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We present a mathematical model for linear magneto-electro-thermo-elastic continua, as
sensors and actuators can be thought of, and prove the well-posedness of the dynamic and
quasi-static problems. The two proofs are accomplished, respectively, by means of the
Hille-Yosida theory and of the Faedo-Galerkin method. A validation of the quasi-static
hypothesis is provided by a nondimensionalization of the dynamic problem equations. We
also hint at the study of the convergence of the solution to the dynamic problem to that
to the quasi-static problem as a small parameter – the ratio of the largest propagation
speed for an elastic wave in the body to the speed of light – tends to zero.

Keywords: piezoelectricity; magnetostriction; pyroelectricity; pyromagnetism; smart
structures; sensors; actuators; nondimensionalization; multiscale problems; semigroups.

Introduction

When an elastic structure is subjected to a system of external loads, it undergoes a
passive deformation. In the case of the so-called smart structures, the strain state is
constantly under control by means of sensors and actuators, usually made of piezo-
electric and/or magnetostrictive materials and integrated within the structure. In
this paper, we consider magneto-electro-thermo-elastic materials as smart mate-
rials. The mechanical coupling of piezoelectric and magnetostrictive components
in such structures gives rise to the so-called magnetoelectric effect, which is not
present in the individual components. Typical geometries where such an effect may
take place are given, for instance, by multilayer composites [20, 21], by structures
made up of a homogeneous matrix within which particles of various form (mostly
ellipsoidal) are dispersed [12,13], or even fibrous materials, where parallel cylinders
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are inserted into the homogeneous matrix [1]. For a detailed description of the cou-
plings and the multiphysical phenomenologies occurring in such structures, as well
as of their applications, see, e.g., references [2], [9], [16], [17], [23] and [26]. In most
literature, the coupling between mechanical and magnetic effects is expressed by
a linear constitutive equation, and thus the word ‘magnetostrictive’ is replaced by
piezomagnetic; we will adopt the same point of view and convention in the sequel.

The goal of this work is to enrich the classic models of piezoelectric and piezo-
magnetic sensors, by taking account of the temperature influence, which in some
cases cannot be neglected; for instance, the effects of pyroelectricity and pyromag-
netism may be relevant for what concerns energy harvesting performances [20]. To
this purpose, it is necessary to add one further equation to the model, i.e., the en-
ergy balance. A distinctive feature of the problems encountered in applications is the
presence of several parameters, which show the coexistence of different scales: for
instance, the thickness of the piezoelectric/piezomagnetic layer may be small with
respect to the other dimensions of the structure, the temperature influence may
be relevant only on certain unknowns or on certain parts of the multi-structure,
etc. In most situations, the superimposition of two wave propagation phenomena
characterized by completely different velocities, as is the case with elastic and elec-
tromagnetic waves, entails an unworkable numerical treatment of the problem. This
issue can be addressed by resorting to a quasi-static model, where the expression
‘quasi-static’ refers to the assumption that the electric and magnetic fields can be
expressed as gradients of the corresponding potentials. This assumption is justified
by means of a nondimensionalization procedure, carried out on the equations of the
problem, which points out the influence of a small parameter δ – namely, the ratio
between the largest propagation speed for an elastic wave in the body and the speed
of light. Such a procedure was performed in [18] for a piezoelectric material without
considering the temperature effects; an a priori quasi-static assumption was made,
e.g., in [4] and [25] in the case of a thermo-piezoelectric material, whereas the same
hypothesis for a magneto-electro-thermo-elastic material was made in [1] and [3].

In this paper, after discussing modeling aspects, attention is focused on the
well-posedness of the problem in its most general setting – referred to as dynamic
problem in the sequel – whose proof is accomplished by virtue of the Hille-Yosida
theory (Section 1). In Section 2, a formal nondimensionalization of the equations is
performed, so as (i) to extend the results by [18] and (ii) to justify the quasi-static
assumption of [1], [3], [4] and [25]; then, the well-posedness of the quasi-static prob-
lem is obtained by virtue of the Faedo-Galerkin method, along the lines of Lions
and Miara [24,25]. Finally, we provide another justification of the convergence of the
solution to the dynamic problem to that of the quasi-static problem as δ → 0. We
conclude with a discussion about the rigorous mathematical justification of this con-
vergence and an overview about addressed and unaddressed problems related to the
mathematical modeling of smart materials. Typical numerical values of the material
parameters involved in the problem are listed in Table 1 of the Appendix. These
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values have been obtained from [22] taking into account the corrections pointed out
by [14], [20] and [32] and adding an estimation of the calorific capacity from [21]
and of the thermal conductivity from [27].

Notation

In what follows, we always assume a cartesian frame to have been fixed once and
for all in the usual three-dimensional euclidean point space. Thus, we identify with
(and denote by) R3 both this space and its associated translation vector space.
Throughout the paper, Ω ⊂ R3 denotes an open, bounded, connected region, with
Lipschitz-continuous boundary ∂Ω, occupied by a continuum made of magneto-
electro-thermo-elastic material in its reference configuration. The typical point of
Ω is denoted by x and time by t. A function and its typical value are denoted by
the same letter. Time derivative of (scalar, vector or tensor) field Φ is denoted by
either Φ̇ or ∂tΦ a. Scalars are denoted by light-face letters, vector and tensor fields
of any order by bold-face letters. The word ‘tensor’ is used as a synonym of ‘linear
transformation between vector spaces’, as is customary in continuum mechanics.
Unless noted otherwise, the matrix representation of tensor A (with respect to the
fixed cartesian base) is denoted by [A]. The scalar product of tensors A and B

is denotedb by A : B, of vectors a and b by a · b, the cross product by a × b,
and the euclidean norm of a by |a|. The symmetric part of second-order tensor
A is denoted by symA, the linear space of symmetric second-order tensors by
Sym. At times, we also make use of Einstein’s summation convention, whereby
the summation symbol is suppressed and summation over all possible values of an
index is signaled implicitly by the fact that it occurs twice in a monomial term. The
following notations are also used:

L2(Ω) := [L2(Ω)]k for k = 3, 6, H1(Ω) := [H1(Ω)]3,

L2(Γ) := [L2(Γ)]3 for Γ ⊂ ∂Ω, H(curl,Ω) :=
{
v ∈ L2(Ω) : ∇× v ∈ L2(Ω)

}
,

where H1(Ω) is the usual Hilbert-Sobolev spacec.

1. Dynamic Problem

The system of field equations we resort to consists of the point-wise momentum bal-
ance equation for three-dimensional continua, Maxwell’s equations and the energy
balance equation, in its version adapted to deformable electromagnetic materials

aAll three denote a partial derivative, as all formulations hold in a fixed reference domain.
bBy definition, A : B := tr(ABT ) =

∑3
i,j=1 AijBij for A and B arbitrary second-order tensors.

cSee [6] and, in particular, [7] and [15] for a detailed description of H(curl,Ω).
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(see, e.g., [10] for the case of a thermo-piezoelectric material):

ρü− divσ = f x ∈ Ω, t > 0,

divD = ρe x ∈ Ω, t > 0,

divB = 0 x ∈ Ω, t > 0,

Ḋ−∇×H = −J x ∈ Ω, t > 0,

Ḃ +∇×E = 0 x ∈ Ω, t > 0,

ε̇+ divq− σ : ė− Ḋ ·E− Ḃ ·H = h x ∈ Ω, t > 0,

(1.1)

where ρ is the mass density, ρe the free electric charge volume density, σ the Cauchy
stress tensor, D the electric displacement, B the magnetic induction, ε the internal
energy per unit volume, q the heat influx, f the body force, J an external cur-
rent density, h an external heat supply, e = e(u) = sym∇u the strain tensor, u
the displacement field, E the electric field and H the magnetic field. Equations
(1.1)2 to (1.1)5 are usually referred to as, respectively, Gauss’s law, Gauss’s law for
magnetism, Ampère’s circuital law and Faraday’s law of induction. We explicitly re-
mark that ρe and J obey the following continuity equation (conservation of electric
charge):

ρ̇e + divJ = 0, x ∈ Ω, t > 0. (1.2)

Boundary and initial conditions will be detailed later.

1.1. Constitutive Assumptions

The model presented here is formulated in terms of four unknowns: the displacement
field u, the electric field E, the magnetic field H and the absolute temperature T .
However, in most situations, it is more convenient to replace T by the temperature
variation θ with respect to a reference value T0. In this section we introduce the
linear coupled constitutive equations relating the set of state quantities (e,E,H, θ),
with e = sym∇u, to the corresponding set of dual quantities (σ,D,B, s) where s
is the entropy per unit volume, and show that these equations are consistent with
continuum thermodynamics (see, e.g., [8] or [10]).

The point-wise version of the Second Principle of Thermodynamics (entropy
imbalance) reads

ṡ ≥ −div (T−1q) + T−1h, x ∈ Ω, t > 0, (1.3)

with T > 0 the absolute temperature. Upon introducing the electromagnetic en-
thalpy

G := ε− Ts−D ·E−B ·H (1.4)

it is easy to arrive at the following version of the entropy imbalance, which does
not involve the heat supply h:

Ġ+ sṪ − σ : ė + D · Ė + B · Ḣ + T−1q · ∇T ≤ 0; (1.5)
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for this reason, (1.5) is often referred to as reduced dissipation inequality. The in-
equality suggests that the quantities in the need of constitutive specifications are
electromagnetic enthalpy, entropy, stress, electric displacement, magnetic induction
and heat influx. We make the following constitutive assumptions:

G = G(e,E,H, T,∇T ), s = s(e,E,H, T,∇T ), q = q(e,E,H, T,∇T ),

σ = σ(e,E,H, T,∇T ), D = D(e,E,H, T,∇T ), B = B(e,E,H, T,∇T ),

with which (1.5) takes the form

∂∇TG · ∇Ṫ + (∂eG− σ) : ė + (∂TG+ s)Ṫ + (∂EG+ D) · Ė+

+ (∂HG+ B) · Ḣ + T−1q · ∇T ≤ 0
(1.6)

and require, as in [11], that (1.6) be satisfied whatever the local continuation of
any conceivable process; that is, on defining the state Θ := (e,E,H, T,∇T ) ∈
Sym×R3×R3×R×R3, (1.6) must hold whatever Θ̇ at whatever state Θ. It follows
that:

∂∇TG = 0⇐⇒ G = G(e,E,H, T ),

s(e,E,H, T ) = −∂TG(e,E,H, T ), σ(e,E,H, T ) = ∂eG(e,E,H, T ),

D(e,E,H, T ) = −∂EG(e,E,H, T ), B(e,E,H, T ) = −∂HG(e,E,H, T ),

q(e,E,H, T,∇T ) · ∇T ≤ 0.

