N

N

Central Clearing Valuation Adjustment
Yannick Armenti, Stéphane Crépey

» To cite this version:

‘ Yannick Armenti, Stéphane Crépey. Central Clearing Valuation Adjustment. 2016. hal-01169169v2

HAL Id: hal-01169169
https://hal.science/hal-01169169v2

Preprint submitted on 13 Apr 2016 (v2), last revised 3 Feb 2017 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01169169v2
https://hal.archives-ouvertes.fr

Central Clearing Valuation Adjustment

Yannick Armenti and Stéphane Crépey*
stephane.crepey@Quniv-evry.fr

Université d’Evry Val d’Essonne
Laboratoire de Mathématiques et Modélisation d’Evry
91037 Evry Cedex, France

April 13, 2016

Abstract

This paper develops an XVA (costs) analysis of centrally cleared trading, parallel
to the one that has been developed in the last years for bilateral transactions.

We introduce a dynamic framework that incorporates the sequence of cash-flows in-
volved in the waterfall of resources of a clearing house. The total cost of the clearance
framework for a clearing member, called CCVA for central clearing valuation adjust-
ment, is decomposed into a CVA corresponding to the cost of its losses on the default
fund in case of defaults of other member, an MVA corresponding to the cost of funding
its margins and a KVA corresponding to the cost of the regulatory capital and also of
the capital at risk that the member implicitly provides to the CCP through its default
fund contribution.

In the end the structure of the XVA equations for bilateral and cleared portfolios
is similar, but the input data to these equations are not the same, reflecting different
financial network structures. The resulting XVA numbers differ, but, interestingly
enough, they become comparable after scaling by a suitable netting ratio.

Keywords: Counterparty risk, central counterparty (CCP), margins, default fund, cost of
funding, cost of capital, netting.
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1 Introduction

To cope with counterparty risk, the current trend in regulation is to push dealers to clear
their trades via CCPs, i.e. central counterparties (also known as clearing houses). Progres-
sively, central clearing is even becoming mandatory for flow products. Centrally cleared
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d’Essonne and Fédération Bancaire Francgaise.



trading mitigates counterparty risk through an extensive netting of all transactions. More-
over, on top of the variation and initial margins that are used in the context of bilateral
transactions, a CCP deals with extreme and systemic risk on a mutualization basis, through
an additional layer of protection, called the default or guarantee fund, which is pooled be-
tween the clearing members.

In this paper we develop the vision of a clearing house effectively eliminating counter-
party risk (we do not incorporate the default of the clearing house in our setup), but at a
certain cost for the members that we analyze.

1.1 Review of the CCP Literature

Duffie (2010) and Cont, Santos, and Moussa (2013) dwell upon the danger of creating “too
big to fail” financial institutions, including, potentially, clearing houses.

Collateralization, whether in the context of centrally cleared trading or of bilateral
trading under the currently emerging “standard CSA” procedures (sCSA for short, where
CSA stands for credit support annex), requires a huge amount of cash or liquid assets.
This puts a high pressure on liquidity, an issue addressed in Singh and Aitken (2009),
Singh (2010), Levels and Capel (2012) and Duffie, Scheicher, and Vuillemey (2015).

Avellaneda and Cont (2013) consider the optimal liquidation of the portfolio of a de-
faulted member by the clearing house.

Clearing is typically organized by asset classes, so that service closure of the CCP on one
asset class does not harm its activity on other markets—and also because otherwise, in case
of the default of a member, holders of less liquid assets (e.g. CDS contracts) are penalized
with respect to holders of more liquid assets (e.g. interest rate swaps). As a consequence,
the multilateral netting benefit of CCPs comes at the expense of a loss of bilateral netting
across asset classes (see Duffie and Zhu (2011)). However, Cont and Kokholm (2014) claim
that the former effect typically dominates the latter.

Cont, Mondescu, and Yu (2011) and Pallavicini and Brigo (2013) analyze the pricing
implications of the differences between the margining procedures involved in bilateral and
centrally cleared transactions.

Until recently, the cost analysis of CCPs, our focus in this paper, was only considered
in an old business finance literature reviewed in Knott and Mills (2002), notably Fenn
and Kupiec (1993). In the last years, new papers have appeared in this direction. Under
stylized assumptions, Arnsdorf (2012) derives an explicit approximation to a CCVA (using
the terminology of the present paper), including effects such as wrong way risk (meant as
procyclicality of the margins), credit dependence between members and left tailed distribu-
tions of their P&Ls. Ghamami (2014) proposes a static one-period model where a CCVA
can be priced by Monte-Carlo.

Brigo and Pallavicini (2014) extend the bilateral counterparty risk analysis of their
previous papers to centrally cleared trading. However, they ignore the default fund and
credit risk dependence issues that are inherent to the position of a clearing member.

1.2 Contributions and Outline

This paper develops an XVA (costs) analysis of centrally cleared trading, parallel to the one
that has been developed in the last years for bilateral transactions (see e.g. Crépey, Bielecki,
and Brigo (2014, Parts II and III) or Brigo, Morini, and Pallavicini (2013)). A dynamic
framework incorporates the sequence of cash-flows involved in the waterfall of resources of



the clearing house. As compared with Arnsdorf (2012) and Ghamami (2014), our CCVA
accounts not only for the central clearing analog of the CVA, which is the cost for a member
of its losses on the default fund in case of other members’ defaults, but also for the cost of
funding its margins (MVA) and for the cost of the capital (KVA) that is implicitly required
from members through their default fund contributions (and for completeness and reference
we also compute a DVA term).

The framework of this paper can be used by a clearing house to find the right bal-
ance between initial margins and default fund in order to minimize the CCVA (subject
to the regulatory constraints), hence optimize its costs to the members for a given level
of resilience. A clearing house can also use it to analyze the benefit for a dealer to trade
centrally as a member rather than on a bilateral basis, or to help its members manage their
CCVA (regarding the question for instance of how much of these costs they could consider
passing to their clients).

The paper is organized as follows. Sect. 2 presents our clearing house setup. The
waterfall of resources of the CCP is described in Sect. 3. The CCVA analysis is conducted
in Sect. 4. Sect. 5 introduces the common shock model that is used for the default times of
the members of the clearing house. Sect. 6 provides an executive summary of the centrally
cleared XVA analysis of this paper and recalls for comparison purposes the bilateral CSA
XVA methodology of Crépey and Song (2016). Sect. 7 designs an experimental framework
used in the numerics of Sect. 8. Sect. 9 concludes.

1.3 Basic Notation and Terminology

fab = f(a’b}; zt = max(+z,0); d, represents a Dirac measure at a point a; A denotes the
Lebesgue measure on R;. Unless otherwise stated, a filtration satisfies the usual condi-
tions; a price process is a special semimartingale in a cadlag version; all inequalities between
random quantities are meant almost surely or almost everywhere, as suitable; all the cash
flows are assumed to be integrable whenever required; by “martingale” we mean local mar-
tingale unless otherwise stated, but true martingale is assumed whenever necessary. This
means that we only derive local martingale properties. Usually in applications one needs
true martingales, but this is not a real issue in our case, where even square integrability
follows from additional assumptions postulated when dealing with BSDEs, which are our

main pricing tool in this paper.

2 Clearinghouse Setup

We model a service of a clearing house dedicated to trading between its members, labeled
byie N ={0,...,n}.

2.1 From Bilateral to Centrally Cleared Trading

In a centrally cleared setup, the clearing house interposes itself in all transactions, becoming
“the buyer to every seller and the seller to every buyer”. All the transactions between the
clearing house and a given member are netted together. See Figure 1 for an example,
where the circled numbers in the left (respectively right) diagram show the gross positions
of n = 3 counterparties in a CSA setup (respectively their net positions with the CCP after
the introduction of the latter in the middle).



In addition to interfacing all trades, the clearing house asks for several layers of guar-
antee to be posted by the members against counterparty risk, including a default fund that
is pooled between the clearing members.

