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UNBOUNDED SOBOLEV TRAJECTORIES AND MODIFIED
SCATTERING THEORY FOR A WAVE GUIDE NONLINEAR
SCHRODINGER EQUATION

HATYAN XU

ABSTRACT. We consider the following wave guide nonlinear Schrédinger equation,
(i0y + 02z — |Dy|)U = |U|PU (WS)

on the spatial cylinder R, x T,. We establish a modified scattering theory between small
solutions to this equation and small solutions to the cubic Szeg6 equation. The proof
is an adaptation of the method of Hani-Pausader—Tzvetkov—Visciglia [12]. Combining
this scattering theory with a recent result by Gérard—Grellier [4], we infer existence
of global solutions to (WS) which are unbounded in the space L2H;(R x T) for every
s> 1.

1. INTRODUCTION

The purpose of this work is to study the large time behavior of solutions to the
following Hamiltonian equation. On the cylinder R, x T,, consider the Hilbert space
H = L*(R x T) with the symplectic form

w(u,v) = Im(ulv)
and the Hamiltonian function on H,

1

1) =5 [ 100 n)P + DU T ) dedy+ [ UG dedy

RxT RxT

where |D,| := y/—0,,. The corresponding Hamiltonian system turns out to be a wave
guide nonlinear Schrodinger equation,

(10, + A)U = |UPU, (z,y) eRx T, (1.1)
where we set
A =0, — D, .

Notice that, besides the energy H(U), this equation formally enjoys the mass conserva-
tion law

/|U<t,x,y>|2dasdy= / U0, 2, )| da dy .

RxT RxT
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1

In particular, the trajectories are bounded in HyL? N L2H;. These conservation laws
correspond to a critical regularity for equation (1.1), so that global wellposedness of
the Cauchy problem is not easy. In this paper, we shall prove that global solutions do
exist for every Cauchy datum satisfying a smallness assumption in an appropriate high
regularity norm. However, our main objective in this paper is to study the possible large
time unboundedness of the solution, in a slightly more regular norm than the energy
norm, typically L2 H S(RxT) for s > % This general question of existence of unbounded
Sobolev trajectories comes back to [1], and was addressed by several authors for various
Hamiltonian PDEs, see e.g. [3, 06, 9, 10, 11, 12, 13, 14, 19, 21]. The choice of the
equation (1.1) is naturally based on the state of the art for this question concerning the
nonlinear Schrodinger equation and the cubic half wave equation, which we recall in the
next paragraphs.

1.1. Motivation. In this paragraph, we briefly recall the state of the art about the
existence of unbounded Sobolev trajectories for the nonlinear Schrédinger equation and
the cubic half wave equation.

1.1.1. The nonlinear Schrodinger equation. Firstly, consider the following Schrodinger
equation with smooth initial data

i0u + Au = |ul*u . (1.2)

If we consider the case with spatial domain R or T, the 1D Schrodinger turns out to be
globally well-posed and completely integrable [22], and the higher conservation laws in
that case imply

[u(®)]

Hani-Pausader-Tzvetkov—Visciglia studied the nonlinear Schrodinger on the cylinder
R, X TZ [12], they found infinite cascade solutions for d > 2, which means there exists
solutions with small Sobolev norms at the initial time, while admit infinite Sobolev norms
when time goes to infinity.

gs), s>1, forallt e R.

Theorem 1.1. [12, Corollary 1.4] Let d > 2 and s € N, s > 30. Then for every e > 0
there exists a global solution U(t) of the cubic Schridinger equation (1.2) on R x T¢,
such that
1U(0)[| s (rxmay < €, litmfup 1U 0] s xrey = +00. (1.3)
—+400
Unfortunately, these infinite cascades do not occur for d = 1, actually the dynamics of
small solutions is fairly similar on R x T and R. But we may apply their general strategy
to the wave guide Schrédinger equation, to understand the asymptotic behavior and in
particular how this asymptotic behavior is related to resonant dynamics.

1.1.2. The half wave equation. Another motivation is from the study of the so-called half
wave equation [6]. Actually, if we start with a solution u which does not depend on =z,
then it satisfies the following half wave equation

i0u — | Dylu = |ul*u, y € T . (1.4)
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The following theorem was proved by Gérard and Grellier, which tells us the global
well-posedness and partially about its large time behavior. The orthogonal projector

from L?(T) onto
LZ(T { Zue , Upp>0€£}
p>0

is called the Szegd projector and is denoted by 11, .

Theorem 1.2. [0] Given ug € Hz(T), there exists a unique solution u € C(R, Hz(T))
satisfying (1.4). And if ug € H*(T) for some s > 3, then u € C(R, H*(T)). Moreover,
let s > 1 and ug = Iy (ug) € L2(T) N H*(T) with |juo|lgs = €, € > 0 small enough.
Denote by v the solution of the cubic Szegd equation], 7]

i0w — Dv = T, (Jv|*v) , v(0,-) = ug . (1.5)

Then, for any o > 0, there exists a constant ¢ = ¢, < 1 so that

[u(t) = v(@)]

A similar result is available for the case on the real line R, see O. Pocovnicu [20)].

The following large time behavior result of the half wave equation comes from the fact
that the cubic Szeg6 dynamics which appears as the effective dynamics, admits large
time Sobolev norm growth.

1
e = O fort < glog— (1.6)

Corollary 1.1. [0] Let s > 1. There exists a sequence of data uj and a sequence of
times t" such that, for any r,

[ug [ zm =0

while the corresponding solution of (1.4) satisfies

2s5—1
Hs (log ) .

Remark 1.1. In the statement above, one may observe that there exists norm growth,
but || u™(t")|| gs stays still small. In fact, it is possible to show that for s > 1, there exists
a sequence of u™ solutions to the half wave equation (1.4) such that [18]

[ ("))

Hs &=

ms — 0, [J[u™(t")|

||ug | Hs — 00 . (1.7)

Indeed, one may just take some large integers N, = [(|]E§|]H5Hﬁ(t")”m) m], set
= Nn%uNg(Néy) with uNg gwen as in Corollary 1.1, then we may write the related
solution as ufj = Néﬂﬁ(]\fnt, Nn%y).
The existence of a solution to the half wave equation (1.4) satisfying
uol|ms < e, limtsilopi> lu()||gs = o0, (1.8)

is still an open problem. Though this problem is still open for the half wave equation,
we are going to solve it for the wave guide Schrédinger equation (1.1).
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1.2. Main results. The aim of this paper is to describe the large time behavior of the
wave guide Schrodinger equation (1.1) for small smooth data. Thoughout this paper, we
always assume the initial data satisfy

Uo(z,y +m) = =Up(z,y) . (1.9)

A direct consequence is that Uy only admits odd Fourier modes on the direction y, which
is of helpful importance in the study of the resonant system, as we will see later in section
4. We then show that the asymptotic dynamics of small solutions to (1.1) is related to
that of solutions of the resonant system

i0,Gi(t) = RIGL(t), G(t), GL(t)] ,
FaR[Gx, G, G<](€,y) = NL(|GL2GL)(E,y) -

Here @(g, ) = FrG(E, ), 1, is the Szegb projector onto the non-negative Fourier modes,
II_ :=1d—TII;, and G4 := IIL(G). Noting that the dependence on ¢ is merely parametric,
the above system is none other than the resonant system for the cubic half wave equation
on T, which is the cubic Szeg6 equation.

Throughout this article, we assume N > 13 is an arbitrary integer, and § < 1073,
Our main results on the modified scattering and the existence of a wave operator are as
below, where the norms of Banach spaces S and ST are defined as

IFs =l Fllmy, + 2Fllzz,,  [Fllss = 1Flls +[1(1 = 0w0)*Flls + [2Flls.  (1.11)

(1.10)

Theorem 1.3. There exists e = (N) > 0 such that if Uy € ST satisfies
1Uslls+ <,

and if U(t) solves (1.1) with initial data Uy, then U € C([0,400) : S) exists globally and
exhibits modified scattering to its resonant dynamics (1.10) in the following sense: there
exists Gy € S such that if G(t) is the solution of (1.10) with initial data G(0) = G,
then

|U(t) — ™ G(rInt)||s = 0 ast — +oo.

Remark 1.2. The Cauchy problem of our wave guide Schridinger system (1.1) in the
classical Sobolev space is not easy, neither by energy estimates nor by Strichartz esti-
mates, since its Hamiltonian energy lies on the Sobolev space H;LZ N LiHyl/Q. Howewver,
by the Theorem 1.5 above, we can deduce directly the global well-posedness with small
initial data in ST.

Theorem 1.4. There exists € = e(N) > 0 such that if Gy € ST satisfies
[Golls+ < ¢,

G(t) solves (1.10) with initial data Gy, then there exists U € C([0,00) : S) a solution of
(1.1) such that

|U(t) — ™G (xInt)||ls = 0 as t — +oo.

Theorem 1.4 combined with the large time behavior of the cubic Szeg6 equation, leads
to the infinite cascades result.
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Theorem 1.5. Given N > 13, then for any e > 0, there exists Uy € ST with || Up||s+ < €,
such that the corresponding solution to (1.1) satisfies

limsup |[U(#)|| 2 =00, Vs >1/2. (1.12)
t—o00

Remark 1.3.

1. It is likely there exists a dense Gy set in an appropriate space containing initial data
which lead to infinite cascade as above. A proof of this would involve more technicalities
and we will not discuss it in this paper.

2. Compared to the results in [12], the unbounded Sobolev norms in our theorem are just
above the energy norm.

1.3. Organization of the paper. In section 2, we introduce the notation used in
this paper. In section 3, we study the structure of the non-linearity, and establish the
decomposition proposition, which is of crucial importance. We decompose the non-
linearity N* into a combination of the resonant part and a remainder,

N'[F,G, H] = %R[F, G, H] + &'[F,G, H] .

In section 4, we study the resonant system and its large time cascade, which is similar to
the cubic Szegé equation as above. In section 5, we construct the modified wave operator
and prove Theorem 1.4 and Theorem 1.3. Later in this section, we prove the large time
blow up result, Theorem 1.5. Finally in section 6, we present a lemma that will allow us
to transfer L? estimates on operators into estimates in S and S norms.

2. PRELIMINARY

2.1. Notation. We will follow the notation of [12], T := R/(27Z), the inner product
(U, V) = [o,p UVdzdy for any U,V € L*(R x T). We will use the lower-case letter to
denote functions f : R — C and the capital letters to denote functions F': R x T — C,
and calligraphic letters denote operators, except for the Littlewood-Paley operators and
dyadic numbers which are capitalized most of the time.

We use a different notation to denote Fourier transform on different space variables.
The Fourier transform on R is defined by

ﬁ@izjéwﬂﬂzi/e4“ﬂxMx.

