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UNBOUNDED SOBOLEV TRAJECTORIES AND MODIFIED

SCATTERING THEORY FOR A WAVE GUIDE NONLINEAR

SCHRÖDINGER EQUATION

HAIYAN XU

Abstract. We consider the following wave guide nonlinear Schrödinger equation,

(i∂t + ∂xx − |Dy|)U = |U |2U (WS)

on the spatial cylinder Rx×Ty. We establish a modified scattering theory between small
solutions to this equation and small solutions to the cubic Szegő equation. The proof
is an adaptation of the method of Hani–Pausader–Tzvetkov–Visciglia [12]. Combining
this scattering theory with a recent result by Gérard–Grellier [4], we infer existence
of global solutions to (WS) which are unbounded in the space L2

xH
s
y(R × T) for every

s >
1

2
.

1. Introduction

The purpose of this work is to study the large time behavior of solutions to the
following Hamiltonian equation. On the cylinder Rx × Ty, consider the Hilbert space
H = L2(R× T) with the symplectic form

ω(u, v) = Im(u|v)
and the Hamiltonian function on H,

H(U) =
1

2

∫

R×T

(|∂xU(x, y)|2 + |Dy|U(x, y)U(x, y)) dx dy +
1

4

∫

R×T

|U(x, y)|4 dx dy ,

where |Dy| :=
√

−∂yy. The corresponding Hamiltonian system turns out to be a wave
guide nonlinear Schrödinger equation,

(i∂t +A)U = |U |2U, (x, y) ∈ R× T , (1.1)

where we set

A := ∂xx − |Dy| .
Notice that, besides the energy H(U), this equation formally enjoys the mass conserva-
tion law ∫

R×T

|U(t, x, y)|2 dx dy =

∫

R×T

|U(0, x, y)|2 dx dy .
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ENERGY GROWTH AND MODIFIED SCATTERING 2

In particular, the trajectories are bounded in H1
xL

2
y ∩ L2

xH
1
2
y . These conservation laws

correspond to a critical regularity for equation (1.1), so that global wellposedness of
the Cauchy problem is not easy. In this paper, we shall prove that global solutions do
exist for every Cauchy datum satisfying a smallness assumption in an appropriate high
regularity norm. However, our main objective in this paper is to study the possible large
time unboundedness of the solution, in a slightly more regular norm than the energy
norm, typically L2

xH
s
y(R×T) for s > 1

2
. This general question of existence of unbounded

Sobolev trajectories comes back to [1], and was addressed by several authors for various
Hamiltonian PDEs, see e.g. [3, 6, 9, 10, 11, 12, 13, 14, 19, 21]. The choice of the
equation (1.1) is naturally based on the state of the art for this question concerning the
nonlinear Schrödinger equation and the cubic half wave equation, which we recall in the
next paragraphs.

1.1. Motivation. In this paragraph, we briefly recall the state of the art about the
existence of unbounded Sobolev trajectories for the nonlinear Schrödinger equation and
the cubic half wave equation.

1.1.1. The nonlinear Schrödinger equation. Firstly, consider the following Schrödinger
equation with smooth initial data

i∂tu+∆u = |u|2u . (1.2)

If we consider the case with spatial domain R or T, the 1D Schrödinger turns out to be
globally well-posed and completely integrable [22], and the higher conservation laws in
that case imply

‖u(t)‖Hs ≤ Cs(‖u(0)‖Hs) , s ≥ 1 , for all t ∈ R .

Hani–Pausader–Tzvetkov–Visciglia studied the nonlinear Schrödinger on the cylinder
Rx × Td

y [12], they found infinite cascade solutions for d ≥ 2, which means there exists
solutions with small Sobolev norms at the initial time, while admit infinite Sobolev norms
when time goes to infinity.

Theorem 1.1. [12, Corollary 1.4] Let d ≥ 2 and s ∈ N, s ≥ 30. Then for every ε > 0
there exists a global solution U(t) of the cubic Schrödinger equation (1.2) on R × Td,
such that

‖U(0)‖Hs(R×Td) ≤ ε, lim sup
t→+∞

‖U(t)‖Hs(R×Td) = +∞. (1.3)

Unfortunately, these infinite cascades do not occur for d = 1, actually the dynamics of
small solutions is fairly similar on R×T and R. But we may apply their general strategy
to the wave guide Schrödinger equation, to understand the asymptotic behavior and in
particular how this asymptotic behavior is related to resonant dynamics.

1.1.2. The half wave equation. Another motivation is from the study of the so-called half
wave equation [6]. Actually, if we start with a solution u which does not depend on x,
then it satisfies the following half wave equation

i∂tu− |Dy|u = |u|2u, y ∈ T . (1.4)
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The following theorem was proved by Gérard and Grellier, which tells us the global
well-posedness and partially about its large time behavior. The orthogonal projector
from L2(T) onto

L2
+(T) :=

{
u(y) =

∑

p≥0

upe
ipy, (up)p≥0 ∈ ℓ2

}
,

is called the Szegő projector and is denoted by Π+.

Theorem 1.2. [6] Given u0 ∈ H
1
2 (T), there exists a unique solution u ∈ C(R, H

1
2 (T))

satisfying (1.4). And if u0 ∈ Hs(T) for some s > 1
2
, then u ∈ C(R, Hs(T)). Moreover,

let s > 1 and u0 = Π+(u0) ∈ L2
+(T) ∩ Hs(T) with ‖u0‖Hs = ε, ε > 0 small enough.

Denote by v the solution of the cubic Szegő equation[5, 7]

i∂tv −Dv = Π+(|v|2v) , v(0, ·) = u0 . (1.5)

Then, for any α > 0, there exists a constant c = cα < 1 so that

‖u(t)− v(t)‖Hs = O(ε3−α) for t ≤ cα
ε2

log
1

ε
. (1.6)

A similar result is available for the case on the real line R, see O. Pocovnicu [20].
The following large time behavior result of the half wave equation comes from the fact

that the cubic Szegő dynamics which appears as the effective dynamics, admits large
time Sobolev norm growth.

Corollary 1.1. [6] Let s > 1. There exists a sequence of data un
0 and a sequence of

times tn such that, for any r,

‖un
0‖Hr → 0

while the corresponding solution of (1.4) satisfies

‖un(tn)‖Hs ≃ ‖un
0‖Hs

(
log

1

‖un
0‖Hs

)2s−1

.

Remark 1.1. In the statement above, one may observe that there exists norm growth,
but ‖un(tn)‖Hs stays still small. In fact, it is possible to show that for s > 1, there exists
a sequence of un solutions to the half wave equation (1.4) such that [18]

‖un
0‖Hs → 0, ‖un(tn)‖Hs → ∞ . (1.7)

Indeed, one may just take some large integers Nn =
[(

‖ũn
0‖Hs‖ũn(tn)‖Hs

)− 1
1+2s
]
, set

un
0 = N

1
2
n ũn

0 (N
1
2
n y) with ũn

0 given as in Corollary 1.1, then we may write the related

solution as un
0 = N

1
2
n ũn(Nnt, N

1
2
n y).

The existence of a solution to the half wave equation (1.4) satisfying

‖u0‖Hs ≤ ε, lim sup
t→∞

‖u(t)‖Hs = ∞ , (1.8)

is still an open problem. Though this problem is still open for the half wave equation,
we are going to solve it for the wave guide Schrödinger equation (1.1).
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1.2. Main results. The aim of this paper is to describe the large time behavior of the
wave guide Schrödinger equation (1.1) for small smooth data. Thoughout this paper, we
always assume the initial data satisfy

U0(x, y + π) = −U0(x, y) . (1.9)

A direct consequence is that U0 only admits odd Fourier modes on the direction y, which
is of helpful importance in the study of the resonant system, as we will see later in section
4. We then show that the asymptotic dynamics of small solutions to (1.1) is related to
that of solutions of the resonant system

i∂tG±(t) = R[G±(t), G±(t), G±(t)] ,

FRR[G±, G±, G±](ξ, y) = Π±(|Ĝ±|2Ĝ±)(ξ, y) .
(1.10)

Here Ĝ(ξ, ·) = FRG(ξ, ·), Π+ is the Szegő projector onto the non-negative Fourier modes,
Π− := Id−Π+, andG± := Π±(G). Noting that the dependence on ξ is merely parametric,
the above system is none other than the resonant system for the cubic half wave equation
on T, which is the cubic Szegő equation.