(1.7)

We have now to assign the expression of G in terms of the state quantities. With
a view toward getting linear constitutive equations, we introduce the temperature
variation θ, by writing

T (x, t) = T0 + θ(x, t), x ∈ Ω, t > 0,

sup
x∈Ω

θ(x, t)/T0 � 1 ∀t > 0,

with T0 > 0 the (constant) reference temperature of the body; we replace T by θ in
the list of state quantities and choosed

G = G(e,E,H, θ) =

(
1

2
Ce−PTE−RTH− βθ

)
: e− 1

2
XE ·E− 1

2
MH ·H+

−αE ·H− (p ·E + m ·H)θ − 1

2
cvθ

2.

(1.8)

Let Θ̃ := (e,E,H, θ) ∈ Sym×R3 ×R3 ×R. It follows from (1.7) that (see, e.g., [3],
[20], [33]):

σ = σ(Θ̃) = Ce−PTE−RTH− βθ,

D = D(Θ̃) = Pe + XE +αH + pθ,

B = B(Θ̃) = Re +αE + MH + mθ,

s = s(Θ̃) = β : e + p ·E + m ·H + cvθ.

(1.9)

dPhysical meaning and hypotheses on the constitutive parameters are set forth hereinafter.
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In constitutive equations (1.9), C = (Cijk`), P = (Pijk), R = (Rijk), X = (Xij),
M = (Mij), β = (βij), α = (αij), p = (pi),m = (mi) and cv represent, respectively,
the elasticity tensor, the piezoelectric tensor, the piezomagnetic tensor, the dielectric
permittivity tensor, the magnetic permeability tensor, the thermal stress tensor, the
magneto-electric tensor, the pyroelectric vector, the pyromagnetic vector, and the
calorific capacity, defined such that cvT0 be the specific heat per unit volume of
the material. Moreover, it can be shown that, whatever the values of the other
state variables, the heat influx is null as long as the temperature gradient is; thus,
mimicking the constitutive assumption of classic heat conduction, we can generally
represent q as

q = q(Θ̃,∇θ) = −K(Θ̃,∇θ)∇θ,

with K = K(Θ̃,∇θ) a second-order tensor. In order to satisfy (1.7)6, K must obey
the following general condition, for any fixed Θ̃:

K∇θ · ∇θ ≥ 0, ∀∇θ ∈ R3.

In the sequel, we shall consider K independent of the state variables. Hence, in
addition to constitutive relationships (1.9), we have Fourier’s law :

q = q(∇θ) = −K∇θ. (1.10)

In (1.10), K = (Kij) is the thermal conductivity tensor.

1.2. Assumptions on the Material Parameters

The symmetry and positivity conditions we require to be satisfied by density and
constitutive parameters are listed below.

• The density ρ is positive:

ρ > 0, ρ ∈ L∞(Ω). (1.11)

• The fourth-order elasticity tensor C = (Cijk`) is symmetric and positive
definite:

Cijk` = Cjik` = Ck`ij = Cij`k, Cijk` ∈ L∞(Ω),

Cijk`bk`bij ≥ C
∑
i,j |bij |2, for all bij = bji ∈ R, C > 0.

• The third-order piezoelectric tensore P = (Pijk) is symmetric with respect
to the two last indices:

Pijk = Pikj , Pijk ∈ L∞(Ω).

eBy ‘third-order tensor’ we mean a linear transformation of the vector space of all second-order
tensors into R3. For P a third-order tensor, its transpose PT maps R3 onto the space of second-
order tensors. In cartesian components, the following identity holds:

PT
ijk = Pkij .
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• The third-order piezomagnetic tensor R = (Rijk) is symmetric with respect
to the two last indices:

Rijk = Rikj , Rijk ∈ L∞(Ω).

• The second-order dielectric permittivity tensor X = (Xij) is symmetric and
positive definite:

Xij = Xji, Xij ∈ L∞(Ω),

Xijajai ≥ X
∑
i |ai|2, for all ai ∈ R, X > 0.

• The second-order magnetic permeability tensor M = (Mij) is symmetric
and positive definite:

Mij = Mji, Mij ∈ L∞(Ω),

Mijajai ≥ µ
∑
i |ai|2, for all ai ∈ R, µ > 0.

(1.12)

• The second-order thermal stress tensor β = (βij) is symmetric:

βij = βji, βij ∈ L∞(Ω). (1.13)

• The second-order magneto-electric tensor α = (αij) is symmetric:

αij = αji, αij ∈ L∞(Ω).

• The pyroelectric vector p = (pi) is such that

pi ∈ L∞(Ω). (1.14)

• The pyromagnetic vector m = (mi) is such that

mi ∈ L∞(Ω). (1.15)

• The calorific capacity cv is positive:

cv > 0, cv ∈ L∞(Ω). (1.16)

• The second-order thermal conductivity tensor K = (Kij) is symmetric and
positive definite:

Kij = Kji, Kij ∈ L∞(Ω),

Kijajai ≥ K
∑
i |ai|2, for all ai ∈ R, K > 0.

• The following symmetric matrix, referred to in the sequel as coupling matrix
(see [25])

[Mc] :=

 [X] [α] [p]

[α] [M] [m]

[p]T [m]T cv


is positive definite, i.e., there exists a constant M > 0 such that

[Mc]x · x ≥M |x|2, ∀x ∈ R7 ≡ R3 × R3 × R,

or, more explicitly,

Xijajai +Mijbjbi + 2αijajbi + 2(pkak)d+ 2(mkak)d+ cvd
2 ≥

≥ C(aiai + bibi + d2), for all ai, bi, d ∈ R. (1.17)
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1.3. Field and Boundary Equations

Before making explicit the complete system of governing equations, we make some
remarks on the energy balance equation. From (1.4) and (1.7), it follows that

ε̇ = σ : ė + T ṡ+ Ḋ ·E + Ḃ ·H;

with which the energy balance (1.1)6 takes the form

T ṡ+ divq = h;

by (1.9)4 and (1.10), the last equation reads

T
(
cv θ̇ + β : ė + p · Ė + m · Ḣ

)
− divK∇θ = h,

where T = T0 + θ. The left-hand side of this equation contains nonlinear terms
(products of θ and time derivatives of the unknowns); upon neglecting them and
setting r := h/T0, we obtain the following linearized version of the energy balance:

cv θ̇ + β : ė + p · Ė + m · Ḣ− 1

T0
divK∇θ = r. (1.18)

All in all, by virtue of (1.9) and (1.10), the system of field equations (1.1) in the
list of unknowns Ũ := (u,E,H, θ) becomesf :

ρü− divCe(u) + divPTE + divRTH + divβθ = f x ∈ Ω, t > 0,

div (Pe(u) + XE +αH + pθ) = ρe x ∈ Ω, t > 0,

div (Re(u) +αE + MH + mθ) = 0 x ∈ Ω, t > 0,

XĖ + Pe(u̇) +αḢ + pθ̇ −∇×H = −J x ∈ Ω, t > 0,

MḢ + Re(u̇) +αĖ + mθ̇ +∇×E = 0 x ∈ Ω, t > 0,

cv θ̇ + β : e(u̇) + p · Ė + m · Ḣ− 1

T0
divK∇θ = r x ∈ Ω, t > 0.

(1.19)

Remark 1.1. Note that (1.19) contains twelve scalar equations in ten scalar un-
knowns. Nevertheless, as we shall show in subsection 1.4, equations (1.19)2 and
(1.19)3 actually just play the role of compatibility conditions on initial and bound-
ary data, as well as on the free electric charge density ρe.

This system is equipped with the following initial conditions, for any x ∈ Ω:

E(x, 0) = E0(x), H(x, 0) = H0(x),

u(x, 0) = u0(x), u̇(x, 0) = u1(x), θ(x, 0) = θ0(x),
(1.20)

and with suitable boundary conditions. In particular, let t > 0 and let n be the
outer unit normal vector field on ∂Ω. As in [34], we consider four time-independent
partitions of ∂Ω: (ΓmD,ΓmN ), (ΓeD,ΓeN ), (ΓgD,ΓgN ) and (ΓtD,ΓtN ) with ΓmD,
ΓeD ΓgD and ΓtD of strictly positive surface measure. We assign boundary values

fHenceforth, to point out the unknowns of the problem, we replace the list of state quantities Θ̃
by the list of unknowns Ũ (and ∇θ by θ) in the constitutive relationships.
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pertaining to mechanical quantities on ΓmD and ΓmN , to electrical quantities on ΓeD
and ΓeN , to magnetic quantities on ΓgD and ΓgN and to thermal quantities on ΓtD
and ΓtN . Namely, we assume that the body is clamped along ΓmD and subjected to
surface traction g on ΓmN . Next, it is subjected to a vanishing temperature variation
along ΓtD and to heat influx % on ΓtN . Furthermore, the body is in contact with a
perfect conductor on ΓeD and with an infinitely permeable medium on ΓgD, whereas
it carries an electric charge surface density d on ΓeN and a magnetic charge surface
density b on ΓgN . Hence, for any t > 0, we have

σ(Ũ)n = g on ΓmN , u = 0 on ΓmD,

D(Ũ) · n = d on ΓeN , E× n = 0 on ΓeD,

B(Ũ) · n = b on ΓgN , H× n = 0 on ΓgD,

−q(θ) · n = % on ΓtN , θ = 0 on ΓtD.

(1.21)

Along with boundary conditions, we introduce the following spaces:

H1
mD(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓmD

}
,

H1
tD(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓtD

}
,

and use analogous definitions for H1
eD(Ω) and H1

gD(Ω) g; finally, let

HeD(curl,Ω) := {v ∈ H(curl,Ω) : v × n = 0 on ΓeD}

and analogously for HgD(curl,Ω) (see, again, [7] and [15]).

