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Abstract

We develop an XVA (costs) analysis of the clearance framework for a member of
a clearing house. The systemic consequences of the default of the clearing house itself
are outside the scope of such an XVA analysis. Hence the clearing house is assumed
default-free. We introduce a dynamic framework that incorporates the sequence of cash
flows involved in the waterfall of resources of a clearing house. The overall XVA cost
for a member, dubbed CCVA for central clearing valuation adjustment, is decomposed
into CVA, MVA and KVA components. The CVA is the cost for a member of its losses
on the default fund due to the defaults of other members. The MVA is the cost of
funding initial margin. The KVA mainly consists in the cost of the capital at risk that
the member provides to the CCP through its default fund contribution. In the end
the structure of the XVA equations for bilateral and cleared portfolios is similar, but
the data of the equations are of course not the same, reflecting the different financial
network structures. The numerical experiments emphasize the multilateral netting
benefit of central clearing. However, it is known that this multilateral netting comes
at the expense of a loss of netting across asset classes. If we compensate the first order
multilateral netting effect by a suitable scaling factor accounting for the loss of netting
across asset classes, then the bilateral and centrally cleared XVA numbers become
comparable. The second more explanatory factor of the numerical results is the credit
risk of the members and the ensuing MVA, especially in the bilateral setup, where even
more initial margin is required.
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1 Introduction

To cope with counterparty risk, the current trend in regulation is to push dealers to clear
their trades via CCPs, i.e. central counterparties (also known as clearing houses). Progres-
sively, central clearing is even becoming mandatory for vanilla products. Centrally cleared
trading mitigates counterparty risk through an extensive netting of all transactions. More-
over, on top of the variation and initial margins that are used in the context of bilateral
transactions, a CCP imposes its members to mutualize losses through an additional layer
of protection, called the default or guarantee fund, which is pooled between the clearing
members.

In this paper we develop the vision of a clearing house effectively eliminating counter-
party risk (we do not incorporate the default of the clearing house in our setup), but at a
certain cost for the members that we analyze. For this purpose, we develop an XVA (costs)
analysis of centrally cleared trading, parallel to the one that has been developed in the last
years for bilateral transactions.

1.1 Review of the CCP Literature

Duffie (2010) and Cont, Santos, and Moussa (2013) dwell upon the danger of creating “too
big to fail” financial institutions, including, potentially, clearing houses.

Collateralization, whether in the context of centrally cleared trading or of bilateral
trading under “standard CSA” (credit support annex), which is the emerging bilateral
trading alternative to centrally cleared trading, requires a huge amount of cash or liquid
assets. This puts a high pressure on liquidity, an issue addressed in Singh and Aitken
(2009), Singh (2010), Levels and Capel (2012) and Duffie, Scheicher, and Vuillemey (2015).
Relying on metrics à la Eisenberg and Noe (2001), Amini, Filipović, and Minca (2015)
assess the systemic risk and incentivization properties of a CCP design where, in order to
spare the clearing members from liquidation costs, in situations of financial distress, the
clearing members could temporarily withdraw from their default fund contributions to post
variation margin.

Avellaneda and Cont (2013) consider the optimal liquidation of the portfolio of a de-
faulted member by the clearing house.

Clearing is typically organized by asset classes, so that service closure of the CCP on one
asset class does not harm its activity on other markets—and also because otherwise, in case
of the default of a member, holders of less liquid assets (e.g. CDS contracts) are penalized
with respect to holders of more liquid assets (e.g. interest rate swaps). As a consequence,
the multilateral netting benefit of CCPs comes at the expense of a loss of bilateral netting
across asset classes (see Duffie and Zhu (2011)). Cont and Kokholm (2014) claim that the
former effect typically dominates the latter. But Ghamami and Glasserman (2016) show
that, accounting for bilateral cross-asset netting, the higher regulatory capital and margin
requirements adopted for bilateral contracts do not necessarily create the intended cost
incentive in favor of central clearing.

Cont, Mondescu, and Yu (2011) and Pallavicini and Brigo (2013) analyze the pricing
implications of the differences between the margining procedures involved in bilateral and
centrally cleared transactions.

Until recently, the cost analysis of CCPs, our focus in this paper, was only considered
in an old business finance literature reviewed in Knott and Mills (2002), notably Fenn and
Kupiec (1993). In the last years, new papers have appeared in this direction. Under styl-
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ized assumptions, Arnsdorf (2012) derives an explicit approximation to a CCVA (using the
terminology of the present paper), including effects such as wrong way risk (meant as pro-
cyclicality of the margins), credit dependence between members and left tailed distributions
of their P&Ls. Ghamami (2015) proposes a static one-period model where a CCVA can be
priced by Monte-Carlo. Brigo and Pallavicini (2014) extend the bilateral counterparty risk
dynamic setup of their previous papers to centrally cleared trading. However, they ignore
the default fund and the credit risk dependence issues that are inherent to the position of
a clearing member.

1.2 Contributions and Outline

This paper develops an XVA (costs) analysis of centrally cleared trading, parallel to the one
that has been developed in the last years for bilateral transactions (see e.g. Crépey, Bielecki,
and Brigo (2014, Parts II and III) or Brigo, Morini, and Pallavicini (2013)). A dynamic
framework incorporates the sequence of cash flows involved in the waterfall of resources of
the clearing house. As compared with Arnsdorf (2012) and Ghamami (2015), our CCVA
accounts not only for the central clearing analog of the CVA, which is the cost for a member
of its losses on the default fund in case of other members’ defaults, but also for the cost of
funding its margins (MVA) and for the cost of the capital (KVA) that is implicitly required
from members through their default fund contributions (and for completeness and reference
we also compute a DVA term).

The framework of this paper can be used by a clearing house to find the right bal-
ance between initial margins and default fund in order to minimize the CCVA (subject
to the regulatory constraints), hence optimize its costs to the members for a given level
of resilience. A clearing house can also use it to analyze the benefit for a dealer to trade
centrally as a member rather than on a bilateral basis, or to help its members manage their
CCVA (regarding the question for instance of how much of these costs they could consider
passing to their clients).

The paper is organized as follows. Sect. 2 presents our clearing house setup. The
waterfall of resources of the CCP is described in Sect. 3. The CCVA analysis is conducted
in Sect. 4. Sect. 5 introduces the common shock model that is used for the default times of
the members of the clearing house. Sect. 6 provides an executive summary of the centrally
cleared XVA analysis of this paper and recalls for comparison purposes the bilateral CSA
XVA methodology of Crépey and Song (2016). Sect. 7 designs an experimental framework
used in the numerics of Sect. 8. Sect. 9 concludes. Regulatory formulas are recalled in
Sect. A. Proofs of all lemmas are deferred to Sect. B.

1.3 Basic Notation and Terminology∫ b
a =

∫
(a,b]; x

± = max(±x, 0); δa represents a Dirac measure at a point a; λ denotes the
Lebesgue measure on R+. Unless otherwise stated, a filtration satisfies the usual condi-
tions; a price process is a special semimartingale in a càdlàg version; all inequalities between
random quantities are meant almost surely or almost everywhere, as suitable; all the cash
flows are assumed to be integrable whenever required; by “martingale” we mean local mar-
tingale unless otherwise stated, but true martingale is assumed whenever necessary. This
means that we only derive local martingale properties. Usually in applications one needs
true martingales, but this is not a real issue in our case, where even square integrability
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follows from additional assumptions postulated when dealing with BSDEs, which are our
main pricing tool in this paper.

2 Clearinghouse Setup

We model a service of a clearing house dedicated to trading between its members, labeled
by i ∈ N = {0, . . . , n}.

2.1 From Bilateral to Centrally Cleared Trading

In a centrally cleared setup, the clearing house interposes itself in all transactions, becoming
“the buyer to every seller and the seller to every buyer”. All the transactions between the
clearing house and a given member are netted together. See Figure 1 for an example,
where the circled numbers in the left (respectively right) diagram show the gross positions
of n = 3 counterparties in a CSA setup (respectively their net positions with the CCP after
the introduction of the latter in the middle).

In addition to interfacing all trades, the clearing house asks for several layers of guar-
antee to be posted by the members against counterparty risk, including a default fund that
is pooled between the clearing members.

The benefits of centrally cleared trading are multilateral netting benefit and mutualiza-
tion of risk. The drawbacks are an increase of systemic risk, where “too big to fail” CCPs
might be created, liquidity risk, due to the margin requirements, and a loss of bilateral
netting across asset classes (cf. Duffie (2010) and Cont et al. (2013)).
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Figure 1: From bilateral to centrally cleared trading.

2.2 Liquidation Procedure

The mandate of a CCP is to liquidate over a few days the portfolio of a defaulted member.
During the liquidation period, the CCP bears the risk of the portfolio. The trades with
a defaulted member are typically reallocated by means of auctions among the surviving
members and/or by a gradual liquidation of its assets in the market.

For ease of analysis in this paper, we assume the existence of a risk-free “buffer” that
is used by the clearing house for replacing defaulted members in their transactions with
others at the end of a liquidation period of length δ (the defaulted transactions already
involving the buffer as one counterparty are simply terminated). We assume that during
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the liquidation period, the promised contractual cash flows and the hedge of a defaulted
member are taken over by the CCP.

2.3 Pricing Framework

Let (Ω,G,Q) represent a stochastic pricing basis, with G = (Gt)t∈R+ , such that all our
processes are G adapted and all the random times of interest are G stopping times. Expec-
tation under Q and (Gt,Q) conditional expectation are denoted by E and Et. We denote by

r a G progressive OIS rate process and by βt = e−
∫ t
0 rsds the corresponding discount factor.

An OIS (overnight index swap) rate is together the best market proxy for a risk-free rate
and the reference rate for the remuneration of the collateral.

For each member i, we denote by Di
t the process of the cumulative contractual cash

flows of its portfolio with the CCP (“promised dividend” process ignoring counterparty
and funding risk), assumed of finite variation. We denote by P it the mark-to-market of its
portfolio ignoring counterparty and funding risk, i.e.

βtP
i
t = Et

(∫ T̄

t
βsdD

i
s

)
, t ∈ [0, T̄ ], (2.1)

where T̄ is the final maturity of the CCP service portfolio, assumed held on a run-off basis
(as is standard in any pricing or risk model). All cash flows and values are considered from
the point of view of the clearing house, e.g. P it = 1 means that the member i is short of
a mark-to-market value equal to one (disregarding margins) toward the clearing house at
time t. Since all trades are between the members, we have

∑
i∈N P

i = 0.

3 Margin Waterfall Analysis

The mark-to-market pricing formula (2.1) ignores the counterparty risk of the member i,
with default time τi and survival indicator process J i = 1[0,τi). As a first counterparty risk
mitigation tool, the members are required to exchange variation margins that track the
mark-to-market of their portfolios. A clearing house can call for variation margins at every
time of a margin grid of step h, e.g. twice a day.

However, various frictions and delays, notably the liquidation period δ, imply gap risk,
which is the risk of a gap between the variation margin and the debt of a defaulted member
at the time of liquidation of its portfolio. This is a special concern for certain classes of
assets, such as credit derivatives, that may have quite unpredictable cash flows (see Crépey
and Song (2016)).

This is why another layer of collateralization, called initial margins, is maintained in
centrally cleared transactions as well as in bilateral transactions under standard CSA (the
emerging bilateral trading alternative to centrally cleared trading). Initial margins are also
dynamically updated, based on some risk measure of the variation-margined P&L of each
member computed over the time horizon δ′ =δ + h of the so called margin period of risk
(maximal time h elapsed since the last margin call before the default plus liquidation period
δ between default and liquidation).

Gap risk is magnified by wrong-way risk, which is the risk of adverse dependence between
the positions and the credit risks of the members. One may also face credit contagion effects
between members (wrong-way and contagion risk are of special concern regarding credit
derivatives). Clearing houses deal with such extreme and systemic risk through a default
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fund mutualized between the clearing members. The default fund contribution of each
member is primarily intended to reimburse the losses triggered by its own default, but, if
rendered necessary by exhaustion of the previous layers of the waterfall, it can also be used
for reimbursing the losses due to the defaults of other members.

3.1 Margins

Let lh, with l ≥ 0, represent the times of the variation and initial margin calls, and let
lT , with T a multiple of h (e.g. h = one day and T = one month), represent the times of
update of the default fund contributions.

Consistent with our sign convention that all cash flows and values are seen from the
perspective of the clearing house, we count a margin positively when it is posted by a
member and we define the variation margin VM i, initial margin IM i and default fund
contribution DFCi of the member i as the piecewise constant process reset at the respective
grid times following, respectively (while the member i is alive):

VM i
lh = P ilh−, IM

i
lh = ρilh, DFC

i
lT = %ilT , (3.1)

where ρi and %i refer to suitable risk measures as explained below. Note that (3.1) defines
the level of reset of the respective cumulative amounts. Starting from VM i

0 = P i0−, IM
i
0 = ρi0

and DFCi0 = %i0, the corresponding updates at grid times are (P ilh−−P i(lh−h)−), (ρilh−ρilh−h)

and (%ilT − %ilT−T ).