Throughout this article, we assume N ≥ 13 is an arbitrary integer, and δ < 10−3.
Our main results on the modified scattering and the existence of a wave operator are as
below, where the norms of Banach spaces S and S+ are defined as

‖F‖S :=‖F‖HN
x,y

+ ‖xF‖L2
x,y
, ‖F‖S+ := ‖F‖S + ‖(1− ∂xx)

4F‖S + ‖xF‖S. (1.11)

Theorem 1.3. There exists ε = ε(N) > 0 such that if U0 ∈ S+ satisfies

‖U0‖S+ ≤ ε,

and if U(t) solves (1.1) with initial data U0, then U ∈ C([0,+∞) : S) exists globally and
exhibits modified scattering to its resonant dynamics (1.10) in the following sense: there
exists G0 ∈ S such that if G(t) is the solution of (1.10) with initial data G(0) = G0,
then

‖U(t)− eitAG(π ln t)‖S → 0 as t → +∞.

Remark 1.2. The Cauchy problem of our wave guide Schrödinger system (1.1) in the
classical Sobolev space is not easy, neither by energy estimates nor by Strichartz esti-

mates, since its Hamiltonian energy lies on the Sobolev space H1
xL

2
y ∩L2

xH
1/2
y . However,

by the Theorem 1.3 above, we can deduce directly the global well-posedness with small
initial data in S+.

Theorem 1.4. There exists ε = ε(N) > 0 such that if G0 ∈ S+ satisfies

‖G0‖S+ ≤ ε,

G(t) solves (1.10) with initial data G0, then there exists U ∈ C([0,∞) : S) a solution of
(1.1) such that

‖U(t)− eitAG(π ln t)‖S → 0 as t → +∞.

Theorem 1.4 combined with the large time behavior of the cubic Szegő equation, leads
to the infinite cascades result.
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Theorem 1.5. Given N ≥ 13, then for any ε > 0, there exists U0 ∈ S+ with ‖U0‖S+ ≤ ε,
such that the corresponding solution to (1.1) satisfies

lim sup
t→∞

‖U(t)‖L2
xH

s
y
= ∞ , ∀s > 1/2 . (1.12)

Remark 1.3.

1. It is likely there exists a dense Gδ set in an appropriate space containing initial data
which lead to infinite cascade as above. A proof of this would involve more technicalities
and we will not discuss it in this paper.
2. Compared to the results in [12], the unbounded Sobolev norms in our theorem are just
above the energy norm.

1.3. Organization of the paper. In section 2, we introduce the notation used in
this paper. In section 3, we study the structure of the non-linearity, and establish the
decomposition proposition, which is of crucial importance. We decompose the non-
linearity N t into a combination of the resonant part and a remainder,

N t[F,G,H ] =
π

t
R[F,G,H ] + E t[F,G,H ] .

In section 4, we study the resonant system and its large time cascade, which is similar to
the cubic Szegő equation as above. In section 5, we construct the modified wave operator
and prove Theorem 1.4 and Theorem 1.3. Later in this section, we prove the large time
blow up result, Theorem 1.5. Finally in section 6, we present a lemma that will allow us
to transfer L2 estimates on operators into estimates in S and S+ norms.

2. Preliminary

2.1. Notation. We will follow the notation of [12], T := R/(2πZ), the inner product
(U, V ) :=

∫
R×T

UV dxdy for any U, V ∈ L2(R× T). We will use the lower-case letter to
denote functions f : R → C and the capital letters to denote functions F : R× T → C,
and calligraphic letters denote operators, except for the Littlewood-Paley operators and
dyadic numbers which are capitalized most of the time.

We use a different notation to denote Fourier transform on different space variables.
The Fourier transform on R is defined by

ĝ(ξ) := Fx(g)(ξ) =

∫

R

e−ixξg(x)dx .

Similarly, if U(x, y) depends on (x, y) ∈ R × T, Û(ξ, y) denotes the partial Fourier
transform in x. The Fourier transform of h : T → C is,

hp := Fy(h)(p) =
1

2π

∫

T

h(y)e−ipydy, p ∈ Z ,

and this also extends to U(x, y). Finally, we define the full Fourier transform on the
cylinder R× T

(FU) (ξ, p) =
1

2π

∫

T

Û(ξ, y)e−ipydy = Ûp(ξ) .
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We will often use Littlewood-Paley projections. For the full frequency space, these are
defined as follows with N as a dyadic integer.

(FP≤NU) (ξ, p) = ϕ(
ξ

N
)ϕ(

p

N
) (FU) (ξ, p) ,

where ϕ ∈ C∞
c (R), ϕ(x) = 1 when |x| ≤ 1 and ϕ(x) = 0 when |x| ≥ 2. We then also

define

φ(x) = ϕ(x)− ϕ(2x) (2.1)

and

PN = P≤N − P≤N/2, P≥N = 1− P≤N . (2.2)

Sometimes we concentrate on the frequency in x only, and we therefore define

(FQ≤NU) (ξ, p) = ϕ(
ξ

N
) (FU) (ξ, p) ,

and define QN similarly. By a slight abuse of notation, we will consider QN indifferently
as an operator on functions defined on R×T and on R. While we consider the frequency
in y we will use notation ∆N which means

(Fy∆Nh) (p) = φ(
p

N
)hp . (2.3)

We shall use the following commutator estimate which is a direct consequence of the
definition,

‖[QN , x]‖L2
x→L2

x
. N−1 . (2.4)

We will use the following sets corresponding to momentum and resonance level sets:

M := {(p0, p1, p2, p3) ∈ Z
4 : p0 − p1 + p2 − p3 = 0} ,

Γω := {(p0, p1, p2, p3) ∈ Z
4 : |p0| − |p1|+ |p2| − |p3| = ω} .

2.2. The non-linearity. Let us write a solution of (1.1) as

U(x, y, t) =
∑

p∈Z

eipye−it|p|
(
eit∂xxFp(t)

)
(x) := eitA(F (t)) ,

with A = ∂xx − |Dy|. We then see that U solves (1.1) if and only if F solves

i∂tF (t) = e−itA
(
eitAF (t) · e−itAF (t) · eitAF (t)

)
. (2.5)

We denote the non-linearity in (2.5) by N t[F (t), F (t), F (t)], where the trilinear form N t

is defined by

N t[F,G,H ] := e−itA
(
eitAF · e−itAG · eitAH

)
.

Now, we can compute the Fourier transform of the last expression

FN t[F,G,H ](ξ, p) =
∑

(p,q,r,s)∈M

eit(|p|−|q|+|r|−|s|)Fx

(
It[Fq, Gr, Hs]

)
(ξ) , (2.6)

where

It[f, g, h] := U(−t)
(
U(t)f U(t)g U(t)h

)
, U(t) = eit∂xx . (2.7)
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One verifies that

Fx

(
It[f, g, h]

)
(ξ) =

∫

R2

eit2ηκf̂(ξ − η)ĝ(ξ − η − κ)ĥ(ξ − κ)dκdη .

2.3. Norms. The following Sobolev norms will be used in the whole paper. For se-
quences a := {ap : p ∈ Z}, we define the following norm,

‖a‖2hs
p
:=
∑

p∈Z

[
1 + |p|2

]s |ap|2 .

