Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations

Abstract : We design an importance sampling scheme for backward stochastic differential equations (BSDEs) that minimizes the conditional variance occurring in least-squares Monte Carlo (LSMC) algorithms. The Radon-Nikodym derivative depends on the solution of BSDE, and therefore it is computed adaptively within the LSMC procedure. To allow robust error estimates w.r.t. the unknown change of measure, we properly randomize the initial value of the forward process. We introduce novel methods to analyze the error: firstly, we establish norm stability results due to the random initialization; secondly, we develop refined concentration-of-measure techniques to capture the variance of reduction. Our theoretical results are supported by numerical experiments.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01169119
Contributeur : Plamen Turkedjiev <>
Soumis le : samedi 27 juin 2015 - 18:25:28
Dernière modification le : samedi 18 février 2017 - 01:20:07
Document(s) archivé(s) le : mardi 25 avril 2017 - 19:10:47

Fichier

IS_VarRed_submission_1_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01169119, version 1

Citation

E Gobet, P Turkedjiev. Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations. 2015. 〈hal-01169119〉

Partager

Métriques

Consultations de la notice

328

Téléchargements de fichiers

231