The benefits of centrally cleared trading are multilateral netting benefit and mutualiza-
tion of risk. The drawbacks are an increase of systemic risk, where “too big to fail” CCPs
might be created, liquidity risk, due to the margin requirements, and a loss of bilateral
netting across asset classes (cf. Duffie (2010) and Cont et al. (2013)).
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Figure 1: From bilateral to centrally cleared trading.

2.2 Liquidation Procedure

The mandate of a CCP is to liquidate over a few days the portfolio of a defaulted member.
During the liquidation period, the CCP bears the risk of the portfolio. The trades with
a defaulted member are typically reallocated by means of auctions among the surviving
members and/or by a gradual liquidation of its assets in the market.

For ease of analysis in this paper, we assume the existence of a risk-free “buffer” that
is used by the clearing house for replacing defaulted members in their transactions with
others at the end of a liquidation period of length ¢ (the defaulted transactions already
involving the buffer as one counterparty are simply terminated). We assume that during
the liquidation period, the promised contractual cashflows and the hedge of a defaulted
member are taken over by the CCP.

2.3 Pricing Framework

Let (©2,G,Q) represent a stochastic pricing basis, with G = (G;)ser, , such that all our
processes are G adapted and all the random times of interest are G stopping times. Expec-
tation under Q and (G, Q) conditional expectation are denoted by E and E;. We denote by
r a G progressive OIS rate process and by £ = e~ Jo 7545 the corresponding discount factor.
An OIS (overnight index swap) rate is together the best market proxy for a risk-free rate
and the reference rate for the remuneration of the collateral.

For each member i, we denote by D! the process of the cumulative contractual cash-
flows of its portfolio with the CCP (“promised dividend” process ignoring counterparty
and funding risk), assumed of finite variation. We denote by P} the mark-to-market of its
portfolio ignoring counterparty and funding risk, i.e.

. T . —
B,F; = E, ( / ﬁsdD;>, te0,7), (2.1)
t
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where T is the final maturity of the CCP service portfolio, assumed held on a run-off basis
(as is standard in any pricing or risk model). All cash-flows and values are considered from
the point of view of the clearing house, e.g. P/ = 1 means that the member i is short of
a mark-to-market value equal to one (disregarding margins) toward the clearing house at
time ¢. Since all trades are between the members, we have ).y Pi=0.

3 Margin Waterfall Analysis

The mark-to-market pricing formula (2.1) ignores the counterparty risk of the member i,
with default time 7; and survival indicator process J* = Lio,7,)- As a first counterparty risk
mitigation tool, the members are required to exchange variation margins that track the
mark-to-market of their portfolios. A clearing house can call for variation margins at every
time of a margin grid of step h, e.g. twice a day.

However, various frictions and delays, notably the liquidation period §, imply gap risk,
which is the risk of a gap between the variation margin and the debt of a defaulted member
at the time of liquidation of its portfolio. This is a special concern for certain classes of
assets, such as credit derivatives, that may have quite unpredictable cash-flows (see Crépey
and Song (2016)).

This is why another layer of collateralization, called initial margins, is maintained in
centrally cleared transactions (as well as in bilateral transactions ruled by an sCSA, or stan-
dard credit support annex, which is the emerging bilateral trading alternative to centrally
cleared trading). Initial margins are also dynamically updated, based on some risk measure
of the variation-margined P&L of each member computed over the time horizon ¢’ =8 + h
of the so called margin period of risk (maximal time h elapsed since the last margin call
before the default plus liquidation period § between default and liquidation).

Gap risk is magnified by wrong-way risk, which is the risk of adverse dependence between
the positions and the credit risks of the members. One may also face credit contagion effects
between members (wrong-way and contagion risk are of special concern regarding credit
derivatives). Clearing houses deal with such extreme and systemic risk through a default
fund mutualised between the clearing members. The default fund contribution of each
member is primarily intended to reimburse the losses triggered by its own default, but, if
rendered necessary by exhaustion of the previous layers of the waterfall, it can also be used
for reimbursing the losses due to the defaults of other members.

3.1 Margins

Let lh, with [ > 0, represent the times of the variation and initial margin calls, and let
[T, with T" a multiple of h (e.g. h = one day and T' = one month), represent the times of
update of the default fund contributions.

Consistent with our sign convention that all cash-flows and values are seen from the
perspective of the clearing house, we count a margin positively when it is posted by a
member and we define the variation margin VM?, initial margin IM? and default fund
contribution DFC" of the member i as the piecewise constant process reset at the respective
grid times following, respectively (while the member i is alive):

VM}, = P},_, IM}, = p},, DFClp = ojr, (3.1)

where p° and o' refer to suitable risk measures as explained below. Note that (3.1) defines
the level of reset of the respective cumulative amounts. Starting from VMy = Pj_, IMj = py



and DFC% = 0}, the corresponding updates at grid times are (P}, _ —P(ilh_h)_), (Pl — P 1)
and (i — €jp_7)-

Remark 3.1 In practice, the variation margin only tracks the mark-to-market of the port-
folio up to some thresholds, or free credit lines of the members, and up to minimal transfer
amounts devoted to avoiding useless updates. These features, which can be important in
the case of bilateral transactions, are omitted here as negligible in the case of centrally
cleared transactions.

Let
. . t4-5" d . .
;,tJr(S/ = tl+6/ + /[;t—‘r(s/} efs Tu UdD; - PZ_. (3'2)

In particular, at margin call times ¢ = [h, we have, in view of the specification of the
variation margin by the first identity in (3.1):
. . 1h+6 . .
Lipihysr = Plnyo + / el gDl — VMg, (3.3)
[th,Ih+6"]

which is the variation-margined loss-and-profit of the member i at the time horizon §' =
d + h of the margin period of risk (cumulative loss-and-profit also accounting for all the
contractual cash-flows capitalized at the risk-free rate during the margin period of risk
[t,t 4+ 0']). The risk measure used for fixing the initial margins is a univariate risk measure
computed at the level of each member individually, which we write as

pin = p (Lininis) - (3.4)

where p can be value at risk, expected shortfall, etc.. The dependence between the portfolios
of the members is only reflected in the initial margins through the structural constraint that

2ieN Pt =0.

Remark 3.2 Historically, for computing initial margins, CCPs have been mostly using
the SPAN methodology, introduced by the Chicago Mercantile Exchange in the 80s. This
methodology is based, for each member, on the consideration of the most unfavorable
among sixteen reference scenarios (see Kupiec and White (1996)). Nowadays, value at risk
methodologies tend to become the standard.

Unless defaults happen, margins do not imply any transfer of ownership and can be
seen in this sense as a loan by the posting member. By contrast, default fund contributions
can be consumed in case of other members’ defaults, hence they should really be viewed as
capital put at the disposal of the CCP by the clearing members. The “cover two” EMIR
rule prescribes to size the default fund as, at least, the maximum of its largest exposure
and of the sum of its second and third largest exposures to the clearing members (see
Sect. A.1). This is only a regulatory minimum and sometimes more conservative rules are
used, such as a default fund set as the sum of the two largest exposures. It is then allocated
between the clearing members by some rule, e.g. proportionally to their initial margins. At
a more theoretical level, the mutualization rationale of the default fund calls for the use of
multivariate risk measures, which we write in an abstract fashion as

oir = 0i ((LgT,lT—HS’ - IMZJT)]._J]- _1> (3.5)
T
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.;‘+5, between
(I—1)T and IT to refrain members from temporarily closing their positions right before IT
in order to avoid to contribute to the default fund).

Regarding the distributions that are used for members loss-and-profits in all these risk
measure computations, since the crisis, the focus has shifted from the cores of the distri-
butions, dominated by volatility effects, to their queues, dominated by scenarios of crisis
and default events. For the determination of the initial margins, Gaussian VaR models
are generally banned since the crisis and CCPs typically focus on either Pareto laws or on
historical VaR. Stressed scenarios and parameters are used for the determination of the
default fund.

