G. Chen, K. Wan, M. Gao, R. Wei, and T. Flournoy, Transition from pitting to fatigue crack growth???modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy, Materials Science and Engineering: A, vol.219, issue.1-2, pp.126-158, 1996.
DOI : 10.1016/S0921-5093(96)10414-7

U. Zupanc and J. Grum, Effect of pitting corrosion on fatigue performance of shot-peened aluminium alloy 7075-T651, Journal of Materials Processing Technology, vol.210, issue.9, pp.1197-202, 2010.
DOI : 10.1016/j.jmatprotec.2010.03.004

Q. Wang, N. Kawagoishi, and Q. Chen, Effect of pitting corrosion on very high cycle fatigue behavior, Scripta Materialia, vol.49, issue.7, pp.711-717, 2003.
DOI : 10.1016/S1359-6462(03)00365-8

D. Duquesnay, P. Underhill, and H. Britt, Fatigue crack growth from corrosion damage in 7075-T6511 aluminium alloy under aircraft loading, International Journal of Fatigue, vol.25, issue.5, pp.371-378, 2003.
DOI : 10.1016/S0142-1123(02)00168-8

S. Kim, J. Burns, and R. Gangloff, Fatigue crack formation and growth from localized corrosion in Al???Zn???Mg???Cu, Engineering Fracture Mechanics, vol.76, issue.5, pp.651-67, 2009.
DOI : 10.1016/j.engfracmech.2008.11.005

S. Roklin, J. Kim, H. Nagy, and B. Zoofan, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Engineering Fracture Mechanics, vol.62, issue.4-5, pp.425-469, 1999.
DOI : 10.1016/S0013-7944(98)00101-5

K. Van-der-walde and B. Hillberry, Initiation and shape development of corrosion-nucleated fatigue cracking, International Journal of Fatigue, vol.29, issue.7, pp.1269-81, 2007.
DOI : 10.1016/j.ijfatigue.2006.10.010

A. Kermanidis, P. Petroyiannis, and P. Spg, Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy, Theoretical and Applied Fracture Mechanics, vol.43, issue.1, pp.121-153, 2005.
DOI : 10.1016/j.tafmec.2004.12.008

K. Gruenberg, B. Craig, B. Hillberry, R. Bucci, and A. Hinkle, Predicting fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests, International Journal of Fatigue, vol.26, issue.6, pp.629-669, 2004.
DOI : 10.1016/j.ijfatigue.2003.10.010

P. Shi and S. Mahadevan, Corrosion fatigue and multiple site damage reliability analysis, International Journal of Fatigue, vol.25, issue.6, pp.457-69, 2003.
DOI : 10.1016/S0142-1123(03)00020-3

E. Dolley, B. Lee, and R. Wei, The effect of pitting corrosion on fatigue life, Fatigue <html_ent glyph="@amp;" ascii="&"/> Fracture of Engineering Materials and Structures, vol.23, issue.7, pp.555-60, 2000.
DOI : 10.1046/j.1460-2695.2000.00323.x

J. Burns, S. Kim, and R. Gangloff, Effect of corrosion severity on fatigue evolution in Al???Zn???Mg???Cu, Corrosion Science, vol.52, issue.2, pp.498-508, 2010.
DOI : 10.1016/j.corsci.2009.10.006

M. Liao, G. Renaud, and N. Bellinger, Fatigue modeling for aircraft structures containing natural exfoliation corrosion, International Journal of Fatigue, vol.29, issue.4, pp.677-86, 2007.
DOI : 10.1016/j.ijfatigue.2006.07.003

N. Pauze and . D. Ph, thesis: Fatigue corrosion dans le sens travers court de tôles d'aluminium 2024-T351 présentant des défauts de corrosion localisée. ENSM Saint-Etienne: France, 2008.