Remark 3.1 In practice, the variation margin only tracks the mark-to-market of the port-
folio up to some thresholds, or free credit lines of the members, and up to minimal transfer
amounts devoted to avoiding useless updates. These features, which can be important in
the case of bilateral transactions, are omitted here as negligible in the case of centrally
cleared transactions.

Let

Lit,t+δ′ = P it+δ′ +

∫
[t,t+δ′]

e
∫ t+δ′
s rududDi

s − P it−. (3.2)

In particular, at margin call times t = lh, we have, in view of the specification of the
variation margin by the first identity in (3.1):

Lilh,lh+δ′ = P ilh+δ′ +

∫
[lh,lh+δ′]

e
∫ lh+δ′
s rududDi

s − VM i
lh, (3.3)

which is the variation-margined loss-and-profit of the member i at the time horizon δ′ =
δ + h of the margin period of risk (cumulative loss-and-profit also accounting for all the
contractual cash flows capitalized at the risk-free rate during the margin period of risk
[t, t+ δ′]). The risk measure used for fixing the initial margins is a univariate risk measure
computed at the level of each member individually, which we write as

ρilh = ρ
(
Lilh,lh+δ′

)
, (3.4)

where ρ can be value at risk, expected shortfall, etc.. The dependence between the portfolios
of the members is only reflected in the initial margins through the structural constraint that∑

i∈N P
i = 0.
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Remark 3.2 Historically, for computing initial margins, CCPs have been mostly using
the SPAN methodology, introduced by the Chicago Mercantile Exchange in the 80s. This
methodology is based, for each member, on the consideration of the most unfavorable
among sixteen reference scenarios (see Kupiec and White (1996)). Nowadays, value at risk
methodologies tend to become the standard.

Unless defaults happen, margins do not imply any transfer of ownership and can be
seen in this sense as a loan by the posting member. By contrast, default fund contributions
can be consumed in case of other members’ defaults, hence they should really be viewed as
capital put at the disposal of the CCP by the clearing members. The “cover two” EMIR
rule prescribes to size the default fund as, at least, the maximum of its largest exposure
and of the sum of its second and third largest exposures to the clearing members (see
Sect. A.1). This is only a regulatory minimum and sometimes more conservative rules are
used, such as a default fund set as the sum of the two largest exposures. It is then allocated
between the clearing members by some rule, e.g. proportionally to their initial margins. At
a more theoretical level, the mutualization rationale of the default fund calls for the use of
multivariate risk measures, which we write in an abstract fashion as

%ilT = %i

((
LjlT,lT+δ′ − IM

j
lT

)
j;JjlT=1

)
(3.5)

(or an analog formula involving not only the LjlT,lT+δ′ , but also intermediary Lj·,·+δ′ between
(l− 1)T and lT to refrain members from temporarily closing their positions right before lT
in order to avoid to contribute to the default fund).

Regarding the distributions that are used for members loss-and-profits in all these risk
measure computations, since the crisis, the focus has shifted from the cores of the distri-
butions, dominated by volatility effects, to their queues, dominated by scenarios of crisis
and default events. For the determination of the initial margins, Gaussian VaR models
are generally banned since the crisis and CCPs typically focus on either Pareto laws or on
historical VaR. Stressed scenarios and parameters are used for the determination of the
default fund.

Note that margin schemes as above, even, in the case of the default fund contributions,
possibly based on multivariate risk measures (cf. (3.5)), only account for asset dependence
between the portfolios of the members, ignoring credit risk and contagion effects between
members. This is in line with the mandate of a clearing house to mitigate (i.e. put a cap
on) its exposure to the members by means of the margins, in case a default would happen,
where a defaults is viewed as a totally unpredictable event. On top of the margins, add-ons
are sometimes required from members with particularly high credit or concentration risk.

We refer the reader to Ghamami (2015), Cruz-Lopez, Harris, Hurlin, and Perignon
(2015), Menkveld (2016) or Armenti, Crépey, Drapeau, and Papapantoleon (2015) for al-
ternative margin schemes and default fund specifications. Good margining schemes should
guarantee the required level of resilience to the clearing house at a bearable cost for the
members. Two points of concern are procyclicality, in particular with haircuts that increase
with the distress of a member, and liquidity, given the generalization of central clearing
and collateralization. Capponi and Cheng (2016) construct a model which endogenizes
collateral, making it part of an optimization problem where the CCP maximizes profit by
controlling collateral and fee levels.
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3.2 Breaches

The default time of the member i is modeled as a stopping time τi with an intensity process
γi. In particular, any event {τi = t}, for a fixed time t, has zero probability and can be
ignored in the analysis. For every time t ≥ 0, let

t̄ = t ∧ T̄ , tδ = t+ δ, t̄δ = 1t<T̄ t
δ + 1t≥T̄ T̄ (3.6)

and let t̂ denote the greatest margin call time lh ≤ t. We denote by

Ci = VM i + IM i +DFCi (3.7)

the overall collateral process of the member i. We assume that collateral posted is remuner-
ated OIS and that the CCP substitutes itself to a defaulted member during its liquidation
period, including regarding these collateral OIS remuneration cash flows. In our model
collateral earns OIS but collateral OIS earnings are transferred as a remuneration to the
posting member, they do not stay in the collateral accounts. Hence, the amount of available
collateral for the liquidation of a defaulted member does not accrue at the OIS rate but
stays constant during the liquidation period. As a consequence, we have Cit = Ci

t̂
for t ≤ τi

and the process C is stopped at time τ̂i. For each member i, we write

∆i
t =

∫
[τi,t]

e
∫ t
s rududDi

s, Q
i
t = P it + ∆i

t, εi = (Qi
τδi
− Ciτ̂i)

+,

χi = −1εi=0Q
i
τδi
− 1εi>0(Ciτ̂i +Riεi),

ξi = Qi
τδi

+ χi = 1εi>0(Qi
τδi
− Ciτ̂i −Riεi) = (1−Ri)εi,

(3.8)

where ∆i
t represents the cumulative contractual dividends capitalized at the risk-free rate

that fail to be paid by member i from time τi onwards. These dividends are promised but
unpaid due to the default of the member i at τi. Hence, they also belong to the exposure
of the CCP to the default of the member i. More precisely, as will be understand in more
detail from the proof of Lemma 3.1 below, χi corresponds to a terminal cash flow closing
the position of the defaulted member i, paid by the CCP to the estate of the defaulted
member at time τ δi ; εi corresponds to the raw exposure of the CCP to the default of the
member i; ξi is the exposure accounting for an assumed recovery rate Ri of the member i.
In fact, in the context of centrally cleared trading, by liquidation of a defaulted member,
we simply mean the liquidation of its CCP portfolio, as opposed to the legal liquidation,
by a mandatory liquidator, that can take several years (the New York branch of Lehman
was legally liquidated in December 2013, more than five years after Lehman’s default). In
particular, there is typically no recovery to expect on a defaulted member, i.e. Ri = 0.
The reason why we introduce recovery coefficients is for the discussion regarding DVA and
DVA2 in Sect. 4 and for comparison with the bilateral trading setup of Sect. 6.

Note that we do not exclude joint defaults in our setup. In fact, joint defaults, which
can be viewed as a form of “instantaneous contagion”, is the way we will introduce credit
dependence between members in Sect. 5. For Z ⊆ N = {0, . . . , n}, we denote by τZ ∈
R+ ∪ {∞} the time of joint default of names in the subset Z and only in Z. At this
stage we consider all the costs from the perspective of the CCP and the community of
the surviving members altogether. The allocation of these costs between the CCP and the
surviving members will be considered in Sect. 3.3. We call realized breach of a (possibly
joint) default event the residual loss to the CCP after all the collateral of the defaulted
member(s) has been consumed.
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Lemma 3.1 At each liquidation time τ δZ = τZ + δ with τZ < T̄ , the realized breach of the
CCP is given by

BτδZ
=
∑
i∈Z

ξi. (3.9)

3.3 Equity and Default Fund Replenishment Principle

We proceed with the description of the next layers of the waterfall of resources of the
clearing house, namely the equity and the default fund.

If the default of a member entails a positive breach, then the first payer (although to a
typically quite limited extent) is the clearing house itself (before the surviving members),
via its equity E.

Remark 3.3 The regulation (e.g. EMIR) does not necessarily require that the CCP be
the first payer in case of a realized breach. However, CCPs typically take the equity tranche
of this risk, as a good management incentive.

Specifically, at times lY, l ≥ 0, where Y is a multiple of T (e.g. one year whereas T is one
month), the equity process E is reset by the clearing house at some target level E?lY , the
“skin in the game” of the clearing house for the time period [lY, (l+1)Y ]. In the meantime,
the equity is used as first resource for covering the realized breaches, i.e., at each t = τ δZ
with τZ < T̄ , we have

∆Et = −
(
Bt ∧ Et−

)
. (3.10)

The part of the realized breach left uncovered by the equity, (Bt − Et−)+, is covered by
the surviving members through the default fund, which they refill instantaneously by the
following rule, at each t = τ δZ with τZ < T̄ (see Figure 2):

εit =
(
Bt − Et−

)+ J itDFC
i
t∑

j∈N J
j
tDFC

j
t

, (3.11)

proportionally to their current default fund contributionsDFCit (or other keys of repartition
such as their initial margins or the notionals of their positions).

In sum, the margins and the default fund contributions VM i
lh, IM

i
lh and DFCilT are reset

at their respective grid times by the surviving members according to (3.1); the equity is
reset at the times lY by the clearing house and is used for covering the first levels of realized
breaches at liquidation times according to (3.10); the losses in case of realized breaches above
the residual equity are covered at liquidation times by the surviving members according to
(3.11) (see Figure 2).

Remark 3.4 The total size of the default fund is
∑

j∈N J
jDFCj , a quantity also referred

to as the funded default fund. The unfunded default fund refers to the additional amounts
members may have to pay via the above default fund replenishment principle in case of
defaults of other members. More precisely,

uilT =

 ∑
lT−T<τδZ<lT

εi
τδZ
−DFCilT−T

+
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τZ

δ
(
Bt − Et−

)+
=
∑
i;Ji

t=1 ε
i
t

t = τ δZ

Figure 2: Margin cash flows: resets at margin call grid times and refill of the default fund
at liquidation times.

represents the unfunded default fund contribution of the member i for the period (lT −
T, lT ). The service closure, i.e. the closure of the activity of the clearing house on a given
market or service, is usually specified in terms of events such as the unfunded default fund∑

j∈N J
j
lTu

j
lT reaching a cap given as, e.g., 2

∑
j∈N J

j
lT−TDFC

j
lT−T , i.e. twice the funded

default fund. Given the high levels of initial margins that are used in practice, this is a very
extreme tail event. Moreover, in case of service closure, the risk of a member is bounded
above by the sum between its margins, three times its default fund contribution (assuming
the above specification of service closure) and the cost of the liquidation of the service for
this member. This cost is itself bounded by the notional of the member position, which
would only be the actual cost in a scenario where all the assets of the CCP would jump
to zero, also a very unlikely situation. In conclusion, the service closure event does not
really matter regarding our present purpose of the XVA cost analysis of CCP membership.
The default of the CCP as a whole (i.e. the closure of all its services) is an even more
unlikely event, especially because a central bank would hardly allow it to occur in view of
its systemic consequences. Hence we may and do ignore the service closure and the default
of the clearing house in the context of this paper. See Armakola and Laurent (2015)
about CCP resilience and see Duffie (2014) about alternative approaches to the design of
insolvency and failure resolution regimes for CCPs.

4 Central Clearing Valuation Adjustment

We refer to the (generic) member 0 as “the member” henceforth, the other members being
collectively referred to as “the clearing house”. For notational simplicity, we remove the
index 0 referring to the reference member. We call value of the CCP portfolio of the member
its value inclusive of counterparty and funding risk (as opposed to the mark-to-market of
the portfolio).

We assume that the member enters its portfolio at time 0, against an upfront payment
of a certain amount Π0, where the semimartingale Π is a tentative value process of the
CCP portfolio of the member. We assume that profit-and-losses are marked to the model
value process Π and realized in continuous time (the reader is referred to Albanese et al.
(2016, Section 9.1) for the discussion of other choices in this regard).

In this section, we derive a representation of the (no arbitrage) value Π of the CCP
portfolio of a member as the difference (cf. the remark 4.2 below) between the mark-
to-market of the portfolio and a correction Θ. We call Θ the central clearing valuation
adjustment (CCVA). The KVA-inclusive CCVA is obtained in a second step by adding
to Θ a capital valuation adjustment (KVA) meant as the cost that it would require for
remunerating the member at some hurdle rate for its CCP capital at risk (including its

10



default fund contribution).