The Besov space B1 = B1
1,1(T) is defined as the set of functions f such that ‖f‖B1

1,1
is

finite, where

‖f‖B1
1,1

= ‖S0(f)‖L1 +
∑

N dyadic

N‖∆Nf‖L1,

here f = S0(f) +
∑

N dyadic

∆Nf stands for the Littlewood-Paley decomposition of f with

∆N defined as (2.3) above and Fy(S0f)(p) := ϕ(p)fp. The space B1 will be crucial in
the analysis of the resonant system in section 4.

For functions F defined on R × T, we will indicate the domain of integration by a
subscript x (for R), x, y (for R × T) or p (for Z). We will use mainly four different
norms:
two weak norms

‖F‖2Y s := sup
ξ∈R

[
1 + |ξ|2

]2∑

p

(1 + |p|2)s|F̂p(ξ)|2 , (2.8)

‖F‖Z := sup
ξ∈R

[
1 + |ξ|2

]
‖F̂ (ξ, ·)‖B1 , (2.9)

and two strong norms

‖F‖S := ‖F‖HN
x,y

+ ‖xF‖L2
x,y

, ‖F‖S+ := ‖F‖S + ‖(1− ∂xx)
4F‖S + ‖xF‖S , (2.10)

with N to be fixed later.
The space-time norms we will use are

‖F‖XT
:= sup

0≤t≤T

{
‖F (t)‖Z + (1 + |t|)−δ‖F (t)‖S + (1 + |t|)1−3δ‖∂tF (t)‖S

}
,

‖F‖X+
T
:=‖F‖XT

+ sup
0≤t≤T

{
(1 + |t|)−5δ‖F (t)‖S+ + (1 + |t|)1−7δ‖∂tF (t)‖S+

}
,

(2.11)

with a small parameter δ < 10−3.
In the following sections, we will see that the Z norm is a conserved quantity for

the resonant system, which is of crucial importance, and for data in S+, the solution is
expected to grow slowly in S+, while the difference between the true solution to (1.1)
and the solution to the resonant system may decay in S.

Now, at this stage, we present some elementary lemmas which will be useful in the
later studies.
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Lemma 2.1. Provided N ≥ 13, we have the following hierarchy

‖F‖Y 1/2 . ‖F‖Z . ‖F‖Y s , s > 1 , (2.12)

‖F‖
H

1/2
x,y

. ‖F‖Z . ‖F‖S . ‖F‖S+ . (2.13)

Proof. We begin with the proof of the first inequality (2.12), it is sufficient to prove

‖f‖
H

1/2
y

. ‖f‖B1 . ‖f‖Hs
y
, s > 1 .

1. ‖f‖
H

1/2
y

. ‖f‖B1.

‖f‖
H

1/2
y

= ‖S0f‖L2 +
( ∑

N dyadic

N‖∆Nf‖2L2

)1/2
.

We notice that the Fourier transform of S0f is compactly supported on some interval I
with |I| < 2, thus

‖S0f‖L2 ≤ ‖Fy(S0f)(p)‖ℓ2p ≤
(∑

p∈I

|
∫

e−ixp(S0f)(x)dx|2
)1/2

. ‖S0f‖L1 .

While the Fourier transform of ∆Nf is compactly supported on some interval I with
|JN | ∼ N , thus similarly

N1/2‖∆Nf‖L2 ≤ N1/2‖Fy(∆Nf)(p)‖ℓ2p(JN ) . N‖∆Nf‖L1 ,

we then use the fact that ℓ1 is continuously embedded in ℓ2 and get

‖N1/2‖∆Nf‖L2‖ℓ2N ≤ ‖N‖∆Nf‖L1‖ℓ2N .
∑

N dyadic

N‖∆Nf‖L1 ,

thus ‖f‖
H

1/2
y

. ‖f‖B1.

2. ‖f‖B1 . ‖f‖Hs
y
, s > 1.

Since T is of finite measure,

‖f‖L1(T) ≤ ‖f‖L2(T) .

This inequality is deduced by Cauchy-Schwarz inequality, indeed,
∑

N‖∆Nf‖L1 ≤
∑

N‖∆Nf‖L2 ≤
(∑

N2s‖∆Nf‖2L2

)1/2( ∑

N dyadic

N−2(s−1)
)1/2

,

the second factor on the right hand side converges since s > 1, and we obtain our result.

3. It is easy to show the first and last inequality in (2.13), and the middle inequality
comes from the following Gagliardo-Nirenberg type inequality

‖F‖Y s . ‖F‖1/2−σ

L2
x,y

‖F‖1/2+σ
S , s > 1 , (2.14)

with 0 < σ < 1/2 and the index in the definition of S norm satisfies σN > 3.
To verify this inequality, we need the elementary inequality

‖f̂‖L∞
ξ (R) . ‖f‖L1

x(R) . ‖f‖
1
2

L2
x(R)

‖xf‖
1
2

L2
x(R)

, (2.15)
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one might observe that
[
1 + |ξ|2

]
|F̂p(ξ)| .

∑

N dyadic

N2|Q̂NFp(ξ)|

.
∑

N

N2‖QNFp(·)‖
1
2

L2
x
‖xQNFp(·)‖

1
2

L2
x

.
(∑

N

N− θ−4
2

)
‖(1− ∂xx)

θ
2Fp(·)‖

1
2

L2
x
‖〈x〉Fp(·)‖

1
2

L2
x

. ‖Fp(·)‖
1
2

Hθ
x
‖〈x〉Fp(·)‖

1
2

L2
x
,

where we applied (2.4) to gain the third inequality, and θ > 4. Squaring and multiplying
by 〈p〉2s, and combining with (2.12), we have for s > 1,

‖F‖2Y s = sup
ξ
[1+|ξ|2]2‖F̂ (ξ, ·)‖2Hs

y
.
∑

p∈Z

〈p〉2s‖Fp(·)‖Hθ
x
‖〈x〉Fp(·)‖L2

x
. ‖F‖Hθ

xH
2s
y
‖xF‖L2

x,y
,

the last inequality comes from the Cauchy-Schwarz inequality. Then (2.14) comes from
an application of the Gagliardo-Nirenberg inequality on ‖F‖Hθ+2s

x,y
with θ + 2s > 6,

‖F‖Hθ+2s
x,y

≤ ‖F‖1−2σ
L2
x,y

‖F‖2σHN
x,y

,

and 2σN = θ + 2s > 6. By choosing σ = 1/4 and N > 12, thus for s > 1,

‖F‖Z . ‖F‖Y s . ‖F‖
1
4

L2
x,y
‖F‖

3
4
S . (2.16)

�

We remark that by taking suitable σ, for the inequality (2.13), the requirement of the
Sobolev regularity in S norm may be N ≥ 7.

We also remark that the operators Q≤N , P≤N and the multiplication by ϕ(·/N) are
bounded in Z, S, S+, uniformly in N .

In this paper, we make often use of the following elementary bound to sum-up the 1d
estimates, ∥∥∥

∑

q−r+s=p

c1qc
2
rc

3
s

∥∥∥
ℓ2p

. min
{j,k,ℓ}={1,2,3}

‖cj‖ℓ2p‖ck‖ℓ1p‖cℓ‖ℓ1p . (2.17)

The following lemma shows the bounds on the non-linearity N t in the S and S+ norms.