1.4. Existence and Uniqueness

In order to establish the well-posedness of the problem, we work in the context of the
semigroup theory ; in particular, we resort to the Hille-Yosida theorem for abstract
linear differential equations with a source term [6], whose statement is recalled in
the appendix. The main results of this subsection are summarized in the following
statement.

Theorem 1.1. Let T > 0. Assume the initial and boundary values have the fol-
lowing regularity properties:

(u0,u1,E0,H0, θ0) ∈ H1
mD(Ω)×H1

mD(Ω)×HeD(curl,Ω)×HgD(curl,Ω)×H1
tD(Ω),

div
(
Ce(u0)−PTE0 −RTH0 − βθ0

)
∈ L2(Ω), divK∇θ0 ∈ L2(Ω),

g ∈ C3([0, T ];L2(ΓmN )), % ∈ C3([0, T ];L2(ΓmN )),

d(·, t) ∈ L1(ΓeN ) and b(·, t) ∈ L1(ΓgN ) ∀t ∈ [0, T ].

Also, let the source terms be such that

f ∈ C1([0, T ];L2(Ω)), ρe ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T ];L2(Ω)),

J ∈ C1([0, T ];L2(Ω)), r ∈ C1([0, T ];L2(Ω)),

gIn particular, spaces H1
eD(Ω) and H1

gD(Ω) will be employed later, in the formulation of the
quasi-static problem.
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and let the following compatibility conditions hold:∫
ΓeN

d(·, 0) dΓ +

∫
ΓeD

(Pe(u0) + XE0 +αH0 + pθ0) · n dΓ =

∫
Ω

ρe(·, 0) dΩ,∫
ΓgN

b(·, 0) dΓ +

∫
ΓgD

(Re(u0) +αE0 + MH0 + mθ0) · n dΓ = 0.

(1.22)

Finally, let the following electromagnetic duality hypothesis hold:

ΓgD = ΓeN and ΓeD = ΓgN . (1.23)

Then, problem (1.19)-(1.20)-(1.21) admits a unique strong solution (u,E,H, θ) sat-
isfying 

u ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1
mD(Ω)),

E ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];HeD(curl,Ω)),

H ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];HgD(curl,Ω)),

θ ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1
tD(Ω)).

Proof. The proof is subdivided into six steps.

Step 1. With a view toward applying the Hille-Yosida theorem to our case, we
have first of all to reduce our system of field equations into a system of evolution
equations. Thus, we rewrite system (1.19) disregarding time-independent Maxwell’s
equations (1.19)2 and (1.19)3 and boundary conditions (1.21)2,1 and (1.21)3,1; we
shall come back to these equations later. Therefore, we have

ρü− divCe(u) + divPTE + divRTH + divβθ = f x ∈ Ω, t > 0,

XĖ + Pe(u̇) +αḢ + pθ̇ −∇×H = −J x ∈ Ω, t > 0,

MḢ + Re(u̇) +αĖ + mθ̇ +∇×E = 0 x ∈ Ω, t > 0,

cv θ̇ + β : e(u̇) + p · Ė + m · Ḣ− 1

T0
divK∇θ = r x ∈ Ω, t > 0.

(1.24)

with boundary conditions as in (1.21), except (1.21)2,1 and (1.21)3,1.

Step 2. As we deal with non-homogeneous boundary conditions, we must introduce
trace liftings of the boundary values concerning the displacement field u and the
temperature variation θ. To do so, we resort to the following auxiliary problem –
actually, to a one-parameter family of static problems, where the parameter is time:

For any t ≥ 0, find û and θ̂ such thathdiv
(
Ce(û)− βθ̂

)
= 0, x ∈ Ω,

β : e(û)− 1

T0
divK∇θ̂ = 0, x ∈ Ω,

(1.25)

hHere we write û and θ̂ in place of, respectively, û(·, t) and θ̂(·, t) for the sake of notation.
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with boundary conditions:{(
Ce(û)− βθ̂

)
n = g on ΓmN , û = 0 on ΓmD,

K∇θ̂ · n = % on ΓtN , θ̂ = 0 on ΓtD.
(1.26)

Constitutive parameters and boundary values are the same as in (1.19). By resorting
to the Lax-Milgram theorem (see [19]) we see that, if boundary values are such that

g ∈ C3([0, T ];L2(ΓmN )), % ∈ C3([0, T ];L2(ΓmN )),

then problem (1.25)-(1.26) admits a unique solution (û, θ̂ ) with

û ∈ C3([0, T ];H1
mD(Ω)),

θ̂ ∈ C3([0, T ];H1
tD(Ω)) ∩ C3([0, T ];H∆

K(Ω)),
(1.27)

with H∆
K(Ω) :=

{
θ ∈ L2(Ω) : divK∇θ ∈ L2(Ω)

}
i. On denoting v̂ := ∂tû, we have

v̂|ΓmD
= 0. We use functions û, v̂ and θ̂ as trace liftings of boundary values (1.21)1

and (1.21)4. We shall come back to boundary conditions (1.21)2,1 and (1.21)3,1 later
on.

Step 3. Let v := ∂tu and

H := H1
mD(Ω)× L2(Ω)× L2(Ω)× L2(Ω)× L2(Ω).

Then we can define

U :=


u

v

E

H

θ

 , U : [0, T ]→ H.

We also introduce the trace-lifting vector

Û :=


û

v̂

0

0

θ̂

 and Ũ := U − Û =


ũ

ṽ

E

H

θ̃

 ∈ H.

We endow the Hilbert space H with the following scalar product:(
U1, U2

)
H :=

∫
Ω

Ce(u1) : e(u2) dΩ +

∫
Ω

v1 · v2 dΩ +

+

∫
Ω

E1 ·E2 dΩ +

∫
Ω

H1 ·H2 dΩ +

∫
Ω

θ1θ2 dΩ,

(1.28)

iThat θ̂ ∈ C3([0, T ];H∆
K(Ω)) follows from the fact that û ∈ C3([0, T ]; [H1

mD(Ω)]3) and from the
second equation of (1.25).
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for all U1, U2 ∈ H. Also, we define the domain D(A) of the differential operator A
which is introduced hereinafter:

D(A) :=
{
U ∈ H : div

(
Ce(u)−PTE−RTH− βθ

)
∈ L2(Ω), e(v) ∈ L2(Ω),

∇×E ∈ L2(Ω), ∇×H ∈ L2(Ω), divK∇θ ∈ L2(Ω),(
Ce(u)−PTE−RTH− βθ

)
n = 0 and K∇θ · n = 0 on ΓtN ,

u = 0 and v = 0 on ΓmD, θ = 0 on ΓtD,

E× n = 0 on ΓeD, H× n = 0 on ΓgD

}
.

(1.29)

Step 4. We are now in a position to write system (1.24) in the form of a differential
equation:

MdŨ

dt
+AŨ = F̃ , (1.30)

F̃ := F −AÛ −MdÛ

dt
, F :=


0

f

−J
0

r

 ,

with

[M] =


[I] [0] [0] [0] [0]

[0] ρ[I] [0] [0] [0]

[0] [0] [X] [α] [p]

[0] [0] [α] [M] [m]

[0] [0] [p]T [m]T cv

 , AU :=



−v
−div

(
Ce(u)−PTE−RTH− βθ

)
Pe(v)−∇×H

Re(v) +∇×E

β : e(v)− 1

T0
divK∇θ


.

Note that, by (1.27), F̃ ∈ C1([0, T ];H) which is in accordance with the hypotheses
of the Hille-Yosida theorem. By the hypotheses set forth in subsection 1.2, [M] is a
symmetric and positive definite matrix, thus ifM is regarded as an endomorphism of
V := R3 × R3 × R3 × R3 × R, it is a symmetric and positive definite linear operator.
Therefore,M admits a unique square rootM1/2, which is symmetric and positive
definite as well. We can then set

Ṽ :=M1/2Ũ ,

so as to give (1.30) the form:

dṼ

dt
+ BṼ = F , B :=M−1/2AM−1/2, F :=M−1/2F̃ .

Let us remark that Ṽ ∈ D(B) if and only if Ũ ∈ D(A), since BṼ = M−1/2AŨ
for any Ṽ =M1/2Ũ . Also, it is easy to check that, ifM is symmetric and positive
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definite as an endomorphism of V with respect to the natural scalar product in V,
thenM is self-adjoint and positive definite as a linear operator of H into itself with
respect to scalar product (1.28). Indeed, for any U1, U2 ∈ H, by definition (1.28) it
results(

MU1, U2

)
H =

∫
Ω

Ce(u1) : e(u2) dΩ +

∫
Ω

ρv1 · v2 dΩ +

∫
Ω

Mcx1 · x2 dΩ,

where in the last term, xγ := (Eγ ,Hγ , θγ)T , γ = 1, 2. Now, the last two terms
correspond exactly to the submatrix of [M] obtained by eliminating the first row
and the first column, and this submatrix is symmetric and definite positive since
[M] is. By the hypotheses listed in subsection 1.2, C is symmetric and positive
definite as well. Hence we have(

MU1, U2

)
H =

(
U1,MU2

)
H, ∀U1, U2 ∈ H,(

MU,U
)
H ≥ min{ρ− ,M , 1} ||U ||2H , ∀U ∈ H,

where ρ− := infΩ ρ and M denotes the coercivity constant of Mc (see (1.17)).

Step 5. In order to show that the problem
dṼ

dt
+ BṼ = F , t > 0

Ṽ (0) = Ṽ0

(1.31)

is well-posed for any Ṽ0 ∈ D(B), we have to prove that B is maximal monotone.
Note that, since M : H → H is a self-adjoint positive definite operator (as well as
M−1/2), we have, for any Ṽ =M1/2Ũ ,(
BṼ , Ṽ

)
H =

(
M−1/2AM−1/2Ṽ , Ṽ

)
H =

(
AM−1/2Ṽ ,M−1/2Ṽ

)
H =

(
AŨ , Ũ

)
H.

Thus, B is monotone if and only if A is monotone.

Monotonicity. The proof reduces to showing that A is monotone. For any
Ũ ∈ D(A), after integration by parts, we find:(
AŨ , Ũ

)
H =−

∫
∂Ω

(
Ce(ũ)−PTE−RTH− βθ̃

)
n · ṽ dΓ− 1

T0

∫
∂Ω

(K∇θ̃ · n)θ̃ dΓ

+

∫
∂Ω

E×H · ndΓ +
1

T0

∫
Ω

K∇θ̃ · ∇θ̃ dΩ.