Similarly, if U(x,y) depends on (z,y) € R x T, ﬁ({,y) denotes the partial Fourier
transform in x. The Fourier transform of A : T — C is,

hy == Fy(h)(p) ! /h(y)e‘ipydy, pEZ,

" or
T

and this also extends to U(z,y). Finally, we define the full Fourier transform on the
cylinder R x T

(FU) €)= o= [ Tl& ey = Ty(6).

T
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We will often use Littlewood-Paley projections. For the full frequency space, these are
defined as follows with N as a dyadic integer.

§

(FPaU) (6,0) = ¢(3)¢(57) (FU) (E:p)

where p € C®(R), p(x) = 1 when |z| < 1 and p(z) = 0 when |z| > 2. We then also
define

¢(x) = p(x) — (2) (2.1)
and
Py =P<cy — Pcnjp, P>y =1—Poy . (2.2)
Sometimes we concentrate on the frequency in = only, and we therefore define
§

(FQaNV) (€,1) = ¢(5) (FU) (9)

and define Q) similarly. By a slight abuse of notation, we will consider )y indifferently
as an operator on functions defined on R x T and on R. While we consider the frequency
in y we will use notation Ay which means

(FyBh) (p) = (5 )y - (2.3)

We shall use the following commutator estimate which is a direct consequence of the
definition,

I1@w, ]Il zz—re SN (2.4)
We will use the following sets corresponding to momentum and resonance level sets:

M = {(po,p1,2,p3) € Z': po—pi+p2—Dps= 0},
Ly = {(po, p1,p2:p3) € Z* = |po| — |p1| + |p2| — |ps| = w} .

2.2. The non-linearity. Let us write a solution of (1.1) as
Ulz,y,t) = Y eMe (e Fy (1)) (x) = ™A (F(1))
PEZL
with A = 0,, — |D,|. We then see that U solves (1.1) if and only if F' solves
i0,F (1) = e~itA (e”AF(t) e HAR(R) - e“"‘F(t)) . (2.5)
We denote the non-linearity in (2.5) by N[F(t), F(t), F(t)], where the trilinear form N
is defined by
NUF, G, H] = e A (eiMF e G eitAH) .
Now, we can compute the Fourier transform of the last expression
FNUFGH(&p) = ), WWHTEE (TR, G H)E) ,  (26)
(p,g,r,8)EM

where

T'f, g, h] == U(—1) (uu) fu(t)gu(t)h), U(t) = et (2.7)
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One verifies that
fa} (It [fv g, h])(g) = /eit2nlij/c\(€ - 7))?(5 -n- K’)E(g - ’L{)dl{’dn :
]R2

2.3. Norms. The following Sobolev norms will be used in the whole paper. For se-
quences a := {a, : p € Z}, we define the following norm,

h = (L 1pP] el

PEZ

la

The Besov space B' = B} (T) is defined as the set of functions f such that || f||z | is
finite, where

1l = ISPl + 3 NlAxFlo,
N dyadic
here f = So(f)+ > An/f stands for the Littlewood-Paley decomposition of f with
N dyadic
Ay defined as (2.3) above and F,(Sof)(p) := ¢(p)f,- The space B! will be crucial in
the analysis of the resonant system in section 4.

For functions F' defined on R x T, we will indicate the domain of integration by a
subscript z (for R), x,y (for R x T) or p (for Z). We will use mainly four different
norms:
two weak norms

IF I i= sup [1+ 6] D1+ o) I BF (2:8)
P11z = sup [L+ 6P IF (S, )l (2.9)

and two strong norms
1FNls = [1Fllmy, + 12F N2z, [ Flls+ = [Flls + (1 = 0s0) Flls + [loF]ls ,  (2.10)

with NV to be fixed later.
The space-time norms we will use are

[Fllxy = sup {IF@ONz+ 1+ EDIFO s + A+ [E) " 0 F (O]}

) ) (2.11)
I g =[x +0§135T{(1 +HIEDTNF@ s+ + A+ ) N0F (O)]ls+}

with a small parameter § < 1073.

In the following sections, we will see that the Z norm is a conserved quantity for
the resonant system, which is of crucial importance, and for data in S+, the solution is
expected to grow slowly in ST, while the difference between the true solution to (1.1)
and the solution to the resonant system may decay in S.

Now, at this stage, we present some elementary lemmas which will be useful in the
later studies.
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Lemma 2.1. Provided N > 13, we have the following hierarchy

[Ely2 S 1Ellz S NE s, s> 1, (2.12)
1E e S Fllz S TIFs < HFHS+ : (2.13)

Proof. We begin with the proof of the first inequality (2.12), it is sufficient to prove

[l e S W llsr S N fllargs s> 1

L £l e S 1l
1/2
1o = 1SSz + (D2 NlAnflz2)"" -

N dyadic

We notice that the Fourier transform of Sy f is compactly supported on some interval [
with |I| < 2, thus

1/2
[S0f 2 < [[Fy(Sof) ()l < <Z|/ ~(Sof) (@ )d93|2> S 1Sofllee -

pel
While the Fourier transform of Ay f is compactly supported on some interval I with
|Jn| ~ N, thus similarly

N AN fllze < NY2IF,(Ax )Pl S NIANf L

~

we then use the fact that ¢! is continuously embedded in ¢? and get

INY2 AN fllzlle, S INIANfloallz, S D NIAN Sl

N dyadic
thus |[ £l 12 S N[ £l 51

2. flps I Fllag, s> 1.
Since T is of finite measure,

Iy < (1fllzzery -
This inequality is deduced by Cauchy-Schwarz inequality, indeed,
s 1/2 o(s—1)\ 1/2
SONIAN I < DO NIANflle < (DD NZANFIZ) (DD N
N dyadic
the second factor on the right hand side converges since s > 1, and we obtain our result.

3. It is easy to show the first and last inequality in (2.13), and the middle inequality
comes from the following Gagliardo-Nirenberg type inequality

IFlly SIFIL IR s> 1, (2.14)

with 0 < 0 < 1/2 and the index in the definition of S norm satisfies c N > 3.
To verify this inequality, we need the elementary inequality

N 1 1
1l S 1 la S 1N N1 (2.15)
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one might observe that

L+ IEOIS S NIQuE©)

N dyadic

< S MIQn B O leQu (2
N
SN - O)
N

1 1
S IO el EpON L

where we applied (2.4) to gain the third inequality, and 6 > 4. Squaring and multiplying
by (p)?*, and combining with (2.12), we have for s > 1,

115 = Sgp[HIEIQ]QHF(&, Wiy S D@ NEO e 1) E (e S IFllagmzlleF Iz,

PEL

2]
2

B0 R ) B 12

the last inequality comes from the Cauchy-Schwarz inequality. Then (2.14) comes from
an application of the Gagliardo-Nirenberg inequality on | F[[ yo+2. with 6 + 2s > 6,

1l esee < IFIIEI,
and 20N = 0 + 2s > 6. By choosing 0 = 1/4 and N > 12, thus for s > 1,

7]z < 117

1 3
ve SIE L (1115 - (2.16)
U

We remark that by taking suitable o, for the inequality (2.13), the requirement of the
Sobolev regularity in S norm may be N > 7.

We also remark that the operators Q<y, P<y and the multiplication by ¢(-/N) are
bounded in Z, S, S*, uniformly in N.

In this paper, we make often use of the following elementary bound to sum-up the 1d
estimates,

< i d k i 2.17
K%N{%kvg}}gg’zvg}ﬂ ezl el Ml (2.17)

The following lemma shows the bounds on the non-linearity N'* in the S and S* norms.

Lemma 2.2. [12, Lemma 2.1]
IVIE.G H]ls S L+ DT EIsIGlsIH s

D20 N < (14 ¢! FJ FFIGIFY 5 .
IN'IE B2 P s S ()™ mane LY s sl

(2.18)

Proof. Due to Lemma 6.2 in the appendix, it is sufficient to prove

tEY 2R3 < (14 [th)~! i a F* sl Fs . 2.19
INFES B2 F e, S (1 [2]) {j’kﬁggg,m}ﬂ [z NE* (sl F5]|s (2.19)
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Coming back to (2.6),
IVESF2 P, S DY IR B Elz s (2.20)

Ty N

q—r+s=p

thus we only need to calculate |Z*[f*, f2, f?]||12. By the definition of Z* (2.7), we have
the energy bound

||It[f1,f2,f3]||[/% = 12

< ‘ i 000 (k|| || git0en O
S o min e P e

o itde ( gitdre {1GiH0s [2eitdsa f3> ’

Then by (2.17),
IWESF2 Pl S min e, D e Bl e Flpe . (2:21)

T Gk ={1,2,3)
For |t| > 1, the factor (1 + |¢|)~! comes from the dispersive estimate

i _1 _1 1 1
%= fllree S 11720 flles S 12 1A e f 11 (2.22)

then

. 1 1
Dol Fylle ST Y IFIE e Rl
p p
—-1/2 —5||8 3 3
= 6172 ol el I Bl B e Fl 7

p
< T2 ) PO I NIZ) O e Fl72)
p p p

< T2 FLs

where we took s > 1/2 in the second and third inequalities. While for [¢| < 1, one may
use Sobolev estimate instead of the dispersive estimate,

e Fllzze S NNz

then

S et Eyllie S I Flm =Y 1ol Il I1F
P V4 V4
<O I 20 I E D < | Flls |
P P

with s > 1/2. Thus for any ¢,

Dol Byl S (L4 [6) 2 Fls - (2.23)

PEZ

Plugging (2.23) into (2.21), we get (2.19) and complete the proof of Lemma 2.2.
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3. STRUCTURE OF THE NON-LINEARITY

The purpose of this section is to extract the key effective interactions from the full
non-linearity in (1.1). We are to gain the decomposition

N'[F.G, H] = ZRIF.G. H] + £'[F.G. H] (3.1)
where R is the resonant part,
FRIEGHIEp) = Y, FOG L) . (3.2)
(p,q,m,5)€T0

and £ is a remainder term, which is estimated in Proposition 3.1 below. We will see
later that this R|G, G, G] is exactly the same one as in (1.10).
Our main result in this section is the following proposition.