Note that margin schemes as above, even, in the case of the default fund contributions,
possibly based on multivariate risk measures (cf. (3.5)), only account for asset dependence
between the portfolios of the members, ignoring credit risk and contagion effects between
members. This is in line with the mandate of a clearing house to mitigate (i.e. put a cap
on) its exposure to the members by means of the margins, in case a default would happen,
where a defaults is viewed as a totally unpredictable event. On top of the margins, add-ons
are sometimes required from members with particularly high credit or concentration risk.

We refer the reader to Ghamami (2014), Cruz-Lopez, Harris, Hurlin, and Perignon
(2015), Menkveld (2016) or Armenti, Crépey, Drapeau, and Papapantoleon (2015) for al-
ternative margin schemes and default fund specifications. Good margining schemes should
guarantee the required level of resilience to the clearing house at a bearable cost for the
members. Two points of concern are procyclicality, in particular with haircuts that increase
with the distress of a member, and liquidity, given the generalization of central clearing
and collateralization.

(or an analog formula involving not only the L{TJT 1> but also intermediary r’

3.2 Breaches

The default time of the member i is modeled as a stopping time 7; with an intensity process
7%, In particular, any event {r; = t}, for a fixed time ¢, has zero probability and can be
ignored in the analysis. For every time ¢ > 0, let

t=tAT, ' =t+04, € =1, 7t + 17T (3.6)
and let ¢ denote the greatest margin call time (h < t. We denote by
C'=VM'+ IM"'+ DFC" (3.7)

the overall collateral process of the member i. Hence, we have C; = Cti for t < 7; and the
process C is stopped at time 7;. For each member i, we write

Al — [! rudu Di i pi Al e — (O Ciyt
t_[ }es dDg, Qi =P + A, 51—(Q76_a)v
Ti,t ¢
Xi = —Lem0Qls — Leso(Ch + Ricy), (3.8)
& =Ql 4+ xi = 1e50(QLs — C& — Rigy) = (1 — Ry)e,
where A! represents the cumulative contractual dividends capitalized at the risk-free rate

that fail to be paid by member ¢ from time 7; onwards. These dividends are promised but
unpaid due to the default of the member 7 at ;. Hence, they also belong to the exposure of



the CCP to the default of the member ¢ (cf. the proof of Lemma 3.1 below). We distinguish
the raw exposure ¢; from the exposure &; resulting from an assumed recovery rate R; of
the member ¢. In fact, in the context of centrally cleared trading, by liquidation of a
defaulted member, we simply mean the liquidation of its CCP portfolio, as opposed to the
legal liquidation, by a mandatory liquidator, that can take several years (the New York
branch of Lehman was legally liquidated in December 2013, more than five years after
Lehman’s default). In particular, there is typically no recovery to expect on a defaulted
member, i.e. R; = 0. The reason why we introduce recovery coefficients is for the discussion
regarding DVA and DVA2 in Sect. 4 and for comparison with the bilateral trading setup
of Sect. 6.

Note that we do not exclude joint defaults in our setup. In fact, joint defaults, which
can be viewed as a form of “instantaneous contagion”, is the way we will introduce credit
dependence between members in Sect. 5. For Z C N = {0,...,n}, we denote by 77 €
R4 U {oo} the time of joint default of names in the subset Z and only in Z. At this
stage we consider all the costs from the perspective of the CCP and the community of
the surviving members altogether. The allocation of these costs between the CCP and the
surviving members will be considered in Sect. 3.3. We call realized breach of a (possibly
joint) default event the residual loss to the CCP after all the collateral of the defaulted
member(s) has been consumed.

Lemma 3.1 At each liquidation time Tg = 77 + 6 with 77 < T, the realized breach of the
CCP is given by
By =) & (3.9)
i€z
Proof. Under our stylized model of the liquidation procedure, during the liquidation pe-
riod [rz,75], where 7z = 7; if and only if i € Z, the clearing house substitutes itself to

the defaulting members, taking care of all their dividend cash flows, which represent a
cumulative cost of »,_, A, (including a funding cost at the risk-free rate comprised in

the Ai‘;). At the liquidation time 75, the clearing house substitutes the buffer to itself

as counterparties in all the concerned contracts (or simply puts an end to the contracts
that were already with the buffer), which represents a supplementary cost >, , Pi;. In

addition, for any 7 € Z :
e If £; = 0, meaning that Q:& < C%_, then either Qf_§ < 0 and an amount (_Qi.é) is

paid by the clearing house to the member i (who keeps ownership of all its collateral),
or Q’ﬁ; > 0 and the ownership of an amount QZT_(; of collateral is transferred to the

clearing house. In both cases, the clearing house gets Qié;

e Else, i.e. if &; > 0, meaning that the overall collateral C* of a member i € Z does not
cover the totality of its debt to the clearing house, then, at time Tf, the ownership of
C' is transferred in totality to the clearing house. If R; > 0 then the clearing house
also gets a recovery R;e;.

In conclusion, the realized breach of the CCP is the sum over i € Z of the
Pl + Aly = 1o50(C + Rigi) — 12,20Qs = QL5 — 15,=0Q%5 — 1,50(C + Riei)
= ]lai>0(Qj._5 — ij:z — Rié‘i) = (1 — Ri)z’fi = fz [ |



3.3 Equity and Default Fund Replenishment Principle

We proceed with the description of the next layers of the waterfall of resources of the
clearing house, namely the equity and the default fund.

If the default of a member entails a positive breach, then the first payer (although to a
typically quite limited extent) is the clearing house itself (before the surviving members),
via its equity F.

Remark 3.3 The regulation (e.g. EMIR) does not necessarily require that the CCP be
the first payer in case of a realized breach. However, CCPs typically take the equity tranche
of this risk, as a good management incentive.

Specifically, at times [Y, [ > 0, where Y is a multiple of T' (e.g. one year whereas T is one
month), the equity process E is reset by the clearing house at some target level E}y., the
“skin in the game” of the clearing house for the time period [IY; (I4+1)Y]. In the meantime,
the equity is used as first resource for covering the realized breaches, i.e., at each t = Tg

with 77 < T, we have
AE; = —(By NE_). (3.10)

The part of the realized breach left uncovered by the equity, (B; — E;—)", is covered by
the surviving members through the default fund, which they refill instantaneously by the
following rule, at each ¢t = 75 with 77 < T (see Figure 2):

JiDFC!

Gi: (Bt—Et_)Jr - =,
S en HHDFC]

(3.11)

proportionally to their current default fund contributions DFC} (or other keys of repartition
such as their initial margins or the notionals of their positions).

In sum, the margins and the default fund contributions V. lih, M lih and DF liT are reset
at their respective grid times by the surviving members according to (3.1); the equity is
reset at the times [Y by the clearing house and is used for covering the first levels of realized
breaches at liquidation times according to (3.10); the losses in case of realized breaches above
the residual equity are covered at liquidation times by the surviving members according to
(3.11) (see Figure 2).

Tz

Figure 2: Margin cash flows: resets at margin call grid times and refill of the default fund
at liquidation times.

Remark 3.4 The total size of the default fund is JEN JIDF(J, a quantity also referred
to as the funded default fund. The unfunded default fund refers to the additional amounts



members may have to pay via the above default fund replenishment principle in case of
defaults of other members. More precisely,

+

i i i
wr = > € — DFCip_r
IT-T<7rL<IT

represents the unfunded default fund contribution of the member i for the period (IT —
T,1T). The service closure, i.e. the closure of the activity of the clearing house on a given
market or service, is usually specified in terms of events such as the unfunded default fund
djeN Jrujy reaching a cap given as, e.g., 2> ien iy pDFCY. o, ie. twice the funded
default fund. Given the high levels of initial margins that are used in practice, this is a very
extreme tail event. Moreover, in case of service closure, the risk of a member is bounded
above by the sum between its margins, three times its default fund contribution (assuming
the above specification of service closure) and the cost of the liquidation of the service for
this member. This cost is itself bounded by the notional of the member position, which
would only be the actual cost in a scenario where all the assets of the CCP would jump
to zero, also a very unlikely situation. In conclusion, the service closure event does not
really matter regarding our present purpose of the XVA cost analysis of CCP membership.
The default of the CCP as a whole (i.e. the closure of all its services) is an even more
unlikely event, especially because a central bank would hardly allow it to occur in view of
its systemic consequences. Hence we may and do ignore the service closure and the default
of the clearing house in the context of this paper. See Armakola and Laurent (2015)
about CCP resilience and see Duffie (2014) about alternative approaches to the design of
insolvency and failure resolution regimes for CCPs.