4.1 DVA and DVA2 Issues

From the perspective of the member, the effective time horizon of interest is τ̄ δ (cf. (3.6)).
The position of the member is closed at τ δ (if τ < T̄ ), with a terminal cash flow from the
member’s perspective given, in view of (3.8) and of the analysis developed in the proof of
Lemma 3.1 (for i = 0 here), by

χ = −1ε=0Qτδ − 1ε>0(Cτ̂ +Rε). (4.1)

In particular, if ε > 0, i.e. Qτδ > Cτ̂ , then the member receives

−Cτ̂ −Rε = −Cτ̂ −R(Qτδ − Cτ̂ ) = (−Qτδ) + (1−R)(Qτδ − Cτ̂ ).

However, for this amount to benefit to the member’s shareholders, it needs to be hedged so
that they can monetize it before τ (otherwise it is only a profit to the member’s bondhold-
ers). But, in order to hedge this amount, the member would basically need to sell credit
protection on itself, which is barely possible in practice. Consequently, from an entry (i.e.
transaction) price perspective, the member should ignore such a windfall benefit at own
default and the ensuing debt valuation adjustment (DVA). This means formally setting
R = 1, which results in χ = −Qτδ in (4.1) and ξ = 0 later in (4.9). Then R becomes
disconnected from what the clearing house would actually recover (if anything) from the
member in case it defaults, but this is immaterial for analyzing the costs of this member
itself, it only matters for the others. In sum, it is possible and convenient to analyze the
no DVA case for the reference member just by formally setting R = 1.

If, however, some DVA is accounted for (i.e. if R < 1), then one may want to reckon
likewise a funding benefit of the member at its own default, a windfall benefit called DVA2
in the terminology of Hull and White (2012), corresponding to an additional cash flow to
the member of the form

(1− R̄)(Πτ− + C?τ̂ )+ (4.2)

at time τ (if < T̄ ). Here C? = VM + IM and R̄ is a recovery rate of the member to
its funder, so that the amount (Πτ− + C?τ̂ )+ in (4.2) represents the funding debt of the
member at its default (having assumed profit-and-losses marked-to-model and realized in
real time, see the proof of Lemma 4.1 below for more detail). The funder of the member
corresponds to a third party, possibly composed in practice of several entities or devices and
assumed default-free for simplicity, playing the role of lender/borrower of last resort after
exhaustion of the internal sources of funding provided to the member through its collateral
and its hedge.

More generally, even if one considers that the “true” recovery rate of the member is
simply zero, playing with formal recovery coefficients R and R̄ somewhere between 0 and
1 allows reaching any desired level of interpolation between the entry price point of view
R = R̄ = 1 and the reference exit price point of view R = R̄ = 0. On the DVA and DVA2
issues, see Hull and White (2012), Burgard and Kjaer (2012), Albanese and Andersen
(2015), Albanese, Andersen, and Iabichino (2015), Andersen, Duffie, and Song (2016) and
Albanese et al. (2016).
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4.2 Gain Process

The member can hedge its collateralized portfolio and needs to fund its whole position
(portfolio, margins and hedge).

Regarding hedging, we restrict ourselves to the situation of a fully securely funded
hedge, entirely implemented by means of swaps, short sales and repurchase agreements (all
traded outside the clearing house, given our assumption of a constant CCP portfolio of the
member), at no upfront payment. As explained in Crépey et al. (2014, Section 4.2.1 page
87), this assumption encompasses the vast majority of hedges that are used in practice.
Consistent with arbitrage requirements and our terminology of a risk-neutral measure Q,
we assume that the vector-valued gain processM of unit positions in the hedging assets is a
Q martingale (see Crépey et al. (2014, Remark 4.4.2 pages 96-97) or Bielecki and Rutkowski
(2015, Proposition 3.3)). We assume that the member sets up a related hedge (−ζ), i.e. a
predictable row-vector process with components yielding the (negative of) positions in the
hedging assets. The “short” negative notation in front of ζ is used for consistency with the
idea, just to fix the mindset, that the portfolio is “bought” by the member, which therefore
“sells” the corresponding hedge.

Regarding funding, we assume that variation margins VMt = Pt̂− consist of cash re-
hypothecable and remunerated at OIS rates, while initial margins consist of segregated
liquid assets accruing at OIS rates. Initial margins and default fund contributions are
supposed to be subject to CCP fees ct, e.g. 30 basis points. We postulate that the member
can invest excess-cash at a rate (rt + λt) and obtain unsecured funding at a rate (rt + λ̄t).

Let e denote the gain process (or profit-and-loss, hedging error,..) of the member’s
position, held by the member itself before τ̄ and then, if τ < T̄ , by the clearing house (as
liquidator of the member’s position) on [τ̄ , τ̄ δ].

Lemma 4.1 We have e0 = 0 and, for 0 < t ≤ τ̄ δ,

det = dΠt − rtΠtdt− Jt

dDt +
∑
Z⊆N

ετδZ
δτδZ

(dt) + gt(Πt)dt


− 1{τ<T̄}(1− R̄)(Πt− + C?

t̂
)+dJt − ζtdMt,

(4.3)

where, for any π ∈ R,

gt(π) = ct(Ct − Pt̂−) + λ̄t (π + C?t )+ − λt (π + C?t )− . (4.4)

Remark 4.1 The self-financing equation (4.3) holds for any funding coefficient gt = gt(π)
there, not necessarily given by (4.4), as soon as (rtΠt + gt(Πt))dt represents the dt-funding
cost of the member (whilst the member is alive, and net of the funding cost of its hedge
that is already comprised in the local martingale ζtdMt).

4.3 Pricing BSDE

Definition 4.1 We call Π a (no arbitrage) value process for the member’s portfolio if
Πτ̄δ = 1{τ<T̄}χ and the ensuing gain process e (cf. (4.3)) is a risk-neutral local martingale.
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Proposition 4.1 A semimartingale Π is a value process for the member’s portfolio if and
only if it satisfies the following valuation BSDE on [0, τ̄ δ]:

Πτ̄δ = 1{τ<T̄}χ and, for t ≤ τ̄ δ,
dΠt = rtΠtdt+ 1{τ<T̄}(1− R̄)(Πt− + C?

t̂
)+dJt

+ Jt

dDt +
∑
Z⊆N

ετδZ
δτδZ

(dt) + gt(Πt)dt

+ dνt,

(4.5)

for some local martingale ν.

Proof. In view of (4.3), (4.5) is equivalent to det = dνt − ζtdMt. Since ζtdMt defines a
local martingale, therefore e and ν are jointly local martingales or not, which establishes
the proposition.

Note that, assuming ν a true martingale, equivalently to the differential formulation (4.5),
we can write (absorbing the rtΠtdt term from (4.5) into the risk-neutral discount factor β
in (4.6)) :

βtΠt = Et
[
1{τ<T̄}

(
βτδχ+ βτ (1− R̄)(Πτ− + C?τ̂ )+Jt

)
−

∑
t<τδZ<τ̄

βτδZ
ετδZ
−
∫ τ̄

t
βsJs

(
dDs + gs(Πs)ds

)]
, 0 ≤ t ≤ τ̄ δ.

(4.6)

4.4 CCVA Representation

In this section we define the central counterparty valuation adjustment (CCVA) and derive
the corresponding BSDE.

Definition 4.2 Given a value Π for the member, the corresponding CCVA is the process
defined on [0, τ̄ δ] as Θ = −(Q+ Π).

Remark 4.2 Recall from (3.8) that Q = P+∆, with all values viewed from the perspective
of the clearing house. Consistent with the usual definition of a valuation adjustment (see
Brigo et al. (2013) or Crépey et al. (2014)), we have Θ = (−Q)−Π, where (−Q) corresponds
to the perspective of the member.

Let

ξ̄t = E(β−1
t βτ+δξ | Gt), (4.7)

where ξ = (1−R)(Qτδ −Cτ̂ )+ as before (cf. (3.8)). Let ξ̂ be a G predictable process, which
exists by Corollary 3.23 2) in He, Wang, and Yan (1992), such that

ξ̂τ = E(β−1
τ βτδξ | Gτ−) = E(ξ̄τ | Gτ−). (4.8)

In particular, in the no-DVA case with R = 1, then ξ = ξ̄ = ξ̂ = 0.
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Proposition 4.2 Let there be given semimartingales Π and Θ such that Θ = −(Q+ Π) on
[0, τ̄ δ]. The process Π is a value process for the member’s portfolio if and only if the process
Θ satisfies the following BSDE:

βtΘt = Et
[ ∑
t<τδZ<τ̄

βτδZ
ετδZ
− 1{τ<T̄}

(
βτδξ + βτ (1− R̄)(Pτ− − Cτ̂ + Θτ−)−Jt

)
+

∫ τ̄

t
βs
(
gs(−Ps −Θs)

)
ds
]
, t ∈ [0, τ̄ δ].

(4.9)

Proof. Assuming Θ defined as −(Q + Π) for some value process Π on [0, τ̄ δ], then the
terminal condition Θτ̄δ = −1{τ<T̄}ξ that is implicit in (4.9) results from (3.8) and the

terminal condition for Π in (4.5). Moreover, we have, for t ∈ [0, τ̄ δ],

− βtΘt = βtQt + βtΠt = βtPt +

∫ t

0
βsdDs + (βtΠt −

∫ t

0
βsJsdDs), (4.10)

hence

− βtΘt −
∫ t

0
βsJs

( ∑
Z⊆N

ετδZ
δτδZ

(ds) + gs(−Ps −Θs)ds
)

− 1{τ<T̄}
∫ t

0
(1− R̄)(−Ps− −Θs− + C?ŝ )+dJs =

(
βtPt +

∫ t

0
βsdDs

)
+

∫ t

0
βsdνs,

by the pricing BSDE (4.5) satisfied by Π. In view also of (2.1) (used for i = 0 here), this is
a (local) martingale, hence it coincides with the conditional expectation of its terminal con-
dition (assuming it is a true martingale), which establishes (4.9). The converse implication
is proven similarly.

Remark 4.3 As an alternative argument equivalent to the above, one can substitute the
right-hand side in (4.6) for βtΠt in (4.10), which, after an application of the tower rule,
yields (4.9). One can proceed similarly to show (4.6) if (4.9) is assumed.

Let, for ϑ ∈ R,

f̂t(ϑ) = gt(−Pt − ϑ)− γtξ̂t − (1− R̄)γt(Pt − C?t + ϑ)−

= −γtξ̂t︸ ︷︷ ︸
dvat

+
(
ct(Ct − Pt̂−) + λ̃t (Pt − C?t + ϑ)− − λt (Pt − C?t + ϑ)+ )︸ ︷︷ ︸

fvat(ϑ)

, (4.11)

by definition (4.4) of g, where λ̃ = λ̄− (1− R̄)γ (recall γ = γ0 is the assumed intensity of
τ). From the perspective of the member, the two terms in the decomposition (4.11) of the
coefficient f̂t(ϑ) can respectively be interpreted as a beneficial debt valuation adjustment
coefficient (dvat that can be ignored by setting R = 1) and a funding valuation adjustment
coefficient (fvat(ϑ) in which the DVA2 component can be ignored by setting R̄ = 1).

Proposition 4.3 The “full CCVA BSDE” (4.9) for a semimartingale Θ on [0, τ̄ δ] is equiv-
alent to the following “reduced CCVA BSDE” for a semimartingale Θ̂ on [0, τ̄ ] :

βtΘ̂t = Et
[ ∑
t<τδZ<τ̄

βτδZ
ετδZ

+

∫ τ̄

t
βsf̂s(Θ̂s)ds

]
, t ∈ [0, τ̄ ], (4.12)

equivalent in the sense that if Θ solves (4.9), then Θ̂ = JΘ solves (4.12), whilst if Θ̂ solves
(4.12), then Θ = JΘ̂− (1− J)1{τ<T̄}ξ̄ solves (4.9).
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Proof. The full CCVA BSDE (4.9) is obviously equivalent to Θ = −1{τ<T̄}ξ̄ on [τ̄ , τ̄ δ] and

βtΘt = Et
[ ∑
t<τδZ<τ̄

βτδZ
ετδZ
− 1{τ<T̄}βτ

(
ξ̄τ + (1− R̄)(Pτ− − C?τ̂ + Θτ−)−

)
+

∫ τ̄

t
βsgs(−Ps −Θs)ds

]
on [0, τ̄), which is in turn equivalent to

Θ = −1{τ<T̄}ξ̄ on [τ̄ , τ̄ δ] and, on [0, τ̄),

βtΘt = Et
[ ∑
t<τδZ≤τ̄

βτδZ
ετδZ

+

∫ τ̄

t
βsf̂s(Θs)ds

]
,

(4.13)

because on [0, τ̄) :

Et
[
1{τ<T̄}βτ

(
ξ̄τ + (1− R̄)(Pτ− − C?τ̂ + Θτ−)−

)
= Et

[
1{t<τ<T̄}βτ

(
ξ̂τ + (1− R̄)(Pτ− − C?τ̂ + Θτ−)−

) ]
= −Et

[ ∫ T̄

t
βs

(
ξ̂s + (1− R̄)(Ps− − C?ŝ + Θs−)−

)
dJs

]
= Et

[ ∫ T̄

t
βsγs

(
ξ̂s + (1− R̄)(Ps− − C?ŝ + Θs−)−

)
ds
]
.