Proposition 3.1. Assume that for T* > 1, F, G, H: R — S satisfy
IE N xp + 11Glxp + [1H [ < T (3.3)
Then we can write
EF (), G(t), H(t)] = E[F (1), G(t), H(t)] + E[F (1), G(t), H(¢)]

and if for j = 1,2 we note &;(t) := E;[F(t), G(t), H(t)] then the following estimates hold
uniformly in T > 1,

sup T7° / t)ydt)|s < j=12,
1<T<T*
T/2

sup (1 + ) NE D)z S sup (L+ [E) )1 E )y
1<¢<T 1<t<T*

sup (1+ [t) /&)l S 1

1<t<T*

s<]_,8>1,

~

where E(t) = 0,E5(t). Assuming in addition
1Pl s, + 1Glcs, + 1 Hllxs, <1, (3.4)

we also have that

sup T~ 5‘5||/ t)dt]|s+ S 1, Sup T25|| / t)ydtl|s <1, j=1,2.
1<T<T*
T/2 T/2
The statement of Proposition 3.1 says that if the remainder £ has inputs bounded in
Z and slightly growing in S then &' reproduces the same growth in S and even decays

in Z. 'To prove this proposition, we first present several reductions by performing a
decomposition of the non-linearity as

S NQaF(1), QuG(0). QoH )

A,B,C—dyadic
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3.1. The High Frequency Estimates. In this subsection, we are going to prove a
decay estimate on the non-linearity N*[QaF(t), QpG(t), QcH(t)] for t ~ T, T > 1, in
the regime max(A, B,C) > Ts. In the case when two inputs have high frequencies,
we can simply conclude by using energy estimates, while in the case when the highest
frequency is much higher than the others, we invoke the bilinear refinements of the
Strichartz estimate on R.

Lemma 3.1. [2] Assume that \/10 > p > 1 and that u(t) = e ugy, v(t) = ey,
Then, we have the bound

— _1
[@xu@pul 2 )y S A2 [|uoll 2@ llvoll 22 - (3.5)
One may refer to [2] for the proof.

Slight modifications of the proof of the corresponding result in [12, Lemma 3.2] lead
to the following estimates. We reproduce the proof here for the readers’ convenience.

Lemma 3.2. Assume that T > 1. The following estimates hold uniformly in T ':

| > MuFQsG.QeHl|
ABC
max(A,B,C)>T6

ST P|s|Glls| Hls, s> 1, ¥ >T/4,  (3.6)

| Y [Viearw.euco. o],

S T Fllx Gl [1H [ xrs (3.7)

T
(D S R CNAUR-REOR RO
ABC 7
max(A,B,C)>T6 2

_1
ST P2 |Gl 1 H (3.8)

Proof. Let us begin with the first inequality. Let K € L2, then we need to bound

:B7y’

Ix = (K, N'[QaF,QpG,QcH])

< / A (QUF) - FAQ5G) - Qe H) - FA(K)

xT
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By Sobolev embedding, we see that

/ eitA(QAF) _W . eitA(QcH) .e“T(K)

xT
||eitAQAF||L§,y||eitAQBGHL%y ||eitAQCH||L2,y||K||L%,y
"4 QaF ||z, €™ QBC | ug [l Qe H [y I K || 12,
= |QaF|luz 1QGC |1z N QcH g I K 122,
< (ABC) P |QaF s |Q5GC | maa | Qe Hll s 1K | 2,

s s s
HSCJJ Hx,y Hxay

with s > 2/3. Then by duality, taking s = 1, we have

L2

[v1@ar @ o],

S (ABC) [ QaF || 13 ||QBG 1138 | Qe H | s, 39
S (ABC) ™2|QAF |5 QG |s|QcH||s -

Then By(2.16),

| > NIQaF.QsG.QoH]|
A,B,C Y
max(A7B7C)2T%

S ). |NIQAF QsG,QoH]
A,B,C
max(A7B7C)2T%

3/4

S Y |Viesresc. e |IViIQaF @sG. Qo)
A,B,C
max(A7B7C)2T%

ST N (ABO) P QaFIs|QsClIsIQcH s

A,B,C
1
max(A,B,C)>T%6

STHFIsIGsH s

YS

1/4

L2

where in the third inequality we used Lemma 2.2 and (3.9).
For the other two estimates, we must be more careful. First of all, we will split the set
{(A,B,C) : max(A, B,C) > Ts} into two parts A and its relative complement A¢. Here

the set A is defined as A := {(A, B,C): med(A,B,C) < T%/IG, max(A, B,C) > T%},

with med(A, B, C) denote the second largest dyadic number among (A, B, C).
Let us start with the case (A, B,C) € A¢, we claim

| > NIQuRQsG.QeH]| ST IFs Gl | Hllser  (3.10)

(A,B,C)EA®
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By Lemma 6.2, we only need to control H S NYQAF,QpG,QcH]
(A,B,C)eAe
strategy is similar to the proof above, but this time we should not lose derivatives on all

of the F, G, H, let us check the condition (6.4). Let K € L7, then we need to bound

’ the main

IK:<K, > N’f[QAF,QBG,QcH]>

(A,B,C)eAC

< | [ HQuR) TEQET (@) - T

(A,B,C)eA® RS

S ) 1QaF e, 1€ QG g, € Qe H || 1ee, | K 12,
(A,B,C)eA"

S Y QaFllee IQsGImz, IQcH |z, | K 122,

(A,B,C)eAe

S Y (BO MQaF iz, IQG s, |QcH s, | Kz,
(A,B,C)eAe

SO (med(, B, )Pz, G s I H s 1
(A,B,C)eAe

< T*H/SHFHL%JJ ||K||L§y||G||S||H||S )

then by duality,

> NQFQsG.QeH|| ST OF| IGlsIH]s . (311)
(A,B,C)eAC

The inequality above holds by replacing F' with G, H, then we get (3.10) by applying
Lemma 6.2.

Now we turn to the case (A, B,C) € A, we are to show

D> / NQAF(2). QaGlt). Qe H()dt] s

AB.C (3.12)
(A, B C)EA 2

ST %o IGlLn | Hll o

We will only prove the case with norms S and X7, the proof of the case with ST, X} is
similar. The main tool of this part is the bilinear Strichartz estimate from Lemma 3.1.
We consider a decomposition

=

[T/4,2T) = | JI; . I; = [jT%,(j + 1)T56] = [t;, ta] . #J ST
jeJ

(3.13)
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and consider xy € C°(R), x > 0 such that x(s) =0 if |s| > 2 and
Zx(s —k)y=1.

The left hand-side of (3.12) can be estimated by C(E; + E), where

zz/g

JET (AB.O)EN T 10

(Nt[QAF@),@BG@),QCH@)]—NMF( ), QuG(t;), QeH (1)) )|

and

’Z Z / sl — )N Q4F(t;), QG (t;), QcH(t; dtH

jGJ(ABCGAT

Notice that F'(¢;), G(t;), H(t;) do not depend on t.

Let us start to estimate Fj,

KM

/ e ) Euslt)de (3.14)

with
Ey;(t) =
> (MIQaF(1). QuG1). QoH(®) = N'[QaF (1), QuG(t,). QeH (L)) | -

(A,B,C)eA
Denote by Q4 = Q>T% and Q_ := Q<T%/16, then due to the structure of A, one of
A, B, C' is larger than Ts and the other two are smaller than 7' /16, we decompose
> N'QaF,QsG,QcH] = N'[QF,Q_G,Q_H|

(A,B,C)eA
+MNQ_F,Q:G,Q_H + N'[Q_F,Q_G,QH] .
We rearrange the terms in F, ; two by two, and rewrite each pair as follows
NIQLF(1),Q-G(1), Q-H(1)] = N'[Q F(t;), Q-G(t;), Q- H(t;)]
= N'Q+(F(t) = F(t;)), Q-G. Q-H(t)] + N'[Q+ F(t;), Q-(G(t) — Gt)), Q-H (t)]
+NQ+F(t), Q-G(ty), Q-(H(t) — H(t)))] ,
then by Lemma 2.2, and the boundedness of Q4 on S™), we see that
IN[Q4 (P(8) — F(£)),Q-G,Q_HD]lls S (1+ 1)1 F@) — Ft) IsIGOIsIH D) s |
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We bound the other terms similarly, and finally we have an estimate on E ;,
Evi(t) < (L+DTHIE®) = FE)lsIGOsIH )]s
+IFE)sIGE) = G)ls1H @) s (3.15)
+IEE)INGW@) s H (E) — H ;)]s

Since [t — t;] < T,

t
[F(t) = F(t;)lls < / 10:F(6)|sd0 < T sup [0, F (t)]|s -
t
£y
Notice that this is the advantage of introducing the partition of time interval provided
by x. Comparing with the definition of X7 (see (2.11)), we have

IF(t) — F(t;)]|s < T 0 Fllx,
IF®)ls < T°|| Fllxx -

Therefore,
Ery ST 05 Fllsep | Gller | H || x
then
T
t . 1
B S [ Yoxg — DEuudt ST 5Pl |Gl | Hlx,
T2 I€7 T

We now turn to Fs, recall

!ZZ/

jGJ(ABCGAT

[QaF(t;), QpG(t)), QcH (1 dtH

with QaF(t;), QsG(t;), QcH(t;) do not depend on ¢. Denoting

EABC—H/ e~ ATIQAF (), QuGlt;). Qo ()i |

vl

then
B, < Z Z By
jeJ (A,B,C)eA
We claim
T
| [y = 1@ Qur® Qe
wy (3.16)

ZAReE

max (A, B,C))! min F“ FP|s||F7|s.
(max(A, B, win P, s
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Then by Lemma 6.2, |[Ey:”|ls < (max(A4, B,C)) || F||s||G||s||H||s, the estimate for
Es will come out by summing up. Let us prove (3.16), assuming K € L? y» We consider
with functions F?, F?, F¢ independent on ¢,

IK — ztw

_] Nt[QA 7QB Qchc]dt>L§><L§

9
T'10
pq+rsO

/T
T
= / / i ztam (Q Fa)eztam (Q Fb) 1t0za (Q Fc)e”amK drdt
10
xT

pq+rsO TR
2

where we may assume that K = QpK, D ~ max(A, B,C). Without loss of generality,
we assume A = max(A, B, ('), then by Hélder’s inequality,

)// - Ztaxac(Q FG)W e (Q FC)eitee QK ydadt

T RxT
< e (QaFy )e®es (QpFY)|| 12, €77 (QuFY)e®r=Qp K, 12,

since A > 16B, D > 16C, applying the bilinear Strichartz estimate from Lemma 3.1
below, we then have

e (QuE)e ™0 (Qp FP) |2, S A2 |z || £l 2

z,t ™

e (Qc F)e™=Qp Kyll 2, < D™VIES 2| Kyl e -

SCtN

Applying Cauchy-Schwarz and (2.17) on the summation on the right hand side of I,
we have

Ix S Z (max(A, B,C)) N Fll 2 1 F Nz 1 ES 2 1Kl
p—q+r—s=0
< (max(4, B, )M > 2Bl | Fell ez ol
p=q—r+s p
S xR O i IF L, ST s D Il

S (max(A, B,C)7 - min (1722, Z (\prﬂmeFfHL;)
0, =1a,0,c p

S U I ) 1K 2, )

p

< (max(4, B,C)""  min  |[F 2 [[F7s|FIs| K] 2,
{04,67’)/}:{(1,[?76} ’ '

where we took s > 1/2. The result (3.16) turns out by duality. Applying Lemma 6.2,
we get

EPC < (max(A, B,C) Y| F|sl|Glsl|H]s .
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then
B, <Y S ENPO<#s Y (max(A,B,C)YF|s|GlslH]ls -

jeJ (A,B,C)eA (A,B,C)eA
Without loss of generality, we assume A = maX(A B, ('), then
S (max(A,B,C) = (Y AN (#{B:B<TV%/16})" STV
(A,B,C)eA A>T1/6
while using the definition (2.11),
IR ISIGEN ST E) s < T2 Fll 1G x| Hlx

thus
Ey ST V5N Fl|x |Gl x| H  xr (3.17)

which is a stronger version of (3.12). The proof of Lemma 3.2 is complete. U

Thus we may suppose that the x frequencies of F,G, H are < Ts. Tt is natural to
introduce the first decomposition

NYF,G, H) = N![F,G, H| + N'[F,G, H] , (3.18)
FN§(&p) = > FulT'[F, G H)(©) . (3.19)
(p,q,r,8)€T0

3.2. The fast oscillations. Firstly, we present another elementary estimate here.

Lemma 3.3. Let % = %+ % + % with 1 < p,q,r,s < 00, then
I /eix%(m R)F(E = m)g(& —n— k(€ — w)dndrd€ ||, S IF " mllpe) | fllallgll o [2] e

Proof.