4 Central Clearing Valuation Adjustment

We refer to the (generic) member 0 as “the member” henceforth, the other members being
collectively referred to as “the clearing house”. For notational simplicity, we remove the
index 0 referring to the reference member. We call value of the CCP portfolio of the member
its value inclusive of counterparty and funding risk (as opposed to the mark-to-market of
the portfolio).

We assume that the member enters its portfolio at time 0, against an upfront payment
of a certain amount Ily, where the semimartingale II is a tentative value process of the
CCP portfolio of the member. We assume that profit-and-losses are marked to the model
value process Il and realized in continuous time (the reader is referred to Albanese et al.
(2016, Section 9.1) for the discussion of other choices in this regard).

In this section, we derive a representation of the (no arbitrage) value II of the CCP
portfolio of a member as the difference (cf. the remark 4.2 below) between the mark-
to-market of the portfolio and a correction ©. We call © the central clearing valuation
adjustment (CCVA). The KVA-inclusive CCVA is obtained in a second step by adding
to © a capital valuation adjustment (KVA) meant as the cost that it would require for
remunerating the member at some hurdle rate for its CCP capital at risk (including its
default fund contribution).
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4.1 DVA and DVA2 Issues

From the perspective of the member, the effective time horizon of interest is 7° (cf. (3.6)).
The position of the member is closed at 70 (if 7 < T'), with a terminal cash-flow from the
member’s perspective given, in view of (3.8) and of the analysis developed in the proof of
Lemma 3.1 (for i = 0 here), by

X =—1:50(Cs+ Re) — 1.-0Q 5. (4.1)
In particular, if € > 0, i.e. Qs > Cz, then the member receives

—C—Re = —C3 — R(Qrs —C7) = (—Qps) + (1 - R)(Qrs — C3).

However, for this amount to benefit to the member’s shareholders, it needs to be hedged so
that they can monetize it before 7 (otherwise it is only a profit to the member’s bondhold-
ers). But, in order to hedge this amount, the member would basically need to sell credit
protection on itself, which is barely possible in practice. Consequently, from an entry (i.e.
transaction) price perspective, the member should ignore such a windfall benefit at own
default and the ensuing debt valuation adjustment (DVA). This means formally setting
R = 1, which results in x = —Q,s in (4.1) and £ = 0 later in (4.13). Then R becomes
disconnected from what the clearing house would actually recover (if anything) from the
member in case it defaults, but this is immaterial for analyzing the costs of this member
itself, it only matters for the others. In sum, it is possible and convenient to analyze the
no DVA case for the reference member just by formally setting R = 1.

If, however, some DVA is accounted for (i.e. if R < 1), then one may want to reckon
likewise a funding benefit of the member at its own default, a windfall benefit called DVA2
in the terminology of Hull and White (2012), corresponding to an additional cash-flow to
the member of the form

(1—-R)(IL— +C5)7 (4.2)

at time 7 (if < T). Here C* = VM + IM and R is a recovery rate of the member to
its funder, so that the amount (IL— + CX)" in (4.2) represents the funding debt of the
member at its default (having assumed profit-and-losses marked-to-model and realized in
real time, see the proof of Lemma 4.1 below for more detail). The funder of the member
corresponds to a third party, possibly composed in practice of several entities or devices and
assumed default-free for simplicity, playing the role of lender/borrower of last resort after
exhaustion of the internal sources of funding provided to the member through its collateral
and its hedge.

More generally, even if one considers that the “true” recovery rate of the member is
simply zero, playing with formal recovery coefficients R and R somewhere between 0 and
1 allows reaching any desired level of interpolation between the entry price point of view
R = R =1 and the reference exit price point of view R = R = 0. On the DVA and DVA2
issues, see Hull and White (2012), Burgard and Kjaer (2012), Albanese and Andersen
(2015), Albanese, Andersen, and Iabichino (2015), Andersen, Duffie, and Song (2016) and
Albanese et al. (2016).

4.2 Gain Process

The member can hedge its collateralized portfolio and needs to fund its whole position
(portfolio, margins and hedge).
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Regarding hedging, we restrict ourselves to the situation of a fully securely funded
hedge, entirely implemented by means of swaps, short sales and repurchase agreements (all
traded outside the clearing house, given our assumption of a constant CCP portfolio of the
member), at no upfront payment. As explained in Crépey et al. (2014, Section 4.2.1 page
87), this assumption encompasses the vast majority of hedges that are used in practice.
Consistent with arbitrage requirements and our terminology of a risk-neutral measure Q,
we assume that the vector-valued gain process M of unit positions in the hedging assets
is a Q martingale (see Crépey et al. (2014, Remark 4.4.2 pages 96-97) or Bielecki and
Rutkowski (2015, Proposition 3.3)). We assume that the member sets up a related hedge
(—(), i.e. a left-continuous row-vector process with components yielding the (negative of)
positions in the hedging assets. The “short” negative notation in front of { is used for
consistency with the idea, just to fix the mindset, that the portfolio is “bought” by the
member, which therefore “sells” the corresponding hedge.

Regarding funding, we assume that variation margins VM; = P, consist of cash re-
hypothecable and remunerated at OIS rates, while initial margins consist of segregated
liquid assets accruing at OIS rates. Initial margins and default fund contributions are
supposed to be subject to CCP fees ¢, e.g. 30 basis points. We postulate that the member
can invest excess-cash at a rate (r; + \;) and obtain unsecured funding at a rate (r; + A¢).

Let e denote the gain process (or profit-and-loss, hedging error,..) of the member’s
position, held by the member itself before 7 and then, if 7 < T, by the clearing house (as
liquidator of the member’s position) on [7,7°].

Lemma 4.1 Ignoring the close-out cashflow (4.1) at 7 if 7 < T, which will be added
separately later (and is treated accordingly as a boundary condition in the pricing equation
(4.9), see Lemma 4.1 and its proof), we have eq = 0 and, for 0 <t < 79,

de; = dIl; — rillydt — J; | dDy+ Y €.56,5(dt) + g,(T1;)dt

P (4.3)
— 1oy (1= R + CH)FdJy — Gd M,
where, for any m € R,
ge(m) = cr(Ce — Pr) + Ae (m +CF) T = M (m+Cf) (4.4)

Proof. To formulate in mathematical terms the above-described margining, hedging and
funding policy of the member, we introduce three funding assets B®, B/ and B/ evolving
on [0, 7] as

dB? = r,Bdt, dB{ = (ri+ N)Bldt, dB! = (ro+X\)B/dt + (1 - R)B{_dJ,.  (4.5)

These represent the risk-free OIS deposit asset and the assets used by the bank for its
respective investing and unsecured funding purposes. Under our continuous-time mark-to-
model and realization assumption on profit-and-losses, the amount on the funding accounts
of the bank is

—Ht :C;— (Ht—i-C;),

where Cf = VM + IM is the amount of margins that need to be funded by the member (its
default fund contribution is assumed to be taken on its uninvested equity, hence does not
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need to be funded) and where the terms in the parenthesis represent the amount invested
or unsecurely funded (depending on its sign) by the bank. Put differently,

~IL, = 00BY + Jun{ B + Ji{ Bf + (1 — 1)) BY, (4.6)
with
Cr (I, +Cf)~  _ (I, +CcH)*t (IT; + Cf)
0 t f t t f t t 0 t t
n=—5 M =—F" N =———F, = 4.7
i B i Btf i Btf h BY (4.7)

In view of (4.6) and of the additional cash-flows that affect the member (contractual cash-
flows, margin fees, realized breaches refills and hedging cash-flows), the self-financing prop-
erty of the member’s valuation-and-hedge policy (II, ¢) is expressed by the following forward
SDE: ey = 0 and, for 0 < t < 79,

de; = dIl; - Jyd Dy - Jtct(ct - Pf_)dt
~— ~——
gain on the derivative portfolio contractual dividends margin fees
— Jy Z €505 (dt) - Grd My
N z Tz N——

loss on the hedge

refill of realized breaches
+0%dB + gl dBf + J_nl_dB! + (1 — J,)7?dBP.

