execution Time (sec.).

5.5. Random Generator

In order to control the size of the generated influence diagrall nodes of the diagram
must be taken into account when computing an optimal styateg this purpose, given a fixed
numbem of decision nodes, one first creates a path of lengthRalternating decision variables
and random variables, with a utility variable at the leaf @odror instance, for two decision
variables, it gives:

N\ 1 N\
o)<
Then, to avoid that some variables in the diagram play nonael (i.e., have no impact on
the choice of an optimal strategy), one imposes that evergaim variable influences another

random variable (as long as there exists at least one randdable in its future). Coming back
to the previous example, one can obtain:

N

To densify the diagram, edges are randomly inserted beta@®e nodes. Concerning util-
ities and conditional probabilities, they were randomiyngeted. Finally, we used the greedy
algorithm described in Section 5.3 to perform theelaxation of consequentialism.

5.6. Numerical Results

To evaluate the computational gain when directly workinthminfluence diagram, we com-
pared the execution times of the implicit enumeration dthor in the two-phases method with
the execution times of the algorithm performingaelaxation of consequentialism for various
values ofA. Table 7 indicates the execution times obtained (average im seconds over 40
randomly generated instances for each entry). In each eglum vary the number of decision
variables (i.e. we vary the value nf and in each row is varied the valuesf The time taken by
the two-phases method is indicated in the last line of thkete®ymbol “-” appears when there
exist instances for which the execution time is very impatr{aeyond 30 minutes). Not surpris-
ingly, the moren andA increase, the more the execution times increase. The tasgshmethod
does not make it possible to solve instances with more thaecisidn nodes. In comparison,
the A-relaxation method enables to solve instances with up toebstbn nodes, at the cost of
optimality.
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A=0| A=2 | A=3 | A=4 | A=5
97% | 100%
93% 96% 98% | 100%
92% 93% 95% | 97% 97%
93% 94% 95% | 95% 97%
92% 93% 93% | 95% 96%

o O b W NS

Table 8: Influence of parametdaron strategy quality.

In order to evaluate the quality of the solutions returnedh®yA-relaxation method, we
compared their RDU values with the optimal ones in the cpwading decision trees (obtained
by applying the two-phases method). Given an influence diagp, we denote byRDU*(ID)
(resp. RDU,(ID)) the RDU value of a strategy optimizing RDU in the corresgiog decision
tree (resp. optimizing RDU ihD after performing a\-relaxation of consequentialism). In order
to evaluate the influence of parameteon the strategy quality (w.r.t. RDU), we computed ratio
RDU,A(ID)/RDU*(ID) for different values oA andn. For each value ofi, 200 instances were
randomly generated. Then, on these instances, we perfamedlaxation of consequentialism
for A varying from 0 to 5. Table 8 shows the average ratio obtainegércentage) over the
200 instances. The empty entries correspond to cases wheepaendences are already present,
and therefore the value is 100%. Whan= 0, one considers only consequentialist strategies.
One can see that, for the instances considered here, thesvafithe returned strategies are
significantly closer to the optimum fdr = 5 than forA = O (thanks to the consideration of some
non-consequentialist strategies).

6. Conclusion

In this article, we have proposed algorithms for optimizZRIQU in sequential decision prob-
lems represented by decision trees or influence diagrams. pfdblem is NP-hard for both
representations. For optimizing RDU in decision trees, weehprovided a MIP formulation
(adapted to risk seeker decision makers) and a branch antilmocedure (adapted to any
attitude toward risk). The upper bound used in the branchbemchd procedure is computed
by dynamic programming, and is polynomial in the number dafislen nodes. Note that this
upper bound is actually customizable to any decision doitecompatible with stochastic domi-
nance. The tests performed show that the dedicated braddboamd algorithm performs better
than CPLEX applied to the MIP formulation. Our method malkgmisible to solveféciently
random instances the number of decision nodes of which issieghousands, and real-world
instances the number of decision nodes of which is 75 maliginanks to the particular shape of
the decision tree).

However, when the number of stages grows, the decision omeeafism does not make it
possible to compactly store the problem instance. Infludiagrams, that expresses in a concise
way the problem instance by using independences betweiailes, are then very useful. When
optimizing RDU in influence diagrams, we aim therefore ataiiiatting optimality and compact-
ness issues (determining a strategy the RDU value of whiclose to optimum, and the storage
of which does not require too much memory space). We havershioat the space of strategies
considered in an influence diagram is smaller than the spfesteabegies considered in the cor-
responding decision tree, since it is restricted to consetialist strategies. For this reason, we
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have proposed an approach where the influence diagram isveddeith new edges represent-
ing fictitious dependenced{relaxation of consequentialism). This enables to entiehgpace
of strategies with non-consequentialist strategies. Kinid of strategies are indeed appreciated
by RDU-maximizers. The numerical experiments carried boisthe interest of-relaxation
since the RDU value of the computed strategy significantlgrowes the value obtained for a
consequentialist strategy.

