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Abstract. In recent years, variational methods, i.e., the formulation of
problems under optimization forms, have had a great deal of success in
image processing. This may be accounted for by their good performance
and versatility. Conversely, mathematical morphology (MM) is a widely
recognized methodology for solving a wide array of image processing-
related tasks. It thus appears useful and timely to build bridges between
these two fields. In this article, we propose a variational approach to
implement the four basic, structuring element-based operators of MM:
dilation, erosion, opening, and closing. We rely on discrete calculus and
convex analysis for our formulation. We show that we are able to pro-
pose a variety of continuously varying operators in between the dual
extremes, i.e., between erosions and dilation; and perhaps more interest-
ingly between openings and closings. This paves the way to the use of
morphological operators in a number of new applications.

Keywords: Optimization, convex analysis, discrete calculus, graphs.

1 Introduction

In recent years, variational methods have received a great deal of attention in
the image processing community, mainly due to their success in addressing a
wide range of signal and image processing tasks [24] (e.g., denoising, restora-
tion, reconstruction, impainting, segmentation,...). Concurrently, mathemati-
cal morphology (MM) is widely recognized as a fundamental methodology for
solving image processing problems [23]. It thus appears useful to build bridges
between these two fields. A first step in this direction may consist of looking for
variational formulations of the essential structuring-element based operators of
morphological processing, i.e, the dilation, erosion, opening, and closing opera-
tors.

Several formulations can be found in the literature. Since the dilation, for in-
stance, is in some way similar to a propagation, it seems natural to express it as
a propagation or a diffusion PDE. The first proposal for a PDE-based formula-
tion of morphology was independently proposed by Alvarez et al. [1,2], Brockett
and Maragos [4], and Boomgaard and Smeulders [27]. In [19], this approach is



studied from a more geometrical point of view. In [10], standard derivatives are
replaced by metric-based differential calculus. In [17], Maragos proposes a PDE-
based formalism based on the slope transform. The slope transform is studied
in details, including its relationship with convex analysis in [14]. We also men-
tion [3,25], where binary dilations and erosions are modeled as curve evolution
with constant normal speed. An overview of PDE-based, contrast-invariant im-
age processing, including morphology operators, is given in [13]. Many references
could be cited here, not limited to dilation and erosions; for example, the equiv-
alents of connected operators are proposed in PDE form in [21]. Obviously all
these approaches need to be discretized for practical implementations, typically
with finite differences. All of these share a similar goal: they seek for implement-
ing the notion of morphological operator in the continuous domain. The discrete
structure used to specifying the operators is not seen as important.

In contrast, some formulations exploit the discrete nature of image data. For
instance, an algebraic analysis of the theory of differential operators [5] leads, in
the discrete case, to the discrete exterior calculus [9,8]. In [12], Grady proposes
a graph-based, variational implementation, with applications to imaging. The
variational discrete calculus is expanded in [6]. A similar approach is followed
n [11]. An overview of the various graph-based variational approaches is given
in [16]. In all of these, the graph is not a discretization artifact, it remains a core
feature, allowing for more flexibility and arguably better data fidelity.

In the discrete setting, a natural framework for mathematical morphology
is precisely that of graphs. Pioneering papers are in [28,15]. Many works have
been proposed since, for instance [20,7]. The framework has been extended far
beyond the basic operators, the interested reader can refer to the recent survey
given in [22].

To the best of our knowledge, a variational framework for implementing the
morphological operators on graphs has not been proposed. Maragos [18] was the
first to propose a variational approach to study the basic and the connected
operators of MM, but in a continuous setting. A graph-based PDE approach to
MM is proposed in [26], however the approach is not variational. In this work, we
follow an alternative, conceptually simpler way, merging variational formulation
and graphs, based on discrete calculus and convex analysis.