R. Chlistovsky, P. Heffernan, and D. Duquesnay, Corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads, International Journal of Fatigue, vol.29, issue.9-11, pp.1941-1950, 2007.
DOI : 10.1016/j.ijfatigue.2007.01.010

M. Rebiere and T. Magnin, Corrosion fatigue mechanisms of an 8090 Al???Li???Cu alloy, Materials Science and Engineering: A, vol.128, issue.1, pp.99-106, 1990.
DOI : 10.1016/0921-5093(90)90099-O

S. Rokhlin, J. Kim, H. Nagy, and B. Zoofan, Effect of pitting corrosion on fatigue crack initiation and fatigue life, Engineering Fracture Mechanics, vol.62, issue.4-5, pp.425-469, 1999.
DOI : 10.1016/S0013-7944(98)00101-5

D. Horner, B. Connolly, S. Zhou, L. Crocker, and A. Turnbull, Novel images of the evolution of stress corrosion cracks from corrosion pits, Corrosion Science, vol.53, issue.11, pp.3466-85, 2011.
DOI : 10.1016/j.corsci.2011.05.050

P. Pao, S. Gill, and C. Feng, On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy, Scripta Materialia, vol.43, issue.5, pp.391-397, 2000.
DOI : 10.1016/S1359-6462(00)00434-6

J. Burns, J. Larsen, and R. Gangloff, Driving forces for localized corrosion-to-fatigue crack transition in Al-Zn-Mg-Cu, Fatigue & Fracture of Engineering Materials & Structures, vol.31, issue.3, pp.745-73, 2011.
DOI : 10.1111/j.1460-2695.2011.01568.x

K. Mutombo and M. Du-toit, Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy, International Journal of Fatigue, vol.33, issue.12, pp.1539-1586, 2011.
DOI : 10.1016/j.ijfatigue.2011.06.012

A. Laurino, E. Andrieu, J. Harouard, G. Odemer, and C. Blanc, Effect of the Thermomechanical History on the Corrosion Behavior of 6101 Aluminum-Magnesium-Silicon-Iron Alloy in NaCl Solutions, ECS Trans, vol.41, issue.25, pp.93-105, 2012.
DOI : 10.1149/1.3697581

R. Ambat, A. Davenport, G. Scamans, and A. Afseth, Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium, Corrosion Science, vol.48, issue.11, pp.3455-71, 2006.
DOI : 10.1016/j.corsci.2006.01.005

Y. Liu, S. Kang, and H. Kim, The complex microstructures in an as-cast Al???Mg???Si alloy, Materials Letters, vol.41, issue.6, pp.267-72, 1999.
DOI : 10.1016/S0167-577X(99)00141-X

S. Karabay, M. Yilmaz, and M. Zeren, Investigation of extrusion ratio effect on mechanical behaviour of extruded alloy AA-6101 from the billets homogenised-rapid quenched and as-cast conditions, Journal of Materials Processing Technology, vol.160, issue.2, pp.138-185, 2005.
DOI : 10.1016/j.jmatprotec.2004.05.025

R. Buchheit, A Compilation of Corrosion Potentials Reported for Intermetallic Phases in Aluminum Alloys, Journal of The Electrochemical Society, vol.142, issue.11, pp.3994-4000, 1995.
DOI : 10.1149/1.2048447

C. Blanc, Y. Roques, and G. Mankowski, Application of phase shifting interferometric microscopy to studies of the behaviour of coarse intermetallic particles in 6056 aluminium alloy, Corrosion Science, vol.40, issue.6, pp.1019-1054, 1998.
DOI : 10.1016/S0010-938X(98)00039-0

F. Eckermann, T. Suter, P. Uggowitzerb, A. Afseth, and P. Schmutz, The influence of MgSi particle reactivity and dissolution processes on corrosion in Al???Mg???Si alloys, Electrochimica Acta, vol.54, issue.2, pp.844-55, 2008.
DOI : 10.1016/j.electacta.2008.05.078

K. Mizuno, A. Nylund, and I. Olefjord, Surface reactions during pickling of an aluminium???magnesium???silicon alloy in phosphoric acid, Corrosion Science, vol.43, issue.2, pp.381-96, 2001.
DOI : 10.1016/S0010-938X(00)00069-X