In order to enhance the approach proposed here, the mosismmgmesearch direction is to
identify crucial edges, i.e. edges whose insertion in tiaémce diagram would significantly in-
crease the RDU value of the returned strategy. It would iddiegt the growth of the size of the
diagram, and it would improve the quality of the returnedtstgy. In a diterent research direc-
tion, it is worth investigating a new compact graphical madxee to handle non-consequentialist
decision criteria, since the influence diagram represemtaeems to be not very suitable for it.

A. Proofs

Proposition 1. The determination of an RDU-optimal strategy (problem RDBT) in a deci-
sion tree is an NP-hard problem.

Proof. The proof relies on a polynomial reduction from problem 3FS#hich can be stated as
follows:

INSTANCE: a setX of boolean variables, a collectidd of clauses orX such thatc| = 3 for
every clause € C.

QUESTION: does there exist an assignment of truth valuekg¢dybolean variables of that
satisfies simultaneously all the clause€d?

LetX ={Xg,..., X} andC = {cy, ..., Cm}. We now show how to reduce problem 3-SAT to finding
a strategy of value greater or equalnton a polynomially generated decision tree. The poly-
nomial generation of a decision tree from an instance of 3-BAperformed as follows. One
defines a decision node for every variableXof Given x; a variable inX, the corresponding
decision node in the decision tree, also denotedibyas two children: the first one (chance
node denoted by;) corresponds to the statemerthas truth value “true™, and the second one
(chance node denoted By) corresponds to the statemerthas truth value “false™. The subset
of clauses which includes the positive (resp. negativedditofx; is denoted byc;,,...,c} € C
(resp.{ci,....c;} € C). For every clause;, (1 < h < j) one generates a child 3} denoted
by ci, (terminal node). Besides, one generates an additionnlal ehil; denoted bycy, corre-
sponding to a fictive consequence. Similarly, one geneagsld of F; for every clausesi,

(1 < h < k), as well as an additionnal child corresponding to fictivaserjuencey. NodeT;
has thereforg + 1 children, while nodé&; hask + 1 children. In order to make a single decision
tree, one adds a chance ndderedecessor of all decision nodgs(1 < i < n). Finally, one
adds a decision node as root, wiEhas unique child. The obtained decision tree includesl
decision nodes,r?+ 1 chance nodes and at mos& + 1) terminal nodes. Its size is therefore
in O(nm), which guarantees the polynomiality of the transformatié-or the sake of illustra-
tion, on Figure 10, we represent the decision tree obtaioethé following instance of 3-SAT:
(X VX VX)) ALV X3V Xg) A (2 VX3V Xa).

Note that one can establish a bijection between the setatkgies in the decision tree and the
set of assignments in problem 3-SAT. For that purpose, ifiscgent to set; = 1 in problem
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3-SAT iff edge &, T;) is included in the strategy, ang = 0 iff edge &, F;) is included in the
strategy. An assignment such that the entire expressiamgsrt 3-SAT corresponds to a strategy
such that every clausg (1 < i < m) is a possible consequence (each clause appears therefore
from one to three times). To complete the reduction, we nowe h@adefine, on the one hand, the
probabilities assigned to the edges from no@de$; andF;, and, on the other hand, the utilities

of the consequences and functipn The reduction consists in defining them so that strategies
maximizing RDU correspond to assignments for which therergkpression is true in 3-SAT.
More precisely, we aim at satisfying the following propesti

(i) the RDU value of a strategy only depends on ske¢(and not the multiset) of its possible
consequences (in other words, the set of clauses that beoeengith the corresponding assign-
ment),

(ii) the RDU value of a strategy corresponding to an assignrhantitakes satisfiable the 3-SAT
expression equals,

(ii) if a strategy yields a set of possible consequences thtatdysincluded in the set of possi-
ble consequences of another strategy, the RDU value of tiee ia strictly greater.