A left-limit in time is required in Jt_ﬁ{_ because Btf in (4.5) jumps at time 7, so that the
process 777, which is defined through (4.7), is not predictable (the possibility of taking a
left-limit in 7/ is the reason why we restrict ourselves to left-continuous hedges 7).

Substituting (4.5) into the above yields
de; = dIl; + rCrdt
——

margins remuneration

+ Ji ((Tt+>\t)(Ht+C;)_ — (re + M) (Ht+C;)+) dt

funding benefits/costs
~L oy (e +CF)Tdy

windfall funding benefit at own default (DVA2 cash-flow)
— (1 — Jt)’l"t(Ht + C;)dt

risk-free funding benefits/costs of the CCP (member’s liquidator)
during the liquidation period

- Jtd.Dt - JtCt(Ct - P{_)dt - Jt Z 67_%(57_% (dt) — Ctd./\/lt.
ZCN

Collecting terms, we obtain

det = dHt - Tt]:[tdt - Ctht - ]1{7_<T}(1 - R)(H + CE)erJt

—Ji [ dDi+ Y €385 (dt) + (ci(Co— Pr) + A (T + C1)T = A\ (T +CF)7) dt |
ZCN

which is (4.3), by definition (4.4) of g. B
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Remark 4.1 The self-financing equation (4.3) holds for any funding coefficient g; = g;(7)
there, not necessarily given by (4.4), as soon as (rII; + g¢(I1;))dt represents the dt-funding
cost of the member (whilst the member is alive, and net of the funding cost of its hedge
that is already comprised in the local martingale (;dMy).

4.3 Pricing BSDE

Definition 4.1 We call IT a (no arbitrage) value process for the member’s portfolio if the
ensuing gain process e (cf. (4.3)) is a risk-neutral local martingale.

Proposition 4.1 A semimartingale 11 is a value process for the member’s portfolio if and
only if it satisfies the following valuation BSDE on [0,7°]:

Hes = 1o x and, fort < 79,

dll; = rJdl:dt + ]1{T<T}(1 — R)(Htf + Cti)—’—de]t

+J [ dDi+ ) €505 (dt) + gu(I)dt | + duy,
ZCN

for some local martingale v.

Proof. In view of (4.3), (4.9) is equivalent to de; = dvy — (;dM;. Since (;dM; defines a
local martingale, therefore e and v are jointly local martingales or not, which establishes
the proposition.

Note that, assuming true martingality of v, equivalently to the differential formulation
(4.9), we can write (absorbing the rJII;dt term from (4.9) into the risk-neutral discount
factor § in (4.10)) :

Billy = Bt [y (Brox + B-(1 = R, +C2)T )
T 4.10
— Y Bues —/ ﬁst(st+gs(Hs)ds)}, 0<t<7 (410
Z zZ
t<rS<F !

4.4 CCVA Representation

In this section we define the central counterparty valuation adjustment (CCVA) and derive
the corresponding BSDE.

Definition 4.2 Given a value I for the member, the corresponding CCVA is the process
defined on [0,7°] as © = —(Q + 1.

Remark 4.2 Recall from (3.8) that @ = P+ A, with all values viewed from the perspective
of the clearing house. Consistent with the usual definition of a valuation adjustment (see
Brigo et al. (2013) or Crépey et al. (2014)), we have © = (—Q)—1II, where (—Q) corresponds
to the perspective of the member.

Let
& = E(B, ' Br16€ | Gr), (4.11)
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where ¢ = (1— R)(Q,s —C)" as before (cf. (3.8)). Let & be a G predictable process, which
exists by Corollary 3.23 2) in He, Wang, and Yan (1992), such that

& = B(8; ' 8,561 Gr) = B(& | Gro). (4.12)
In particular, in the no-DVA case with R = 1, then { = £ = E: 0.

Proposition 4.2 Let there be given semimartingales I1 and © such that © = —(Q +1I) on
[0, %5]. The process 11 is a value process for the member’s portfolio if and only if the process
© satisfies the following BSDE:

51O = Et[ Z /87'%67% - ]1{7'<T} (57—5§ +B:(1— R)(PT— —Cz + @T—)i‘]t)
t<rg<: (4.13)
+/ ﬁs(gs(_Ps_@s))dS], te [0,7_'6].
t

Proof. Assuming © defined as —(Q + II) for some value process IT on [0,7°], then the
terminal condition ©z = —1 & that is implicit in (4.13) results from (3.8) and the

terminal condition for IT in (4.9). Moreover, we have, for ¢ € [0, 7],

t t
— B3O = BiQ + BeIly = By Py + /0 BsdDs + (Belly — /0 BsJsdDs), (4.14)

hence

— B3O — /Ot 5st< Z 67.%57.%(618) + gs(—Ps — @s)dS)

ZCN
t ~ t t
~tpery [ A= R(Pe =0+ C) = (WP + [ BudD.) + [ s,

by the pricing BSDE (4.9) satisfied by II. In view also of (2.1) (used for i = 0 here), this
is a (local) martingale, hence it coincides with the conditional expectation of its terminal
condition (assuming true martingality), which establishes (4.13). The converse implication
is proven similarly. i

Remark 4.3 As an alternative argument equivalent to the above, one can substitute the
right-hand side in (4.10) for SII; in (4.14), which, after an application of the tower rule,
yields (4.13). One can proceed similarly to show (4.10) if (4.13) is assumed.

Let, for ¥ € R,
Fo9) = g(—=Pi = 9) — & — (1 = R)yn(P, — Cf +0)~
=&+ (ct(C— P )+ M (P — ct*v+ 9 =N (P —=CF+09)T ) (4.15)

dvay Foas(9)

by definition (4.4) of g, where A = A — (1 — R)~ (recall v = ~° is the assumed intensity of
7). From the perspective of the member, the two terms in the decomposition (4.15) of the
coefficient f;(1#) can respectively be interpreted as a beneficial debt valuation adjustment
coefficient (dva, that can be ignored by setting R = 1) and a funding valuation adjustment
coefficient (fva;(9) in which the DVA2 component can be ignored by setting R = 1).
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Proposition 4.3 The “full CCVA BSDE” (4.13) for a semimartingale © on [0,7°] is
equivalent to the following “reduced CCVA BSDE” for a semimartingale © on [0,7] :

,Bt@t = Et[ Z BTgETg + /tT 55!1?8(65)d5]a te[0,7], (4.16)

t<Ty<F

equivalent in the sense that if © solves (4.13), then O = JO solves (4.16), whilst if@) solves
(4.16), then © = JO — (1 — J)1 & solves (4.13).

Proof. The full CCVA BSDE (4.13) is obviously equivalent to © = _]l{T<T}€_ on [7,7°]
and

/Bt@t = Et[ Z BTgETg - ]l{T<T}BT (ET =+ (1 - R)(PT— - C;"i' @’T—)_)

t<ry<F
+/ Bsgs(_Ps - ®S)d8:|
t

on [0,7), which is in turn equivalent to

© = 1, & on [7,7] and, on [0,7),

BiOr = Et[ Z 5@%& +/tT /Bs.fs(@s)ds}v

t<rf <7

(4.17)

because on [0,7) :
Eu[1eryBr (& + (1= R)(Pr — CE+6,.))