The graph-based variational framework for MM developped in this paper,
allows us to overcome some of the main difficulties of the continuous setting. In
particular, in the continuous domain, it has been not possible so far to propose
a proper differential definition of the combined operators: openings and clos-
ings; a major difficulty being the idempotence of these operators. In contrast,
we show in this paper that the discrete nature of the graph allows a complete
definition of these operators. In future work, such a variational formulation of
morphological operators could be used as asymmetric, non self-dual, regularisers,
something difficult (and thus unusual) in standard applications of the variational
framework.

The organization of the paper is the following. By designing objective func-
tions using judiciously chosen support functions, we show that a fully convex



formulation of dilation, erosion, dilation, and opening is possible. More precisely,
we establish that these morphological operators correspond to asymptotic forms
of the solutions to classes of convex optimization problems. As a side result, by
considering a non-asymptotic regime, a broader set of solutions can be obtained
which allow us to generate, in a continuous manner, intermediate behaviours
between dilation/erosion and opening/closing. Our proposal for a graph-based
variational formulation of the erosion and dilation operators is exposed in sec-
tion 2, while the one for opening and closing operators is developed in section 3.
Due to space constraints, the proofs of the results in this paper will be provided
in an extended version.

Notation. Let G = (V, E) be a valued directed reflexive graph. The cardinality
of the vertex set V is assumed to be equal to n € N*. In the case of images,
the vertices reduce to pixels. An edge joining vertex v; € V to vertex v; € V
with (i,5) € {1,...,n}?, i # j, is denoted by e, ; € E. For every i € {1,...,n},
a weight y; € R is associated with each vertex v;, and we introduce the set of
neighboring indices of i, N; = {j € {1,...,n} | ¢;; € E}, which will be assumed
to be nonempty. The reciprocal neighborhood of N; is N; = {j € {1,...,n} |i €
N;}. Since G is reflexive, (Vi € {1,...,n}) i€ N;NN;.

2 A unifying variational formulation of erosion, dilation
and median

For every ¢ € {1,...,n}, let U; be a nonempty subset of V' (although it may be
any subset, we will be mainly interested in the case when it corresponds to a
neighborhood or reciprocal neighborhood of node ). We will first consider the
following convex minimization problem:

minimize Z Z Pi (O'Qi (xi —y; — wi,j)) (2.1)

r=(z; i<nER™
(zi)1<ign =1 eu,

where (w; ;)jev, € RIVil is a vector of shift parameters, ¢;: [0, +oo] — R is a
(strictly) increasing lower-semicontinuous convex function, §2; is a closed real
interval, and o, denotes the support function of (2;, which is defined as

(Vv € R) o, (V) = sup v€
€L
o;v ifo<0
=0 ifu=0 (2.2)
afv ifv>0

with o; = inf 2; and ozj' = sup §2;.

Any solution to the multivariate optimization problem (2.1) is a vector of
node weights which can be viewed as the result of a generally nonlinear process-
ing applied to the original vector of node weights y = (¥;)1<i<n. The result is
dependent on the choice of the intervals (£2;)1<i<n and our goal will be to better



understand this dependence. In order to guarantee the existence of a solution to
problem (2.1), it will be assumed that:

Assumption 1 For every i € {1,...,n}, —0 < a; < 0 < af < +oo with
(o7, 0;") # (=00, +00).

Note that «; (resp. a;) is allowed to be equal to —oo (resp. +00), which
will turn out to be useful in the rest of our discussion.

A first result concerning the solution to this optimization problem is as fol-
lows:

Proposition 1. Suppose that Assumption 1 holds. Then Problem (2.1) admits
a solution.

Leti e {1,...,n} and let T; be the i-th component of such a solution T. We have
the following properties:

(i) If o = 400, then

Z; =min {y; + w;; | j € Us}. (2.3)
(ii) If o = —o0, then
T; = max {yj + wj ; ’ je Ui}. (2.4)
(iil) If @, is strictly convex, then T; also is uniquely defined.