Z. Szklarska-smialowska, Pitting corrosion of aluminum, Corrosion Science, vol.41, issue.9, pp.1743-67, 1999.
DOI : 10.1016/S0010-938X(99)00012-8

H. Ezuber, A. El-houd, and F. El-shawesh, A study on the corrosion behavior of aluminum alloys in seawater, Materials & Design, vol.29, issue.4, pp.801-806, 2008.
DOI : 10.1016/j.matdes.2007.01.021

G. Edwards, K. Stiller, G. Dunlop, and M. Couper, The precipitation sequence in Al???Mg???Si alloys, Acta Materialia, vol.46, issue.11, pp.3893-904, 1998.
DOI : 10.1016/S1359-6454(98)00059-7

A. Gupta, D. Lloy, and S. Court, Precipitation hardening processes in an Al???0.4%Mg???1.3%Si???0.25%Fe aluminum alloy, Materials Science and Engineering: A, vol.301, issue.2, pp.140-146, 2001.
DOI : 10.1016/S0921-5093(00)01814-1

J. Pang, S. Li, Z. Wang, and Z. Zhang, General relation between tensile strength and fatigue strength of metallic materials, Materials Science and Engineering: A, vol.564, pp.331-372, 2013.
DOI : 10.1016/j.msea.2012.11.103

Y. Lee, J. Pan, R. Hathaway, and M. Barkey, Fatigue testing and analysis (theory and practice), 2005.

J. Petit and C. Sarrazin-baudoux, Some critical aspects of low rate fatigue crack propagation in metallic materials, International Journal of Fatigue, vol.32, issue.6, pp.962-70, 2010.
DOI : 10.1016/j.ijfatigue.2009.10.013

J. Burns, J. Larsen, and R. Gangloff, Effect of initiation feature on microstructure-scale fatigue crack propagation in Al???Zn???Mg???Cu, International Journal of Fatigue, vol.42, pp.104-125, 2012.
DOI : 10.1016/j.ijfatigue.2011.08.001

Y. Ro, S. Agnew, G. Bray, R. Gangloff, ?. Al et al., Environment-exposure-dependent fatigue crack growth kinetics for, Mater Sci Eng A, pp.468-47088, 2007.

G. Lütjering, A. J. Sauer, C. Krull, and T. , The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behaviour, Mater Sci Eng A, vol.56, pp.2872-84, 2007.

A. Yan, L. Chen, H. Liu, and X. Li, Fatigue crack propagation behaviour and corrosion resistance of Al???Zn???Mg???Cu???Ti(???Sn) alloys, Materials Science and Technology, vol.20, issue.3, pp.319-344, 2013.
DOI : 10.1016/j.corsci.2009.08.001

J. Buffière, S. Savelli, P. Jouneau, E. Maire, and R. Fougères, Experimental study of porosity and its relation to fatigue mechanisms of model Al???Si7???Mg0.3 cast Al alloys, Materials Science and Engineering: A, vol.316, issue.1-2, pp.115-141, 2001.
DOI : 10.1016/S0921-5093(01)01225-4

A. Zabett and A. Plumtree, MICROSTRUCTURAL EFFECTS ON THE SMALL FATIGUE CRACK BEHAVIOUR OF AN ALUMINUM ALLOY PLATE, Fatigue & Fracture of Engineering Materials & Structures, vol.15, issue.7-8, pp.801-810, 1995.
DOI : 10.1111/j.1460-2695.1995.tb00905.x

S. Savelli, Identification des mecanismes et approche quantitative de la fatigue d'alliages modeles d'aluminium de moulage, 2000.

R. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Journal of Engineering Materials and Technology, vol.99, issue.1, 2012.
DOI : 10.1115/1.3443416

R. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Journal of Engineering Materials and Technology, vol.99, issue.1, pp.10-18, 2011.
DOI : 10.1115/1.3443416

H. Höppel, L. May, M. Prell, and M. Göken, Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime, International Journal of Fatigue, vol.33, issue.1, pp.10-18, 2011.
DOI : 10.1016/j.ijfatigue.2010.04.013

L. Priester, Joints de grains et plasticité cristalline, Traité Mécanique et Ingénierie des Matériaux, 2011.

J. Petit, G. Henaff, and C. Sarrazin-baudoux, Fatigue cracking and atmospheric environment, J Phys, vol.10, pp.203-215, 2000.