Lemma 2.2. [12, Lemma 2.1]

‖N t[F,G,H ]‖S . (1 + |t|)−1‖F‖S‖G‖S‖H‖S ,

‖N t[F 1, F 2, F 3]‖S+ . (1 + |t|)−1 max
{j,k,ℓ}={1,2,3}

‖F j‖S+‖F k‖S‖F ℓ‖S .
(2.18)

Proof. Due to Lemma 6.2 in the appendix, it is sufficient to prove

‖N t[F 1, F 2, F 3]‖L2
x,y

. (1 + |t|)−1 min
{j,k,ℓ}={1,2,3}

‖F j‖L2
x,y
‖F k‖S‖F ℓ‖S . (2.19)
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Coming back to (2.6),

‖N t[F 1, F 2, F 3]‖L2
x,y

. ‖
∑

q−r+s=p

‖It[F 1
q , F

2
r , F

3
s ]‖L2

x
‖ℓ2p , (2.20)

thus we only need to calculate ‖It[f 1, f 2, f 3]‖L2
x
. By the definition of It (2.7), we have

the energy bound

‖It[f 1, f 2, f 3]‖L2
x
=
∥∥∥e−it∂xx

(
eit∂xxf 1eit∂xxf 2eit∂xxf 3

)∥∥∥
L2
x

. min
{j,k,ℓ}={1,2,3}

‖f j‖L2
x
‖eit∂xxfk‖L∞

x
‖eit∂xxf ℓ‖L∞

x
.

Then by (2.17),

‖N t[F 1, F 2, F 3]‖L2
x,y

. min
{j,k,ℓ}={1,2,3}

‖F j‖L2
x,y

∑

r

‖eit∂xxF k
r ‖L∞

x

∑

s

‖eit∂xxF ℓ
s‖L∞

x
. (2.21)

For |t| > 1, the factor (1 + |t|)−1 comes from the dispersive estimate

‖eit∂xxf‖L∞
x
. |t|− 1

2‖f‖L1
x
. |t|− 1

2‖f‖
1
2

L2
x
‖xf‖

1
2

L2
x
, (2.22)

then
∑

p

‖eit∂xxFp‖L∞
x
. |t|−1/2

∑

p

‖Fp‖
1
2

L2
x
‖xFp‖

1
2

L2
x

= |t|−1/2
∑

p

|p|−s|p|s‖Fp‖
1
2

L2
x
‖xFp‖

1
2

L2
x

≤ |t|−1/2(
∑

p

|p|−2s)1/2(
∑

p

|p|4s‖Fp‖2L2
x
)1/4(

∑

p

‖xFp‖2L2
x
)1/4

≤ |t|−1/2‖F‖S ,

where we took s > 1/2 in the second and third inequalities. While for |t| ≤ 1, one may
use Sobolev estimate instead of the dispersive estimate,

‖eit∂xxf‖L∞
x
. ‖f‖H1

x
,

then
∑

p

‖eit∂xxFp‖L∞
x
.
∑

p

‖Fp‖H1
x
=
∑

p

|p|−s|p|s‖Fp‖H1
x

≤ (
∑

p

|p|−2s)1/2(
∑

p

|p|2s‖Fp‖2H1
x
)1/2 ≤ ‖F‖S ,

with s > 1/2. Thus for any t,
∑

p∈Z

‖eit∂xxFp‖L∞
x
. (1 + |t|)−1/2‖F‖S . (2.23)

Plugging (2.23) into (2.21), we get (2.19) and complete the proof of Lemma 2.2.
�
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3. Structure of the non-linearity

The purpose of this section is to extract the key effective interactions from the full
non-linearity in (1.1). We are to gain the decomposition

N t[F,G,H ] =
π

t
R[F,G,H ] + E t[F,G,H ] , (3.1)

where R is the resonant part,

FR[F,G,H ](ξ, p) =
∑

(p,q,r,s)∈Γ0

F̂q(ξ)Ĝr(ξ)Ĥs(ξ) , (3.2)

and E t is a remainder term, which is estimated in Proposition 3.1 below. We will see
later that this R[G,G,G] is exactly the same one as in (1.10).

Our main result in this section is the following proposition.

Proposition 3.1. Assume that for T ∗ ≥ 1, F , G, H: R → S satisfy

‖F‖XT∗ + ‖G‖XT∗ + ‖H‖XT∗ ≤ 1 . (3.3)

Then we can write

E t[F (t), G(t), H(t)] = E t
1[F (t), G(t), H(t)] + E t

2[F (t), G(t), H(t)] ,

and if for j = 1, 2 we note Ej(t) := E t
j [F (t), G(t), H(t)] then the following estimates hold

uniformly in T ∗ ≥ 1,

sup
1≤T≤T ∗

T−δ‖
T∫

T/2

Ej(t)dt‖S . 1, j = 1, 2 ,

sup
1≤t≤T ∗

(1 + |t|)1+δ‖E1(t)‖Z . sup
1≤t≤T ∗

(1 + |t|)1+δ‖E1(t)‖Y s . 1 , s > 1 ,

sup
1≤t≤T ∗

(1 + |t|)1/10‖E3(t)‖S . 1 ,

where E2(t) = ∂tE3(t). Assuming in addition

‖F‖X+
T∗

+ ‖G‖X+
T∗

+ ‖H‖X+
T∗

≤ 1 , (3.4)

we also have that

sup
1≤T≤T ∗

T−5δ‖
T∫

T/2

Ej(t)dt‖S+ . 1, sup
1≤T≤T ∗

T 2δ‖
T∫

T/2

Ej(t)dt‖S . 1, j = 1, 2 .

The statement of Proposition 3.1 says that if the remainder E t has inputs bounded in
Z and slightly growing in S then E t reproduces the same growth in S and even decays
in Z. To prove this proposition, we first present several reductions by performing a
decomposition of the non-linearity as

∑

A,B,C−dyadic

N t[QAF (t), QBG(t), QCH(t)] .
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3.1. The High Frequency Estimates. In this subsection, we are going to prove a
decay estimate on the non-linearity N t[QAF (t), QBG(t), QCH(t)] for t ∼ T , T ≥ 1, in

the regime max(A,B,C) ≥ T
1
6 . In the case when two inputs have high frequencies,

we can simply conclude by using energy estimates, while in the case when the highest
frequency is much higher than the others, we invoke the bilinear refinements of the
Strichartz estimate on R.

Lemma 3.1. [2] Assume that λ/10 ≥ µ ≥ 1 and that u(t) = eit∂xxu0, v(t) = eit∂xxv0.
Then, we have the bound

‖QλuQµv‖L2
x,t(R×R) . λ− 1

2‖u0‖L2
x(R)

‖v0‖L2
x(R)

. (3.5)

One may refer to [2] for the proof.

Slight modifications of the proof of the corresponding result in [12, Lemma 3.2] lead
to the following estimates. We reproduce the proof here for the readers’ convenience.

Lemma 3.2. Assume that T ≥ 1. The following estimates hold uniformly in T :

∥∥∥
∑

A,B,C

max(A,B,C)≥T
1
6

N t[QAF,QBG,QCH ]
∥∥∥
Y s

. T− 5
4‖F‖S‖G‖S‖H‖S, s > 1, ∀t ≥ T/4, (3.6)

∥∥∥
∑

A,B,C

max(A,B,C)≥T
1
6

T∫

T
2

N t[QAF (t), QBG(t), QCH(t)]dt
∥∥∥
S

. T− 1
50‖F‖XT

‖G‖XT
‖H‖XT

, (3.7)

∥∥∥
∑

A,B,C

max(A,B,C)≥T
1
6

T∫

T
2

N t[QAF (t), QBG(t), QCH(t)]dt
∥∥∥
S+

. T− 1
50‖F‖X+

T
‖G‖X+

T
‖H‖X+

T
. (3.8)

Proof. Let us begin with the first inequality. Let K ∈ L2
x,y, then we need to bound

IK =
〈
K, N t[QAF,QBG,QCH ]

〉

≤

∣∣∣∣∣∣

∫

R×T

eitA(QAF ) · eitA(QBG) · eitA(QCH) · eitA(K)

∣∣∣∣∣∣
.
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By Sobolev embedding, we see that
∣∣∣∣∣∣

∫

R×T

eitA(QAF ) · eitA(QBG) · eitA(QCH) · eitA(K)

∣∣∣∣∣∣

. ‖eitAQAF‖L6
x,y
‖eitAQBG‖L6

x,y
‖eitAQCH‖L6

x,y
‖K‖L2

x,y

. ‖eitAQAF‖Hs
x,y
‖eitAQBG‖Hs

x,y
‖eitAQCH‖Hs

x,y
‖K‖L2

x,y

= ‖QAF‖Hs
x,y
‖QBG‖Hs

x,y
‖QCH‖Hs

x,y
‖K‖L2

x,y

. (ABC)−13+s‖QAF‖H13
x,y
‖QBG‖H13

x,y
‖QCH‖H13

x,y
‖K‖L2

x,y
,

with s > 2/3. Then by duality, taking s = 1, we have
∥∥∥N t[QAF,QBG,QCH ]

∥∥∥
L2
x,y

. (ABC)−12‖QAF‖H13
x,y
‖QBG‖H13

x,y
‖QCH‖H13

x,y

. (ABC)−12‖QAF‖S‖QBG‖S‖QCH‖S .