- / S, k) F(E — mF(E — 11— k)R(E — k)dndide

/ iE(@—atB=) gminly—atB) gk (=+5-7) ¢ dn
R3 xR2

Ftm(y, 2) f(a)g(B)h(y)dydzdadBdy
= [ F ) o - 2)gta -~ 2o~ g)dyds
then

sz < [ 17ty 2 Sz

= |F " 'ml 22 || fh| o w)
< NF'mllpr ey | f1 Lallgll | 2

Ls
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the last inequality comes from the Holder’s inequality and the assumption % = é + %

+
i O
Remark 3.1. Similar result holds for the case m = m(&,m, k), one may refer to |
Lemma 7.5].

Y

The main purpose of this subsection is to estimate of Nt
Lemma 3.4. Let 1 <T <T*. Assume that F', G, H: R — S satisfy (3.3) and
F=Q.ruF, G=QruG, H=Q.mmH.
Then we can write
NYE(),G(1), H(b)] = EI[F (1), G(t), H(t)] + E[F (), G(t), H(1)] |

and if we set £ (t) := EF(t), G(t), H(t)] and E(t) := EL[F(t), G(t), H(t)] then it holds
that, uniformly in 1 <T <T* |

T sup E@)ls ST, TV sup [I&(0)]s ST,

T/4<t<T* T/4<t<T*
where E(t) = 0,E5(t). Assuming in addition that (3.4) holds we have
TH® sup JE()s+ 1. TV sup [l&()]ss ST
T/4<t<T* T/4<t<T*

Proof. To prove this lemma, we start by decomposing Nt along the non-resonant level
sets as follows: Set

F*=Q.pieF*, F'=QcpF’, F°=Q.miF°,

FNUF* PP P Ep) =Y Y o™ (OlF:, F} FI(€) + ObFy, FYL FE(€))

w#0 (p,q,7,5)€

(3.20)
OLLfe, 2, f)(€) == / €21 (1 — p(tinm)) fA(€ — n) o€ — 0 — 1) (€ — K)dnds |
R2
OL[ £, 2, F1(€) = /e%t”“so(t%nﬁ)ﬁ(f — ) (€ = — K) (€ — K)dndss |
RQ
We may rewrite for w # 0,
O 1 = 0 (SO ) - S @O 1
Ok 1 — S OLf B )~ SOy, o) (3:21)

W W

=0, (ewoé[f“, f*, fc]) +e LI 0 ]

W

W
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where
@OY .11 = [ 0 (4 p(thnm) Tl — m e — 0 — 1) Fo(¢ — m)ndc
R2

Thus we define EX[F®, Fb, F¢] = ,ELF*, F*, F¢] with

1tw
a c € a b e
reir e =Y Y (Comriel) . e
w#0 (p,q,r,s)€ly,
and define £ with O! and the last four terms in (3.21),

FE(&p)=>_ > e (Oi[Fs F! F)+ L'[Fs, F!FY) . (3.23)

w#0 (p,q,r,s)€ly,

1. Estimation of &£(¢). We define the multiplier appearing in the definition of O by

m(n, k) = p(tine)((107)F n)p((107)F &) .

;From Lemma 3.5 at the end of this subsection, it is bounded by || F.m|| L1 g2y S #100.
Applying Lemma 3.3, we get

O3, £ iz < (1+\tl)10°{ LN 2l 2| peel|e 7 1 -

Then

itw
EIE DD S C NN

w#0 (p,q,r,5)€lw

2e

= : « 1t0zaz 178 1t0za TV
< (14 [t])m0 {aﬁﬁ?f{la,b,c}H > NEX 2 ll€" % FP|| oo ||e% || oo

_ &
p—q+r—s=0
using (2.17)

< (1+It|)1°°{ P A L ”sznezwwaﬁ” > e FY |l
using (2.22)

. a 1/2 1/2
SO+l min  (IF, S (FL IF)

{a,87}={a,b,c}
S UEIZ L)) -

S

T

Noticing that for the last inequality, we have

> (el 216c M%) < 3 lanl 2110 H2)

T T

< farllao O 117221602

T

< larllol1or ez
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with 6 > 1/2. Then

6 . o 1/2 1/2 1/2 1/2
1€a(llzg,, < (14 [¢) 7w s E ez N g [P I g o P15

S @+ 100{ pomin  E s, NEsIF s - (3.24)

Therefore, an application of Lemma 6.2 shows that the S norms of Sj is controlled as
follows,

14 . 1gb
1Es()ls S (1T~ || Fel|s | sl F¥lls S (177 300 (3.25)
the last inequality comes from (3.3). Combining with inequality (3.4), we can also gain
)
1Sa(t)]ls+ S (IT])~ s (3.26)

2. Estimation of & (t). Again, we need to control the L? norm first, and then the S

norm. gl(t) is composed by two parts, one is from O, and the other one L’ is from the
last four terms in (3.21),

th[Fa Fb Fc gp Z Z eth(Oi[anuFf7Fﬂ+£t[F;7F£7F§])7 (327)
w#0 (p,q,r,s)€l,
with
WL 12, f] = = (8:05) [£%, 12, F]= 03[0, £, F1=O5[f%, 0 f*, f1=O5[f, £*, 0]
The term > 370 . ger e LHFS, FY FY] can be estimated similarly as ||E5(t)]]s.
w0 T
Actually, we may gain a better estimate here, since for the first term, we can get an

extra T—/* which comes from the t derivative of the multiplier, while for the other three
terms, by the definition of X7 norm, we have ||0,F||s < T~/ F||x,. Let us focus on

) eojFy FLF .
w#0 (p,q,r,s)€ly
We claim that

1> Y ewolr R

w#0 (p,q,7,5)€

< 710 Fe F8|g||F
L ST minE g I SIE s

(3.28)
As we did for Of, we still have

O % S e S QU ) min L £ o 2 e (3.29)

We then need to estimate ||e/@ f|| ;. We notice that for all £ < a <1,

62l S 40 HI e S (6 H1@) @ o S O @l (330

we may take o = 7/9, then for f supported on |z| > R,
% fllse S () 2R (@) f 12 (3.31)
Therefore, we decompose f = f. + f. with f.(x) := ¢(55z)f(z), then
OLf, f* [ = Olfe + fe o+ o e+ £
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then by (3.31), if one of f¢, fb, f¢ is supported on |x| > 274 for example, f* =
then

67

HOSIf £, fllie = S (L4 )M Fo N 2l fell o €0 £ o
S (LA D ONF el £l ol £l oc
S TR0 o o[ ) ol [ () 0 e
in the last inequality comes from (3.30) and (3.31). Then using (2.17),

1> > ewourrF|

w#0 (p,q,r,s)€Tw (3.32)
< T1Y/36H8/100) ey Z ()30 F2| 12 Z () FE |12 -

Y

For 0 < a < 1,

> a“Ellzz SIF s (3.33)
indeed,

Dol Flle = ZII F)*F s <X:II YENT1F 2

<ZH Vg2 (Y Il ()™ < @) Fllg 1P < (1P ]ls

y
with s > 1/2. Thus
IS % ol
L2
w#0 (p,q,r,s)€T,
Let us turn to the case OL[f%, fb, f¢]. By replacing e?* by (2itn)~'0,(e*™*), we can

C
rewrite O as

OLLfe, 2, FI(€) = / e21%(1 — ip(tinm)) fH(€ — ) A€ — 0 — k) Jo(€ — k)dnds

< TLYB6R0/100) oy oy F) Gl s (3.34)

= / (2itn) 1 0,(2 1) (1 — (tinm)) (€ — m) Fo(E — 1 — 1) Fo(€ — r)dndi (3.35)
= / (2itn) X0, (1 — p(tinm)) (€ — m) FHE — 0 — k) Fo(€ — k) dnde .

Firstly, it is easy to deal with the case when the s derivative falls on 1 — ¢, which turns
out to be

(20) 11 / 2 () FA(E — m) A — 1 — ) Fo(€ — )i
RQ

then we get the required estimate with the similar strategy we used to estimate O} since
¢’ admits similar properties as .
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For the other case, we calculate the case when r derivative falls on f° for example,
which is denoted by O,

O = / (2itn) "X (1 — p(tinm)) F2(€ — )Du (Fo(E — n— 1)) Fo(€ — k)dnds

RQ

S _ R (3.36)
= /(2%77)162“’7“(1 — @(tink)) fo(§ = n)afo(& —n — k) fo(& — k)dndk .

Noticing that on the support of the integration, |t||n| > [t|73/4|k|™' > T-7/12, we still
have an L? estimate

104llz ST/ | £z - [l (2 f) | o - [l £ e (3.37)
By (3.30), for f supported on |z| < T4 we have
e fllse S (62T () | = (3.38)
using (3.30) and (3.38),
101 llz2 S T2 £z - [l (a f2) | e - [l £ oo
S T340 | £ 2 1) £ e |y £l e

Once again we use (3.33),

H Sy eMOURL R FY

L2
w70 (p,q,r,5)€lw
— L a C
TS S Bl Bl @ F |, (3:39)
w#0 (p,q,r,s)€ly, p
4/345 1 a .
ST (| Pl [IF sl Fels -
By replacing F@ by F° or F¢, we proved (3.28) and then the estimate of gl(t). O

Lemma 3.5. [12, Remark 3.5] For T' > 1, ¢ € C>®(R), ¢(z) = 1 when |z| < 1 and
o(x) =0 when |x| > 2, we define for T/2 <t <T,

~ 1 =1 =1
m(n, k) = e(t1nk)e((10T)% 1)e((107)7% k) .
Then H‘anﬁl”Ll(RQ) 5 tﬁso .