For that purpose, after assigning probabiﬁt;o edges originating fror@, one defines the other
probabilities and utilities as follows & 0) :

pi=(5) _
u(c) = X 101

wherep; is the probability assigned to all the edges leading to aqunsecec;. For the edges
of type (T, co) (or (Fj, Co)), one setsu(cp) = O and one assigns a probability such that all the
probabilites of edges originating froify (or F;) sum up to 1. Note that this latter probability
is positive since the sum gi’s is strictly smaller than 1 by construction. Finally, fuioe ¢ is
defined as followk 0if pe[0; )
o(p) =1 piif pe[B2; B)fori<m
lifpe[B;1)
For the sake of illustration, we now give functigrobtained for the instance of 3-SAT indicated
above: . )
Oi if p € [0, W}) L
o(p) = | T P € Lagtom oo
10 IT P € [32100) a0
1, ifpelzgm D)

In the following, we consider some stratefyyinducing a lottery denoted y, and we denote
byl C {0,...,m} the set of indices of the possible consequences. dfiote that consequence
Co is always present in a strategy We denote byy; € {1, 2, 3} the number of occurences of
consequence in A. By abuse of notation, we use ifiiirentlyc; andu(c;) below.

Proof of (i). The RDU value ofA is RDU(L) = g X ¢(1) + Yici (Ci — Cprevi(i))® (Z jel a,—%)
jzi

j=i

whereprev(i) = maxj €| : j <i}. We now show tha¥i € I,@(Z jel CXJ’%) = ga(z,-_a %)
j2i

3Note that functionp is not strictly increasing here, but the reader can easifiyioae himself that it can be slightly
adapted so that it becomes strictly increasing.
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Figure 10: An example of reduction.

By increasingness af, we have

® Z% <g Zaj% <g 23%

jel jel jel
j=i jzi j=i
Therefore 11 oi 31
(=) < Lt A QS S
A 5ge") = #Q i) < ¢ 1)
J21 j=i j=i
Since

1{1\ 3/1)
‘P;ﬁ(m) =g ;ﬁ(l_o) = Pi-1
jzi j=i

we have by bounding

Pil_ P
4 %:a’ I %1 n
Hence
RDU(L) = Z (ci — Corew)) ¢ Z% sincecy x ¢(1) = 0

i€l jel
j=i
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Proof of (ii). Consider a strategi* corresponding to an assignment that makes the expression
true, and the induced lottety where all the consequencgf C are possible. Byif, we have

RDUL) = (6 - ci_l)so{zm] %]
i=1

=

We note that for all < m, (i —Gi-1)@(X T ¥) = 107 x pi.y = 107 x ()" = 1. Consequently,
RDU(L*) = m.

Proof of(iii ). Let A (resp.A’) denote some strategy the induced lottery of which {sesp.L’)

and letl C {0O,...,m} (resp.J = | U {k}) denote the set of indices of its possible consequences.
We assume here thiatc max|, the casd = max| being obvious. By definitior{j € | : i # k} =

{i € J: i # k}. We can therefore state the RDU value as a sum of three terms:

Pj Pj Pj
RDU(L) = Z(Ci = Cprew())¥ Z F] + (Ck = Cprew (k) Z F] + Z(Ci = Cprev())® Z F]

i€l jel jel i€l jed
i<k-1 =i j=k izk+1 =i

Similarly, the RDU value of strategy’ can also be stated as a sum of three terms:

p Pj Pj P
RDU(L") = i — C i —|+(cx—cC — |+ Ci—C i —
(%)} ;(CI prevy(i)) ;: n (Ck — Cprevy(k) ;: n %:( i prevs(i)) @ %: n

i<k-1 j=i jzk izk+1 j=i

By increasingness af, we have

lcdoVick-1 PilcglS R
c <k-1¢ Z S Z -
j2i j=i

Thus the first term oRDU(L) is smaller or equal to the first term BIDU(L’). One checks easily
thate(}] 3 %) = Psucg(-1 ande(X i %) = Ppreyk) = Pe-1, Wheresucg(i) = min{j el : j >
i}. But psucg-1 < Pk-1 Sincesucg(k) — 1 > k — 1. Therefore the second term RDU(L) is
strictly smaller than the second termRDU(L’). Finally, the third term oRDU(L) is of course
equal to the third term dRDU(L’). ConsequentllRDU(L) < RDU(L").

From (), (ii) and {ii) we conclude that any strategy corresponding to an assigintnat does
not make the expression true has a RDU value strictly smidlderm, and that any strategy cor-
responding to an assignment that makes the expressionasieRDU value exactly equal ta
Solving 3-SAT reduces therefore to determining a stratégyaliemin RDU-OPT. ]
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