(3.9)

Then By(2.16),
∥∥∥

∑

A,B,C

max(A,B,C)≥T
1
6

N t[QAF,QBG,QCH ]
∥∥∥
Y s

.
∑

A,B,C

max(A,B,C)≥T
1
6

∥∥∥N t[QAF,QBG,QCH ]
∥∥∥
Y s

.
∑

A,B,C

max(A,B,C)≥T
1
6

∥∥∥N t[QAF,QBG,QCH ]
∥∥∥
3/4

S

∥∥∥N t[QAF,QBG,QCH ]
∥∥∥
1/4

L2

. T−3/4
∑

A,B,C

max(A,B,C)≥T
1
6

(ABC)−3‖QAF‖S‖QBG‖S‖QCH‖S

. T−5/4‖F‖S‖G‖S‖H‖S ,

where in the third inequality we used Lemma 2.2 and (3.9).
For the other two estimates, we must be more careful. First of all, we will split the set

{(A,B,C) : max(A,B,C) ≥ T
1
6} into two parts Λ and its relative complement Λc. Here

the set Λ is defined as Λ :=
{
(A,B,C) : med(A,B,C) ≤ T

1
6/16, max(A,B,C) ≥ T

1
6

}
,

with med(A,B,C) denote the second largest dyadic number among (A,B,C).
Let us start with the case (A,B,C) ∈ Λc, we claim

∥∥∥
∑

(A,B,C)∈Λc

N t[QAF,QBG,QCH ]
∥∥∥
S(+)

. T− 11
6 ‖F‖S(+)‖G‖S(+)‖H‖S(+) (3.10)
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By Lemma 6.2, we only need to control
∥∥∥

∑
(A,B,C)∈Λc

N t[QAF,QBG,QCH ]
∥∥∥
L2
, the main

strategy is similar to the proof above, but this time we should not lose derivatives on all
of the F,G,H , let us check the condition (6.4). Let K ∈ L2

x,y, then we need to bound

IK =

〈
K,

∑

(A,B,C)∈Λc

N t[QAF,QBG,QCH ]

〉

≤
∑

(A,B,C)∈Λc

∣∣∣∣∣∣

∫

R×T

eitA(QAF ) · eitA(QBG) · eitA(QCH) · eitA(K)

∣∣∣∣∣∣

.
∑

(A,B,C)∈Λc

‖QAF‖L2
x,y
‖eitAQBG‖L∞

x,y
‖eitAQCH‖L∞

x,y
‖K‖L2

x,y

.
∑

(A,B,C)∈Λc

‖QAF‖L2
x,y
‖QBG‖H2

x,y
‖QCH‖H2

x,y
‖K‖L2

x,y

.
∑

(A,B,C)∈Λc

(BC)−11‖QAF‖L2
x,y
‖QBG‖H13

x,y
‖QCH‖H13

x,y
‖K‖L2

x,y

.
( ∑

(A,B,C)∈Λc

(med(A,B,C))−11
)
‖F‖L2

x,y
‖G‖H13

x,y
‖H‖H13

x,y
‖K‖L2

x,y

. T−11/6‖F‖L2
x,y
‖K‖L2

x,y
‖G‖S‖H‖S ,

then by duality,
∥∥∥

∑

(A,B,C)∈Λc

N t[QAF,QBG,QCH ]
∥∥∥
L2

. T−11/6‖F‖L2
x,y
‖G‖S‖H‖S . (3.11)

The inequality above holds by replacing F with G, H , then we get (3.10) by applying
Lemma 6.2.

Now we turn to the case (A,B,C) ∈ Λ, we are to show

‖
∑

A,B,C
(A,B,C)∈Λ

T∫

T
2

N t[QAF (t), QBG(t), QCH(t)]dt‖S(+)

. T− 1
50‖F‖

X
(+)
T

‖G‖
X

(+)
T

‖H‖
X

(+)
T

.

(3.12)

We will only prove the case with norms S and XT , the proof of the case with S+, X+
T is

similar. The main tool of this part is the bilinear Strichartz estimate from Lemma 3.1.
We consider a decomposition

[T/4, 2T ] =
⋃

j∈J

Ij , Ij = [jT
9
10 , (j + 1)T

9
10 ] = [tj , tj+1] , #J . T

1
10 (3.13)
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and consider χ ∈ C∞
c (R), χ ≥ 0 such that χ(s) = 0 if |s| ≥ 2 and

∑

k∈Z

χ(s− k) ≡ 1 .

The left hand-side of (3.12) can be estimated by C(E1 + E2), where

E1 =
∥∥∥
∑

j∈J

∑

(A,B,C)∈Λ

T∫

T
2

χ
( t

T
9
10

− j
)

(
N t[QAF (t), QBG(t), QCH(t)]−N t[QAF (tj), QBG(tj), QCH(tj)]

)
dt
∥∥∥
S

and

E2 =
∥∥∥
∑

j∈J

∑

(A,B,C)∈Λ

T∫

T
2

χ
( t

T
9
10

− j
)
N t[QAF (tj), QBG(tj), QCH(tj)]dt

∥∥∥
S
.

Notice that F (tj), G(tj), H(tj) do not depend on t.

Let us start to estimate E1,

E1 ≤
∑

j∈J

T∫

T
2

χ
( t

T
9
10

− j
)
E1,j(t)dt (3.14)

with

E1,j(t) :=∥∥∥
∑

(A,B,C)∈Λ

(
N t[QAF (t), QBG(t), QCH(t)]−N t[QAF (tj), QBG(tj), QCH(tj)]

)∥∥∥
S
.

Denote by Q+ := Q
≥T

1
6
and Q− := Q

≤T
1
6 /16

, then due to the structure of Λ, one of

A,B,C is larger than T
1
6 and the other two are smaller than T

1
6/16, we decompose

∑

(A,B,C)∈Λ

N t[QAF,QBG,QCH ] = N t[Q+F,Q−G,Q−H ]

+N t[Q−F,Q+G,Q−H ] +N t[Q−F,Q−G,Q+H ] .

We rearrange the terms in E1,j two by two, and rewrite each pair as follows

N t[Q+F (t), Q−G(t), Q−H(t)]−N t[Q+F (tj), Q−G(tj), Q−H(tj)]

= N t[Q+(F (t)− F (tj)), Q−G,Q−H(t)] +N t[Q+F (tj), Q−(G(t)−Gtj)), Q−H(t)]

+N t[Q+F (tj), Q−G(tj), Q−(H(t)−H(tj))] ,

then by Lemma 2.2, and the boundedness of Q± on S(+), we see that

‖N t[Q+(F (t)− F (tj)), Q−G,Q−H(t)]‖S . (1 + |t|)−1‖F (t)− F (tj)‖S‖G(t)‖S‖H(t)‖S ,
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We bound the other terms similarly, and finally we have an estimate on E1,j ,

E1,j(t) ≤ (1 + |t|)−1
[
‖F (t)− F (tj)‖S‖G(t)‖S‖H(t)‖S

+ ‖F (tj)‖S‖G(t)−G(tj)‖S‖H(t)‖S
+ ‖F (tj)‖S‖G(tj)‖S‖H(t)−H(tj)‖S

]
.