Here the last identity holds by consideration of the (local, assumed true) martingale

βt(ξ̂t + (1− R̄)(Pτ− − C?τ− + Θτ−)−)dJt + βtγt(ξ̂t + (1− R̄)(Pt − C?t + Θt)
−)dt.

One readily checks that if Θ solves (4.13), then Θ̂ = JΘ solves (4.12), whilst if Θ̂ solves
(4.12), then Θ = JΘ̂− (1− J)1{τ<T̄}ξ̄ solves (4.13).

Note that, provided r and λ̃ are bounded fro below, the reduced BSDE coefficient f̂t(ϑ)
in (4.11) satisfies the monotonicity assumption(

f̂t(ϑ)− f̂t(ϑ′)
)
(ϑ− ϑ′) ≤ C(ϑ− ϑ′)2,

for some constant C. Then, under mild integrability conditions, the reduced CCVA BSDE
(4.12) is well-posed in the space of square integrable solutions (see e.g. Kruse and Popier
(2016, Sect. 5)). By virtue of Proposition 4.3, so is in turn the full CCVA BSDE (4.9).

Remark 4.4 In the terminology of Crépey and Nguyen (2016), (4.12) is the “partially
reduced” CCVA BSDE (cf. also Lemma 2.3 in Crépey and Song (2015)), while the “fully
reduced” BSDE (simply called “reduced” in Crépey and Song (2016)) is the BSDE on
the time interval [0, T ] obtained from (4.12) by projection on a smaller filtration (the
market or reference filtration myopic to the defaults of the two parties). In this paper we
only work with the partially reduced BSDE in order to avoid the enlargement of filtration
technicalities.
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4.5 Cost of Capital

The capital at risk of the member is composed of its default fund contribution DFCt, which
represents implicit capital at risk, and of its regulatory CCP capital Kcm

t as of (A.3). Along
the lines of Albanese et al. (2016), we define the capital valuation adjustment (KVA) of the
member as the cost of remunerating its capital at risk Kt = DFCt + Kcm

t at some hurdle
rate k throughout the whole life of the portfolio (or until the member defaults). Such a
KVA is given by the following formula (cf. Albanese et al. (2016)):

KVAt = kEt
∫ τ̄

t
e−

∫ s
t (ru+k)duKsds, t ∈ [0, τ̄ ]. (4.14)

The KVA-inclusive CCVA is then defined as the sum between our previous CCVA Θ and
this KVA.

5 Common Shock Model of Default Times

We use a dynamic Marshall-Olkin (DMO) copula model of the default times τi (see Crépey
et al. (2014, Chapt. 8–10) and Crépey and Song (2016)). As demonstrated in Crépey et al.
(2014, Sect. 8.4), such a model can be efficiently calibrated to marginal and portfolio credit
data, e.g. CDS and CDO data (or proxies) on the members. The joint defaults feature of
the DMO model is also interesting in regard of the EMIR “cover two” default fund sizing
rule (cf. Sect. A.1).

Let there be given a family Y of “shocks”, i.e. subsets Y of members, typically the single-
tons {0}, {1}, . . . , {n} and a small number of “common shocks” representing simultaneous
defaults. For Y ∈ Y, we define

ηY = inf{t > 0;

∫ t

0
γY (s)ds > EY }, JY = 1[0,ηY ),

for a shock intensity function γY (t) and an independent standard exponential random
variable EY . We then set

τi = min
{Y ∈Y;i∈Y }

ηY , i ∈ N.

Example 5.1 Fig. 3 shows one possible default path in a common shock model with n = 5
and Y = {{0}, {1}, {2}, {3}, {4}, {3, 4}, {1, 2, 3}, {0, 1}}. The inner ovals show which shocks
happen and cause the observed defaults at successive default times. First, the default
of name 1 occurs as the consequence of the shock {1}. Second, names 3 and 4 default
simultaneously as a consequence of the shock {3, 4}. Third, the shock {1, 2, 3} triggers the
default of name 2 alone (as name 1 and 3 have already defaulted). Fourth, the default of
name 0 alone occurs as the consequence of shock {0, 1}.
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Figure 3: One possible default path in a model with n = 4 and Y =
{{0}, {1}, {2}, {3}, {4}, {3, 4}, {1, 2, 3}, {0, 1}}.

Again, in the case of the reference member (labeled 0), we omit the superscript 0 in the
notation. In particular, we have J = 1[0,τ) =

∏
Y ∈Y• J

Y , where Y• = {Y ∈ Y; 0 ∈ Y },
hence the intensity γ of τ is given as

γ = J−γ•, where γ• =
∑
Y ∈Y•

γY . (5.1)

We assume that all the market risk factors are gathered in a vector process X without jump
at τ and that the processes X and X = (X,J), where J = (JY )Y ∈Y , are Markov in the full
model filtration G given as the filtration of X progressively enlarged by the random times
ηY , Y ∈ Y (in Sect. 7-8, X is simply a Black-Scholes stock S, augmented by additional
factors in order to cope with the potential path dependence of dividends and collateral).

Setting ∆̂t =
∫ t

0 e
∫ t
s rududDs so that βt∆t = βt∆̂t − βτ ∆̂τ− for t ≥ τ , we assume, consistent

with the interpretation of each respective quantity, that

εt = ε(t,Xt) for t = τ δZ , Z ⊆ N

Pt = P (t,Xt), ∆̂t = ∆̂(t,Xt), Ct = C(t,Xt), t ∈ [0, τ̄ ]

(having augmented X by ∆̂ and/or C if need be), for continuous functions ε(t, x), P (t,x),
∆̂(t,x) and C(t, x). In particular, it holds that

∆τ = ∆̂τ − ∆̂τ− = ∆̂(τ,Xτ )− ∆̂(τ,Xτ−) = 0,

by continuity of X at τ (as opposed to ∆τ 6= 0 in the gap risk model of Crépey and Song
(2016)).

Lemma 5.1 We have

dvat = dva(t,Xt) = −Jtξ̄
(
t,Xt

)
γ•, Q× λ a.e.,

for a function ξ̄(t, x) such that ξ̄τ = ξ̄(τ,Xτ−).
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6 XVA Engines

In this section, we summarize in algorithmic terms the central clearing XVA methodology of
this paper, as well as a bilateral trading XVA methodology recalled for comparison purposes
from Crépey and Song (2016). In both cases we use the common shock model of Sect. 5
for modeling the default times involved.

6.1 CCVA Engine

In spite of the nonlinearity inherent to the funding component of the CCVA, standard Monte
Carlo loops can be used for estimating a linearized first order CCVA obtained replacing
fvas(Θs) by fvas(0) in (4.11), i.e. f̂s(Θ̂s) by f̂s(0) in (4.12). A nonlinear correction can
be estimated based on the Monte Carlo expansion of Fujii and Takahashi (2012a,2012b)
(further studied in Gobet and Pagliarani (2015)) in vanilla cases, with explicit formulas
for Pt, or by the branching particles scheme of Henry-Labordère (2012) in more exotic
situations. In the bilateral trading setup of Crépey and Song (2016) (see also Crépey and
Nguyen (2016)), the nonlinear correction is consistently found less than 5% to 10% of the
linear part. Hence, in this paper, we just use the linear part. We obtain by first order linear
approximation in the reduced CCVA BSDE (4.12):

Θ0 = Θ̂0 ≈ E
[ ∑

0<τδZ<τ̄

βτδZ
ετδZ

+

∫ τ̄

0
βsf̂s(0)ds

]
= E

∑
0<τδZ<τ̄

βτδZ
ετδZ︸ ︷︷ ︸

CVA

+E
∫ τ̄

0
βsdvasds︸ ︷︷ ︸

DVA

+ E
∫ τ̄

0
βs

(
λ̃s (C?s − Ps)

+ − λs (C?s − Ps)
−
)
ds︸ ︷︷ ︸

MVA

+E
∫ τ̄

0
βscs(Cs − Pŝ−)ds︸ ︷︷ ︸

MLA

,

(6.1)

where βt = e−
∫ t
0 rsds, λ̃ = λ̄− (1− R̄)γ•, C? = VM + IM and, for each t = τ δZ < τ̄ ,

εt =
(
Bt − Et−

)+ DFCt∑
j∈N J

j
tDFC

j
t ,

in which Bt =
∑
i∈Z

(P it + ∆i
t − Cit)+

with, for each member i, Ci = VM i + IM i +DFCi (cf. (3.11) and (3.7)-(3.9)). In addition,
dva = −γξ̂, where ξ̂ is a predictable process such that ξ̂τ = E(β−1

τ βτδξ | Gτ−) (cf. (4.8)),
with ξ = (1−R)(Pτδ + ∆τδ − Cτ )+.

The ε terms in (6.1) give rise to a CVA paid by the member through its contributions
to the refill of realized breaches. The terms dubbed MVA and MLA in (6.1), where

C?s − Ps = Pŝ− + IMs − Ps ≈ IMs and Cs − Pŝ− = IMs +DFCs,

are interpreted as a margin valuation adjustment (cost to the member of funding its initial
margins, essentially) and a margin liquidity adjustment (cost to the member of the CCP
margin fees). The positive (respectively negative) terms in (6.1) can be considered as deal
adverse (respectively deal friendly) as they increase (respectively decrease) the CCVA Θ.
The DVA and the DVA2 can be ignored in Θ by setting R = 1 and R̄ = 1, respectively.

For numerical purposes, we use the following randomized version of (6.1):

E
[ ∑

0<τδZ<τ̄

βτδZ
ετδZ

+ 1{ζ<τ̄}
eµζ

µ
βζ f̂ζ(0)

]
, (6.2)
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where ζ denotes an independent exponential time of parameter µ. Moreover, to deal with
the dvaζ term in f̂ζ(0), we use the following result.

Lemma 6.1 For any predictable process h and independent atomless random variable ζ,
we have:

E[1{ζ<τ̄}hζβζdva(ζ,Xζ)] = −E
[
1{ζ<τ̄}hζβζ+δ(1−R)γ•(ζ)

(
Qζδ − C?ζ

)+]
. (6.3)

Plugging hζ = eµζ

µ in (6.3) to deal with the dvaζ term in f̂ζ(0), (6.2) is rewritten as

Θ̂0 ≈ E
{ ∑

0<τδZ<τ̄

βτδZ
ετδZ

+ 1{ζ<τ̄}
eµζ

µ
×

[
− βζδγ•(ζ)(1−R)

(
Qζδ − Cζ

)+
+ βζ

(
λ̃ζ(C?ζ − Pζ)+ − λζ(C?ζ − Pζ)−

)]}
.

(6.4)

The KVA-inclusive CCVA is then defined as the sum between (6.4) and a KVA as of (4.14),
valued at time t = 0 by simulation and randomization of the time integral there.

6.2 BVA Engine

Here we provide an executive summary of a bilateral CSA trading setup recalled for com-
parison purposes from Crépey and Song (2016) (cf. also Brigo and Pallavicini (2014) or
Bichuch, Capponi, and Sturm (2016) for related bilateral counterparty risk analyses with
asymmetric funding costs).

Remark 6.1 In Crépey and Song (2016), the cash flows are viewed from the perspective of
the bank, which will be taken as the reference member here, whereas we view them in this
paper from the perspective of the clearing house, i.e. opposite to the one of the member.
Hence, the sign conventions are opposite, i.e. P,∆, Q, etc... in this paper correspond to
their opposites in Crépey and Song (2016), which is why we see ·∓ here whenever we have
·± there.

In the context of bilateral trading between a bank, taken as the reference member
labeled by 0 in the previous CCP setup, and a counterparty taken as another member
i 6= 0, let VM denote the variation margin, where VM ≥ 0 (resp. ≤ 0) means collateral
posted by the bank and received by the counterparty (resp. posted by the counterparty and
received by the bank). Let Ib ≥ 0 and Ic ≤ 0 represent the initial margin posted by the
bank and the negative of the initial margin posted by the counterparty. Hence,

Cb = VM + Ib and Cc = VM + Ic (6.5)

are the total collateral guarantee for the counterparty and the negative of the total collateral
guarantee for the bank. Assuming the variation margins re-hypothecable and the initial
margins segregated (as typically so in practice), the collateral funded by the bank is C =
VM + Ib. For consistency with our CCP setup, VMt will be taken as Pt̂−. So, in the spirit
of a standard CSA, we are considering full collateralization, and even overcollateralization
through the initial margins. We assume that VM and Ib are remunerated at the OIS rate
r. Following Crépey and Song (2016), at time 0, the difference Θ0 between the mark-
to-market of the portfolio and its value inclusive of counterparty and funding risk (both
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from the perspective of the bank, cf. the remark 4.2), difference dubbed BVA for bilateral
valuation adjustment, can be linearized as follows:

Θ0 = Θ̄0 ≈ E
[ ∫ τ̄

0
βsf̄s(0)ds

]
= E

∫ τ̄

0
βscdvasds︸ ︷︷ ︸

CDVA

+

+ E
∫ τ̄

0
βs

(
λ̃s (Cs − Ps)+ − λs (Cs − Ps)−

)
ds︸ ︷︷ ︸

MVA

.