Remark 1. We see that standard morphological mathematical operators are re-
covered as specific solutions to Problem (2.1):

— If o = 400 and U; = N; with i € {1,...,n}, then (2.3) corresponds to an
erosion with (spatially variant) structuring element:

~ —w; ;i if j€N;
VG, j) € {1,....n}) @y =4 e RIS (2.5)
—oo  otherwise.
—Ifa; = —ocoand U; = N; with ¢ € {1,...,n}, then (2.4) corresponds to a
dilation with (spatially variant) structuring element:
~ i il € N;
V@, 5) € {l,....,n})  @i; = {w J BJED (2.6)
—oo  otherwise.

By making —a; /a; vary, intermediate behaviours between an erosion and a di-
lation can be obtained. In general however, one must resort to numerical methods
to find a solution to Problem (2.1).

We now mention a specific choice of functions (¢;)1<i<n, for which minimizers
can be expressed in closed forms.



Proposition 2. Suppose that Assumption 1 holds. Let i € {1,...,n} and let Z;
be the i-th component of the optimal solution to Problem (2.1) where @;: [0, +o00[—
R: & — €2. Let us denote by (zij)1<j<|us| the coefficients (y; + w; j)jev, which
have been re-indexed in increasing order, and let us set z; 0 = —o0 and z; |y, |+1 =
+o0. If (a; ,af) € R2, then T; is the unique value in [Ziji—1, Zi .| with j; €
{1,...,|Ui| + 1} such that

i1 — U;
@) i+ (0P

P = - — (2.7)
(i — D(e)? + (U] = ji + 1) ()
(with the conventions Z?=1 .= Z‘fi"‘lUHH -=0).
Remark 2. When o] = —af with i € {1,...,n} and o] €]0,+o0[, then the

expression of Z; given in the above proposition reduces to the standard averaged
value of (y; + w; ;)jev;-

An image processing illustration of Proposition 2 is provided in the first two
columns of Fig. 2. The original 8-bit images are noisy versions of a synthetic one
of size 100 x 104 called Pyramid and of a natural scene of size 512 x 512 called
Goldhill, displayed in 1. The graph consists here of a regular 4-connected grid.
As expected, nonlinear filters ranging from a dilation (on the left) to an erosion
(on the right) are generated, with the local averaging (third image) as a special
case.

Fig. 1. Pyramid and Goldhill images.

Another simple choice of functions (¢;)1<i<n is addressed next:

Proposition 3. Suppose that Assumption 1 holds. Let i € {1,...,n} and let T;
be the i-th component of an optimal solution to Problem (2.1) where @;: [0, +oo[—
R: &+ §. Let us denote by (zij)1<j<|u,| the coefficients (y; + w; j)jev, which

have been re-indexzed in increasing order. Assume that (o ,o;) € R? and set
Ji = L%J + 1, where |-] denotes the lower rounding operation.

; |U:] -
Then, ’Lf m € N, Ti = Zi,5; -
If % €N, then T; can be chosen equal to any value in [z j,—1, Zi j;)-



p=1/3 p=1/3 p=1/4 p=1/4

p=10° p=10° p>24 p>24

Fig. 2. First two columns: solutions to Problem (2.1) for Pyramid and Goldhill images
when, for every pixel 4, ;: [0, 4-00[— R: & = £2.

Last two columns: solutions to Problem (2.1) for Pyramid and Goldhill images when,
for every pixel i, @;: [0, +oo[— R: & — &.

In both cases, —a; /a; = p, (wi;)jev, =0, and U; is a 5 x 5 spatial neighborhood.



An illustration of Proposition 3 is provided in the last two columns of Fig. 2.
The first (resp. last) row exacly corresponds to a dilation (resp. an erosion), as
explained in the remark below. Note that we do not observe on the intermediate
images the blur effect which is noticeable on those displayed in the first two
columns of Fig. 2.

Remark 3. Under the assumptions of the above proposition, the following spe-
cific solutions can be obtained:

— median filtering
If o = —af, af €]0,+oc[ and U; = N; with i € {1,...,n}, then the i-th

7

component Z; of an optimal solution to Problem (2.1) is

T; = median{yj + w; j | jE Nl} (28)
— erosion
If —a; Ja; > |N;| — 1 and U; = N, then Z; is given by (2.3).
— dilation

If —aj /o (|N:i| —1) < 1 and U; = N;, then 7, is given by (2.4).