= B[ ereryBr (& + (1= B —C2+0,)7 ) |
= m[ [ &+ 0-RE -G ron))

T ~ —
[ [ fo. (G4 (- B(Pe -+ 0.))ds]
t
Here the last identity holds by consideration of the (local, assumed true) martingale
Bl + (1= R)(Pr =€+ ©r2) )i + Bl + (1 = R)(Pr — Cf + ©4) 7 )dt.

One readily checks that if © solves (4.17), then © = JO solves (4.16), whilst if © solves
(4.16), then © = JO — (1 — J)1(, .7y€ solves (4.17). u

Note that, provided r and X are bounded fro below, the reduced BSDE coefficient ﬁ(z?)
in (4.15) satisfies the monotonicity assumption

(fi(®) = fe(0)) (9 —9') < C(0 — )2,

for some constant C. Then, under mild integrability conditions, the reduced CCVA BSDE
(4.16) is well-posed in the space of square integrable solutions (see e.g. Kruse and Popier
(2016, Sect. 5)). By virtue of Proposition 4.3, so is in turn the full CCVA BSDE (4.13).
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Remark 4.4 In the terminology of Crépey and Nguyen (2015), (4.16) is the “partially
reduced” CCVA BSDE (cf. also Lemma 2.3 in Crépey and Song (2015)), while the “fully
reduced” BSDE (simply called “reduced” in Crépey and Song (2016)) is the BSDE on
the time interval [0,7] obtained from (4.16) by projection on a smaller filtration (the
market or reference filtration myopic to the defaults of the two parties). In this paper we
only work with the partially reduced BSDE in order to avoid the enlargement of filtration
technicalities.

4.5 Cost of Capital

The capital at risk of the member is composed of its default fund contribution D F'Cy, which
represents implicit capital at risk, and of its regulatory CCP capital K™ as of (A.3). Along
the lines of Albanese et al. (2016), we define the capital valuation adjustment (KVA) of the
member as the cost of remunerating its capital at risk K; = DFC; + K{™ at some hurdle
rate k throughout the whole life of the portfolio (or until the member defaults). Such a
KVA is given by the following formula (cf. Albanese et al. (2016)):

KVA; = kE, / e~ S ruth)duge g ¢ e [0, 7). (4.18)
t
The KVA-inclusive CCVA is then defined as the sum between our previous CCVA © and
this KVA.

5 Common Shock Model of Default Times

We use a dynamic Marshall-Olkin (DMO) copula model of the default times 7; (see Crépey
et al. (2014, Chapt. 8-10) and Crépey and Song (2016)). As demonstrated in Crépey et al.
(2014, Sect. 8.4), such a model can be efficiently calibrated to marginal and portfolio credit
data, e.g. CDS and CDO data (or proxies) on the members. The joint defaults feature of
the DMO model is also interesting in regard of the EMIR “cover two” default fund sizing
rule (cf. Sect. A.1).

Let there be given a family ) of “shocks”, i.e. subsets Y of members, typically the single-
tons {0},{1},...,{n} and a small number of “common shocks” representing simultaneous
defaults. For Y € ), we define

t
ny = inf{t > 0; / vy (s)ds > Ey}, JY = Lio,my)5
0

for a shock intensity function vy (f) and an independent standard exponential random
variable Fy. We then set

T = {yéﬁ?enny’ 1 € N.

Example 5.1 Fig. 3 shows one possible default path in a common shock model with n =5
and Y = {{0}, {1}, {2}, {3}, {4}, {3,4},{1,2,3},{0,1}}. The inner ovals show which shocks
happen and cause the observed defaults at successive default times. First, the default
of name 1 occurs as the consequence of the shock {1}. Second, names 3 and 4 default
simultaneously as a consequence of the shock {3,4}. Third, the shock {1,2,3} triggers the
default of name 2 alone (as name 1 and 3 have already defaulted). Fourth, the default of
name 0 alone occurs as the consequence of shock {0, 1}.
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Figure 3: Omne possible default path in a model with n = 4 and Y =

{{0}, {13, {2}, {3}, {4}, {3,4},{1,2,3}, {0, 1}}.

Again, in the case of the reference member (labeled 0), we omit the superscript 0 in the
notation. In particular, we have J = 1y -y = [[y¢y, JY, where Yy = {Y € );0 € Y},
hence the intensity v of 7 is given as

v = J_7, where v, = Z Yy - (5.1)
Y€V

We assume that all the market risk factors are gathered in a vector process X without jump
at 7 and that the processes X and X = (X, J), where J = (J¥)y¢y, are Markov in the full
model filtration G given as the filtration of X progressively enlarged by the random times
ny,Y € Y (in Sect. 7-8, X is simply a Black-Scholes stock S, augmented by additional
factors in order to cope with the potential path dependence of dividends and collateral).

—~ + o~ —~
Setting A = fot el rudug Do so that BiAy = BiAy — B A for t > 7, we assume, consistent
with the interpretation of each respective quantity, that

et = €(t, Xy) for t = Tg, ZCN
P, =P(t,Xy), A=A, Xy), C=C(t,Xy), telo,7]

(having augmented X by A and/or C if need be), for continuous functions €(t,z), P(t,x),
A(t,x) and C(t, x). In particular, it holds that

A=A, —A, =A(1,X,)—A(r,X,_) =0,

by continuity of X at 7 (as opposed to A, # 0 in the gap risk model of Crépey and Song
(2016)).

Lemma 5.1 We have
dvay = dva(t, Xy) = —th_(t,Xt)fy., Qx A a.e.,

for a function &(t,x) such that & = &(1, X+_).
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Proof. Since £ = (1 — R)(Q,s —Cz)" (cf. (3.8)), where
C:=Cr_ =C(1,X,-) and
Qus = P+ As = P(r,X,5) + A0, X ) — el r0XR (7 X,

we have by definition (4.11) of £ :

ET = (1 — R)E |:e f:é T(U,Xu)dux
(5.2)

~

(P(Té,XTé)-i-A(Té,X 0 = o7 T X (o T)—C(T,XT_)>+’QT}

Therefore, the Markov property of X and the continuity of X at time 7 imply that & can
be represented in functional form as £(7, X;_). Hence (cf. Crépey and Song (2016, Lemma
5.1)), it holds that

’Ytgt = ’ytg(ta Xt)7 @ XA — a.e.,

where (5.1) yields 7 = J_~,. This gives the result since dva = —vE.

6 XVA Engines

In this section, we summarize in algorithmic terms the central clearing XVA methodology of
this paper, as well as a bilateral trading XVA methodology recalled for comparison purposes
from Crépey and Song (2016). In both cases we use the common shock model of Sect. 5
for modeling the default times involved.

6.1 CCVA Engine

In spite of the nonlinearity inherent to the funding component of the CCVA, standard Monte
Carlo loops can be used for estimating a linearized first order CCVA obtained replacing
fvas(©s) by fuag(0) in (4.15), i.e. fs(Os) by fs(0) in (4.16). A nonlinear correction can
be estimated based on the Monte Carlo expansion of Fujii and Takahashi (2012a,2012b)
(further studied in Gobet and Pagliarani (2015)) in vanilla cases, with explicit formulas
for P, or by the branching particles scheme of Henry-Labordeére (2012) in more exotic
situations. In the bilateral trading setup of Crépey and Song (2016) (see also Crépey and
Nguyen (2015)), the nonlinear correction is consistently found less than 5% to 10% of the
linear part. Hence, in this paper, we just use the linear part. We obtain by first order linear
approximation in the reduced CCVA BSDE (4.16):

O = Op ~ E[ 3 5565+/ Bsfa(0 ds -E Y ﬁ565+E/ Badvagds
NEL

O<TZ<’T 0<7‘Z<’7'
DVA
i CVA (6.1)
E/ ﬁS<XS(C§—P) A (CE Py ds—HE/ Byes(Cs — Ps)ds,
0

MVA MLA
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where §; = e’fot“ds, A=)— (1 — R)ve, C* = VM + IM and, for each t = Tg <7,

€t = (Bt - Et,)—’_ JCt 7 in which Bt = Z(Ptl + A;Li - CZ»)'F
> jen Ji DFCY,

1€Z

with, for each member i, C'=VM'+IM'+ DFC" (cf. (3.11) and (3.7)-(3.9)). In addition,
dva = —v&, where £ is a predictable process such that & = E(8718,6€ | Gr—) (cf. (4.12)),
with é = (1 - R)(Ps + A5 —Co)t.