(6.6)

Here:

• P means the mark-to-market of the position of the member with the counterparty
(viewed from the perspective of the latter),

• the meaning of β, λ̃ and λ is as in the CCP setup,

• τ = τb ∧ τc is the first-to-default time of the bank and the counterparty,

• cdva = γξ̂, where ξ̂ is a predictable process such that ξ̂τ = E(β−1
τ βτδξ | Gτ−), with

ξ = 1{τc≤τδb }
(1−Rc)(Pτδ + ∆τδ − Ccτ )− − 1{τb≤τδc }(1−Rb)(Pτδ + ∆τδ − Cbτ )+,

in which the recovery rates Rc of the counterparty to the bank and Rb of the bank to
the counterparty are usually taken in a bilateral trading setup as 40%.

For numerical purposes, we use the following randomized version of (6.6):

E
[
1{ζ<τ̄}

eµζ

µ
βζ f̄ζ(0)

]
, (6.7)

where ζ denotes an independent exponential time of parameter µ. The cdvaζ term in f̄ζ(0)
is treated by the following bilateral analog of Lemma 6.1. We write Yb = {Y ∈ Y; 0 ∈ Y },
Yc = {Y ∈ Y; i ∈ Y } and we recall that X = (X,J) denotes the market risk and common
shock factor process introduced in Sect. 5, assumed without jump at τ . Similar to Lemma
5.1, it holds that cdvat = cdva(t,Xt). In addition (see Lemma 8.2 and its proof in Crépey
and Song (2016, hal version 2), in a slightly more general setup where X may jump at τ):

Lemma 6.2 For any predictable process h and independent atomless random variable ζ,
we have:

E
[
1{ζ<τ̄}hζβζcdva(ζ,Xζ)

]
= E

[
1{ζ<τ̄}hζβζδ×(( ∑

Y ∈Yc

γY (ζ) + 1{τc≤ζδ}
∑

Y ∈Yb\Yc

γY (ζ)
)
(1−Rc)

(
Qζδ − Cζ

)−
−
( ∑
Y ∈Yb

γY (ζ) + 1{τb≤ζδ}
∑

Y ∈Yc\Yb

γY (ζ)
)
(1−Rb)

(
Qζδ − Cbζ

)+)]
.

(6.8)
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Plugging hζ = eµζ

µ in (6.8) to deal with the cdvaζ term in f̄ζ(0), (6.7) is rewritten as
(compare (6.4)):

Θ̄0 ≈ E
{
1{ζ<τ̄}

eµζ

µ

[
βζδ
(( ∑

Y ∈Yc

γY (ζ) + 1{τc≤ζδ}
∑

Y ∈Yb\Yc

γY (ζ)
)
(1−Rc)

(
Qζδ − Cζ

)−
−
( ∑
Y ∈Yb

γY (ζ) + 1{τb≤ζδ}
∑

Y ∈Yc\Yb

γY (ζ)
)
(1−Rb)

(
Qζδ − Cbζ

)+)
+ βζ

(
λ̃ζ(Pζ − Cζ)− − λζ(Pζ − Cζ)+

)]}
.

(6.9)

Such adjustments are then computed counterparty by counterparty and added over i =
1, . . . , n to obtain the BVA of the bank.

Remark 6.2 In practice, netting sets typically merge into a unique funding set, meaning
that one should solve for a single MVA at the level of the whole portfolio of the bank.
However, in the present frictionless variation-margining case (cf. the remark 3.1),

Cζ − Pζ = P
ζ̂− + IMζ − Pζ ≈ IMζ ≥ 0

holds counterparty by counterparty, so that a unique funding set or funding by netting sets
makes a negligible difference in practice.

Similar as in the CCP setup, the KVA-inclusive BVA is obtained by adding to (6.9) a
KVA in the sense of the formula (4.14) (valued at t = 0), except that K is now the bilateral
regulatory capital given by the formulas of Sect. A.2.

7 Experimental Framework

In this section we design an experimental framework that is used for the XVA comparative
numerical analysis of Sect. 8.

7.1 Driving Asset

Given an interest rate process S, we consider a stylized swap of strike S̄ with cash flows
hl(S̄ − STl−1

) at increasing times Tl, l = 1, . . . , d, where hl = Tl − Tl−1. We suppose a
stylized Black-Scholes dynamics with risk-neutral drift κ and volatility σ for the interest
rate process S. Denoting by Tlt the smallest Tl > t, the mark-to-market of the swap
for the party receiving the above cash flows is given, for T0 = 0 ≤ t ≤ Td = T̄ , by
Pt = β−1

t βTlthl(S̄ − STlt−1
) + P ?t , where

P ?t = β−1
t S̄

d∑
l=lt+1

βTlhl − β
−1
t St

d∑
l=lt+1

βTlhle
κ(Tl−1−t) = P?(t, St). (7.1)

We choose the notional Nom of the swap and its strike S̄ in such a way that each leg of
the swap has a mark-to-market equal to one at time 0.
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Figure 4: Mark-to-market process of the swap viewed from the point of view of a party
receiving floating and paying fix in the swap (party with a long unit position in the swap).
The mean and quantiles as a function of time are computed by Monte Carlo simulation
of the process (−Pt) based on the formula (7.1) for P?, used along m = 104 simulated
trajectories of S.

The following numerical values are used:

r = 2%, S0 = 100, κ = 12%, σ = 20%, hl = 3 months, T̄ = 5 years,

resulting in the mark-to-market process displayed in Figure 4 from the point of view of
a party receiving floating and paying fix, which we call a long unit position in the swap.
Figure 4 exhibits the typical profile of an interest rate swap in an increasing term structure
of interest rates, where expectations of increasing rates make the swap in the money on
average (i.e. the average curve is in the positive in Figure 4). This yields to the product the
XVA flavor that would be absent in a flat interest rates environment where the mark-to-
market process of the swap would be zero and not give rise to any adjustments. The present
Black–Scholes setup and values of the parameters for the process S allow us to obtain this
stylized pattern without having to introduce a full flesh interest rate model, which would
add useless complexity with respect to our goal in this paper.

7.2 Structure of the Clearing house

We consider a clearing house with (n + 1) members chosen among the 125 names of the
CDX index as of 17 December 2007, a particular day toward the beginning of the global
financial crisis. The default times of the 125 names are modeled by a common shock model
with piecewise constant intensities γY constant on the time intervals [0, 3] and [3, 5] years,
calibrated to the corresponding 3 and 5 year CDS and 5 year CDO data. With five nested
common shocks Y on top of an idiosyncratic shock Y = {i} for each of the 125 names, a
nearly perfect calibration can be achieved, as developed in Crépey et al. (2014, Sect. 8.4.3)

We consider a subset of nine representative members of the index, with increasing CDS
spreads shown in the first row of Table 1.
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Σi 45 52 56 61 73 108 176 367 1053

αi (0.46) 0.09 0.23 (0.05) 0.34 (0.04) 0.69 (0.44) (0.36)

Table 1: (Top) Average 3 and 5 year CDS spreads Σi, in basis points (bp), for a repre-
sentative subset of nine members of the CDX index as of 17 December 2007. (Bottom)
Coefficients αi summing up to 0 used for determining the swap positions of the nine mem-
bers.

The coefficients αi in the second row, where parentheses mean negative numbers, will be
used in a way explained below for determining the positions in the swap of the nine members
in the simulations. These coefficients were obtained as the difference between a vector of
nine uniform numbers and its cyclic shift, so that

∑
i∈N αi = 0.

7.3 Member Portfolios

We represent in an antisymmetric matrix form

$ =



0 1 2 3 · · · n

0 0 $0,1 $0,2 $0,3 · · · $0,n

1 · 0 $1,2 $1,3 · · · $1,n

2 · · 0 $2,3 · · · $2,n

3 · · · 0 · · · $3,n

...
...

...
...

...
. . .

...

n · · · · · · · 0


,

where each “·” represents the negative of the symmetric entry in the matrix, the positions
of each member i with respect to each member j (or short positions of j with respect to
i) in the swap. Note that the data of the CCVA BSDE related to the member 0, or of the
linearized time-0 CCVA formula (6.4), only depend on the matrix $ through the sums of
each of its rows, corresponding to the vector of the short positions of the different clearing
members against the CCP. By contrast, the data of the BVA BSDE related to the member
0, or of the linearized time-0 BVA formula (6.9), only depend on the matrix $ through its
first row (vector of the short positions of the different counterparties i = 1, . . . , n against the
reference member 0). Hence, we can forget about the detail of the above matrix, focusing
on the ωcsai := $0,i and ωccpi :=

∑
l 6=i$l,i, i 6= 0, for comparing two trading setups:

• A CSA setup as of Sect. 6.2, where each member i 6= 0 trades a short ωcsai ∈ R
position in the swap with the member 0, whichever other trades members i 6= 0 may
have between each others.

– For instance, but non necessarily, each member i 6= 0 has a short ωcsai ∈ R
position with the member 0 and there are no other trades between members (at
least after netting at the level of each pair of members), which corresponds to
the situation where only the first row and column are nonzero in the matrix $.

– In any case, the netted long position of the member 0 is
∑

i 6=0 ω
csa
i . However,

netting does not apply across different counterparties in the CSA setup. We
call compression factor ν0 the gross position of the reference member 0, i.e. the
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number ν0 =
∑

i 6=0 |ωcsai | of trades the member 0 is engaged into in the CSA
setup.

• A CCP setup as of Sect. 6.1, where each member i 6= 0 trades a short ωccpi ∈ R
position in the swap through the CCP (ωccpi ≤ 0 effectively means a long position of
member i), whichever way this position may be distributed among other members.

– For instance, but non necessarily, each member i 6= 0 has a short ωccpi ∈ R
position with the member 0 and there are no other trades between members,
which again corresponds to the situation where only the first row and column
are nonzero in $.

– In any case, since members trade between themselves, the member has a
∑

i 6=0 ω
ccp
i

position in the driving asset after netting through the CCP, instead of a non net-
ted position of size ν0 before clearing through the CCP.

Moreover, in order to obtain diverse while comparable setups, we will alternately consider
as reference member 0 each of the nine members in Table 1, for positions in the driving
asset determined by the coefficients αi (summing up to zero) in the second row of Table
1 through the following rule: ωi = − αi

α0
, i 6= 1 (where ω = ωcsa or ωccp, as suitable).

Since the coefficients αi add up to 0, this specification ensures
∑

i 6=0 ωi = 1, i.e. a netted
position of the member 0 (whoever it is), always equal to 1 in the CCP setup. We also
define ω0 = −α0

α0
= −1, consistent with the member 0 being long a +1, i.e. short a −1,

net position in the swap in the CCP setup (in the CSA setup this value of ω0 is purely
conventional).

Note that

ν0 =
∑
i 6=0

|ωi| =
∑
i 6=0

|αi|
|α0|

=

∑
i∈N |αi|
|α0|

− 1,

so the smaller |α0|, the larger the compression factor ν0 (gross position of the reference
member when trading bilaterally, whereas its net, centrally cleared position is equal to
one).

Example 7.1 Table 2 shows the resulting values of the ωi of the different members i 6= 0
when the name with CDS spread 61 bp (name with the second smallest |αi| in Table 1,
with corresponding entries emphasized in bold in Table 2) is taken as reference member 0
(prototype of a name with a large gross position). Hence, the ωi in Table 2 are proportional
to the αi in Table 1, modulo a scaling factor so that the ωi of this particular name (then
labeled as 0) is −1. In this case ν0 =

∑
i 6=0 |ωi| = 53.00.

Σ 45 52 56 61 73 108 176 367 1053

ω (9.20) 1.80 4.60 (1.00) 6.80 (0.80) 13.80 (8.80) (7.20)

Table 2: Positions ωi in the swap of the nine members with CDS spreads Σi, in the respective
ωi = ωcsai or ωccpi meaning, when the reference member 0 is the name with CDS spread 61
bp and the second smallest |αi| in Table 1.

Example 7.2 Table 3 is the analog of Table 2 when the member with spread 367 bp (name
with the second largest credit spread in Table 1, with corresponding entries emphasized in
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bold in Table 2) is taken as reference member 0 (prototype of a risky name). In this case
ν0 =

∑
i 6=0 |ωi| = 5.14.