(3.15)

Since |t− tj | ≤ T
9
10 ,

‖F (t)− F (tj)‖S ≤
t∫

tj

‖∂tF (θ)‖Sdθ ≤ T
9
10 sup

t
‖∂tF (t)‖S .

Notice that this is the advantage of introducing the partition of time interval provided
by χ. Comparing with the definition of XT (see (2.11)), we have

‖F (t)− F (tj)‖S ≤ T− 1
10

+3δ‖F‖XT
,

‖F (t)‖S ≤ T δ‖F‖XT
.

Therefore,

E1,j . T− 11
10

+5δ‖F‖XT
‖G‖XT

‖H‖XT
,

then

E1 .

T∫

T/2

∑

j∈J

χ(
t

T
9
10

− j)E1,j(t)dt . T− 1
10

+5δ‖F‖XT
‖G‖XT

‖H‖XT
.

We now turn to E2, recall

E2 =
∥∥∥
∑

j∈J

∑

(A,B,C)∈Λ

T∫

T
2

χ
( t

T
9
10

− j
)
N t[QAF (tj), QBG(tj), QCH(tj)]dt

∥∥∥
S
,

with QAF (tj), QBG(tj), QCH(tj) do not depend on t. Denoting

EA,B,C
2,j =

∥∥∥
T∫

T
2

χ
( t

T
9
10

− j
)
N t[QAF (tj), QBG(tj), QCH(tj)]dt

∥∥∥
S
,

then

E2 ≤
∑

j∈J

∑

(A,B,C)∈Λ

EA,B,C
2,j .

We claim

∥∥∥
T∫

T
2

χ
( t

T
9
10

− j
)
N t[QAF

a, QBF
b, QCF

c]dt
∥∥∥
L2
x,y

. (max(A,B,C))−1 min
{α,β,γ}={a,b,c}

‖F α‖L2
x,y
‖F β‖S‖F γ‖S.

(3.16)
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Then by Lemma 6.2, ‖EA,B,C
2,j ‖S . (max(A,B,C))−1‖F‖S‖G‖S‖H‖S, the estimate for

E2 will come out by summing up. Let us prove (3.16), assuming K ∈ L2
x,y, we consider

with functions F a, F b, F c independent on t,

IK =
∑

p−q+r−s=0

eitω〈Kp,

T∫

T
2

χ
( t

T
9
10

− j
)
N t[QAF

a
q , QBF

b
r , QCF

c
s ]dt〉L2

x×L2
x

=
∑

p−q+r−s=0

eitω
T∫

T
2

∫

R×T

χ
( t

T
9
10

− j
)
eit∂xx(QAF

a
q )e

it∂xx(QBF b
r )e

it∂xx(QCF
c
s )e

it∂xxKpdxdt

where we may assume that K = QDK, D ≃ max(A,B,C). Without loss of generality,
we assume A = max(A,B,C), then by Hölder’s inequality,

∣∣∣
T∫

T
2

∫

R×T

χ
( t

T
9
10

− j
)
eit∂xx(QAF

a
q )e

it∂xx(QBF b
r )e

it∂xx(QCF
c
s )e

it∂xxQDKpdxdt
∣∣∣

≤ ‖eit∂xx(QAF
a
q )e

it∂xx(QBF b
r )‖L2

x,t
‖eit∂xx(QCF

c
s )e

it∂xxQDKp‖L2
x,t

,

since A ≥ 16B, D ≥ 16C, applying the bilinear Strichartz estimate from Lemma 3.1
below, we then have

‖eit∂xx(QAF
a
q )e

it∂xx(QBF b
r )‖L2

x,t
. A−1/2‖F a

q ‖L2
x
‖F b

s ‖L2
x

‖eit∂xx(QCF
c
s )e

it∂xxQDKp‖L2
x,t

. D−1/2‖F c
r ‖L2

x
‖Kp‖L2

x
.

Applying Cauchy-Schwarz and (2.17) on the summation on the right hand side of IK ,
we have

IK .
∑

p−q+r−s=0

(max(A,B,C))−1‖F a
q ‖L2

x
‖F b

r ‖L2
x
‖F c

s ‖L2
x
‖Kp‖L2

x

. (max(A,B,C))−1
∥∥∥
∑

p=q−r+s

‖F a
q ‖L2

x
‖F b

r ‖L2
x
‖F c

s ‖L2
x

∥∥∥
ℓ2p

‖Kp‖L2
x,y

. (max(A,B,C))−1 min
{α,β,γ}={a,b,c}

‖F α‖L2
x,y

∑

p

‖F β
p ‖L2

x

∑

p

‖F γ
p ‖L2

x
‖K‖L2

x,y

. (max(A,B,C))−1 min
{α,β,γ}={a,b,c}

(
‖F α‖L2

x,y

∑

p

(
|p|−s|p|s|‖F β

p ‖L2
x

)

·
∑

p

(
|p|−s|p|s‖F γ‖L2

x

)
‖K‖L2

x,y

)

. (max(A,B,C))−1 min
{α,β,γ}={a,b,c}

‖F α‖L2
x,y
‖F β‖S‖F γ‖S‖K‖L2

x,y
,

where we took s > 1/2. The result (3.16) turns out by duality. Applying Lemma 6.2,
we get

EA,B,C
2,j . (max(A,B,C))−1‖F‖S‖G‖S‖H‖S ,
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then

E2 ≤
∑

j∈J

∑

(A,B,C)∈Λ

EA,B,C
2,j . #J

∑

(A,B,C)∈Λ

(max(A,B,C))−1‖F‖S‖G‖S‖H‖S .

Without loss of generality, we assume A = max(A,B,C), then
∑

(A,B,C)∈Λ

(max(A,B,C))−1 =
( ∑

A≥T 1/6

A−1
)(
#{B : B ≤ T 1/6/16}

)2
. T−1/6+δ

while using the definition (2.11),

‖F (tj)‖S‖G(tj)‖S‖H(tj)‖S ≤ T 3δ‖F‖XT
‖G‖XT

‖H‖XT
,

thus
E2 . T−1/15+δ‖F‖XT

‖G‖XT
‖H‖XT

, (3.17)

which is a stronger version of (3.12). The proof of Lemma 3.2 is complete. �

Thus we may suppose that the x frequencies of F,G,H are . T
1
6 . It is natural to

introduce the first decomposition

N t[F,G,H ] = N t
0 [F,G,H ] + Ñ t[F,G,H ] , (3.18)

FN t
0(ξ, p) :=

∑

(p,q,r,s)∈Γ0

Fx

(
It[Fq, Gr, Hs]

)
(ξ) . (3.19)

3.2. The fast oscillations. Firstly, we present another elementary estimate here.

Lemma 3.3. Let 1
p
= 1

q
+ 1

r
+ 1

s
with 1 ≤ p, q, r, s ≤ ∞, then

∥∥
∫

R3

eixξm(η, κ)f̂(ξ − η)ĝ(ξ − η − κ)ĥ(ξ − κ)dηdκdξ
∥∥
Lp
x
. ‖F−1m‖L1(R2)‖f‖Lq‖g‖Lr‖h‖Ls.

Proof.