The first two integrals in the sum vanish, due to homogeneous boundary conditions;
also, 1/T0

∫
Ω
K∇θ̃ · ∇θ̃ dΩ ≥ 0 since K is positive definite, thus:(

AŨ , Ũ
)
H ≥

∫
∂Ω

E×H · n dΓ =

∫
ΓeD

E×H · n dΓ +

∫
ΓeN

E×H · n dΓ =

=

∫
ΓeD

E×H · ndΓ +

∫
ΓgD

E×H · ndΓ,
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where the last equality holds by assumption (1.23). Taking into account the chain
of identities E×H ·n = −E×n ·H = H×n ·E and boundary conditions (1.21)2,2
and (1.21)3,2, the right-hand side of the last inequality vanishes as well, hence:

∀Ũ ∈ D(A),
(
AŨ , Ũ

)
H ≥ 0,

i.e., A is monotone and so is B.

Maximality. The operator B + I, with I the identity, is surjective from D(B)

into H, i.e., the problem

BṼ + Ṽ = F or, equivalently, AŨ +MŨ = F (1.32)

admits a solution Ṽ ∈ D(B) (Ũ ∈ D(A)) for any F ∈ H. Using the notation
F = (F1,F2,F3,F4, F5), the first equation of system AŨ +MŨ = F reads

ṽ = ũ− F1, (1.33)

which can be substituted into the other equations to give

−divCe(ũ) + divPTE + divRTH + divβθ̃ + ρũ = F2 + ρF1,

Pe(ũ)−∇×H + XE +αH + pθ̃ = F3 + Pe(F1),

Re(ũ) +∇×E +αE + MH + mθ̃ = F4 + Re(F1),

β : e(ũ)− 1

T0
divK∇θ̃ + p ·E + m ·H + cv θ̃ = F5 + β : e(F1).

(1.34)

Furthermore, (1.34)2 allows us to express E in terms of u, H, θ and source terms F3

and F1; after substituting this expression in the remaining equations, resorting to
the weak formulation of the obtained system and applying the Lax-Milgram lemma,
we obtain a solution

(ũ,H, θ̃) ∈ H1
mD(Ω)×HgD(curl,Ω)×H1

tD(Ω)

for any F ∈ H, satisfying the homogeneous boundary conditions appearing in the
definition of D(A). Of course, by (1.33), ṽ ∈ H1

mD(Ω) as well; also, one can verify
that E ∈ HeD(curl,Ω) by taking the curl of the expression giving E in terms of the
other unknowns and using equation (1.34)3.

Step 6. By taking the divergence of (1.24)2, considering the continuity equation
(1.2) and integrating in time, we getj

divD(x, t)− divD(x, 0) = ρe(x, t)− ρe(x, 0), x ∈ Ω, t > 0.

Now, the point-wise version of hypothesis (1.22)1 reads

divD(x, 0) = ρe(x, 0), x ∈ Ω,

jHere we make explicit the dependence on x and t for more clarity.
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hence we recover

divD(x, t) = ρe(x, t), x ∈ Ω, t > 0,

i.e., equation (1.19)2. By (1.22)2, a completely analogous argument yields

divB(x, t) = divB(x, 0) = 0, x ∈ Ω, t > 0,

i.e., equation (1.19)3. Therefore, equations (1.19)2 and (1.19)3 are not actually in-
dependent of (1.19)4 and (1.19)5, but they are a consequence of them and of (1.22).

Remark 1.2. The physical meaning of (1.22) is the following: the total volume
electric charge must equal the total surface electric charge at t = 0, and hence at
any t > 0; analogously, the total surface magnetic charge must vanish at t = 0, and
hence at any t > 0.

1.5. Energy Functional

An energy evolution equation satisfied by the solution (u,E,H, θ) of (1.24) can be
formally derived. Indeed, upon defining

E(t) :=
1

2

∫
Ω

ρu̇ · u̇ dΩ +
1

2

∫
Ω

Ce(u) : e(u) dΩ +
1

2

∫
Ω

XE ·EdΩ +
1

2

∫
Ω

MH ·H dΩ+

+
1

2

∫
Ω

cvθ
2 dΩ +

∫
Ω

αE ·H dΩ +

∫
Ω

(p ·E)θ dΩ +

∫
Ω

(m ·H)θ dΩ,

(1.35)

and

L(t) :=

∫
Ω

f · u̇dΩ−
∫

Ω

J ·EdΩ +

∫
Ω

rθ dΩ +

∫
ΓmN

g · u̇dΓ +
1

T0

∫
ΓtN

%θ dΓ, (1.36)

then by taking the time derivative of E , using equations (1.24) and integrating by
parts, we get

Ė(t) +
1

T0

∫
Ω

K∇θ · ∇θ dΩ = L(t), ∀t > 0. (1.37)

The left-hand side of (1.37) can be thought of as the actual internal power, whereas
the right-hand side as the actual external power. The word ‘actual’ (in place of
virtual) is used here to stress the fact that (1.37) is not the variational formulation
of system (1.24); indeed, it has been derived considering the solution of (1.24).

Remark 1.3. Note that the free electric charge density ρe, as well as boundary
values b and d, do not appear in (1.36), since they just intervene in compatibility
conditions (1.22).
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2. Quasi-static Problem

2.1. Nondimensionalization of the Equations

With a view toward justifying the quasi-static hypothesis, i.e., the existence of two
scalar fields ϕ and ζ – respectively, the electric and magnetic potentials – such that

E = −∇ϕ and H = −∇ζ, (2.1)

we nondimensionalize system (1.19) disregarding equations (1.19)2 and (1.19)3,
which do not involve time derivatives of the unknowns; we shall come back to
these equations later on. Let Vj(x,ν) denote the square root of the j-th eigenvalue
of the acoustic tensork associated with propagation direction ν and evaluated at x,
and let

L := sup
x,y∈Ω

|x− y|, V+ := max
j=1,2,3

sup
x∈Ω

sup
|ν|=1

Vj(x,ν), T :=
L
V+

be, respectively, the characteristic size of Ω, the maximum propagation speed for an
elastic wave in Ω and the typical time for an elastic wave to travel along distance
L. Following Imperiale and Joly [18], we introducel:

ρ+ := sup
x∈Ω

ρ(x), P+ := sup
x∈Ω

√
||P(x)P(x)T ||2, R+ := sup

x∈Ω

√
||R(x)R(x)T ||2,

α+ := sup
x∈Ω
||α(x)||2, p+ := sup

x∈Ω
|p(x)|, m+ := sup

x∈Ω
|m(x)|,

cv+ := sup
x∈Ω

cv(x), β+ := sup
x∈Ω
||β(x)||2, K+ := sup

x∈Ω
||K(x)||2,

and rewrite density and constitutive parameters as:

ρ(x) = ρ+ ρr
(
x
L
)
, C(x) = ρ+V

2
+ Cr

(
x
L
)
, P(x) = P+ Pr

(
x
L
)
,

R(x) = R+Rr

(
x
L
)
, X(x) = ε0 Xr

(
x
L
)
, M(x) = µ0 Mr

(
x
L
)
,

α(x) = α+αr
(
x
L
)
, p(x) = p+pr

(
x
L
)
, m(x) = m+mr

(
x
L
)
,

cv(x) = cv+cvr
(
x
L
)
, β(x) = β+βr

(
x
L
)
, K(x) = K+Kr

(
x
L
)
.

As for the unknowns, we write:

u(x, t) = Lur
(
x
L ,

t
T
)
, E(x, t) = E∗Er

(
x
L ,

t
T
)
,

H(x, t) = H∗Hr

(
x
L ,

t
T
)
, θ(x, t) = T ∗θr

(
x
L ,

t
T
)
,

where ε0 and µ0 are, respectively, the electric permittivity and magnetic permeabil-
ity of the vacuum, and E∗, H∗ and T ∗ are to be properly chosen. We recall that
the speed of light is given by c0 = (ε0µ0)

− 1
2 .

kWe recall that the acoustic tensor Aν associated with unit vector ν (the propagation direction),
a tensor field over Ω, is the second-order tensor defined by the following condition:

Aνa := ρ−1C [a⊗ ν]ν, ∀a ∈ R3,

where ρ is the density and C the elasticity tensor.
lIn the subsequent definitions, we use the notation ||A||2 :=

√
A : A for the norm of any second-

order tensor A.
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All in all, equations (1.19)1 and (1.19)4 to (1.19)6 become (we still denote by x
and t the scaled space and time variables):

ρrür − divCre(ur) +

[
P+E

∗

ρ+V 2
+

]
divPTr Er +

[
R+H

∗

ρ+V 2
+

]
divRT

r Hr +

[
β+T

∗

ρ+V 2
+

]
divβrθr = fr,

XrĖr +
[
P+

ε0E∗

]
Pre(u̇r) +

[
α+H

∗

ε0E∗

]
αrḢr +

[
p+T

∗

ε0E∗

]
pr θ̇r −

[√
µ0H

∗
√
ε0E∗

] [
c0
V+

]
∇×Hr = −Jr,

MrḢr +
[
R+

µ0H∗

]
Rre(u̇r) +

[
α+E

∗

µ0H∗

]
αrĖr +

[
m+T

∗

µ0H∗

]
mr θ̇r +

[ √
ε0E

∗
√
µ0H∗

] [
c0
V+

]
∇×Er = 0,

cvr θ̇r+
[

β+

cv+T
∗

]
βr : e(u̇r)+

[
p+E

∗

cv+T
∗

]
(pr · Ėr)+

[
m+H

∗

cv+T
∗

]
(mr · Ḣr)−

[
K+

V+Lcv+T0

]
divKr∇θr = rr.

(2.2)
All equations hold for x ∈ Ω̂ and t > 0, with Ω̂ := {x/L : x ∈ Ω}, and all
coefficients between square parentheses are dimensionless. We now choose the units
of measurement E∗, H∗ and T ∗ in order that the following equalities hold:

√
ε0E

∗ =
√
µ0H

∗,
P+E

∗

ρ+V 2
+

=
P+

ε0E∗
,

p+E
∗

cv+T ∗
=
p+T

∗

ε0E∗
.