Σi 45 52 56 61 73 108 176 367 1053

ωi (1.05) 0.20 0.52 (0.11) 0.77 (0.09) 1.57 (1.00) (0.82)

Table 3: Analog of Table 2 when the reference member 0 is the name with CDS spread 367
bp (name with the second largest credit spread Σi) in Table 1.

7.4 Margins

CCP setup The initial margin IM i posted by each member i ∈ N is set through (3.4),
using as risk measure ρ the risk-neutral value at risk of some level a “close to 1” . Since
the pricing function P? in (7.1) is decreasing in S, therefore IM i can be proxied, at each
simulated time ζ in (6.4) or (6.9), by

IM i
ζ = Nom× |ωi| ×

{
P?(ζ, Sζ)− P?(ζ, Sζeσ

√
δ′Φ−1(a)+(κ−σ

2

2
)δ′), ωi ≥ 0

P?(ζ, Sζe
σ
√
δ′Φ−1(1−a)+(κ−σ

2

2
)δ′)− P?(ζ, Sζ), ωi ≤ 0,

(7.2)

where Φ is the standard normal cdf and where we recall that δ′ = δ+h is the margin period
of risk.

For instance, the reference member 0, with ωccp0 = −1, is long one unit in the swap with
mark-to-market profile shown in Figure 4, hence the exposure of the CCP to member
0 is the opposite profile. Accordingly (recalling that Figure 4 shows (−Pt)), the

CCP asks initial margins to the member 0 based on P?(ζ, Sζe
σ
√
δ′Φ−1(1−a)+(µ−σ

2

2
)δ′)−

P?(ζ, Sζ), consistent with the second line in (7.2) in case ωi=0 ≤ 0.

Consistently with a “cover two” EMIR rule (see Sect. A.1), the default fund contribu-
tions are set as the sum of the two largest exposures of the clearing members (exposures in
the sense of their EADs as explained in Sect. 7.5), allocated between them proportionally
to their initial margins.

CSA setup The initial margin −Ic ≥ 0 required by the member 0 from the member i 6= 0
(cf. (6.5)) is given by the right-hand side formula in (7.2) valued at some quantile level a
(possibly different from the one used in the CCP setup).

For instance, if ωcsai = +2, meaning that the member 0 has a “double Figure 4
exposure” with regard to counterparty i, then the member 0 asks the counterparty i

to post initial margins based on P?(ζ, Sζ)−P?(ζ, Sζeσ
√
δ′Φ−1(a)+(κ−σ

2

2
)δ′) (recall again

that Figure 4 shows (−Pt)), consistent with the use of the first branch in (7.2) in the
case where ωcsai ≥ 0 (for i 6= 0).

Symmetrically, the formula for the initial margin Ib ≥ 0 required by the member i from
the member 0 reads

Ibζ = −ωi ×Nom×

{
P?(ζ, Sζ)− P?(ζ, Sζeσ

√
δ′Φ−1(a)+(κ−σ

2

2
)δ′), ωi ≤ 0

P?(ζ, Sζ)− P?(ζ, Sζeσ
√
δ′Φ−1(1−a)+(κ−σ

2

2
)δ′), ωi ≥ 0.
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7.5 Exposure-at-defaults

The prime motivation for the Black–Scholes model used for S and for our risk-neutral value-
at-risk for the IMs is that these give rise to an explicit formula for the exposure-at-defaults
(EAD), which are the basic primitive of all the regulatory capital formulas. This avoids the
computational burden of nested Monte Carlo simulations (see the introductory paragraph
to Sect. A). We also use EADs as a proxy of the exposures of the members in the context
of our EMIR “cover two” default fund computations (cf. Sect. A.1).

In fact, for any grid time v = t+ εp involved in EAD computations (cf. (A.2), (3.2) and
(7.1), with ε taken as one month in the numerics), we have in our model:

Et
[(
Pv+δ′ +

∫
[v,v+δ′]

e
∫ v+δ′
s rududDs − Pv− − IMv

)+]
= Et

[(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv)− VaRt

(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv

))+]
= EtEv

[(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv)− VaRt

(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv

))+]
,

where VaR represents the risk-neutral value-at-risk of level a. Denoting by ES the cor-
responding expected shortfall, the conditional version of the identity E[X1X≥VaR(X)] =
(1− a)ES(X) yields

Ev
[(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv)− VaRt

(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv

))+]
= (1− a)

(
ESv

(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv)

)
− VaRv

(
P ?(v + δ′, Sv+δ′)− P ?(v, Sv)

) )
= (1− a)

(
eσ
√
δ′Φ−1(a) − eσ

√
δ′ φ(Φ−1(a))

a

)
β−1
v+δ′e

−κv−σ
2

2
δ′Sv

d∑
l=lv+δ′

βTlhle
κTl−1 ,

where Φ and φ are the standard normal cdf and density. Hence,

Et

[(
Pv+δ′ +

∫
[v,v+δ′]

e
∫ v+δ′
s rududDs − Pv− − IMv

)+]
= fa,δ

′
v × (1− a)e−κtSt, (7.3)

where

fa,δ
′

v =

(
eσ
√
δ′Φ−1(a) − eσ

√
δ′ φ(Φ−1(a))

1−a

)
β−1
v+δ′e

−σ
2

2
δ′

d∑
l=lv+δ′

βTlhle
κTl−1 . (7.4)

Likewise, we have

Et

[(
Pv+δ′ +

∫
[v,v+δ′]

e
∫ v+δ′
s rududDs − Pv− − IMv

)−]
= ga,δ

′
v × (1− a)e−κtSt, (7.5)

where

ga,δ
′

v = −
(
eσ
√
δ′Φ−1(1−a) − e−σ

√
δ′ φ(Φ−1(a))

1−a

)
β−1
v+δ′e

−σ
2

2
δ′

d∑
l=lv+δ′

βTlhle
κTl−1 . (7.6)

Based on (7.3) through (7.4), explicit formulas for the EADs follows. Figure 5 shows the
time-0 EADs of the nine CCP members for their positions in the swap corresponding to
the choice of the name of examples 7.1 or 7.2 as reference member.
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Figure 5: Time-0 EADs in basis points (IM quantile level a = 70%, liquidation period δ = 5
days). The two largest EADs, in red, size the default fund. The reference member EAD
is in green. The corresponding positions ωi of the member are displayed at the bottom.
Left: Reference member with Σ0 =61 bps and ν0 = 53.00. Right: Reference member with
Σ0 =367 bps and ν0 = 5.14.

7.6 XVA Data

The following numerical values are used in the sequel:

R̄ = 1, λ̄ =
1

2
Σ0, λ = 0, k = 10%, h = 1 day, µ =

2

T̄
, m = 104, (7.7)

where m is the number of simulations used for estimating the expectations in (6.4) and
(6.9). The level of 10% used for k is consistent with reference orders of magnitude for a
hurdle rate.

Moreover, in a CCP setup, unless otherwise stated, we set

R = 0, δ = 5 days , a = 70%, T = 1 month, Y = 1 year,

E? = 25%Kccp, c = 30 bp,
(7.8)

where Kccp is defined in (A.4). The low quantile level used to set the initial margins is meant
to compensate the excessive simplicity of the Black–Scholes setup without wrong-way risk
used for S (it also leads to moderate standard errors with a relatively small number m = 104

of simulations). Margin fees of c = 30 bp are consistent with current CCP practices. These
margin fees are distinct from the commission fees, not included in our setup, that a CCP
is also charging to its members. In practice, commission fees are of the order of a few basis
points of the size of the positions, i.e. a few basis points in the case of a unit position in
our swap with each leg equal to one at time 0.

In a CSA setup, alternatively to (7.8), unless otherwise stated, we set

Rb = Rc = 40%, δ = 15 days, a = 80%, c = 0.

The value a = 80% used in the bilateral case is higher than the value a = 70% used in the
CCP setup, where the protection offered by the default fund allows requiring less initial
margins.
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8 Numerical Results

All our XVA numbers are stated in basis points (recall that both legs of the swap are worth
one at time 0). For comparability purposes, common random inputs are used in all our
Monte Carlo estimates, i.e. we use the same sampled trajectories of S and sampled sets
of default times τi in all cases, it is only the way these m = 104 random input sets are
used which changes. The computation times are proportional to the number of members
n and model trajectories m, e.g. about 5 minutes on a standard laptop to compute a
full set of XVAs in Table 4 (four or five XVA components and their sum), where n = 8
and m = 104, using pre-simulated values for all the random inputs. Negative (e.g. DVA)
numbers are displayed in parentheses. Regarding the aggregated XVA numbers in the
tables, i.e. BVA in the CSA setup, CCVA in the CCP setup and TVA sometimes used as
a common acronym for covering both cases, they are all KVA-inclusive, but they do not
include the corresponding DVA numbers, which are only showed for reference. In other
words, all the displayed TVA numbers correspond to entry price TVAs. The CCP MLA
number are consistently found one order of magnitude smaller than the other XVA numbers,
which is a sanity check that the CCP margin fees do not drive the comparison between the
CCP and the CSA setup.

Note that, for simplicity, we are comparing a situation where all the trading is centrally
cleared with a situation where all the trading is bilateral. In practice, vanilla products
(hedges) tend to be cleared and exotics tend to be bilaterally traded. Therefore, in a more
realistic setup, the multilateral netting benefit that CCPs provide is balanced by a loss
of bilateral netting across asset classes (see Duffie and Zhu (2011) and Cont, Santos, and
Moussa (2013)). To correct this bias, we will also show bilateral XVA figures scaled by the
compression factor ν0 of the reference name.

8.1 Multilateral Netting Benefit

Table 4 shows the XVA numbers obtained by considering alternately each of the nine
members in Table 1 as reference member, using the αi coefficients for setting the positions
of the members in each case as explained in Sect. 7.3 (cf. the examples 7.1 and 7.2). The
different cases in Table 4 are ordered by increasing values of the compression factor ν0,
i.e. by decreasing |α0|. We can see from Table 4 that the MVA and the KVA are the main
contributors in the respective CSA and CCP setup. Moreover, the CSA XVA numbers vary
roughly proportionally to the compression factor ν0, whereas the CCP XVA numbers are
essentially not impacted by ν0. This illustrates the multilateral netting benefit provided by
the CCP, especially for members with a large compression factor ν0.
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ν0 2.91 4.87 5.14 6.50 6.94 10.74 29 53 66.50
α0 0.69 (0.46) (0.44) (0.36) 0.34 0.23 0.09 (0.05) (0.04)
Σ0 176 45 367 1053 73 56 52 61 108

CVA 11.07 25.06 19.34 14.06 28.37 42.69 111.38 238.22 299.37
DVA (8.76) (4.49) (30.85) (90.10) (8.08) (13.59) (28.77) (52.70) (111.33)
MVA 30.38 13.63 110.50 339.69 31.41 39.34 98.46 204.72 449.68
KVA 11.17 21.16 19.40 21.14 29.26 46.28 122.20 221.63 275.87
BVA 52.62 59.85 149.24 374.90 89.04 128.31 332.05 664.57 1024.92
CVA 7.88 11.33 6.54 3.57 10.85 11.73 11.91 11.60 9.23
DVA (2.57) (0.69) (5.43) (13.03) (1.07) (0.89) (0.81) (0.90) (1.57)
MVA 5.19 1.39 10.33 24.24 2.22 1.76 1.61 1.86 3.23
MLA 1.17 1.22 1.09 0.89 1.22 1.22 1.22 1.22 1.20
KVA 10.79 11.59 10.00 7.97 11.44 11.52 11.54 11.58 11.21

CCVA 25.03 25.54 27.95 36.67 25.73 26.23 26.27 26.26 24.87

Table 4: XVA numbers obtained by considering alternately each of the nine members in
Table 1 as reference member 0, using the αi for setting the positions of the members in
each case as explained in Sect. 7.3. (Up) Credit spread Σ0, coefficient α0 and compression
factor ν0 of the reference member in each case (ordered by increasing ν0, i.e. decreasing
|α0|). (Middle) CSA XVA numbers. (Bottom) CCP XVA numbers.

Table 5 shows the percentage standard errors corresponding to the Monte Carlo esti-
mates of Table 4. As we can see from the table, the standard errors are typically no more
than a few percents in relative terms. Standard errors of Monte Carlo estimates are no
longer shown in the sequel.

ν0 2.91 4.87 5.14 6.50 6.94 10.74 29 53 66.50
α0 0.69 (0.46) (0.44) (0.36) 0.34 0.23 0.09 (0.05) (0.04)
Σ0 176 45 367 1053 73 56 52 61 108

CVA 3.40 2.87 3.40 4.97 3.22 3.22 3.22 2.90 2.89
DVA 5.66 10.38 4.08 2.58 8.92 9.21 9.49 9.28 7.05
MVA 0.79 0.78 0.75 0.96 0.77 0.64 0.63 0.84 0.80
KVA 0.58 0.54 0.64 0.81 0.54 0.54 0.54 0.54 0.55
CVA 2.55 2.93 3.13 4.49 2.69 2.71 2.70 2.91 2.66
DVA 3.11 3.02 3.05 3.42 3.15 2.92 2.94 3.27 3.21
MVA 0.86 0.78 0.77 0.96 0.91 0.67 0.69 0.95 0.93
MLA 0.65 0.60 0.71 0.88 0.61 0.61 0.60 0.60 0.62
KVA 0.58 0.58 0.65 0.84 0.57 0.59 0.59 0.59 0.58

Table 5: Percentage standard errors corresponding to the Monte Carlo estimates of Table
4.