The € terms in (6.1) give rise to a CVA paid by the member through its contributions
to the refill of realized breaches. The terms dubbed MVA and MLA in (6.1), where

CY— Py=Ps_ + IM, — P, ~ IM, and C; — P;_ = IM, + DFC;,

are interpreted as a margin valuation adjustment (cost to the member of funding its initial

margins, essentially) and a margin liquidity adjustment (cost to the member of the CCP

margin fees). The positive (respectively negative) terms in (6.1) can be considered as deal

adverse (respectively deal friendly) as they increase (respectively decrease) the CCVA ©.

The DVA and the DVA2 can be ignored in © by setting R = 1 and R = 1, respectively.
For numerical purposes, we use the following randomized version of (6.1):

[ Y. B +]1{<<T}f/5’<f<( )} (6.2)

0<TZ<T

where ¢ denotes an independent exponential time of parameter u. Moreover, to deal with
the dva¢ term in f¢(0), we use the following result.

Lemma 6.1 For any predictable process h and independent atomless random variable C,
we have:

E[lccryheBedva((, X¢)] = —E [H{C<7"}hfﬁ§+6(1 — R)7e(0)(Qes — CZ)JF}- (6.3)

Proof. We denote by Ts the transition function of the homogeneous Markov process
(t, Xy, Bt) over the time horizon 9, i.e.

(907 (t,X, b)) - 7:5[90](757)(’ b) = E[(p(té, Xt5v/8t5)‘Xt = Xvﬁt = b] = E[‘P(t&vxt‘svﬁt‘s”gt] .

Recalling (5.2) and using the fact that X does not jump at time 7, we have

& = T5lur s By Coy A (1, Xy Br) = TolEx(es s, B, Co A (1, X, Br), (6.4)

where we set
~ ~ ~ +
u(t,x,b, By, CA_ Ay ) = (1 — R)ﬁ;lb(P(t,x) FA®FX) — B IAL c:_) ,

in which 8;, C¥_ and A,_ are considered as G,_ measurable parameters. In view of (6.4),
we have (cf. Crépey and Song (2016, Lemma 5.1))

—dva; = & = Jo-TslEx (s r - By CF A (8, X, By), Q x A ace.. (6.5)
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As a consequence, given an independent random variable ¢ with density p, we can write,
using (6.5), the definition of 75 and (5.1) to pass to the second, third and fourth line,
respectively:

T
— Elh¢le<ry Bedva((, X¢)] = —/0 E [heBillpemydva(t, Xy)] p(t)dt
T ~
= | B[t e T oG B X B it

T -~
= / [htﬁtn{tST}WtE [5*@67 Xy, Bté s Bt C;¢ At)‘gt]] p(t)dt

/ htﬁt]l{t<7'}’)/0( )g* (t67 Xt‘s ) /3t5 ) Bt7 C:v 3t):| p(t)dt
= E[L{ceryheBeliceryre(O&(C0, Xes, Bes, B, CE, )] m
Plugging h¢ = % in (6.3) to deal with the dva¢ term in f((O), (6.2) is rewritten as

eHs
ONE{ Z ﬂée —|—]l{<<7—.}7><
O<TZ<T (66)

[ Bem(Q(1 = B)(@Qes — Co) " + e (AePe = €)™ = xe(Pe = )] -

The KVA-inclusive CCVA is then defined as the sum between (6.6) and a KVA as of
(4.18), valued at time t = 0 by simulation and randomization of the time integral there.

6.2 BVA Engine

Here we provide an executive summary of a bilateral CSA trading setup recalled for com-
parison purposes from Crépey and Song (2016).

Remark 6.1 In Crépey and Song (2016), the cash flows are viewed from the perspective of
the bank, which will be taken as the reference member here, whereas we view them in this
paper from the perspective of the clearing house, i.e. opposite to the one of the member.
Hence, the sign conventions are opposite, i.e. P,A,(Q, etc... in this paper correspond to
their opposites in Crépey and Song (2016), which is why we see - here whenever we have
-+ there.

In the context of bilateral trading between a bank, taken as the reference member
labeled by 0 in the previous CCP setup, and a counterparty taken as another member
i # 0, let VM denote the variation margin, where VM > 0 (resp. < 0) means collateral
posted by the bank and received by the counterparty (resp. posted by the counterparty and
received by the bank). Let I > 0 and I¢ < 0 represent the initial margin posted by the
bank and the negative of the initial margin posted by the counterparty. Hence,

C®=VM +1° and C°=VM +1I° (6.7)

are the total collateral guarantee for the counterparty and the negative of the total collateral
guarantee for the bank. Assuming the variation margins re-hypothecable and the initial
margins segregated (as typically so in practice), the collateral funded by the bank is C' =
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VM + I°. For consistency with our CCP setup, VM; will be taken as P> . So, in the spirit
of a standard CSA, we are considering full collateralization, and even over-collateralization
through the initial margins. We assume that VM and I® are remunerated at the OIS rate
r. Following Crépey and Song (2016), at time 0, the difference ©¢ between the mark-
to-market of the portfolio and its value inclusive of counterparty and funding risk (both
from the perspective of the bank, cf. the remark 4.2), difference dubbed BVA for bilateral
valuation adjustment, can be linearized as follows:

Oy =6¢ ~ E[/ ,Bsfs(O)ds} = IE/ Bscdvasds +
0 0
CDVA
+E/ ﬁs(xs (Ps _Cs)_ _)\s (PS _CS)+)d3'
0

(6.8)

MVA

Here:

e P means the mark-to-market of the position of the member with the counterparty
(viewed from the perspective of the latter),

e the meaning of j, X and A is as in the CCP setup,
e T =14 A 7. is the first-to-default time of the bank and the counterparty,

e cdva = €, where ¢ is a predictable process such that & = E(B-18,5¢|Gr), with
€ = ]l{TCSTg}(l - RC)<PT5 + AT5 - Cg)i - ]l{TbSTg}(l - Rb)(PT‘5 + AT5 - Cﬁ)+7

in which the recovery rates R, of the counterparty to the bank and Ry of the bank to
the counterparty are usually taken in a bilateral trading setup as 40%.

For numerical purposes, we use the following randomized version of (6.8):

el _
E 1{c<f}7ﬂ<f<(0)} : (6.9)

where ¢ denotes an independent exponential time of parameter . The cdvac term in fg (0)
is treated by the following analog (hence stated without proof) of Lemma 6.1. We write
V={Ye);0ecY}, V.={Y ), ieY}

Lemma 6.2 For any predictable process h and independent atomless random variable C,
we have:

E[H{C<?}hCﬁC0dva(C’ XC)] =E []1{<<%}h4546 X
(( Yo w Q)+ Ty Y, W)= R)(Qu —Co)~

Ye)y. Yeyb\yc

(D WO+ ey Y W) - Re)(Qes — Cé’V)] "

Yeyb Yeyc\yb

(6.10)
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Plugging h¢ = < in (6.10) to deal with the cdvac term in f¢(0), (6.9) is rewritten as
(compare (6.6)):

_ e ~
Op ~ E{]l{g<%}e— [546 (( Z Yy (€) + Ly <oy Z W (€)1 = Re)(Qes — Cc)
: yeYe YeEV,\Ve
(X WO+ ey D W) - R)(Qu —CY)") (6.11)
Ye YEVAVy

+ B (Xc(Pc —Co)” = NP~ C<)+>} }

Such adjustments are then computed counterparty by counterparty and added over i =
1,...,n to obtain the BVA of the bank.