Proof.

| Foeml| w2y = [ (21, 22) || 21

z1,T9 )

where

Ian, ) — / oG (S (n)p(k)dndr, S ~ T

]RQ
Then one may show that

[I(z1, )| + |21 (21, 22)| + |22 (21, 20)| S 1, |z122d (21, 20)| Slog(1+T) .
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Indeed,

1 ) )
el = | [ 0, ol Sn) o) ()
R2

= / e T2 [S k! (Snk ) (n)e(k) + ©(Snr)e () (k) dnds

RQ

<14 / SR (S ! (S o ()i () dipdi

R2

Notice that |Snk| < 2, then the second term turns out to be

/em”em””(S/ﬁgp’(Sn/ﬁ)@(n)@(/ﬁ))dndm < / |Skldndrk < 1.

R D:={|Snkl,|nl,|x|<2}

Thus we get the first inequality, and we use the similar strategy to prove the second one.

j12ad (21, 29)] S / 10,0, (0(STR) () ()) [dnds

R2

S / 1Sk’ (Snr)e(n)¢' (k)] + [SkSnE" (Snk)p(n)e(k))

+ S0’ (Snr)e' (n)e (k)| + [o(Snr)e’ (n)e' (k)] + |S¢'(Snr)e(n)e(k)|dndr

’S(/ /+ / / )1+ [Sk| +|Sn| + |SkSy| + Sldnds
0 0 0

T—7/12
Slog(1+1T) .

Then
(14 |21 ) (X + [a2)[ 1 (21, 22)] S log(1+T) .
One also have a polynomial in 7" bound
(14 |21 )+ Jo )| L (1, 22)| S TV

Therefore by interpolation one obtains that for every 0 < ¢ < 7/12, there exists kK > 1/2
such that

[T(@y, 22)] S (14 T)7(1+ [ )7 (1 + |2af*) 7.

We hence deduce that || Fp.m| pime) S £105. ]
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3.3. The Resonant Level sets.
We now turn to the contribution of the resonant part in (3.18),

FNGIE.G H(Ep) = Y FIFE),G.(1), Hi(1))(E).
(p,a,7:5)€l0

This term yields the main contribution in Proposition 3.1 and in particular is responsible

for the slowest 1/t decay. We show that it gives rise to a contribution which grows slowly

in S, ST and that it can be well approximated by the resonant system in the Z norm.
In this subsection, we will bound quantities in terms of

1Flz, = IFllz+ A+ 1)1 F]s

so that F'(t) remains uniformly bounded in th under the assumption of Proposition 3.1

due to the definition of X7 and Z; norm. Our main statement of this subsection is as
follows.

Lemma 3.6. Let t > 1. There holds that

INGLE F2 Flls S L+ 1) Y IF Iz IF N - Il (3.40)
{04,67’)/}:{(1,[?76}
and
INGLF, B2 Fellse SAH DT D IF®lg, - I1FP Iz, - 1F” s+
B
+ (14 [t]) o IFg - IEP s - 17 )s.
{avﬁﬂ/}:{abﬂ}
Moreover,
s 1
INGLF. G, H] = —RIF, G, Hl[lys S (1+]t) ™ PUFIsIGlslH s - (3.42)
and
s 1
INGLE, G, H] — TRIEG H]lls S (1+ 1) YR |Glls+ [ H] s - (3.43)
In addition, we also have
IRIFSF Fs S Y. IF Nz IF? 5, - 1F s (3.44)
{04,67’)/}:{(1,[?76}
IRIFFY Fllse S ) IF g - 1FPIlz, - 117 ls+ (3.45)

{aﬂﬁ}:{‘%bvc}

FAHEDT D NF g s s
{ayﬁvﬂf}:{avbvc}



ENERGY GROWTH AND MODIFIED SCATTERING 26

Proof. As before, we will study the L? norm and then apply Lemma 6.2 to get the S(*)
norm estimate. Using (2.17), we have

INGLE F Fllzg, < |30 e Fg e B o

S

0212
(p7q77’75)€F0 P

S ooy VP ez D B 3

To calculate Y ||e/¥* F,|| [, we start with the following estimate for |¢| > 1,
P
' —ix?/(4t) __
0w f (1) — ceTf(—%)‘ < |t|7**|zf|| 12 , ¢ is a constant. (3.46)

One may refer to [12, Lemma 7.3] for the proof of (3.46). Then

|0 f ()] < |t|7? Sup LFE+ [t | f]l 2 - (3.47)
Then
D e Fyllige St sup Y C[FE)[+ 7 DY |aF | p
Ipl<t1/8 S ipl<tl/s
S|Pz + 2 F s
while
Sl Fllie S Y 1Flm
|p|>t1/8 p|>t1/8
= > (L4 pPYMPUF (1 [p?) N2
|p[>t1/8
ST Fll g
therefore

INGLE, F*, P2, S (1 + [t]) min Fzz I1F771F717, - (3.48)

—1
{04,67’)/}:{(1,[?76}
Apply the first part of Lemma 6.2, we get (3.40). The proof of (3.41) follows from the

second part of Lemma 6.2, and we only need to check Z; norm satisfies (6.6). Due to
the definition of S™, we only need to prove the following inequality,

11 = 0ua) ' Fllz + laFll 2 S TP lls+ + T*|| Flls - (3.49)
Indeed, following the proof of (2.14), we are able to show
11 = 02a) " Fllz S 1IF s
thus we only need to prove (3.49) for |z F||z. Since H*(T) C B* with s > 1, then
lzF)7 = Sgp(l + &)z F 5,

S sup(l+ M?) Y (14 [P | FeQui (2 Ey)

p
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We notice that for any M, |p| # 0, denote R = (1+ M?)(1+ |p|?)*T?, and we decompose
xF,(x) into two parts

2(1 = @(E)E, and wp( ), |

then
T

leFII% < sup(1 + M?) Y (1 + P 1@ {x(1 — P Ep bz =1

p

+ Sl]\l})“ + M?) Z(l + |p\2)sH]-"mQM{x<p(%)Fp}”Lgo .

p

I< szp(l + M?) Z(l + \p|2)s|’5€FpH%;(\x\>R)
p
< szp(l + M?) Z(l + |p|*) R 2 |7
p
ST 22F|| 2 < T2 F|s+

while

s T
IIs Slﬂldp(l + M?) Z(l + [pl?) HQM{SUSO(E)Fp}H%;ng)
p
N S}\lﬂp(l + M) 1+ |pI?) R F | 2 |2 F | 22
p
<SS TN BNl S T FI% .

p

thus we proved (3.49), the estimate on R is the same.
Now we turn to the proof of the error estimates (3.42) and (3.43). We first decompose
the functions as we did for estimating O,
x
(/4

and reduce the problem to the estimates on F., G., H,. We start with the L? estimates
of

F =F,+ F., with F, compactly supported as F, = p(—=)F,

NU[F, G, H] - NY[F,,Go H] and  R[F.G, H] — R[F,, G, H,] ,
without loss of generalities, it suffices to consider MV{[F,, G, H] and %R[Fe, G, H]. Indeed,
using (3.48) and the definition of F,

1 .
ING[Fe, G, H]ll2 + ZIIR[Fe, G Hllee S (L )M Fell |Gl 1 H s

S @+ ) FIsIGlsIH]Ls | (3.50)

while

1 .
INGLFe, G, Hllls + S IRIFe, G Hls S (L+ D) I FlIsIGllsl H s - (3.51)
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Thus by (2.16), we are able to bound

1
H'/Vg[F7G7 H] - '/\[(;t[ch GCch]”YS + ?”R[Fva H] - R[chch HC]HYS

(3.52)
S L+ [)TONFsIGllsIH]Ls -
For the S norm estimate, we use (3.51) again,
1 _
ING[Fe, G, Hllls + SIRIFe, @, Hllls S (L [E) 7 [ FellslIGlls [ Hls (3.53)

S @+ ) F s+ 1G] s+ H s+ -

Therefore, we only need to show the inequalities below to complete our proof of this
lemma,

™ I
NG Ge, He = SRIFe Ge, Hlllys S (L4 [H) T [ FlIsGllslH s (3.54)

T 1o
NG, Ge, Hel = SRIFe Ge, Hllls S (L [E) 7P Pl |Gl | H s . (3.55)
For abbreviation, we assume for the rest part of proof, F' = F,,G = G., H = H..

F(NGIF. G, H] = ZRIF.G, H])(&.p)
= > | R —0Gi(E— n— H(E — r)drdy = TEECEHE) -

(pyqyrys)EFORQ

(3.56)
Rewrite the integration part,

[ = mGite — n = WL~ )i
R2
= /Fq(:pl)G_r(xQ)Hs(:pg)/em""‘e_m(5_”)_”“2(5_”_"‘)_”“3(5_"‘)d/{d77dx1dx2dx3

R3 R2

1 — . _iac —xo Ta—T
a 2_t/Fq($1)Gr(m)Hs(xs)e_zf(xl_xﬁ“)e A AL

R3
/ el 52 e\ daydadas

R2

m 1—-%2 T3—T9

T ¢ /FQ(%)@(%)HS(%)G%(“ZQHS)e_ix\/Q_t Ve dxydrads

R3
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then

[ T~ nGle - 1 — WL (€ — R)dndy - TE(OGHOT(E)

R2

_ T
i

/Fq(xl)G_r(%)Hs(xs)e_ig(m_xﬁm)(e_i Vet Vo —1>d9€1d9€2d$3
R3

ST NE N 2 Gl 2 | Holl s -

Actually, using the proof above, we may obtain for any integer m,

. — — — m— — —
€| [ (e~ n)Gie — 0= WL ~ K)dndn — TEEGHE )
R2
S TN E N |Gl I Hl 2z -
Due to the definition of Y* norm (2.8) and S norm (2.10), and the fact that H°(T) ,

s > 1 is an algebra, the proof of (3.54) follows from (3.57). For (3.55), recall that the
functions are spectrally compacted supported, then the terms

(3.57)

T T
||-/\/’(§[Fca Gca Hc] - ?R[Fca Gw Hc] ||L%H7§V and ||$(N$[Fc, Gca Hc] - ?R[Fca Gca Hc]) ||L%’y

are easy to deal with by (3.57) and (2.17). We should be more careful with the terms
admitting = derivatives, since this x derivative may fall on (7). Anyhow, since ¢’
holds the similar properties as ¢, (3.57) still works, and we are able to get the estimate
(3.55). The proof is complete. O