This yields

E∗ = V+

√
ρ+

ε0
, H∗ = V+

√
ρ+

µ0
, T ∗ = V+

√
ρ+

cv+

. (2.3)

Note that this choice of E∗, H∗ and T ∗ ensures symmetry of all other coupling
coefficients as well, namely,

β+T
∗

ρ+V 2
+

=
β+

cv+T ∗
,

R+H
∗

ρ+V 2
+

=
R+

µ0H∗
,

α+H
∗

ε0E∗
=
α+E

∗

µ0H∗
,

m+T
∗

µ0H∗
=
m+H

∗

cv+T ∗
.

Upon setting

δ :=
V+

c0
,

we can rewrite equations (2.2)2 and (2.2)3 respectively as follows:

∇×Er = −δ
(
MrḢr + κRre(u̇r) + α+c0αrĖr + υmr θ̇r

)
,

∇×Hr = δ
(
XrĖr + χPre(u̇r) + α+c0αrḢr + ς pr θ̇r + Jr

)
,

(2.4)

with

κ :=
R+

V+
√
µ0ρ+

, υ :=
m+√
µ0cv+

, χ :=
P+

V+
√
ε0ρ+

, ς :=
p+√
ε0cv+

.

Considering the numerical values of density and elastic moduli for the most classic
example of magneto-electro-thermo-elastic composite, i.e., BaTiO3–CoFe2O4 with
a volume fraction of BaTiO3 equal to 0.6 (see Table 1 in the Appendix), it results

V+ ' 5980m/s, ρ+ = 5600 kg/m3
,

which give, along with the values of the other constitutive parameters,

δ ' 2 · 10−5, α+c0 ' 0.75, κ ' 0.78, υ ' 0.3, χ ' 9, ς ' 2.3.
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Therefore, if the right-hand sides of equations (2.4) remain bounded for any t > 0,
then, in the limit δ → 0, we obtain

∇×Er = 0 and ∇×Hr = 0,

which means that there exist an electric potential ϕr and a magnetic potential ζr
such that

Er = −∇ϕr and Hr = −∇ζr,

i.e., the quasi-static hypothesis (2.1).

2.2. Quasi-static Problem

As a result, we can remove equations (1.19)4 and (1.19)5 from system (1.19), intro-
duce the new list of unknowns U := (u, ϕ, ζ, θ) and rewrite (1.9)-(1.10) as

σ(U) = Ce(u) + PT∇ϕ+ RT∇ζ − βθ,
D(U) = Pe(u)−X∇ϕ−α∇ζ + pθ,

B(U) = Re(u)−α∇ϕ−M∇ζ + mθ,

s(U) = β : e(u)− p · ∇ϕ−m · ∇ζ + cvθ,

q(θ) = −K∇θ.

(2.5)

Also, (1.19) becomes

ρü− divσ(U) = f x ∈ Ω, t > 0,

divD(U) = ρe x ∈ Ω, t > 0,

divB(U) = 0 x ∈ Ω, t > 0,

ṡ(U) +
1

T0
divq(θ) = r x ∈ Ω, t > 0,

(2.6)

with initial conditions 
u(x, 0) = u(0) = u0 in Ω,

u̇(x, 0) = u̇(0) = u1 in Ω,

θ(x, 0) = θ(0) = θ0 in Ω,

(2.7)

and boundary conditions
σ(U)n = g on ΓmN , u = 0 on ΓmD,

D(U) · n = d on ΓeN , ϕ = 0 on ΓeD,

B(U) · n = b on ΓgN , ζ = 0 on ΓgD,

−q(θ) · n = % on ΓtN , θ = 0 on ΓtD.

(2.8)

Let us remark (see [25]) that there is no need for imposing initial conditions on ϕ
and ζ, since they are formally given by the unique solution (ϕ0, ζ0) of the following
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system, for given (u0, θ0) m
divD(U(0)) = div (Pe(u0)−X∇ϕ0 −α∇ζ0 + pθ0) = ρe(0) in Ω,

divB(U(0)) = div (Re(u0)−α∇ϕ0 −M∇ζ0 + mθ0) = 0 in Ω,

D(U(0)) · n = d(0) on ΓeN , ϕ0 = 0 on ΓeD,

B(U(0)) · n = b(0) on ΓgN , ζ0 = 0 on ΓgD.

2.3. Energy Functional

As in the case of problem (1.24), we can define a quasi-static energy

Eqs(t) :=
1

2

∫
Ω

ρu̇ · u̇dΩ +
1

2

∫
Ω

Ce(u) : e(u) dΩ +

+
1

2

∫
Ω

X∇ϕ · ∇ϕdΩ +
1

2

∫
Ω

M∇ζ · ∇ζ dΩ +
1

2

∫
Ω

cvθ
2 dΩ +

+

∫
Ω

α∇ϕ · ∇ζ dΩ−
∫

Ω

(p · ∇ϕ)θ dΩ−
∫

Ω

(m · ∇ζ)θ dΩ

(2.9)

and a quasi-static external power

Lqs(t) :=

∫
Ω

f · u̇dΩ +

∫
Ω

ρ̇eϕdΩ +

∫
Ω

rθ dΩ +

+

∫
ΓmN

g · u̇ dΓ +
1

T0

∫
ΓtN

%θ dΓ−
∫

ΓeN

ḋϕdΓ−
∫

ΓgN

ḃζ dΓ
(2.10)

to get the evolution equation (see [25])

Ėqs(t) +
1

T0

∫
Ω

K∇θ · ∇θ dΩ = Lqs(t), ∀t > 0. (2.11)

Remark 2.1. Note that E(t) = Eqs(t) for any t ≥ 0, and that, unlike in the case
of (1.37), here the time derivatives of ρe, d and b are present in the expression of
the actual external power on the right-hand side of (2.11).

2.4. Existence and Uniqueness

Set T0 = 1 for simplicity and denote by (·, ·) the scalar productn in L2(Ω) or L2(Ω).
For any otherfixed t ∈ (0, T ), a weak version of (2.6)-(2.8) takes the following form:

A(U(t),V) = L(V), (2.12)

for all V = (v, ψ, ξ, η) ∈ H1
mD(Ω)×H1

eD(Ω)×H1
gD(Ω)×H1

tD(Ω), with

U(t) ∈ H1
mD(Ω)×H1

eD(Ω)×H1
gD(Ω)×H1

tD(Ω),

mThis statement will be detailed in Remark 2.3 and proven in Lemma 2.1.
nWe shall denote by || · || the corresponding norm, unless noted otherwise. The scalar product in
L2(Γ) or L2(Γ), for Γ ⊂ ∂Ω, will be denoted analogously, with a proper subscript.
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where
A(U(t),V) := (ρü(t),v) + c(u̇(t), η) + (cv θ̇(t), η)− d(ϕ̇(t), η)− e(ζ̇(t), η)+

+au(u(t),v) + b(ϕ(t),v)− b(ψ,u(t)) + f(ζ(t),v)− f(ξ,u(t))+

−c(v, θ(t)) + aϕ(ϕ(t), ψ) + aζ(ζ(t), ξ) + g(ζ(t), ψ) + g(ϕ(t), ξ)+

−d(ψ, θ(t))− e(ξ, θ(t)) + aθ(θ(t), η),

L(V) := (f(t),v) + (r(t), η) + (ρe(t), ψ) + (g(t),v)L2(ΓmN )+

+(%(t), η)L2(ΓtN ) − (d(t), ψ)L2(ΓeN ) − (b(t), ξ)L2(ΓgN ).
(2.13)

where the bilinear forms au(·, ·), aϕ(·, ·), aζ(·, ·), aθ(·, ·), b(·, ·), c(·, ·), d(·, ·), e(·, ·),
f(·, ·), g(·, ·) are defined as follows:

au(u,v) :=

∫
Ω

Ce(u) : e(v) dΩ, aϕ(ϕ,ψ) :=

∫
Ω

X∇ϕ · ∇ψ dΩ,

aζ(ζ, ξ) :=

∫
Ω

M∇ζ · ∇ξ dΩ, aθ(θ, η) :=

∫
Ω

K∇θ · ∇η dΩ,

b(ψ,u) :=

∫
Ω

PT∇ψ : e(u) dΩ, c(u, η) :=

∫
Ω

ηβ : e(u) dΩ,

d(ϕ, η) :=

∫
Ω

ηp · ∇ϕdΩ, e(ζ, η) :=

∫
Ω

ηm · ∇ζ dΩ,

f(ξ,u) :=

∫
Ω

RT∇ξ : e(u) dΩ, g(ψ, ζ) :=

∫
Ω

α∇ψ · ∇ζ dΩ.

(2.14)

Remark 2.2. Note that time derivatives of the unknowns are present in some terms
in the definition of A(U(t),V). We shall give a precise meaning to such terms, as
well as to initial conditions (2.7), in the statement of the existence and uniqueness
theorem; furthermore we point out that all the terms containing first-order time
derivatives are integrated against η ∈ H1

tD(Ω).

Remark 2.3. As noted previously, initial conditions on ϕ and ζ are given by equa-
tions (2.6)2 and (2.6)3, along with the corresponding boundary conditions. Hence,
(ϕ0, ζ0) ∈ H1

eD(Ω)×H1
gD(Ω) is the unique solution to the following boundary value

problem:

aϕ(ϕ0, ψ) + aζ(ζ0, ξ) + g(ζ0, ψ) + g(ϕ0, ξ) = (ρe(0), ψ)− (d(0), ψ)L2(ΓeN )+

−(b(0), ξ)L2(ΓgN ) + b(ψ,u0) + f(ξ,u0) + d(ψ, θ0) + e(ξ, θ0),

∀(ψ, ξ) ∈ H1
eD(Ω)×H1

gD(Ω).

(2.15)

Lemma 2.1. Problem (2.15) is well-posed.

Proof. Hypothesis (1.17) implies that the submatrix(
[X] [α]

[α] [M]

)
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of [Mc] is symmetric and positive definite. Let W := H1
eD(Ω)×H1

gD(Ω). Then, by
definitions (2.14), the left-hand side of (2.15) is a continuous and coercive bilin-
ear form (yet symmetric) over W ×W , and by the continuity of the trace opera-
tor, Poincaré’s and Cauchy-Schwarz inequalities, the right-hand side of (2.15) is a
bounded linear functional over W . The result follows by the Lax-Milgram theorem.