More generally, by varying —ozzr /a; , any rank-order filtering operator between
a dilation and an erosion can be generated, so putting more or less emphasis on
large /small intensity values for vertices in the neighborhood N;.

3 Towards a variational formulation of opening and
closing

Let us now consider the more sophisticated convex minimization problem:

n
$:(r§61ii)liisr?<if€€3ﬂ%” Z_Zl ( ZN pi(oa, (ti —y; —wiy) + Z Yi(oa, (zi —t; — VU)))
t=(ti)1<i<n€R™ "7 JEN; s

(3.1)
where, for every i € {1,...,n}, (wi;)jen, € RN (v )jen, € RN
@;: [0,4+00] = R and 9;: [0,+o00] — R are (strictly) increasing lower-semicon-
tinuous convex functions, {2; and A; are closed real intervals with «; = inf §2;,
af =sup 2, B; = inf A;, and ﬁj‘ = sup 4;.

Subsequently, we will suppose that:

Assumption 2 For every ¢ € {1,...,n}, —oco < ¢of <0 < a:r < 4oo with
(o ,af) # (—00,+00), and —oo < B < 0 < B < +oo0 with (8;,8;) #

(—00, 400).

A first result on the general solutions to Problem (3.1) is as follows:



Proposition 4. Suppose that Assumption 2 holds. Problem (3.1) admits a solu-
tion. Let (Z,t) be such a solution. Then, t is a solution to the convex optimization
problem:

n

minimize Y ( 3" i(oa(ti—y; —wiy) + LPi(t)) (3.2)

t=(ti)1<i<n €ER"

i=1  jEN;
where, for every i € {1,...,1}, ¥; is the finite convex function given by
Pi: b xllréfR Z Yi(oa, (wi =t —vij)). (3.3)
JEN;

In addition, Zf( i)1<j<n are the components of t, then the components (Zi)1<ign
of T are such that

(Vie{1,...,n}) Z; € Argmin Z Vi(oa, (2 — - Vij))- (3.4)
x; ER ]EN,
Moreover, if, for every i € {1,...,n}, @; and v¥; are strictly convez, (Z,1) is

uniquely defined.

Let us now focus on the case when, for every ¢ € {1,...,n}, ¢;: [0,+o0] —
R: ¢ — €™ where 7; € [1,4+00[. The next result shows that, under some asymp-
totic conditions, Problem (3.1) can basically be decoupled into two simpler op-
timization tasks:
Proposition 5. Suppose that Assumption 2 holds. Let (,u(k))keN be a sequence
of positive reals such that

(k) —
i =0 &
For everyi € {1,...,n}, let (Ai ))keN be sequences of closed intervals such that,
for every k € N,
inf A = @7 sup AP = pp (3.6)

For every k € N, let

@™ 1"y e Argmin Z ( Z i(on(ti —y; — wiy))

z=(zi)1<i<n€R™ ;7 N,
t=(ti)1<i<n ER™ ‘ IE
Ti
+Z A(k) tj = vij)) ) (3.7)
jGN

Then, (E(k),’t\(k))keN is a bounded sequence. In addition, if (ﬁtA) 18 a cluster point
Of (i‘\(k),%\(k))keN, then ./13\ = (ai)lgign and t = (ti)lgign where

(V’L € {1,...,’11}) 2\7, S Argmin Z (Pi(UQi(ti —Y; —wi,j)) (38)
iER ;
JEN;,
Z; € Argmin o —t — v T 3.9
i ngR Z Ay zj)) (3.9)

JEN;



Remark 4. Under the assumptions of Proposition 5, for every ¢ € {1,..., N},
if t; — ZjeNi oy (agi (t; — y; — w;,;) has a unique minimizer ¢;, then the ¢-
2(k)
t.

th component (t;

Yeen of (6%))en converges to #;. In addition, if (@)]GN is
uniquely defined and z; — ZjeNi (O’Ai (z; — tAj — yw»))n has a unique minimizer
Z;, then the i-th component (ffz(-k))keN of (2(®))en converges to Z;. The latter
condition holds, in particular, when, for every j € IV;, ¢; is a strictly convex
function and 7 > 1.