3.4. Proof of Proposition 3.1. Now, we can give the proof of Proposition 3.1.

Proof of Proposition 3.1. We may firstly decompose the non-linearity A" as the high
frequency part and then the lower frequency part combined with the resonant and non
resonant parts,

N'F,G H = > N'QaF(1),QsG(t),QcH(1)]
max(iﬁng%

+ N1Q_pa F(1), Qpy G0, Qyy HON + NGQ_py (1), @y G, Qg H(1)]

<T%
Then, we rewrite the last term as

NI[Q_p F(£),Q_ G0, Q_y HB] = TRIF(), G (1), H(D)
+ </\/3[Q<T%F(t), Q_4G(1),Q_, 4 H(H)] - %R[QSTéF(t),QSTéG(t), QST%H(t)])

~13

> RIQaF(1),QsG(t), QcH(1)] .
A,B,C
max(A,B,C)ZT%
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Finally, we have the formula for the remainder
E'NF.G, H] =
Y. NIQaF(1),QeG(1), QeH )] + N'[Q_p 1 F(1), Q_p 3 G(8), Q_ 4 H()

A,B,C
1
max(A,B,C)>T6

+ (M F(1).Q

s
t

1 G0.Q_ HOI = TRIQ_y F().Q_yy G).Q_yy H(D))
> RIQaF(t),QpG(t), QcH(1)] -

A,B,C
max(A,B,C)ZT%

Let us exam the terms on the right hand side one by one. The first term contributes to
&1 by Lemma 3.2. The second term contains & as it can be written by lemma 3.4 as

gl + &5 with 51 contributing to £;. The last two terms contributes to £ by Lemma 3.6
and its remark. This finishes the proof of Proposition 3.1. U

4. THE RESONANT SYSTEM

In this section, we will study the following resonant system
i0,G = R|G,G,G] . (4.1)
Before further discussions, let us recall a useful result on the structure of the resonances
at first.
Lemma 4.1. [6, Lemma 1] Given (p1,ps, ps, p4) € Lo, namely,

p1—p2+p3—ps=0and |p1| — [p2| + [ps| — |ps| =0
if and only if at least one of the following properties holds :
(1) V), pj 2 0;
(2) Vj, pj <0
(3) p1r="Da, D3 =Da;
(4) pr=ps, p3=pa .
The following proposition shows us that we are able to get rid of the resonances

corresponding to cases (3) and (4), and deduce our resonant system to a decoupling
system, which only contains cubic Szegé equations.

Proposition 4.1. Given Gy € LiHy, s > 1, [|Gollrzuy = ¢, € > 0 and Go(z,y) =
—Go(z,y + 7). Set GIt) = eZit||G°||iQG(t) with G as the corresponding solution to the
resonant system (4.1), then G'(t) satisfies the following cubic Szegé equation,
i0,GL = R.[GL,GL,GY] , (4.2)
where P
FoR:|GL, GL, GL(y) = T (|G PGLa) (€, y) (4.3)
with GL =11 (G') .= Gll,(a:)eipy and Gt =T1_(GY) := Y Gzl,(x)eipy.

p>0 p<0



ENERGY GROWTH AND MODIFIED SCATTERING 31

Proof. The proof of the proposition above is easy. First, by the transformation,
Gl (t) _ e2it”GO”iQG<t) 7

and using the fact that the L? norm is conserved, we get our first reduction to the
resonant system corresponding to cases (1) and (2). And thanks to our initial condition
Go(z,y +7m) = —Go(z,y), we have

FyGo(z,p) =0, p even numbers ,

which insures the decoupling. O

4.1. The cubic Szeg6 equation.
Let us begin with a simpler model, a resonant system for a vector a = {a,},>o0,

iDhapt) = S a,(OaDay(t) == Rela(t),a(t).a(t)], (4.4)

(p,q,T',S)eF(),ﬁ»

where T = {(p1,p2,P3,P4) : P1 — P2+ D3 —ps = 0,p; > 0 Vj}. If we denote

v(t,y) := > a,(t)e™?, then v satisfies the following cubic Szegd equation
p>0

i0w = I, (Jv]?v) . (4.5)

Let us recall more for the cubic Szeg6 equation (4.5), especially the Lax pair structure
and its conserved quantities. Gérard and Grellier have showed that the cubic Szegd
equation is a completely integrable system with two Lax pairs. One may refer to [5, 7]
for more details. To define the Lax pairs, one may need to introduce the Hankel operator

1
H, and the Toeplitz operator T}, with v € HZ(T), b € L>(T),
Hyh =L (vh) , Tyh := IL.(bh) ,h € L™ . (4.6)

We remark that H, is C—antilinear, and is a Hilbert-Schmidt operator. Now we are able
to introduce the Lax pair structure of the cubic Szeg6 equation (4.5),

Theorem 4.1. [5, Theorem 3.1] Let v € C(R, H(T)) for some s > 5. The cubic Szegd
equation (4.5) has a Lax pair (H,, B,), namely, if v solves (4.5), then

dH,
dt

= [Bu, H,] | (4.7)

where B, = %Hg — 1Tjyp2,

A direct consequence of this Lax pair structure is that the spectrum of the trace
class operator H2, is conserved by the evolution, in particular, the trace norm of H? is
conserved by the flow. A theorem by Peller [I7, Theorem2, P454], says that the trace
norm of a Hankel operator H, is equivalent to the Besov norm B11,1(T) of v. One may
also see [0].
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4.2. Estimation of solutions to the resonant system.
We are now able to state a result concerning the long time behavior and stability of
the asymptotic system (4.1).

Lemma 4.2. For every function G', G?, G3, the following estimates hold true

G G2 a3 J 2 k ¢ 4.8
IRIGS & G llez, <, win G ez IGTZ1G 7 (4.8)
IRIG", G*, G|z S HGIHZHGQHZHGBHZ 7 (4.9)
IRIG", G*,G%||s <, max HGszHGkHZHGZHz : (4.10)
~ Gk={12,
Proof. The first inequality comes from (2.17). Indeed, by the definition of R,
1 2 A3 _ A1 A2 A3
IRIG" G2 Gz, = || D2 GGG
To,4+Ul'g,— &
< i Nz N1GFN oo |G|l oo
S e 1G22 NG oGl o 3

S i G’ G| £]|G*
S o min 16 G 6l

Apply Lemma 6.2, we get the third inequality. The second inequality comes from the
fact that B! is an algebra. O

Proposition 4.2. Assume Gy € S, ||Go|lg) = € with € small enough, and G evolves
according to (4.1). Then there holds that for t > 1,

IG(rInt)]lz = [|Gollz (4.11)
IG(mInt)lls < (1 +[¢)[|Golls . (4.12)
IG(rln )]s+ S (1+ [t (| Golls+ (4.13)

with & ~ ||Gol|%, & ~ |Goll3]|Goll"-

Proof. For the first conservation, we use the complete integrability of the cubic Szeg6
equation, especially its Lax pair and the conservation of the B! norm, which is stated
in the previous subsection. First, one may use Proposition 4.1 to reduce our problem to
the cubic Szeg6 equation, and the transformation we used keeps the Z norm. Then we
use Peller’s theorem to obtain

IGE D) m = TrHge| -

Combined with the Lax Pair structure, we have
IGE Dllsr = TrlHg | = TrlHg, g = 1Go(€)lls
For the second one, taking G(t) = G(w Int), then G satisfies
i0,G = %R[@, G.G]. (4.14)

The main idea is to estimate the S(+) norm of R[é , é, é], and then apply the Gronwall’s
inequality:.
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Indeed, using (4.10),
- 1~ 1o~y .
211G S HIRIG.G.Clls < HIGIZIGIs < HICoZICs

thus we get the S norm estimate by Gronwall’s inequality.
We now turn to the ST norm estimate, by the proof of the estimate (3.49), we may
gain another more general version,

(1 = 020)'Gllz + l2Gllz S 71 Golls I Goll 2l G lls+ + 2| Golls, | GollsIGoll 21 G ls

with & < 6" ~ ||Go||2]|Goll ;' We apply the second part of Lemma 6.2,

IRIG, G, Gllls+ S 1G1Is+ (IGoll% + ¢ IGols IGollZ G s
+ 2 | Golls. I Golls 1 Goll I

then plugging the estimate of ||G|[s,
d =~ _ =~ -~ =~ _ -~ . 1! _
ZlGlss SEHRIG, G, Glllse StGls [1Golly + 7 Golls, 1 Goll 51 Goll

thus using the inhomogeneous Gronwall’s inequality, we gain the estimate of the ST
norm in (4.13). O

Proposition 4.3. I[f A=11, A and B =11, B solve (4.2) with Ry and satisfy
sup {||A(t)]z +[|B(t)]z} <0
0<t<T
and
IA(0) — B(0)||gn <6
then, there holds that, for 0 <t <T,
JA(t) — B(t)||gc) < 67, (4.15)

Proof. By (4.2), A — B satisfies

~ ~

i0(A,(6) - By(©)) = Ry [A(6) - B(©), A(e), A€,
+R4[BE), A€) — B&), Ay + R4 [B(€). B(), A§) ~ BE)], .

then an application of Lemma 4.2 completes the proof. O

5. THE MAIN RESULTS

In this section, we will prove our main theorems. We will start with constructing a
modified wave operator and gain the small data scattering as the theorem below.
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5.1. Modified scattering. Given a small initial data in S*, we may find a solution
to our original system (1.1) by constructing a corresponding solution to the resonant
system (1.10), which also leads to the global well-posedness of our wave guide Schrédinger
equation with small data. In the other hand, the solution with small initial data admits
some modified scattering property.

Theorem 5.1. There exists € > 0 such that if Uy € ST satisfies
A 51)
(1) If G is the solution of (1.10) with initial data Uy, then there exists a unique solution
U of (1.1) such that e=*AU(t) € C([0,00) : S) and
le"*AU () — G(rInt)||s — 0 as ¢t — +oo .