Before giving the statement of well-posedness for the quasi-static problem, we in-
troduce the spacesH∗mD(Ω) andH∗tD(Ω) as the dual spaces of, respectively,H1

mD(Ω)

and H1
tD(Ω), i.e., the spaces of continuous linear functionals over H1

mD(Ω) and
H1
tD(Ω). As H1

mD(Ω) and H1
tD(Ω) are dense and continuously embedded in L2(Ω)

and L2(Ω) respectively, then we have [6, 28]

H1
mD(Ω) ⊂ L2(Ω) '

[
L2(Ω)

]∗ ⊂ H∗mD(Ω),

H1
tD(Ω) ⊂ L2(Ω) '

[
L2(Ω)

]∗ ⊂ H∗tD(Ω),

where we have used an analogous notation for the dual spaces of L2(Ω) and L2(Ω),
and the identification is realized by means of the Riesz-Fréchet representation theo-
rem, being L2(Ω) and L2(Ω) the pivot spaces. In the sequel, we adopt an analogous
notation: the linear actions of ` ∈ H∗mD(Ω) or ` ∈ H∗tD(Ω) on the corresponding
elements v ∈ H1

mD(Ω) and η ∈ H1
tD(Ω) are denoted by 〈`,v〉 and 〈`, η〉, without

including subscripts, as meaning will be clear from the contexto.
The results about existence and uniqueness for the quasi-static problem are

summarized in the following statement.

Theorem 2.1. Let T > 0. Assume the following regularity properties on the initial
data:

(u0,u1, θ0) ∈ H1
mD(Ω)× L2(Ω)×H1

tD(Ω),

the following regularity properties on source and boundary values:

f ∈ L2(0, T ;L2(Ω)),

ρe ∈ H1(0, T ;L2(Ω)) ∩ C0([0, T ];L2(Ω)),

r ∈ L2(0, T ;L2(Ω)),

g ∈ H2(0, T ;L2(ΓmN )) ∩ C1([0, T ];L2(ΓmN )),

d ∈ H1(0, T ;L2(ΓeN )) ∩ C0([0, T ];L2(ΓeN )),

b ∈ H1(0, T ;L2(ΓgN )) ∩ C0([0, T ];L2(ΓgN )),

% ∈ L2(0, T ;L2(ΓtN )),

oClearly, if ` ∈ L2(Ω) then 〈`,v〉 = (`,v), ∀v ∈ H1
mD(Ω) and analogously for ` ∈ L2(Ω) and

v ∈ H1
tD(Ω).
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and the following compatibility conditions:
g(0) = σ(u0, ϕ0, ζ0, θ0)n on ΓmN ,

d(0) = D(u0, ϕ0, ζ0, θ0) · n on ΓeN ,

b(0) = B(u0, ϕ0, ζ0, θ0) · n on ΓgN ,

%(0) = −q(θ0) · n on ΓtN .

Then, problem (2.12) admits a unique solution U = (u, ϕ, ζ, θ) such that:

u ∈ L2(0, T ;H1
mD(Ω)) ∩ C0([0, T ];L2(Ω)),

u̇ ∈ L2(0, T ;L2(Ω)),

ρü ∈ L2(0, T ;H∗mD(Ω)),

ϕ ∈ L2(0, T ;H1
eD(Ω)),

ζ ∈ L2(0, T ;H1
gD(Ω)),

θ ∈ L2(0, T ;H1
tD(Ω)),

cv θ̇ + β : e(u̇)− p · ∇ϕ̇−m · ∇ζ̇ ∈ L2(0, T ;H∗tD(Ω)).

Remark 2.4. Based on the solution regularity, the left-hand side terms (ρü(t),v)

and (cv θ̇(t), η)+c(u̇(t), η)−d(ϕ̇(t), η)−e(ζ̇(t), η) in (2.12) are actually to be thought
of as duality pairings.

Proof. We split the proof into six steps.

Step 1. First we consider, as in Step 2 of the proof of Theorem 1.1, the following
auxiliary problem for any t ≥ 0:

divCe(û) = 0, x ∈ Ω,

Ce(û)n = g on ΓmN ,

û = 0 on ΓmD.

(2.16)

Analogously to (1.25)-(1.26), provided

g ∈ H2(0, T ;L2(ΓmN )) ∩ C1([0, T ];L2(ΓmN )),

this problem admits a unique solution

û ∈ H2(0, T ;H1
mD(Ω)) ∩ C1([0, T ];H1

mD(Ω)). (2.17)

Let u := u− û; we rewrite (2.12) in terms of the list of unknowns U := (u, ϕ, ζ, θ).
Then, by (2.13), we have

A(U(t),V) = L(V), (2.18)

withp

pNote that, by (2.17), ρ ∂ttû ∈ L2(0, T ;L2(Ω)).
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L(V) :=L(V)− (g(t),v)L2(ΓmN ) − (ρ ∂ttû(t),v)+

− (β : e(û(t)), η) + (Pe(û(t)),∇ψ) + (Re(û(t)),∇ξ)
= (f(t),v)− (ρ ∂ttû(t),v) + (ρe(t), ψ) + (r(t), η)− (β : e(û(t)), η)+

+ (Pe(û(t)),∇ψ) + (Re(û(t)),∇ξ)+
+ (%(t), η)L2(ΓtN ) − (d(t), ψ)L2(ΓeN ) − (b(t), ξ)L2(ΓgN ).

Step 2. Let {vk}∞k=1 and {ηk}∞k=1 be orthonormal bases for spaces H1
mD(Ω) and

H1
tD(Ω), respectively. Fix p ∈ N and define Vp(Ω,ΓmD) := span{v1, . . . ,vp},

Vp(Ω,ΓtD) := span{η1, . . . , ηp}. These spaces are such that their union for all p ∈ N
is mutually dense in H1

mD(Ω) and H1
tD(Ω), respectively. Define

up(t) :=

p∑
k=1

uk(t)vk, θp(t) :=

p∑
k=1

ϑk(t)ηk. (2.19)

Furthermore, let (ϕp(t), ζp(t)) be the unique solution to the following problem:

Given (up(t), θp(t)) ∈ H1
mD(Ω)×H1

tD(Ω),
find (ϕp(t), ζp(t)) ∈ H1

eD(Ω)×H1
gD(Ω) such that

aϕ(ϕp(t), ψ) + aζ(ζp(t), ξ) + g(ζp(t), ψ) + g(ϕp(t), ξ) =

= (ρe(t), ψ)− (d(t), ψ)L2(ΓeN ) − (b(t), ξ)L2(ΓgN ) + b(ψ,up(t)) + f(ξ,up(t))+

+d(ψ, θp(t)) + e(ξ, θp(t)) + (Pe(û(t)),∇ψ) + (Re(û(t)),∇ξ),
∀(ψ, ξ) ∈ H1

eD(Ω)×H1
gD(Ω).

(2.20)
By (2.18), the sets of coefficients {uk(t)}pk=1 and {ϑk(t)}pk=1 are determined by the
solution of the following system of ordinary differential equations:

〈ρ ∂ttup(t),vk〉+ au(up(t),vk) + b(ϕp(t),vk) + f(ζp(t),vk)− c(vk, θp(t)) =

= (f(t),vk)− (ρ ∂ttû(t),vk), ∀k ∈ {1, . . . , p},

〈cv θ̇p(t), ηk〉+ c(∂tup(t), ηk)− d(ϕ̇p(t), ηk)− e(ζ̇p(t), ηk) + aθ(θp(t), ηk) =

= (r(t), ηk)− (β : e(û(t)), ηk) + (%(t), ηk)L2(ΓtN ), ∀k ∈ {1, . . . , p},
(2.21)

with initial conditions such that the following strong convergences hold:
up(0) = up,0 → u0 in H1

mD(Ω),

∂tup(0) = up,1 → u1 in L2(Ω),

θp(0) = θp,0 → θ0 in H1
tD(Ω),

(2.22)

where u0 := u(0) = u(0) − û(0) = u0 − û(0), u1 := ∂tu(0) = u̇(0) − ∂tû(0) =

u1 − ∂tû(0). The linear ordinary differential equations theory guarantees (see [31])
that there exists tp > 0 such that system (2.21)-(2.22) admits a local solution in
time interval [0, tp].
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Step 3. We rewrite the energy functional associated with the problem in terms
of the bilinear forms introduced above:

2E(t) = (ρ ∂tu(t), ∂tu(t)) + au(u(t),u(t)) +QMc(ϕ(t), ζ(t), θ(t)),

where

QMc : H1
eD(Ω)×H1

gD(Ω)× L2(Ω)→ R,
QMc(ψ, ξ, η) = aϕ(ψ,ψ) + aζ(ξ, ξ) + (cvη, η) + 2g(ψ, ξ)− 2d(ψ, η)− 2e(ξ, η)

(2.23)

is the quadratic form associated with the coupling matrix. Note that by hypothesis
(1.17), there exist a coercivity constant M > 0 and a continuity constant M > 0

(depending on the lowest and greatest eigenvalues of Mc, respectively) such that

M
(
||∇ψ||2 + ||∇ξ||2 + ||η||2

)
≤ QMc(ψ, ξ, η) ≤M

(
||∇ψ||2 + ||∇ξ||2 + ||η||2

)
,

(2.24)
for all (ψ, ξ, η) ∈ H1

eD(Ω)×H1
gD(Ω)× L2(Ω).

One can prove that an evolution equation analogous to (2.11) is satisfied by the
energy Ep associated with (up, ϕp, ζp, θp), namely,

∂tEp(t) + aθ(θp(t), θp(t)) = Lp(t). (2.25)

Indeed, first multiply (2.21)1 by u′k(t), (2.21)2 by ϑ′k(t), then make the sum on k

ranging from 1 to p; finally, take the time derivative of (2.20) and replace ψ by
ϕp(t). By adding the three equations thus obtained, we get (2.25) with

2Ep(t) := (ρ ∂tup(t), ∂tup(t)) + au(up(t),up(t)) +QMc(ϕp(t), ζp(t), θp(t)),

Lp(t) := (f(t), ∂tup(t))− (ρ ∂ttû(t), ∂tup(t)) + (ρ̇e(t), ϕp(t)) + (r(t), θp(t))+

−(β : e(û(t)), θp(t)) + (Pe(û(t)),∇ϕp(t)) + (Re(û(t)),∇ζp(t))+
−(ḋ(t), ϕp(t))L2(ΓeN ) − (ḃ(t), ζp(t))L2(ΓgN ) + (%(t), θp(t))L2(ΓmN ).