Combining Propositions 1 and 5 with the above remark yields the following
result:

Corollary 1. Suppose that, for everyi € {1,...,n}, a; €] —o00,0[, af = +o0,
B = —oo, and B;" € )0, 400 (resp. a; = —o0, af € ]0,+00], B; €] — 00,0],
and B = +00). Let (1™))ren be a sequence of positive reals satisfying (3.5).
For everyi € {1,...,n}, let (Aik Jken be sequences of closed intervals such that,
for every k € N, (3.6) holds. For every k € N, let (2, 1) be given by (3.7).
Then, limy_ 4o 7k = (@) 1<ign and limg_ 4 o ) = (a)lgign, where

(Vie{l,....n}) & =min{y; +w; |jeN;} (3.10)
(resp. t; = max {yj + w; ’ je Ni})
T; = max {%\] + v ‘ je Z\VQ} (3.11)
(resp. T; = min {ZJ + Vi ’ jE Nl})
Remark 5.
(i) If
(VZ € {]., . ,TL})(V] € Nz) Wi = —Vj; (312)

then, under the assumptions of Corollary 1, we asymptotically obtain an
opening (resp. a closing) operator with structuring element (2.5) (resp. (2.6)).

(ii) When, for every i € {1,...,n}, ¢;: [0,+00[— R: { — £ and 7, = 1, it
follows from Proposition 3 (see also Remark 3) that, if (Vi € {1,...,n})
(a7, B7) €] — 00,02 and (af, BF) €10, +o0[ are such that

+ +
~% SN —1 and —5%(|Ni|—1)<1
@ Bi
at * .
(resp. — —2=(|N;]—1)<1 and —=%>|N;j|—1), (3.13)
@ Bi

then the conclusions of Corollary 1 also hold.

Tllustrations of the effect of the proposed operators on the two image examples
we already considered are shown in Fig. 3.



p=1/6 p=1/6 p=1/15 p=1/15

p=10° p=10° p>24 p>24

Fig. 3. Solutions to (3.8)-(3.9) for Pyramid and Goldhill images when —aj /o] =
—ﬂz_/,b’j' = p, (wsj)jen, = (Vi,j)jeNi =0, and N; (and NZ) is a 5 x 5 spatial neigh-
borhood. For every pixel ¢, we have on the first two columns ¢;: [0, +oco[— R: & — &2
and 7; = 2, whereas on the last two columns, ¢;: [0, 4o0o[— R: £ — £ and 7; = 1.



4 Conclusion

In this paper, we have introduced what we may call vartational dilation, erosion,
opening, and closing. We have seen that these operators can be applied in graph
processing and that they are defined thanks to support functions of closed real
intervals and increasing convex functions. By varying these parameters, a wide
class of operators can be defined, potentially leading to much flexibility in their
use. In particular, we have proved that standard morphological dilation, erosion,
opening, and closing are recovered as limit cases. For application purposes that
we plan to investigate soon, this means that we are now able to use those oper-
ators for example as asymmetric regularizers, e.g. to favor bright contrast over
dark contrast or conversely.

Building on the present paper, two main theoretical avenues can now be ex-
plored. The first one consists of more deeply analyzing the properties of these
new variational operators and to see whether other classical morphological op-
erators have their variational counterparts. The second direction is to look for
extensions of the energy functions which have been set to define these operators
in order to address more general problems of interest, e.g., those involving local
adaptive decision processes or some statistical knowledge on the target signal
or the noise. Then, more attention should be paid to optimization algorithms
allowing us to efficiently solve such problems.
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