I =

∫

R3

eixξm(η, k)f̂(ξ − η)ĝ(ξ − η − k)ĥ(ξ − k)dηdκdξ

=

∫

R3×R2



∫

R3

eiξ(x−α+β−γ)e−iη(y−α+β)eiκ(z+β−γ)dξdηdκ




F−1m(y, z)f(α)g(β)h(γ)dydzdαdβdγ

=

∫

R2

F−1m(y, z)f(x− z)g(x− y − z)h(x − y)dydz ,

then

‖I‖Lp
x
≤
∫

R3

|F−1m(y, z)|‖fgh‖Lp
x
dydz

= ‖F−1m‖L1(R2)‖fgh‖Lp(R)

≤ ‖F−1m‖L1(R2)‖f‖Lq‖g‖Lr‖h‖Ls ,
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the last inequality comes from the Hölder’s inequality and the assumption 1
p
= 1

q
+ 1

r
+

1
s
. �

Remark 3.1. Similar result holds for the case m = m(ξ, η, κ), one may refer to [12,
Lemma 7.5].

The main purpose of this subsection is to estimate of Ñ t.

Lemma 3.4. Let 1 ≤ T ≤ T ∗. Assume that F , G, H: R → S satisfy (3.3) and

F = Q≤T 1/6F, G = Q≤T 1/6G, H = Q≤T 1/6H .

Then we can write

Ñ t[F (t), G(t), H(t)] = Ẽ t
1[F (t), G(t), H(t)] + E t

2[F (t), G(t), H(t)] ,

and if we set Ẽ1(t) := Ẽ t
1[F (t), G(t), H(t)] and E2(t) := E t

2[F (t), G(t), H(t)] then it holds
that, uniformly in 1 ≤ T ≤ T ∗ ,

T 1+2δ sup
T/4≤t≤T ∗

‖Ẽ1(t)‖S . 1 , T 1/10 sup
T/4≤t≤T ∗

‖E3(t)‖S . 1 ,

where E2(t) = ∂tE3(t). Assuming in addition that (3.4) holds we have

T 1+2δ sup
T/4≤t≤T ∗

‖Ẽ1(t)‖S+ . 1 , T 1/10 sup
T/4≤t≤T ∗

‖E3(t)‖S+ . 1 .

Proof. To prove this lemma, we start by decomposing Ñ t along the non-resonant level
sets as follows: Set

F a = Q≤T 1/6F a, F b = Q≤T 1/6F b, F c = Q≤T 1/6F c ,

FÑ t[F a, F b, F c](ξ, p) =
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitω
(
Ot

1[F
a
q , F

b
r , F

c
s ](ξ) +Ot

2[F
a
q , F

b
r , F

c
s ](ξ)

)
,

(3.20)

Ot
1[f

a, f b, f c](ξ) :=

∫

R2

e2itηκ(1− ϕ(t
1
4 ηκ))f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)dηdκ ,

Ot
2[f

a, f b, f c](ξ) :=

∫

R2

e2itηκϕ(t
1
4ηκ)f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)dηdκ .

We may rewrite for ω 6= 0,

eitωOt
2[f

a, f b, f c] = ∂t

(
eitω

iω
Ot

2[f
a, f b, f c]

)
− eitω

iω

(
∂tOt

2

)
[fa, f b, f c]

− eitω

iω
Ot

2[∂tf
a, f b, f c]− eitω

iω
Ot

2[f
a, ∂tf

b, f c]− eitω

iω
Ot

2[f
a, f b, ∂tf

c]

:= ∂t

(
eitω

iω
Ot

2[f
a, f b, f c]

)
+ eitωLt[fa, f b, f c] ,

(3.21)
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where
(
∂tOt

2

)
[fa, f b, f c] :=

∫

R2

∂t

(
e2itηκϕ(t

1
4ηκ)

)
f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)dηdκ .

Thus we define E t
2[F

a, F b, F c] = ∂tE t
3[F

a, F b, F c] with

FE t
3[F

a, F b, F c](ξ, p) :=
∑

ω 6=0

∑

(p,q,r,s)∈Γω

(
eitω

iω
Ot

2[F
a
q , F

b
r , F

c
s ]

)
, (3.22)

and define Ẽ t
1 with Ot

1 and the last four terms in (3.21),

FẼ t
1(ξ, p) :=

∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitω
(
Ot

1[F
a
q , F

b
r , F

c
s ] + Lt[F a

q , F
b
r , F

c
s ]
)
. (3.23)

1. Estimation of E3(t). We define the multiplier appearing in the definition of Ot
2 by

m(η, κ) := ϕ(t
1
4ηκ)ϕ((10T )

−1
6 η)ϕ((10T )

−1
6 κ) .

¿From Lemma 3.5 at the end of this subsection, it is bounded by ‖Fηκm̃‖L1(R2) . t
δ

100 .
Applying Lemma 3.3, we get

‖Ot
2[f

a, f b, f c]‖L2
ξ
. (1 + |t|) δ

100 min
{α,β,γ}={a,b,c}

‖fα‖L2
x
‖eit∂xxfβ‖L∞

x
‖eit∂xxf γ‖L∞

x
.

Then

‖E3(t)‖L2
x,y

.
∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

(
eitω

iω
Ot

2[F
a
q , F

b
r , F

c
s ]

)∥∥∥
L2
xℓ

2
p

. (1 + |t|) δ
100 min

{α,β,γ}={a,b,c}

∥∥∥
∑

p−q+r−s=0

‖F α
q ‖L2

x
‖eit∂xxF β

r ‖L∞
x
‖eit∂xxF γ

s ‖L∞
x

∥∥∥
ℓ2p

using (2.17)

. (1 + |t|) δ
100 min

{α,β,γ}={a,b,c}
‖F α‖L2

x,y

∑

r

‖eit∂xxF β
r ‖L∞

x

∑

s

‖eit∂xxF γ
s ‖L∞

x

using (2.22)

. (1 + |t|)−1+ δ
100 min

{α,β,γ}={a,b,c}

(
‖F α‖L2

x,y

∑

r

(
‖F β

r ‖1/2L2
x
‖xF β

r ‖1/2L2
x

)

·
∑

s

(
‖F γ

s ‖1/2L2
x
‖xF γ

s ‖1/2L2
x

))
.

Noticing that for the last inequality, we have
∑

r

(|ar|1/2|br|1/2) ≤
∑

r

(|ar|1/2|r|θ|r|−θ|br|1/2)

≤ ‖ar‖1/4h2θ
r
(
∑

r

|r|−2θ)1/2‖br‖ℓ2r

. ‖ar‖1/2h2θ
r
‖br‖ℓ2r



ENERGY GROWTH AND MODIFIED SCATTERING 21

with θ > 1/2. Then

‖E3(t)‖L2
x,y

. (1 + |t|)−1+ δ
100 min

{α,β,γ}={a,b,c}
‖F α‖L2

x,y
‖F β‖1/2

H2θ
x,y
‖xF β‖1/2L2

x,y
‖F γ‖1/2

H2θ
x,y
‖xF γ‖1/2L2

x,y

. (1 + |t|)−1+ δ
100 min

{α,β,γ}={a,b,c}
‖F α‖L2

x,y
‖F β‖S‖F γ‖S . (3.24)

Therefore, an application of Lemma 6.2 shows that the S norms of S3 is controlled as
follows,

‖E3(t)‖S . (|T |)−1+ δ
100‖F a‖S‖F b‖S‖F c‖S . (|T |)−1+ δ

100 , (3.25)

the last inequality comes from (3.3). Combining with inequality (3.4), we can also gain

‖S3(t)‖S+ . (|T |)−1+ δ
100 . (3.26)

2. Estimation of Ẽ1(t). Again, we need to control the L2 norm first, and then the S

norm. Ẽ1(t) is composed by two parts, one is from Ot
1, and the other one Lt is from the

last four terms in (3.21),

FẼ t
1[F

a, F b, F c](ξ, p) :=
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitω
(
Ot

1[F
a
q , F

b
r , F

c
s ] + Lt[F a

q , F
b
r , F

c
s ]
)
, (3.27)

with

iωLt[fa, f b, f c] := −
(
∂tOt

2

)
[fa, f b, f c]−Ot

2[∂tf
a, f b, f c]−Ot

2[f
a, ∂tf

b, f c]−Ot
2[f

a, f b, ∂tf
c] .