Step 4. We shall prove now that the solution Ep of (2.25) is bounded for any
t ∈ [0, tp] by a constant depending on T , which allows us to extend the time interval
to [0, T ]. First, we look for a bound on the external power Lp(t) depending on Ep(t).
We use the continuity of the trace operator, Poincaré’s and Young’s inequalities to
infer the existence of constants cr,1, cr,2 and cr,3 such that:

Lp(t) ≤C0(t) +
1

2

(
||∂tup(t)||2 + (c2r,1 + 1)||∇ϕp(t)||2+

+(c2r,2 + 1)||∇ζp(t)||2 + ||θp(t)||2
)

+
δ0
2
c2r,3||∇θp(t)||2,

2C0(t) := ||f(t)||2 + ||ρ ∂ttû(t)||2 + ||ρ̇e(t)||2 + ||β : e(û(t))||2 + ||Pe(û(t))||2+

+ ||Re(û(t))||2 + ||r(t)||2 + ||ḋ(t)||2L2(ΓeN ) + ||ḃ(t)||2L2(ΓgN ) +
1

δ0
||%(t)||2L2(ΓtN ).
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Let K > 0 denote the coercivity constant of aθ(·, ·). We select δ0 such that
K̃ := K − δ0

2 c
2
r,3 > 0. By (2.24) we can determine a constant C > 0 such that

(c2r,1+1)||∇ϕp(t)||2+(c2r,2+1)||∇ζp(t)||2+||θp(t)||2 ≤ C QMc(ϕp(t), ζp(t), θp(t)) ≤ 2C Ep(t).

Hence, there exist C0(t) and C1 such that

∂tEp(t) + K̃||∇θp(t)||2 ≤ Lp(t) ≤ C0(t) + C1Ep(t), ∀t ∈ [0, tp],

which gives, upon integrating in time,

Ep(t) + K̃

∫ t

0

||∇θp(s)||2ds ≤ Ep(0) +

∫ t

0

(C0(s) + C1Ep(s))ds,

for any t ∈ [0, tp]. Now, note that Ep(0) contains the terms (ρ ∂tu(0), ∂tu(0)),
au(up(0),up(0)), (cvθp(0), θp(0)), which are bounded by (2.22). To bound the re-
maining terms, we have to find bounds on ||∇ϕp(0)|| and ||∇ζp(0)||. This can be
accomplished by taking t = 0 in (2.20), replacing ψ and ξ by, respectively, ϕp(0) and
ζp(0), and then using hypothesis (1.17), Cauchy-Schwarz and Young’s inequality,
together with the continuity of the trace operator; all in all (we omit details), one
finds that there exist a constant c > 0 depending on the material parameters such
that

||∇ϕp(0)||2 + ||∇ζp(0)||2 ≤ c
(
||ρe(0)||2 + ||d(0)||2L2(ΓeN ) + ||b(0)||2L2(ΓgN )+

+ ||Pe(û(0))||2 + ||Re(û(0))||2 + 2(||θp(0)||2 + ||∇up(0)||2)
)
,

and since the right-hand side is bounded by (2.22), ||∇ϕp(0)|| and ||∇ζp(0)|| are
bounded. Hence, Ep(0) is bounded. Moreover, as C0(t) depends only on the data,
we can integrate up to T > 0 and get∫ t

0

C0(s)ds ≤
∫ T

0

C0(s)ds = C0,

2C0 := ||f ||2L2(0,T ;L2(Ω)) + ||ρ̇e||2L2(0,T ;L2(Ω)) + ||r||2L2(0,T ;L2(Ω)) + ||ρ ∂ttû||2L2(0,T ;L2(Ω))+

+ ||β : e(û)||2L2(0,T ;L2(Ω)) + ||Pe(û)||2L2(0,T ;L2(Ω)) + ||Re(û)||2L2(0,T ;L2(Ω))+

+ ||ḋ||2L2(0,T ;L2(ΓeN )) + ||ḃ||2L2(0,T ;L2(ΓgN )) +
1

δ0
||%||2L2(0,T ;L2(ΓtN )).

All in all, we finally obtain the existence of positive constants K̃, k1 and k2 such
that

Ep(t) + K̃

∫ t

0

||∇θp(s)||2ds ≤ k1 + k2

∫ t

0

Ep(s)ds, ∀t ∈ [0, tp],

whence, by Gronwall’s lemma, for any t ∈ [0, tp] it results

Ep(t) ≤ k1e
k2t ≤ k1e

k2T < +∞, ∀T ∈ [tp,+∞). (2.26)
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Hence, as the solution of (2.25) is uniformly bounded in [0, tp], we can extend the
maximal existence interval to [0, T ]. As a consequence, we also get

K̃

∫ T

0

||∇θp(s)||2ds ≤ k1e
k2T . (2.27)

Step 5. From the last two bounds, we infer the weak convergence of subsequences
still denoted (up, ϕp, ζp, θp) as follows:

up ⇀ u in L2(0, T ;H1
mD(Ω)),

∂tup ⇀ ∂tu in L2(0, T ;L2(Ω)),

ϕp ⇀ ϕ in L2(0, T ;H1
eD(Ω)),

ζp ⇀ ζ in L2(0, T ;H1
gD(Ω)),

θp ⇀ θ in L2(0, T ;H1
tD(Ω)).

(2.28)

Moreover, to get an estimate on ρ ∂ttup, we select v ∈ H1
mD(Ω) such that

||v||H1
mD(Ω) ≤ 1; the projection theorem for separable Hilbert spaces allows us to

write v = v1 + v2, with v1 ∈ span{vk}pk=1 and (v2,vk)H1
mD(Ω) = 0 for k = 1, . . . , p.

Then, (2.21)1 implies that

〈ρ ∂ttup(t),v〉 = 〈ρ ∂ttup(t),v1〉 =− au(up(t),v
1)− b(ϕp(t),v1)− f(ζp(t),v

1)+

+ c(v1, θp(t)) + (f(t),v1)− (ρ ∂ttû(t),v1),

whence, by using Cauchy-Schwarz and Young’s inequalities, integrating in time and
taking into account the boundedness of the energy Ep(t), we infer the existence of
positive constants k3 and k4 depending on the material parameters such that

||ρ ∂ttup||L2(0,T ;H∗
mD(Ω)) ≤ k1k3Te

k2T+k4

(
||f ||2L2(0,T ;L2(Ω)) + ||ρ ∂ttû||2L2(0,T ;L2(Ω))

)
,

therefore ρ ∂ttup is bounded in L2(0, T ;H∗mD(Ω)) and hence it admits a subsequence
still denoted ρ ∂ttup such that

ρ ∂ttup ⇀ ρ∂ttu in L2(0, T ;H∗mD(Ω)). (2.29)

Now, let Ξp(t) := cv θ̇p(t) +β : ∂te(u(t))−p · ∇ϕ̇(t)−m · ∇ζ̇(t); with an analogous
procedure, if we take η ∈ H1

tD(Ω) with ||η||H1
tD(Ω) ≤ 1 and write η = η1 + η2,

η1 ∈ span{η1, . . . , ηk} and (η2, ηk)H1
tD(Ω) = 0 for k = 1, . . . , p, then (2.21)2 reads

〈Ξp(t), η〉 = 〈Ξp(t), η1〉 = −aθ(θp(t), η1)+(r(t), η1)+(β : e(û(t)), η1)+(%(t), η1)L2(ΓtN ),

whence, by using Cauchy-Schwarz and Young’s inequalities, together with the con-
tinuity of the trace operator, integrating in time and taking into account (2.27), we
can determine two positive constants k5 and k6 depending on the material param-
eters such that

||Ξp||L2(0,T ;H∗
tD(Ω)) ≤ k5||∇θp||L2(0,T ;L2(Ω)) + k6

(
||r||2L2(0,T ;L2(Ω))+

+ ||β : e(û)||2L2(0,T ;L2(Ω)) + ||%||2L2(0,T ;L2(ΓmN ))

)
;
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Ξp is thus bounded and admits a subsequence still denoted Ξp such that

Ξp ⇀ Ξ in L2(0, T ;H∗tD(Ω)). (2.30)

Now, spaces Vp(Ω,ΓmD) and Vp(Ω,ΓtD) are dense, respectively, in H1
mD(Ω) and

H1
tD(Ω). By multiplying (2.20) and the equations of system (2.21) by a test function

λ ∈ D(0, T ), integrating in time, passing to the limit, taking into account (2.28)-
(2.29)-(2.30) and exploiting the arbitrariness of λ, we obtain

A(U(t),V) = L(V),

∀V ∈ H1
mD(Ω)×H1

eD(Ω)×H1
gD(Ω)×H1

tD(Ω), t ∈ (0, T ).

Again, from (2.28)-(2.29)-(2.30), we infer the regularity properties of the solution:

u ∈ L2(0, T ;H1
mD(Ω)) ∩ C0([0, T ];L2(Ω)),

∂tu ∈ L2(0, T ;L2(Ω)),

ρ ∂ttu ∈ L2(0, T ;H∗mD(Ω))

ϕ ∈ L2(0, T ;H1
eD(Ω)),

ζ ∈ L2(0, T ;H1
gD(Ω)),

θ ∈ L2(0, T ;H1
tD(Ω)),

cv θ̇ + β : ∂te(u)− p · ∇ϕ̇−m · ∇ζ̇ ∈ L2(0, T ;H∗tD(Ω))

It remains to show that the weak limits u, ∂tu and θ satisfy the imposed initial
conditions u(0) = u0, ∂tu(0) = u1 and θ(0) = θ0. As in [25], to prove that u(0) =

u0, we choose λ ∈ C1([0, T ]) such that λ(0) = 1 and λ(T ) = 0; an application of
(2.28) yields∫ T

0

(∂tup(t),v)λ(t) dt→
∫ T

0

(∂tu(t),v)λ(t) dt, ∀v ∈ H1
mD(Ω);

upon integrating by parts, we get

−(up(0),v)−
∫ T

0

(up(t),v)λ′(t) dt→ −(u(0),v)−
∫ T

0

(u(t),v)λ′(t) dt.