(2) Conversely, consider the corresponding solution U of (1.1) with initial data Uy sat-
isfying (5.1), if € is small enough, then there exists a solution G of (1.10), such that

le"™AU(t) — G(rInt)||s — 0 as t — +00 . (5.2)
Proof. Let us begin with (1). Set
G(t) = G(rInt), K(t) = e ™U(t) — G(t)

and define a mapping

O(K)(t) = —i/{NU[K+ G, K+G K+G)— gR[G(a),G(o),G(a)]} do .
t
The main idea is to find a fixed point for ® in a suitable space. Define

A:={K c C'([1,00): 5) : || K| < o0}
[ Bl = sup {@A+EDNE @ + @+ EDZNE @7 + @+ D)0 @)s ) -
We claim that if € is sufficiently small, there exists €, such that ® defines a contraction

on the complete metric space {K € 2 : ||K|jag < €1}. As in [12, Theorem 5.1], we
decompose

NK +G K +G,K +G]— %R[G, G,G] = £'G, G, G + LK, G) + QK,G] (5.3)
where
&G, G, Gl == N'[G, G, G] — %R[G,G, Gl
LK, G] = N'[G,G, K|+ N'[K,G,G] + N'[G, K, G] ,
Q'K,G] = N'[K,K,G] + NG, K, K] + N'[K,G, K] + N'[K, K, K] .
For K € 2, we have
L+ EDZNE @) 2 + A+ EDNIE@ s + T+ 1D IaK )]s Sery  (5:4)
taking ¢ < 62, by Proposition 4.2, we have
IG5+ + (1 + EDIARGE) s+ < e(1+ [¢)1

IG@Iz << . (5:5)
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To show our claim, it suffices to show that the quantities below are small with
K K, Ky €,

|| / €716, G, Gldola < | (5:6)
t

I [ 21k, Gldolla < <K 1)
t

|| / Q°[K, Gldolla < | K3, (5.8)
t

H / (Q7[K), G — Q°[Ka, G} dolla < 2e1]| Ky — Koalla - (5.9)
t

Proof of (5.6). Because of the definition of £, we can easily gain for ¢ > 1,

1
€16, G, Gllls = IN'[G, G, G) = TRIG.G. G]lIs
) (5.10)
< WG, G, Gllls + IRIG.G. Gllls

Using (2.18),

NG, G, Gllls < tHIGIlg < 71777,
while by (4.10),

IR1G, G, Gllls < IGI5IIGllz < <,
then

£16.G.G)ls < 177"

this controls the time derivative in the 2 norm,

10 at( / £1G, G, G]da) <&,

t s

By (5.5), we have |G|, < € for any T > 1, so the other two terms of the 2 norm,
| [ E°1G, G, Gldo||s and | [~ E°1G,G,Gldo]|; can be deduced by the estimates in
Proposition 3.1.

Proof of (5.7). We estimate the norm || [~ N7[G, G, K]do ||y for example.
As in the proof of (5.6), using (2.18) and (5.5), we have the following estimate which
controls the time derivative in the 2 norm,

IVIG, G, K]lls S T IGIEIK s S 7 Kl -

For the other two term in the 2 norm, we shall reproduce the decomposition as in the
proof of Proposition 3.1 on N'[G,G, K]. Using Lemma 3.2 and Lemma 3.4, it only
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remains to show that

IR[G, G K]llz S (1+ [t]) %, , (5.11)
IMIG, G, K] — R[G G, K]||Z < (14 |t]) " 2e%, (5.12)
INGIG, G, K]HSN (14t~ %, . (5.13)

The first estimate follows from (4.9),
IRIG.G. K]llz S IGIZIK] 2 < (1+ [t) %
The second estimate follows from (3.42),
7T
INGIG, G K] = —RIG, G, K]z S (L+ ) GIEIKls S (1 [t) 6%

For the third estimate, we use (3.40) to get
L +[t) {IMIG, G, K]lls + IN[G. K. Gllls } S NGIZ 1 K]s + 1G]z 1 K11z, I1G s
Sefa(l+]t)™

Proof of (5.8). The proof of (5.8) is similar to the proof of (5.7).
Proof of (5.9). We may rewrite
NK,, K1, G| — NY[Ky, Ky, G] = N'[Ky, K1, G] — NY[K, Ky, G] + N'K 1, K, G]
— N'[K3, K>, G
= N'[Ky, Ky — Ky, Gl + N'[K — K», K>, G

we take similar decompositions on the terms N'[Ky, G, Ki]-N'[Ks, G, Ks], N'[G, K1, K1]—
NG, Ky, Ks] and N'[Ky, Ky, K] — N'[K>, Ky, K5]. Similar strategy we used to prove
(5.7) can be applied to obtain the estimate on the norm ||N*[F}, Fy, F3]||s with one of
these F; be K; — K, while the other two functions belong to {K;, K3, G}. The proof of
the first part is complete.

Let us turn to (2), we will prove it in two steps.
Step 1: Global existence and bounds. Let Uy € ST, ||[Uplls+ < & with € small
enough. The local existence is classical via its integral equation. We denote F(t) :=
e~ *AU(t), then (1.1) can be rewritten as

i0F = N'[F,F, F] . (5.14)
F(t)=U, — z’/NU[F, F,F)do . (5.15)

By the estimate (2.18), we have
IV[E, F, Fllls+ S (L4 1) THIF g -

This allows us to use a fixed point argument on a small time interval [0,7], and t —

|F(t)||s+ is C'. We claim that
IFlls < [Wollss + CIFI (5.16)
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for all T > 0 and all U solving (1.1) such that ||F||X;r < /. Then by a bootstrap
argument, we gain the global existence and the solution satisfies for all 7' > 0

IFU®) | x; < 2e . (5.17)

Let us begin the proof of our claim (5.16). Recall the definition of the X7 norm (2.11),
we have to consider the S and ST norm of F' and 0,F and also the Z norm of F.

It is easy to deduce from the equation on F that [|0:F| ¢+ = [N'[F,F, F]| .
Thanks to (2.18), we have

|0,F||s = IN'[F, F, Fllls < (14 [t) I F1S
10, F ||s+ = N'[F, F, Flllg+ < 1+ ) FIENF s+
thus
L+ D210 F s < (L + ) IFIls) + < | FIP (5.18)

X1
_ _ 2 _
L+ D" N0Flls+ < (L + 1D IFs) (1 + )PP NI+ < PN - (5.19)

We now turn to estimate || F|| z, by the decomposition result of N'* in Proposition 3.1,
and notice that R defined as (4.4) is self-adjoint on 612) and that there is a cancellation

(iFRIF,F,F|(€), FF(€))ugag =0

So we will study the ||F||y- with o > 1 where Y7 is defined in (2.8), then to control the
Z norm.

dl -~ fa
T3l BE Dy = (FNF R FI(69). B6s)), (5.20)

ds 2
= (E1(6,0,5), Fpl&, ) ngng + (0s83(€, 0, 5), FplE€, 8)ng s -

Thus multiplying with (1 + |£|?), using the estimates of ||£;||y+= in Proposition 3.1, then
we have for any &, we have
t

t
(L) [ Eep. ). Bl Migaag) S 1PN [0+ 1507 - sup (o)l
0 0 '

while
¢

[1 + |§|2] /(atg?)(gapa S)a F\p(ga 5)>h"><hgd5 S []- + |€|2]

0

(E3(6,2,1), Fpl&, 1)) nong

~

+ [1 + ‘g‘Q] <(E:\3<§,p7 0)7 ﬁp(£7 0)>h"><h§', + [1 + ‘g‘Q] /<g3><§7p7 S)7 825Fp(£7 S)>h"><hg
0

S IF I smp IF )l + 1F I

Combining the above estimates, we have

IF®lz < IF®lye + ClIFs - (5.21)

+
XT
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For the norm || F(t)||g+), when 0 <t <1,
1Ells < [Ells+ < |Uolls+ + [1F() = F(O)[ls+
< |Uolls+ + sup [[0.F||s+
0<t<1

<[P -
While 1 <t < T, using Proposition 3.1, we have

IF(®) = FDllseo < || [ N(F.F. Flao]

S(+)

< H /R[F, F, F]da/aHS(H + H / (51(0) +52(U))d0'HS(+) ;

then using (3.44) and the, we have
t

t
| [ RiE.FFidoso| < [ o I IFsdo (5.22)
1 1

t

< /UH%—HFH;; < 8||F| (5.23)

~ X; 9
1
while by (3.45),

t t
| [RiEFFidofo]| < [ (o IFIGIFs + o IR FR)dr G20
1

1
t

< [ Sao| P < I, (5.25)
1
together with the estimates in Proposition 3.1,
1F(#) = F(D)lls < (1 + 1D IF s (5.26)
IF(t) = F(D)ls+ < 1+ D™ IFI - (5.27)

Hence, we finally gain

L+ ) NF s + L+ DN Ells+ < 1F[lxs - (5.28)
Our priori estimate (5.16) comes out from (5.18), (5.19), (5.21) and (5.28).
Step 2: Asymptotic behavior. Define T, = ¢®/™ and G, (t) = G, (wInt), where G,

solves (1.10) with Cauchy data such that G,(n) = G,(T,) = F(T,). We claim that for
all t > T,

G2 ()llz + A+ 1D NGa(®)lls + (L + 1) IGa(®)ls+ + (1 + |t|)1_5||8th(t)|ls(S £ |
5.29



ENERGY GROWTH AND MODIFIED SCATTERING 39

uniformly in n > 0. Indeed, first we get from the global bounds result (5.17) that
uniformly in n,

1G]z = [Gr(mInt)||z = |Gu(n)llz = [[F(To)llz S €
IGa(To)lls S €T3
and by (4.10),
10:Gn(s)lls < s IGAlIZIG ()]s S €% IGals)lls - (5.30)
An application of Gronwall’s lemma gives, for ¢ small enough,
1Ga(s)lls Ses’s s>

which, combined with (5.30), provides control of the second and last term in (5.29). We
can estimate the S™ norm similarly, using (3.45),

109G ()]st S 571 NGuls)lls +€*77 0 |Ga(To)lls+ S €T3
This concludes the proof of (5.29).
Since
i, F = N'[F,F, F],
t
Zath = ;R[Gna Gna Gn] 5
and
F(T,) =G,.(T,) ,
then

Ft) — Go(t) = i / (WIF F F) = TR(G, G G ) dor

T
t t

- z’/ﬁ"[F, F F]da+i/E(R[F, F,F| —R[Gn,Gn,GnDda.
T
Tn Tn
Using the estimates in Proposition 3.1, we gain for ¢t > T,,,

t
_ do
IF = Gulz ST, + [ (IFIE + IGAIB)IF = Gul2*y

Tn
/ d
— g
sz [IF- Gl
Tn

we may then deduce by Gronwall,

|F = Gullz ST for T, <t < Thhay .
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We may deduce the estimate on ||[F — G,,||s similarly and

t
B do
IF = Gulls ST, + [ (IFI3 + IGuIE)IF - Guls™Z

T
t

do
+/(||F||z+IIGn||z)||F—Gn||z(||F||s+IIGan);

Tn

t
d
< ST 4 g2 / IF — GollsZ
g
Tn

Again, we use Gronwall’s inequality and get

sup ||F(t) — Gn(t)||s S 377 . (5.31)
TnStSTn+4
Therefore,
|Gria(n+1) = Gu(n+ Dls = [ F(Ths1) — Gul(Tuir)ls S °T,° (5.32)

and thus by Lemma 4.3, we gain
1Grt1(0) = Gr(0) |5 S %2

We see that {G,(0)}, is a Cauchy sequence in S and therefore converges to an element
Go.0o € S which satisfies that

1Gollz S &, 1G(0) — Gooolls < e /2,
By Proposition 4.3,

sup [|Goo(t) — Gn(t) || < %7/
[OanJF?}

where Goo(t) = Guo(mInt) with Goo the solution of (1.10) with initial data Gu(0) =
Go,00- Now we have
sup  [|Goo(t) = F(t)lls < sup [[Goo(t) = Ga()|ls +  sup  [[Gn(t) = F(1)]]s
TnStSTn-Fl TnStSTn-Fl TnStSTn-Fl
< 536_n6/4.