Remark 6.2 In practice, netting sets typically merge into a unique funding set, meaning
that one should solve for a single MVA at the level of the whole portfolio of the bank.
However, in the present frictionless variation-margining case (cf. the remark 3.1),

CC_PC:PE——FIMC_PC%IMCZO

holds counterparty by counterparty, so that a unique funding set or funding by netting sets
makes a negligible difference in practice.

Similar as in the CCP setup, the KVA-inclusive BVA is obtained by adding to (6.11) a
KVA in the sense of the formula (4.18) (valued at ¢t = 0), except that K is now the bilateral
regulatory capital given by the formulas of Sect. A.2.

7 Experimental Framework

In this section we design an experimental framework that is used for the XVA comparative
numerical analysis of Sect. 8.

7.1 Driving Asset

Given an interest rate process S, we consider a stylized swap of strike S with cash-flows
hi(S — S7,_,) at increasing times Tj, | = 1,...,d, where by = T, — T;_1. We suppose a
stylized Black-Scholes dynamics with risk-neutral drift x and volatility o for the interest
rate process S. Denoting by 7j, the smallest 7T; > ¢, the mark-to-market of the swap
for the party receiving the above cash flows is given, for Tp = 0 < t < Ty = T, by
Py = B ' B, (S — S, _,) + P}, where

d d
Pr=87"'S 3" Buhu—87"S: Y Brhue 0 = Put, ). (7.1)
I=l4+1 1=l +1

We choose the notional Nom of the swap and its strike S in such a way that each leg of
the swap has a mark-to-market equal to one at time 0.
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—— 97.5% quantile
—— 2.5% quantile

—— average

Time in year

Figure 4: Mark-to-market process of the swap viewed from the point of view of a party
receiving floating and paying fix in the swap (party with a long unit position in the swap).
The mean and quantiles as a function of time are computed by Monte Carlo simulation
of the process (—P;) based on the formula (7.1) for P,, used along m = 10* simulated
trajectories of S.

The following numerical values are used:
r=2%, So =100, k=12%, o =20%, h; =3 months, T =5 years,

resulting in the mark-to-market process displayed in Figure 4 from the point of view of
a party receiving floating and paying fix, which we call a long unit position in the swap.
Figure 4 exhibits the typical profile of an interest rate swap in an increasing term structure
of interest rates, where expectations of increasing rates make the swap in the money on
average (i.e. the average curve is in the positive in Figure 4). This yields to the product the
XVA flavor that would be absent in a flat interest rates environment where the mark-to-
market process of the swap would be zero and not give rise to any adjustments. The present
Black—Scholes setup and values of the parameters for the process S allow us to obtain this
stylized pattern without having to introduce a full flesh interest rate model, which would
add useless complexity with respect to our goal in this paper.

7.2 Structure of the Clearing house

We consider a clearing house with (n + 1) members chosen among the 125 names of the
CDX index as of 17 December 2007, a particular day toward the beginning of the global
financial crisis. The default times of the 125 names are modeled by a common shock model
with piecewise constant intensities vy constant on the time intervals [0, 3] and [3, 5] years,
calibrated to the corresponding 3 and 5 year CDS and 5 year CDO data. With five nested
common shocks Y on top of an idiosyncratic shock Y = {i} for each of the 125 names, a
nearly perfect calibration can be achieved, as developed in Crépey et al. (2014, Sect. 8.4.3)

We consider a subset of nine representative members of the index, with increasing CDS
spreads shown in the first row of Table 1.
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;| 45 | 52 | 56 | 61 | 73 | 108 | 176 | 367 | 1053
a; | (0.46) | 0.09 [ 0.23 | (0.05) | 0.34 | (0.04) | 0.69 | (0.44) | (0.36)

Table 1: (Top) Average 3 and 5 year CDS spreads ¥;, in basis points (bp), for a repre-
sentative subset of nine members of the CDX index as of 17 December 2007. (Bottom)
Coefficients «; summing up to 0 used for determining the swap positions of the nine mem-
bers.

The coefficients «; in the second row, where parentheses mean negative numbers, will be
used in a way explained below for determining the positions in the swap of the nine members
in the simulations. These coefficients were obtained as the difference between a vector of
nine uniform numbers and its cyclic shift, so that ),y a; = 0.

7.3 Member Portfolios

We represent in an antisymmetric matrix form

0 1 2 3 - n

00 w1 wo2 wo3 ' Won

1 0 @2 @3 -+ Wia

21 - . 0 w23 -+ wan

w =
3 0 - wa, |
n 0
where each “-” represents the negative of the symmetric entry in the matrix, the positions

of each member i with respect to each member j (or short positions of j with respect to
i) in the swap. Note that the data of the CCVA BSDE related to the member 0, or of the
linearized time-0 CCVA formula (6.6), only depend on the matrix w through the sums of
each of its rows, corresponding to the vector of the short positions of the different clearing
members against the CCP. By contrast, the data of the BVA BSDE related to the member
0, or of the linearized time-0 BVA formula (6.11), only depend on the matrix co through its
first row (vector of the short positions of the different counterparties i = 1,...,n against the
reference member 0). Hence, we can forget about the detail of the above matrix, focusing
on the w** := wy; and w;” := > 1 @i, @ # 0, for comparing two trading setups:
o A CSA setup as of Sect. 6.2, where each member ¢ # 0 trades a short w{** € R
position in the swap with the member 0, whichever other trades members i # 0 may
have between each others.

— For instance, but non necessarily, each member ¢ # 0 has a short w{** € R
position with the member 0 and there are no other trades between members (at
least after netting at the level of each pair of members), which corresponds to
the situation where only the first row and column are nonzero in the matrix w.

— In any case, the netted long position of the member 0 is ), 2ow;i™*. However,
netting does not apply across different counterparties in the CSA setup. We
call compression factor 1 the gross position of the reference member 0, i.e. the
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number vy = >, |wi**| of trades the member 0 is engaged into in the CSA
setup.

e A CCP setup as of Sect. 6.1, where each member i # 0 trades a short w;” € R
position in the swap through the CCP (w;” < 0 effectively means a long position of
member 3), whichever way this position may be distributed among other members.

— For instance, but non necessarily, each member i # 0 has a short w;” € R
position with the member 0 and there are no other trades between members,
which again corresponds to the situation where only the first row and column
are nonzero in .

— In any case, since members trade between themselves, the member has a Z#O w; P

position in the driving asset after netting through the CCP, instead of a non net-
ted position of size vy before clearing through the CCP.

Moreover, in order to obtain diverse while comparable setups, we will alternately consider
as reference member 0 each of the nine members in Table 1, for positions in the driving
asset determined by the coefficients a; (summing up to zero) in the second row of Table
1 through the following rule: w; = —g—é, i # 1 (where w = w®?® or w°?, as suitable).
Since the coefficients «; add up to 0, this specification ensures 2#0 w; = 1, i.e. a netted
position of the member 0 (whoever it is), always equal to 1 in the CCP setup. We also

define wy = —3—8 = —1, consistent with the member 0 being long a +1, i.e. short a —1,
net position in the swap in the CCP setup (in the CSA setup this value of wq is purely
conventional).

Note that

=Yl = Y [0l = el
e%] |

i£0 i#£0

so the smaller ||, the larger the compression factor vy (gross position of the reference
member when trading bilaterally, whereas its net, centrally cleared position is equal to
one).

Example 7.1 Table 2 shows the resulting values of the w; of the different members i # 0
when the name with CDS spread 61 bp (name with the second smallest || in Table 1,
with corresponding entries emphasized in bold in Table 2) is taken as reference member 0
(prototype 