Now, since
∫ T

0
(up(t),v)λ′(t) dt→

∫ T
0

(u(t),v)λ′(t) dt by (2.28), we have

(up(0),v)→ (u(0),v), ∀v ∈ H1
mD(Ω),

i.e., up(0) ⇀ u(0) in L2(Ω). By (2.22)1 and the uniqueness of limit we get u(0) = u0.
Analogously we show that ∂tu(0) = u1 and θ(0) = θ0.

Step 6. The solution U(t) is unique. By contradiction, if there exist two solu-
tions (u∗, ϕ∗, ζ∗, θ∗) and (u∗, ϕ∗, ζ∗, θ∗) of (2.18), set w := u∗ − u∗, ψ := ϕ∗ − ϕ∗,
ξ := ζ∗ − ζ∗, η := θ∗ − θ∗, then W := (w, ψ, ξ, η), and consider the problem

ρẅ − divσ(W) = 0,

divD(W) = 0,

divB(W) = 0,

ṡ(W) + divq(η) = 0,
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with vanishing initial and boundary conditions. Denote by E(W(t)) the energy
associated with W at time t; then, by (2.11) we get

Ė(W(t)) ≤ Ė(W(t)) + aθ(η(t), η(t)) = 0,

whence, by integration, E(W(t)) ≤ E(W(0)) = 0. This implies in turn that
aθ(η(t), η(t)) = 0 and thus W = 0.

3. Another justification of the quasi-static assumption

In this subsection, we outline a study of the limit as δ → 0 of the solution to problem
(1.19)-(1.20)-(1.21). We start by rewriting the nondimensionalized system (2.2):

ρrür − divCre(ur) + χdivPTr Er + κ divRT
r Hr + γ divβrθr = fr,

XrĖr + χPre(u̇r) + α+c0αrḢr + ς pr θ̇r − δ−1∇×Hr = −Jr,
MrḢr + κRre(u̇r) + α+c0αrĖr + υmr θ̇r + δ−1∇×Er = 0,

cvr θ̇r + γ βr : e(u̇r) + ς (pr · Ėr) + υ (mr · Ḣr)− λ divKr∇θr = rr,

(3.1)

where we have setq

γ :=
β+

V+
√
ρ+cv+

' 30, λ :=
K+

V+Lcv+T0
' 1.6 · 10−7.

We recall that all the equations hold for x ∈ Ω̂ (we use an analogous notation for
boundary partitions) and t > 0, and that x and t are dimensionless. The boundary
conditions are

{
σr(Ũr)nr = gr on Γ̂mN ,

−qr(θr) · nr = %r on Γ̂tN ,


ur = 0 on Γ̂mD,

Er × nr = 0 on Γ̂eD,

Hr × nr = 0 on Γ̂gD,

θr = 0 on Γ̂tD,

(3.2)

where Ũr := (ur,Er,Hr, θr), nr is the outer unit normal vector field over ∂Ω̂,
σr(Ũr) := Cre(ur)−κRT

r Hr−χPTr Er−γβrθr and qr(θr) := −Kr∇θr. Again, we
omit boundary conditions on the normal components of the magnetic induction Br

and of the electric displacement Dr as they just impose compatilibility conditions
on the choice of initial values u0

r, E0
r, H0

r and θ0
r and of the initial nondimensional

electric charge density ρ0
er .

A first hint that the limit solution of (3.1) as δ → 0 is such that ∇×Er = 0 and
∇×Hr = 0 can be obtained by expressing the L2–norm of ∇×E0

r and of ∇×H0
r

in terms of the L2–norm of ∇×E0 and of ∇×H0. Indeed, for any x ∈ Ω, we have

E0
r

( x
L

)
=

1

E∗
E0(x) =

1

V+

√
ε0
ρ+

E0(x) =
δ

V 2
+
√
µ0ρ+

E0(x),

qTo calculate λ, we take T0 = 297 K as a reference temperature, as in [21]; for what concerns the
thermal conductivity, we take the weighted average of the values provided in [27], since numerical
values for the BaTiO3–CoFe2O4 composite with volume fraction 0.6 of BaTiO3 are not available
in literature. As for the length scale, we take L = 3 cm.
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whence

∇×E0
r

( x
L

)
=

δL
V 2

+
√
µ0ρ+

∇×E0(x).

Upon integrating the squared euclidean norm of both members of this equality, we
find ∫

Ω

∣∣∣∇×E0
r

( x
L

)∣∣∣2 dΩ = L3

∫
Ω̂

|∇ ×E0
r(y)|2 dΩ̂ =

= L3||∇ ×E0
r||2L2(Ω̂)

=
δ2L2

V 4
+µ0ρ+

||∇ ×E0||2L2(Ω),

that is to say,

||∇ ×E0
r||L2(Ω̂) =

δ

V 2
+

√
µ0ρ+L

||∇ ×E0||L2(Ω);

analogously, we obtain

||∇ ×H0
r||L2(Ω̂) =

δ

V 2
+

√
ε0ρ+L

||∇ ×H0||L2(Ω).

The denominators appearing on the right-hand sides of these equalities are, of
course, not dimensionless, and have the following numerical values:

V 2
+

√
µ0ρ+L ' 5.2 · 105 Vm−1/2 = O(δ−1)Vm−1/2,

V 2
+

√
ε0ρ+L ' 1.38 · 103 Am−1/2 = O(δ−3/5)Am−1/2,

therefore, unless ||∇ × E0||L2(Ω) = O(δ−2)Vm−1/2 and ||∇ × H0||L2(Ω) =

O(δ−8/5)Am−1/2, which is never the case in applications, we have

lim
δ→0
||∇ ×E0

r||L2(Ω̂) = lim
δ→0
||∇ ×H0

r||L2(Ω̂) = 0.

Conclusions

We presented a mathematical model to describe linear magneto-electro-thermo-
elastic materials, as well as the proofs of the well-posedness for the problem formu-
lated in its most general setting (dynamic) and for the quasi-static problem, based
on the assumption that the electric and magnetic fields can be expressed as gradi-
ents of the correspondent potentials. We set forth a first validation of this hypothesis
by carrying out a formal nondimensionalization procedure on the equations of the
dynamic problem. A rigorous mathematical justification analogous to that set forth
in [18] for a piezoelectric material needs further work, since the dynamic problem
has been solved in the context of the Hille-Yosida theory, obtaining a smooth solu-
tion in time, whereas the solution of the quasi-static problem has been obtained in
a weak form by the Faedo-Galerkin method.
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A problem that has already been addressed [5] is the deduction of a plate model
for a magneto-electro-thermo-elastic sensor/actuator, based on the quasi-static as-
sumption, by means of the asymptotic expansion method, taking into account an-
other small parameter ε tending to zero and characterizing the ratio of the plate
thickness to the plate diameter. Another interesting extension for what concerns
applications is the study of a laminated structure (plate-like or shell-like) including
a thin magneto-electro-thermo-elastic layer; for the case of a piezoelectric layer see,
e.g., [29] and [30].

Finally, in view of applications, a natural problem to be dealt with at a later
stage is to come up with efficient numerical methods to perform simulations of the
equations involved in the problem.

Appendix

Numerical Values of the Materials Constants

The table below lists numerical values of the material properties for a
BaTiO3–CoFe2O4 composite with 0.6 volume fraction of barium titanate. We took
Table 1 in [22] as a reference. The two diagonal components M11 and M22 of the
magnetic permeability tensor assume negative values in [22]. This would contradict
our hypothesis (1.12), but it is actually a widespread error in literature, based on
the incorrect determination of the sign of these coefficients for the pure cobalt fer-
rite CoFeO2, as pointed out in [14], [21], [20] and [32]. Therefore, we corrected the
values of these two components by changing their sign.

Table 1. Material properties of a magneto-electro-thermo-elastic BaTiO3–CoFe2O4 composite with
0.6 volume fraction of BaTiO3.

Elastic moduli Magnetic permeabilities
C1111 = C2222 (GPa) 200 M11 = M22 (10−4 Ns2/C2) 1.5

C1122 (GPa) 110 M33 (10−4 Ns2/C2) 0.75
C1133 = C2233 (GPa) 110 Piezomagnetic constants

C3333 (GPa) 190 R311 = R322 (N/Am) 200
C2323 = C3131 (GPa) 45 R333 (N/Am) 260

C1212 (GPa) 45 R113 (N/Am) 180
Piezoelectric constants Magnetoelectric constants
P311 = P322 (C/m2) -3.5 α11 = α22 (10−12 Ns/VC) 6

P333 (C/m2) 11 α33 (10−12 Ns/VC) 2500
Dielectric permittivities Pyroelectric constants
X11 = X22 (10−9 C2/Nm2) 0.9 p2 (10−5 C/m2 K) -12.4

X33 (10−9 C2/Nm2) 7.5 Pyromagnetic constants
Thermal stresses m2 (10−3 N/AmK) 5.92

β11 = β22 (106 N/Km2 ) 4.86 Density
β33 (106 N/Km2 ) 4.32 ρ (kg/m3) 5600

Thermal conductivities Calorific capacity
K33 (W/mK) 2.85 cv (J/m3 K2) 325

In our notation, β denotes the thermal stress tensor, whereas in [22] it denotes the
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thermal expansion tensor. For γ the thermal expansion tensor and C the elasticity
tensor, the thermal stress tensor β is given by the relation β = Cγ, which we used
to infer the values of the thermal stress components. Also, since no constitutive
assumption concerning entropy, as well as heat influx, is made in [22], numerical
values for the calorific capacity and the thermal conductivities are unavailable in
[22]. However, an estimate of these values can be retrieved, respectively, from [21]
and [27].

The Hille-Yosida Theorem

The statement of the Hille-Yosida theorem for a linear non-homogeneous differential
equation employed in the paper is the following (see [6]).

Theorem 3.1. Let H be a Hilbert space, A : D(A) ⊂ H → H a linear operator
with domain D(A), a linear subspace of H. Let A be a maximal monotone operator.
Then, for any U0 ∈ D(A) and F ∈ C1([0, T ];H), the problem

dU

dt
+AU = F, t > 0,

U(0) = U0

admits a unique strong solution

U ∈ C1([0, T ];H) ∩ C0([0, T ];D(A)).
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