This finishes the proof. O

5.2. Large time Sobolev unboundedness. We will firstly study the dynamics of the
resonant system (1.10), then we apply the modified scattering results above to gain the
large time behavior of the wave guide Schrodinger equation. The following strategy
allows us to transfer informations from a global solution a(t) of (4.4) to a solution of
(4.2), all we need to do is to take an initial datum of the form

Go(r,y) = ¢(x)g(y), ¢ € SR) ,
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where g, = a,(0), and ¢(x) is the inverse Fourier transform of ¢. The solution G(t) to
(4.2) with initial data Gy as above is given in Fourier space by

Go(t,€) = p(&)ay((£)%t) . (5.33)

In particular, if ¢ = 1 on an open interval I, then @p(t, €) = ay(t) for all ¢ € R and
¢ e 1. For € € I, the resonant system turns out to be the cubic Szegd equation.
Let us recall the infinite cascade result for the cubic Szeg6 equation.

Theorem 5.2. [3] For any vy € C° := NH*, for any M, for any r > L, there ewists
a sequence (vf) of elements of C° tending to vy in C° and a sequence of time t,, |t,|
tending to oo, such that the corresponding solution v, of the cubic Szegd equation

10w = I, (Jv|*v) , v(0) = v , (5.34)
satisfies
[[o™ (E") | -

Assumption 5.1. Gy € ST with |Gyl|s+ small, Go(y) = —Go(y + ), and there exists
some non empty open set I # 0, such that Go(§) = vy VE € I, while the corresponding
solution of the cubic Szegd equation (5.34) with vy as the initial data admits an unbounded
trajectory as described in Theorem 5. 2.

Let G be a solution to

i0,G = R|G, G, G| = 36
L6~ G (539
with G satisfies Assumption 5.1, then
~ 1/2
IGOla; > ([ 1GEOa) " = 1120y 00, (530)
T

for any s > 1/2.

By Theorem 5.1, for the solutions to the resonant system G as above, there exists
solutions to the wave guide Schrodinger equation (1.1), such that (5.1) holds. Then the
large time behavior of G(t) (5.37) leads to the large time unbounded Sobolev trajectories
of solutions to the equation (1.1).

Corollary 5.1. Given N > 13, then for any e > 0, there exists Uy € ST with ||Upl|s+ < €
such that the corresponding solution to (1.1) satisfies
U@ 2
limsup —————- =00, Vs>1/2, VM . 5.38

PP T log ) / 3%
Remark 5.1. As we announced in the introduction of this paper, the unbounded Sobolev
norms in our theorem are just above the energy norm. The growth is as large as (log |t|)™
for any M for solutions with small initial data in S, which is almost optimal for the
dispersive wave guide Schrodinger equation.
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Moreover, in view of Theorem 5.2 by Gérard and Grellier [3], we expect that there exist
some Banach space B, such that the set

1 [U )]s
G:=<UyeB: Vs> M e Z, , limsup ———+— = +00
{ ° * \t|ﬁ+o£) (log [¢[)™

is a dense Gg subset of B. The difficulty comes from the gap between S and ST in the
modified scattering argument, which already exists in the early results of Ozawa [16] and
Hayashi—Naumkin—Shinomura—Tonegawa [15].

6. APPENDIX

We now turn to our basic lemma allowing to transform suitable L2 , bounds to bounds

in terms of the L2 -based spaces S and S*. We define an LP famzly Q = {QA}A to be
a family of operators (indexed by the dyadic integers) of the form

QIO =FOF©. Qe =3O, Ax2

for two smooth functions 3, ¢ € C>*(R) with ¢ = 0 in a neighborhood of 0.
We define the set of admissible transformations to be the family of operators {74}
where for any dyadic number A,

Tx = AaQa, Al <1

for some LP-family @

If F' € B, then for any admissible transformation family 7' = {T)4 : A dyadic numbers },
> T4 F converges in B. And this norm B is called admissible if
A

1> TaFls S IF]s. (6.1)
A

Lemma 6.1. Recall the definitions of the norms S, ST, Z and Z,
IFlls = Flay, + |loFllzz, » [1F s+ = [1Flls + 1(1 = 050)*Flls + [loF]|s
1|z = sup L+ EPTIFEE s NFlz = 1Fllz+ Q@+ RDIFs -

All these norms are admaissible.

Proof. Due to the definition of admissible transformation, we may only deal with func-
tions independent on y. Let us prove with the S norm for example Indeed,

IS Taflpn = / € NEOF(©) + Mad5) o) e

< [ (mPa© + naPac) eI o ras
< I
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while
o S Tasle = [ [ nBOF ) + MdE)T©) at
A R
< [ (M3 + nara) oo Fas
R
= [ (nese + 156 fopae
R
< e 1a + 171
thus

1> Taflls S I fls -
A

U

Given a trilinear operator ¥ and a set A of 4-tuples of dyadic integers, we define an
admissible realization of T at A to be an operator of the form which converges in L?,

TFG H = Y ToIT4F TG, T/ H] (6.2)
(A,B,C,D)eA
for some admissible transformations 7', T", T", T".
Lemma 6.2. Assume that a trilinear operator T satisfies

Z%([F,G, H) = T|ZF,G, H] + T|F, ZG, H) + X[F, G, ZH], (6.3)

for Z € {x,0;,0,} and let A be a set of 4-tuples of dyadic integers. With the notation
introduced above, assume also that for all admissible realizations of T at A,

IZALF FO Fl2 < K min |[F)| 2| F||s]| 7|5 (6.4)
{a,B87}={a,b,c}

for some admissible norm B such that the Littlewood-Paley projectors P<yr (both in x
and in y) are uniformly bounded on B. Then, for all admissible realizations of ¥ at A,

IZAFS FY FYls S K max  |[F||sl|F7||g]| F7|s - (6.5)
{a,8,7}={a,b,c}

Assume in addition that, for Y € {x, (1 — 0p)*},
Y Flls < 01| Flls+ + 02| Flls (6.6)
then for all admissible realizations of T at A,

AL, P e S K max 1F s (1F -+ 4] ) |7 s

+9K max Fe Fﬁ el .
oK max IE s s I s

(6.7)
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Proof. Let us start with (6.5).
1. The weighted component of S norm. By rewriting 274 = [x,Ta] + Taz and
using (6.3), we have

2 TN[F PP = > aTpI[TLF TEF, T F)
(A,B,C,D)eA

= Y [wTpETLF TEFY TEF) + Y TpT(la, TP, THF", T/ F]
(A,B,C,D)eA (A,B,C,D)eA

+ Y TRI[TLF [, THF TEF+ Y ToS[TLF TRF, [x, TH ] F]
(A,B,C,D)eA (A,B,C,D)eA
+ Ta[aF® FP F) 4 TA[F, o FP, F) 4 TA[F, F*, 2] .

(6.8)

By simple calculation, we have
[2,Qa] = AT'Q .

We notice that if Q4 is an LP-family, @’y is also an LP-family, then [z,T4] is also
an admissible transformation. Thus, we may consider 2T, [F®, I, F¢] as the following
summation

TA[F, PP F) 4 Tp[aF®, FP, F + A [F*, o F® F€ + TA[F, F° 2 F°] | (6.9)
then || T\[F?, F, F€)||;> follows from (6.4).

2. The HY component of S norm. We will use the equivalent definition of H¥
norm,

IE|ln = Y M| PuFlfZ.

M dyadic

with Py; as the Littlewood-Paley projections on R x T defined in Section 2. Then, we
may decompose

PySA[F, F* F) = PuTaiow[F®, F°, F] + PyuTa nign[F*, F°, F9] |

WithTAJow[Fa, Fb, Fc] = TA[PSMFG, PSMFb, PSMFC].
We have firstly

> MNPy Tapig L FY e S K max I F [ FEF L (6.10)

~
M dyadic {avﬁvy}f{av ,C

since

D IMPY || Py [Poone F FY FY e < K ) |MPY|| Poong B3| EP | 5] 1
M M (6.11)
S K2F G PP IB I Fe s -
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Let Z € {0,,0,}, we can bound the contribution of T .,y as below
M| Py atow | 12

< MY Z°N PyZ o jowP<yi FO P<ar FP, Poyr F€Y|| 12

=My > PuTauwlZPu, F, ZP Po, PP, 27 Py FY) | 12

a+pB+y<2N My,Ma,Ms<M

(6.12)
Without loss of generality, we assume M; = max (M, Ms, M3) < M, then

MM PyTpsonlle S D MNMPN > T agow[Par, P, Pas, F*, Pagy F€| 12

Mi<M Mz, M3<M;
Ml — a c
SK Y 57) N M| Pagy F2| 2 | F° s ]| F< s
Mi<M

(6.13)

the above sum is in £2, by Schur test, then

> M PyTasl PP R S K2 max ([ FRFORIFE - (6.14)
M dyadic {a.B7}={ab,c}

Therefore we bound the HY component of S norm, which completes the estimate (6.5).

Now, we turn to prove the estimate (6.7), due to the definition of S™ norm, we only
need to bound [|2T4]|s and ||(1 — 0,2)*Talls. From (6.9) and (6.5), we gain directly

HxTA[Fa?FvaC]HS

6.15)
< max Fe FPsllF|ls + max Fe\sllzF? gl F |5 . (

S e  F s P el s+ F sl R s F s

we then using (6.6) to control the norm ||z F||z. The estimate on ||(1 — 0,,)*%Talls can
be calculated similarly by replacing x with (1 — d,,)*. The proof is completed. O
Remark 6.1.

We have a Leibniz rule for T'(f, g, h] and N*[F,G, H|, namely

ZN'[F,G,H) = N'[ZF,G, H| + N'|F, ZG, H| + N'|F,G, ZH] , Z € {x,0,,9,} .
(6.16)

Property (6.16) will be of importance in order to ensure the hypothesis of the transfer
principle displayed by Lemma 6.2.
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