R. Wei and M. Gao, Reconsideration of the superposition model for environmentally assisted fatigue crack growth, Scripta Metallurgica, vol.17, issue.7, pp.959-62, 1983.
DOI : 10.1016/0036-9748(83)90270-3

R. Braun, On the stress corrosion cracking behaviour of 6XXX series aluminium alloys, International Journal of Materials Research, vol.101, issue.5, pp.657-68, 2010.
DOI : 10.3139/146.110314

C. Larignon, A. J. Andrieu, E. Odemer, G. Blanc, and C. , The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media, Corrosion Science, vol.69, pp.211-231, 2013.
DOI : 10.1016/j.corsci.2012.12.005

A. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Metallography, Microstructure, and Analysis, vol.86, issue.6, pp.54-80, 1960.
DOI : 10.1007/s13632-016-0319-4

H. Johnson, J. Morlet, and A. Troiano, Hydrogen crack initiation and delayed failure in steel, Trans TMS-AIME, vol.212, pp.528-564, 1958.

R. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metallurgica, vol.18, issue.1, pp.147-57, 1970.
DOI : 10.1016/0001-6160(70)90078-7

R. Oriani, A mechanistic theory of hydrogen embrittlement of steels, Ber Bunsenges Phys Chem, vol.76, pp.848-57, 1972.

M. Martin, J. Fenske, G. Liu, P. Sofronis, and I. Robertson, On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels, Acta Materialia, vol.59, issue.4, pp.1601-1607, 2011.
DOI : 10.1016/j.actamat.2010.11.024

Y. Ro, S. Agnew, and R. Gangloff, Effect of Environment on Fatigue Crack Wake Dislocation Structure in Al-Cu-Mg, Metallurgical and Materials Transactions A, vol.32, issue.389, pp.2275-92, 2012.
DOI : 10.1007/s11661-012-1089-5

R. Staehle, Stress corrosion cracking of Fe?Cr?Ni alloy systems Theory of stress corrosion cracking. Brussels: NATO Scientific Affairs Division, pp.222-88, 1971.

C. Augustin, Prévision des cinétiques de propagation de défauts de corrosion affectant les structures en alliage d'aluminium 2024. INP Toulouse: France, 2008.

P. Marcus, Corrosion books: corrosion mechanisms in theory and practice, Mater Corros, vol.54, pp.467-475, 2003.

R. Wei and G. Simmons, Recent progress in understanding environment assisted fatigue crack growth, International Journal of Fracture, vol.101, issue.3, pp.235-242, 1981.
DOI : 10.1007/BF00053522

G. Henaff, K. Marchal, and J. Petit, On fatigue crack propagation enhancement by a gaseous atmosphere: Experimental and theoretical aspects, Acta Metallurgica et Materialia, vol.43, issue.8, pp.2931-2973, 1995.
DOI : 10.1016/0956-7151(95)00002-D

C. Larignon, A. J. Andrieu, E. Lacroix, L. Odemer, G. Blanc et al., Combined Kelvin probe force microscopy and secondary ion mass spectrometry for hydrogen detection in corroded 2024 aluminium alloy, Electrochimica Acta, vol.110, 2013.
DOI : 10.1016/j.electacta.2013.02.063

URL : https://hal.archives-ouvertes.fr/hal-00840478

C. Larignon, A. J. Andrieu, E. Lacroix, L. Odemer, G. Blanc et al., Investigation of Kelvin probe force microscopy efficiency for the detection of hydrogen ingress by cathodic charging in an aluminium alloy, Scripta Materialia, vol.68, issue.7, pp.479-82, 2013.
DOI : 10.1016/j.scriptamat.2012.11.026

URL : https://hal.archives-ouvertes.fr/hal-00784218