8.2 Impact of the Credit Spread of the Reference Member

The CCP multilateral netting benefit dominates the comparison between our CSA and CCP
XVA numbers. However, in our stylized setup, we cannot see the netting benefit across
assets of bilateral trading. In order to compensate for this bias and obtain comparative
results net of the first order CCP multilateral netting benefit, Table 6 shows the same results
as Table 4, but with all the CSA XVA numbers scaled by the corresponding compression
factor ν0 (we will present in this way all the CSA XVA results in the sequel) and ordered
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by increasing credit spread Σ0 of the reference name, instead of increasing ν0 in Table 4.
From Table 6 we can see that, if we get rid of the CCP multilateral netting benefit

through this scaling, then the CSA and CCP XVA numbers become of a similar order of
magnitude. The aggregated TVA numbers even become in favor of the CSA setup, except
for the reference name with the largest (actually huge) credit spread of 1053 bp. These
results can be put in perspective with the ones in Ghamami and Glasserman (2016) (see
Sect. 1.1).

Regarding the comparison between the nine different cases within the CCP setup, as
also within the CSA setup after scaling by the compression factor, Table 6 shows that the
main explanatory factor of the results is the credit spread of the reference member, risky
members being heavily penalized in terms of MVA, especially in the CSA setup. In both
cases, the dominant patterns are a logarithmic decrease of the CVA numbers and a linear
increase of the |DVA| and MVA numbers with respect to the credit spread of the reference
name.

ν0 4.87 29 10.74 53 6.94 66.5 2.91 5.14 6.5
α0 (0.46) 0.09 0.23 (0.05) 0.34 (0.04) 0.69 (0.44) (0.36)
Σ0 45 52 56 61 73 108 176 367 1053

CVA /ν0 5.15 3.84 3.97 4.49 4.09 4.50 3.80 3.76 2.16
DVA /ν0 (0.92) (0.99) (1.27) (0.99) (1.16) (1.67) (3.01) (6.00) (13.86)
MVA /ν0 2.80 3.40 3.66 3.86 4.53 6.76 10.44 21.50 52.26
KVA /ν0 4.34 4.21 4.31 4.18 4.22 4.15 3.84 3.77 3.25
BVA /ν0 12.29 11.45 11.95 12.54 12.83 15.41 18.08 29.03 57.68

CVA 11.33 11.91 11.73 11.60 10.85 9.23 7.88 6.54 3.57
DVA (0.69) (0.81) (0.89) (0.90) (1.07) (1.57) (2.57) (5.43) (13.03)
MVA 1.39 1.61 1.76 1.86 2.22 3.23 5.19 10.33 24.24
MLA 1.22 1.22 1.22 1.22 1.22 1.20 1.17 1.09 0.89
KVA 11.59 11.54 11.52 11.58 11.44 11.21 10.79 10.00 7.97

CCVA 25.54 26.27 26.23 26.26 25.73 24.87 25.03 27.95 36.67

Table 6: XVA numbers obtained by considering alternately each of the nine members in
Table 1 as reference member 0, using the αi for setting the positions of the members in
each case as explained in Sect. 7.3. (Up) Credit spread Σ0, coefficient α0 and compression
factor ν0 of the reference member in each case (ordered by increasing Σ0). (Middle) CSA
XVA numbers scaled by the compression factors ν0. (Bottom) CCP XVA numbers.

8.3 Impact of the Liquidation Period

Focusing on the reference members of the examples 7.1 and 7.2, respectively dubbed “safe
member” and “risky member” henceforth (with respective credit spread of Σ0 = 61 and
367 bp), Table 7 shows the impact of changing the length δ of the liquidation period from
5 days to 15 days in the CSA setup and vice versa in the CCP setup. The CSA 15 day and
CCP 5 day numbers in Table 7 are simply retrieved from Table 6, for comparison purposes
with the additional CSA 5 day and CCP 15 day numbers. The results are consistent with
a
√
δ pattern in line with the distributional properties of the Black–Scholes model used for

S.
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Member 61 bps, ν0 = 53.00 367 bps, ν0 = 5.14

δ 5 d 15 d 5 d 15 d

CVA /ν0 2.17 4.49 1.82 3.76
DVA /ν0 (0.50) (0.99) (2.90) (6.00)
MVA /ν0 2.34 3.86 13.14 21.50
KVA /ν0 2.43 4.18 2.18 3.77
BVA /ν0 6.94 12.54 17.15 29.03

CVA 11.60 19.54 6.54 10.78
DVA (0.90) (1.41) (5.43) (8.91)
MVA 1.86 3.40 10.33 18.96
MLA 1.22 2.25 1.09 2.00
KVA 11.58 21.60 10.00 18.59

CCVA 26.26 46.79 27.95 50.34

Table 7: Impact of the liquidation period. (Left) Safe reference member. (Right) Risky
reference member. (Top) CSA XVA numbers scaled by ν0. (Bottom) CCP XVA numbers.

8.4 Margin Optimization

Table 8 shows the impact of using higher quantile levels a for the initial margins, which
were only 80% and 70% in the respective CSA and CCP setup so far (with the motivation
exposed in Sect. 7.6). The left column in each of the two main panels, retrieved from Table
6, corresponds to our base case where a = 70% and a = 80%. When higher values are
used for the quantile levels, i.e. going from left to right in each panel, we observe the same
qualitative patterns as before in terms of the comparison between the CSA and the CCP
setup. Considering now the impact of higher quantile levels inside each CSA or CCP setup,
we can see a shift from CVA(/DVA) and KVA into MVA.

Ultimately, for very high quantiles, the CVA(/DVA) and KVA would reach zero whereas
the MVA would keep increasing, since excessive margins become useless and a pure cost to
the system, in the CSA as in the CCP setup. Figure 6 illustrates this further by showing the
aggregated TVA numbers and the relative weight of their CVA, FVA and KVA contributions
when the quantile level a used for setting the IM goes from 55% to 100%, where FVA means
MVA in the CSA setup (left graphs) and MVA+MLA in the CCP setup (right graphs). In
each of the four cases considered in the upper panels (left CSA vs. right CCP curve and
blue safe vs. green risky reference member curve), the numerical values of the TVA exhibit
a convex dependence with respect to a (although, mathematically speaking, this depends
on the values of the numerical parameters that are used, see for instance the CVA curve
in the left graph of Figure 7, which shows a more detailed XVA decomposition of the safe
reference member CCVA curve in the upper right graph of Figure 6). In the case of the
risky reference member in the CSA setup, the level of initial margins is too high already
with a 55% quantile level: The risky reference member (green) BVA curve in the upper
left graph of Figure 6 keeps increasing when a increases from 55% to 100%. In each of the
other three cases, the TVA has a minimum at some value a < 1. For both reference names,
the optimal quantile level is larger in the CCP than in the CSA setup. This is because,
in the CCP setup, the member is happy to post more initial margins, which “cost” her
λ̄ = 1

2Σ0, in order to reduce her default fund contribution, which “costs” her a greater
k = 10% (cf. (7.7)). In each of the four considered cases, the FVA becomes preponderant
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and even hegemonic (as it tends to infinity) when a goes to 100%.
Capponi and Cheng (2016) construct a model which endogenizes collateral, making it

part of an optimization problem where the CCP maximizes profit by controlling collateral
and fee levels. They conclude that the collateral level should decrease with funding costs,
on top of increasing with market volatility. The above numerical results are quite in line
with such statements.

Member Σ0 = 61 bp, ν0 = 53.00 Σ0 = 367 bp, ν0 = 5.14
a 80% 90% 99% 80% 90% 99%

CVA /ν0 4.49 2.64 0.74 3.76 2.23 0.62
DVA /ν0 (0.99) (0.56) (0.15) (6.00) (3.51) (1.02)
MVA /ν0 3.86 5.87 10.66 21.50 32.99 60.18
KVA /ν0 4.18 1.78 0.13 3.77 1.61 0.12
BVA /ν0 12.54 10.29 11.53 29.03 36.83 60.92

a 70% 80% 95% 70% 80% 95%
CVA 11.60 9.15 4.64 6.54 5.17 2.62
DVA (0.90) (0.66) (0.22) (5.43) (4.02) (1.43)
MVA 1.86 2.83 5.32 10.33 15.71 29.53
MLA 1.22 1.54 2.56 1.09 1.38 2.31
KVA 11.58 6.55 1.19 10.00 5.66 1.03

CCVA 26.26 20.07 13.72 27.95 27.91 35.49

Table 8: Impact of the level of the quantile level a that is used for setting the initial margins.
(Left) Safe reference member. (Right) Risky reference member. (Top) CSA setup with all
XVA numbers scaled by ν0. (Bottom) CCP setup.

8.5 Impact of the Number of Members

Another interesting question is what happens when we vary the number of members of
the CCP. Obviously, more members means more mutualization of risk. However, the main
effects in a CCP are already visible with nine members as above: with more members,
things would mainly happen as in the projection of the system onto the ten (or so) great-
est members anyway. Figure 7 illustrates that, if there are now not enough members, a
regulatory “cover two” default fund specification sized to the two largest exposures of the
clearing members may result in very heavy default fund contributions and KVA for the
small members in the common situation of heterogeneous members’ exposure.

9 Conclusions

A Regulatory Capital and Default Fund Formulas

A primitive of all the regulatory capital formulas are the so-called exposure-at-defaults
given, for i ∈ N = 0, 1 . . . , n and t ∈ [0, T̄ ], as

EADi
t = 1.4 ε

∑
εp<1∧(T−t)

EEEit(tp), (A.1)

where (see Bank for International Settlements (2005, formulas (1)-(2)-(3) pages 26-27)):
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Figure 6: Varying the initial margins quantile level a. Left: CSA setup. Right: CCP
setup. Top: BVA/ν0 vs. CCVA. Bottom: XVA relative contributions in the case of the safe
reference member. Middle: XVA relative contributions in the case of the risky reference
member.
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Figure 7: CCP XVA results for the reference member with Σ0 = 61 bp and ν0 = 53.00.
Left: Results in our previous CCP with nine members. Right: Results in a CCP restricted
to three members: the reference member and two other members. The reference member,
with ωi = −1 by definition, corresponds to the member with time-0 EAD displayed in green
in the left panel of Figure 5. The two other members are the members of the original CCP
with the greatest time-0 EADs, i.e. the members with the time-0 EADs displayed in red
in the left panel of Figure 5. Moreover, we modified the positions of these two members
as ωi = −9 and 10, instead of −9.2 and 13.8 in the left panel of Figure 5, for being in line
with the clearing condition

∑
i∈N P

i = 0.

• the factor 1.4 is a wrong-way risk multiplier,

• ε is a time-integration step (e.g. one month),

• tp = t+ εp,

• the effective expected exposures EEEit(tp) are defined through the following iteration:
EEEit(t−1) = 0 and, for p ≥ 0,

EEEit(tp) = max
(
EEEit(tp−1),Et

[
(Litp,tp+δ′ − IM i

tp)
+
])

(A.2)

where Litp,tp+δ′ has been defined in (3.2).

In our case, we also use EADs as a proxy of the exposure of the CCP to the members in
the context of EMIR “cover two” default fund computations (see Sect. A.1). For our default
fund and KVA computations, such EADs must then be computed at any randomization
time t = ζ used in (6.4) or for simulating the time integral in (4.14). Unless an explicit
formula is available for the conditional expectations in the right-hand side of (A.2), such
EAD exposures can only be done by means of nested Monte Carlo simulations.

Note that in both our centrally cleared and bilateral trading setups, we neglect capital
for market risk in the paper, as if the reference member (or bank) was perfectly hedged in
terms of market risk. Otherwise one more capital term is required for market risk.
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A.1 CCP Setup

Under centrally cleared trading, the “cover two” EMIR rule prescribes to size the default
fund as, at least, the maximum of the greatest and of the sum of the second and third
greatest exposures “under extreme but plausible market conditions” (see European Parlia-
ment (2012, article 42, paragraph 3, page 37)). This total amount is then allocated between
the clearing members according to some repartition key, e.g. proportional to their initial
margins.

As explained in the paper, default fund contributions are “implicit capital” that the
clearing members put at the disposal of the CCP. In addition, to cover their residual risk
beyond the guarantee provided by the different margin layers of the CCP, the regula-
tory capital K = Kcm of a generic reference member is defined, following Basel Commit-
tee on Banking Supervision (2014, page 11), as:

Kcm = max

(
Kccp × DFC

E +
∑

i∈N J
iDFCi

, 8%× 2%×DFC
)
, (A.3)

where DFC is the default fund contribution of the reference member and where

Kccp = RW × CapRatio ×
∑
i∈N

J iEADi
(A.4)

with RW = 20% and CapRatio = 8%.

Remark A.1 Ghamami (2015) argues that the CCP regulatory capital Kcm of a member
should rather be based on its expected future unfunded default fund contributions (see the
remark 3.4), which represent the losses of the member beyond the level already funded via
its default fund contribution.

A.2 CSA Setup

In the bilateral setup, the capital at risk K of the bank reduces to its regulatory capital
(there is no bilateral trading analog of the default fund), which comprises a first contribution
for counterparty default losses and a second one for the volatility of the CVA (the market
risk of the bank being supposed to be hedged out). Since we focus on the reference member
0 with n counterparties i ∈ N? = {1, 2, . . . , n}, the capital formulas below all need to be
summed over i ∈ N?.

A.2.1 Kccr

The Basel II regulatory capital specified for counterparty risk is defined as

Kccr = CapRatio
∑
i∈N?

RWAi,

where
RWAi = 12.5× wi × 1.4× EADi.

Here CapRatio ≥ 8% (which is the value that we use in the numerics) is a chosen capital
ratio that the bank must hold. The capital weight wi is given by the internal ratings-based
formula

wi = (1−Ri)
(

Φ

(
Φ−1 (DP i)√

1− corri
+

√
corri

1− corri
Φ−1(0.999)

)
−DP i

)
1 + (T̂ i − 2.5)b(DPi)

1− 1.5b(DPi)
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(see Basel Committee on Banking Supervision (2005, page 7)), where:

• Ri is the recovery rate of the counterparty i,

• Φ is the standard normal cdf,

• DP i is the one year default probability of the counterparty i, historical in principle,
proxied in our numerics by the risk-neutral default probability extracted from the
corresponding CDS spread,

• corri is the asset–counterparty i correlation in the sense of

corri = 0.12
1− e−50DPi

1− e−50
+ 0.24

1− (1− e−50DPi)

1− e−50

• T̂ i is the effective time to maturity of the netting set i, i.e. the time to maturity of
the swap in our numerical case study where a single derivative is considered,

• b(p) =
(
0.11852− 0.05478 ln(p)

)2
.

A.2.2 Kcva

The standardized CVA risk capital charge in Basel Committee on Banking Supervision
(2011, §104) reads as

Kcva = 2.33
√
Y

(0.5
∑
i∈N?

wiT̂
iẼAD

i
)2

+ 0.75
∑
i∈N?

(
wiT̂

iẼAD
i
)2
0.5

,

which we approximate as in Green, Kenyon, and Dennis (2014) by

2.33

2

√
Y
∑
i∈N?

wiT̂
iẼAD

i
,

where:

• Y is the one year risk horizon, i.e. Y = 1,

• T̂ i is above,

• ẼAD
i

= 1−exp(0.05T̂ i)

0.05T̂ i
EADi,

• wi is a weight based on the external rating extracted from the one year default prob-
ability DPi as of the following table, where the left part comes from Moody’s and the
right part is taken from Basel Committee on Banking Supervision (2011, §104):

Default Prob Rating Weight

0.00% AAA 0.7%
0.02% AA 0.7%
0.06% A 0.8%
0.17% BBB 1.0%
1.06% BB 2.0%
3.71% B 3.0%
12.81% CCC 10.0%
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B Proofs of Auxiliary Results

.

B.1 Proof of Lemma 3.1

Under our stylized model of the liquidation procedure, during the liquidation period [τZ , τ
δ
Z ],

where τZ = τi if and only if i ∈ Z, the clearing house substitutes itself to the defaulting
members, taking care of all their dividend cash flows, which represent a cumulative cost
of
∑

i∈Z ∆i
τδi

(including a funding cost at the risk-free rate comprised in the ∆i
τδi

). At the

liquidation time τ δZ , the clearing house substitutes the buffer to itself as counterparties in
all the concerned contracts (or simply puts an end to the contracts that were already with
the buffer), which represents a supplementary cost

∑
i∈Z P

i
τδi
. In addition, for any i ∈ Z :

• If εi = 0, meaning that Qi
τδi
≤ Ciτ̂i , then either Qi

τδi
≤ 0 and an amount (−Qi

τδi
) is

paid by the clearing house to the member i (who keeps ownership of all its collateral),
or Qi

τδi
≥ 0 and the ownership of an amount Qi

τδi
of collateral is transferred to the

clearing house. In both cases, the clearing house gets Qi
τδi

;

• Else, i.e. if εi > 0, meaning that the overall collateral Ci of a member i ∈ Z does not
cover the totality of its debt to the clearing house, then, at time τ δi , the ownership of
Ci is transferred in totality to the clearing house. If Ri > 0 then the clearing house
also gets a recovery Riεi.

In conclusion, the realized breach of the CCP is the sum over i ∈ Z of the

P i
τδi

+ ∆i
τδi
− 1εi>0(Ciτ̂i +Riεi)− 1εi=0Q

i
τδi

= Qi
τδi
− 1εi=0Q

i
τδi
− 1εi>0(Ciτ̂i +Riεi)

= 1εi>0(Qi
τδi
− Ciτ̂i −Riεi) = (1−Ri)εi = ξi.

B.2 Proof of Lemma 4.1

To formulate in mathematical terms the above-described margining, hedging and funding
policy of the member, we introduce three funding assets B0, Bf and B̄f evolving on [0, τ̄ δ]
as

dB0
t = rtB

0
t dt, dB

f
t = (rt + λt)B

f
t dt, dB̄

f
t = (rt + λ̄t)B̄

f
t dt+ (1− R̄)B̄f

t−dJt. (B.1)

These represent the risk-free OIS deposit asset and the assets used by the bank for its
respective investing and unsecured funding purposes. Under our continuous-time mark-to-
model and realization assumption on profit-and-losses, the amount on the funding accounts
of the bank is

−Πt = −(Πt + C?t ) + C?t ,

where C?t = VM + IM is the amount of margins that need to be funded by the member (its
default fund contribution is assumed to be taken on its uninvested equity, hence does not
need to be funded), so that the terms in the parenthesis represent the amount invested or
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borrowed unsecured (depending on its sign) by the bank, and where we recall that collateral
is remunerated OIS by the receiving party. Defining

ηft =
(Πt + C?t )−

Bf
t

, η̄ft = −(Πt + C?t )+

B̄f
t

, η0
t =

C?t
B0
t

, η̄0
t = −(Πt + C?t )

B0
t

, (B.2)

we can write

−Πt = Jtη
f
t B

f
t + Jtη̄

f
t B̄

f
t + η0

tB
0
t + (1− Jt)η̄0

tB
0
t , (B.3)

where, by self-financing condition,

d
(
Jtη

f
t B

f
t + Jtη̄

f
t B̄

f
t + η0

tB
0
t + (1− Jt)η̄0

tB
0
t

)
= Jtη

f
t dB

f
t + Jt−η̄

f
t−dB̄

f
t + η0

t dB
0
t + (1− Jt)η̄0

t dB
0
t .

(B.4)

A left-limit in time is required in Jt−η̄
f
t− because B̄f

t in (B.1) jumps at time τ, so that the
process η̄f , which is defined through (B.2), is not predictable.

In view of (B.3)-(B.4) and of the additional cash flows that affect the member (con-
tractual cash flows, margin fees, realized breaches refills and hedging cash flows), the gain
process e associated with the member’s valuation-and-hedge policy (Π, ζ) satisfies the fol-
lowing forward SDE: e0 = 0 and, for 0 < t ≤ τ̄ δ,

det = dΠt︸︷︷︸
gain on the derivative portfolio

− JtdDt︸ ︷︷ ︸
contractual dividends

− Jtct(Ct − Pt̂−)dt︸ ︷︷ ︸
margin fees

− Jt
∑
Z⊆N

ετδZ
δτδZ

(dt)︸ ︷︷ ︸
refill of realized breaches

− ζtdMt︸ ︷︷ ︸
loss on the hedge

+ Jtη
f
t dB

f
t + Jt−η̄

f
t−dB̄

f
t + η0

t dB
0
t + (1− Jt)η̄0

t dB
0
t .

Substituting (B.1) into the above yields

det = dΠt − rtΠtdt− ζtdMt − 1{τ<T̄}(1− R̄)(Π + C?
t̂
)+dJt

− Jt

dDt +
∑
Z⊆N

ετδZ
δτδZ

(dt) +
(
ct(Ct − Pt̂−) + λ̄t (Πt + C?t )+ − λt (Πt + C?t )−

)
dt

 ,

which is (4.3), by definition (4.4) of g.

B.3 Proof of Lemma 5.1

Since ξ = (1−R)(Qτδ − Cτ̂ )+ (cf. (3.8)), where

Cτ̂ = Cτ− = C(τ,Xτ−) and

Qτδ = Pτδ + ∆τδ = P (τ δ,Xτδ) + ∆̂(τ δ,Xτδ)− e
∫ τδ
τ r(u,Xu)du∆̂(τ,Xτ ),

we have by definition (4.7) of ξ̄ :

ξ̄τ = (1−R)E
[
e−

∫ τδ
τ r(u,Xu)du×(

P (τ δ,Xτδ) + ∆̂(τ δ,Xτδ)− e
∫ τδ
τ r(u,Xu)du∆̂(τ,Xτ )− C(τ,Xτ−)

)+ ∣∣∣Gτ] . (B.5)
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Therefore, the Markov property of X and the continuity of X at time τ imply that ξ̄τ can
be represented in functional form as ξ̄(τ,Xτ−). Hence (cf. Crépey and Song (2016, Lemma
5.1)), it holds that

γtξ̂t = γtξ̄
(
t,Xt

)
, Q× λ− a.e.,

where (5.1) yields γ = J−γ•. This gives the result since dva = −γξ̂.

B.4 Proof of Lemma 6.1

We denote by Tδ the transition function of the homogeneous Markov process (t,Xt, βt) over
the time horizon δ, i.e.

(ϕ, (t,x, b))→ Tδ[ϕ](t,x, b) = E
[
ϕ(tδ,Xtδ , βtδ)|Xt = x, βt = b

]
= E

[
ϕ(tδ,Xtδ , βtδ)|Gt

]
.

Recalling (B.5) and using the fact that X does not jump at time τ , we have

ξτ = Tδ[ξ?(·, ·, ·, βτ , C?τ−, ∆̂τ−)](τ,Xτ , βτ ) = Tδ[ξ?(·, ·, ·, βτ , C?τ−, ∆̂τ−)](τ,Xτ−, βτ ), (B.6)

where we set

ξ?(t,x, b, βτ , C?τ−, ∆̂τ−) = (1−R)β−1
τ b
(
P (t,x) + ∆̂(t,x)− βτ b−1∆̂τ− − C?τ−

)+
,

in which βτ , C?τ− and ∆̂τ− are considered as Gτ− measurable parameters. In view of (B.6),
we have (cf. Crépey and Song (2016, Lemma 5.1))

−dvat = γtξ̂t = Jt−γtTδ[ξ?(·, ·, ·, βt, C?t , ∆̂t−)](t,Xt−, βt), Q× λ a.e.. (B.7)

As a consequence, given an independent random variable ζ with density p, we can write,
using (B.7), the definition of Tδ and (5.1) to pass to the second, third and fourth line,
respectively:

− E[hζ1{ζ≤τ̄}βζdva(ζ,Xζ)] = −
∫ T

0
E
[
htβt1{t<τ̄}dva(t,Xt)

]
p(t)dt

=

∫ T

0
E
[
htβt1{t≤τ}γtTδ[ξ?(·, ·, ·, βt, C?t , ∆̂t)](t,Xt, βt)

]
p(t)dt

=

∫ T

0
E
[
htβt1{t≤τ}γtE

[
ξ?(t

δ,Xtδ , βtδ , βt, C?t , ∆̂t)|Gt
]]
p(t)dt

=

∫ T

0
E
[
htβt1{t≤τ}γ•(t)ξ?(t

δ,Xtδ , βtδ , βt, C?t , ∆̂t)
]
p(t)dt

= E
[
1{ζ≤T}hζβζ1{ζ≤τ}γ•(ζ)ξ?(ζ

δ,Xζδ , βζδ , βζ , C?ζ , ∆̂ζ)
]
.
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Crépey, S., T. R. Bielecki, and D. Brigo (2014). Counterparty Risk and Funding: A Tale
of Two Puzzles. Chapman & Hall/CRC Financial Mathematics Series.

Crépey, S. and T. M. Nguyen (2016). Nonlinear Monte Carlo schemes for counterparty
risk on credit derivatives. In Challenges in Derivatives Markets, Springer Proceedings
in Mathematics, pp. 53–82. Springer.
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