The term
∑
ω 6=0

∑
(p,q,r,s)∈Γω

eitωLt[F a
q , F

b
r , F

c
s ] can be estimated similarly as ‖E3(t)‖S.

Actually, we may gain a better estimate here, since for the first term, we can get an
extra T−1/4 which comes from the t derivative of the multiplier, while for the other three
terms, by the definition of XT norm, we have ‖∂tF‖S ≤ T−1+3δ‖F‖XT

. Let us focus on
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitωOt
1[F

a
q , F

b
r , F

c
s ] .

We claim that∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitωOt
1[F

a
q , F

b
r , F

c
s ]
∥∥∥
L2

. T−1−δ min
{α,β,γ}={a,b,c}

‖F α‖L2
x,y
‖F β‖S‖F γ‖S .

(3.28)
As we did for Ot

2, we still have

‖Ot
1[f

a, f b, f c]‖L2 . (1 + |t|)δ/100 min
{α,β,γ}={a,b,c}

‖fα‖L2‖eit∂xxfβ‖L∞‖eit∂xxf γ‖L∞ . (3.29)

We then need to estimate ‖eit∂xxf‖L∞
x
. We notice that for all 1

2
< α ≤ 1,

‖eit∂xxf‖L∞(R) . 〈t〉− 1
2‖f‖L1(R) . 〈t〉− 1

2‖〈x〉−α〈x〉αf‖L1(R) . 〈t〉− 1
2‖〈x〉αf‖L2(R) , (3.30)

we may take α = 7/9, then for f supported on |x| ≥ R,

‖eit∂xxf‖L∞ . 〈t〉− 1
2R−1/9‖〈x〉8/9f‖L2 . (3.31)

Therefore, we decompose f = fc + fe with fc(x) := ϕ( x
T 1/4 )f(x), then

Ot
1[f

a, f b, f c] = Ot
1[f

a
c + fa

e , f
b
c + f b

e , f
c
c + f c

e ] .
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then by (3.31), if one of fa, f b, f c is supported on |x| ≥ 2T 1/4, for example, f b = f b
e ,

then

‖Ot
1[f

a, f b
e , f

c]‖L2
x
= . (1 + |t|)δ/100‖fa‖L2‖eit∂xxf b

e‖L∞‖eit∂xxf c‖L∞

. (1 + |t|)δ/100‖fa‖L2‖eit∂xxf b
e‖L∞‖eit∂xxf c‖L∞

. T−1−1/36+δ/100‖fa‖L2‖〈x〉8/9f b
e‖L2‖〈x〉7/9f c‖L2 ,

in the last inequality comes from (3.30) and (3.31). Then using (2.17),
∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitωOt
1[F

a
q , F

b
r,e, F

c
s ]
∥∥∥
L2

. T−1−1/36+δ/100‖F a‖L2

∑

r

‖〈x〉8/9F b
r ‖L2

x

∑

s

‖〈x〉7/9F c
s ‖L2

x
.

(3.32)

For 0 < α < 1, ∑

r

‖xαFr‖L2
x
. ‖F‖S , (3.33)

indeed,
∑

r

‖〈x〉αFr‖L2
x
=
∑

r

‖(〈x〉Fr)
αF 1−α

r ‖L2
x
≤
∑

r

‖〈x〉Fr‖αL2‖Fr‖1−α
L2

≤
∑

r

‖〈x〉Fr‖αL2〈r〉s‖Fr‖1−α
L2 〈r〉−s ≤ ‖〈x〉F‖αL2

x,y
‖F‖1−α

H
s

1−α
x,y

≤ ‖F‖S ,

with s > 1/2. Thus
∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitωOt
1[F

a
q , F

b
r,e, F

c
s ]
∥∥∥
L2

. T−1−1/36+δ/100‖F a‖L2‖F b‖S‖F c‖S . (3.34)

Let us turn to the case Ot
1[f

a, f b
c , f

c
c ]. By replacing e2itηκ by (2itη)−1∂κ(e

2itηκ), we can
rewrite Ot

1 as

Ot
1[f

a, f b, f c](ξ) =

∫

R2

e2itηκ(1− ϕ(t
1
4ηκ))f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)dηdκ

=

∫

R2

(2itη)−1∂κ(e
2itηκ)(1− ϕ(t

1
4 ηκ))f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)dηdκ

=

∫

R2

(2itη)−1e2itηκ∂κ
(
(1− ϕ(t

1
4 ηκ))f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)

)
dηdκ .

(3.35)

Firstly, it is easy to deal with the case when the κ derivative falls on 1−ϕ, which turns
out to be

(2i)−1t−3/4

∫

R2

e2itηκϕ′(t
1
4ηκ)f̂a(ξ − η)f̂ b(ξ − η − κ)f̂ c(ξ − κ)dηdκ ,

then we get the required estimate with the similar strategy we used to estimate Ot
2 since

ϕ′ admits similar properties as ϕ.
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For the other case, we calculate the case when κ derivative falls on f b for example,
which is denoted by O1,b,

O1,b :=

∫

R2

(2itη)−1e2itηκ(1− ϕ(t
1
4 ηκ))f̂a(ξ − η)∂κ

(
f̂ b(ξ − η − κ)

)
f̂ c(ξ − κ)dηdκ

=

∫

R2

(2itη)−1e2itηκ(1− ϕ(t
1
4 ηκ))f̂a(ξ − η)x̂f b(ξ − η − κ)f̂ c(ξ − κ)dηdκ .

(3.36)

Noticing that on the support of the integration, |t||η| & |t|−3/4|κ|−1 & T−7/12, we still
have an L2 estimate

‖O1,b‖L2
ξ
. T−7/12+ δ

100 ‖fa‖L2 · ‖eit∂xx(xf b)‖L∞ · ‖eit∂xxf c‖L∞ . (3.37)

By (3.30), for f supported on |x| ≤ T 1/4, we have

‖eit∂xxxf‖L∞ . 〈t〉− 1
2T 1/4‖〈x〉7/9f‖L2 . (3.38)

using (3.30) and (3.38),

‖O1,b‖L2
ξ
. T−7/12+ δ

100 ‖fa‖L2 · ‖eit∂xx(xf b
c )‖L∞ · ‖eit∂xxf c‖L∞

. T−4/3+ δ
100‖fa‖L2

x
‖〈x〉7/9f b‖L2

x
‖〈x〉7/9f c‖L2

x
.

Once again we use (3.33),
∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

eitωOt
1[F

a
q , F

b
r , F

c
s ]
∥∥∥
L2

. T−4/3+ δ
100

∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

‖F a
q ‖L2

x
‖〈x〉7/9F b

r ‖L2
x
‖〈x〉7/9F c

s ‖L2
x

∥∥∥
ℓ2p

. T−4/3+ δ
100‖F a‖L2

x,y
‖F b‖S‖F c‖S .

(3.39)

By replacing F a by F b or F c, we proved (3.28) and then the estimate of Ẽ1(t). �

Lemma 3.5. [12, Remark 3.5] For T > 1, ϕ ∈ C∞
c (R), ϕ(x) = 1 when |x| ≤ 1 and

ϕ(x) = 0 when |x| ≥ 2, we define for T/2 ≤ t ≤ T ,

m̃(η, κ) := ϕ(t
1
4ηκ)ϕ((10T )

−1
6 η)ϕ((10T )

−1
6 κ) .

Then ‖Fηκm̃‖L1(R2) . t
δ

100 .

Proof.

‖Fηκm̃‖L1(R2) = ‖I(x1, x2)‖L1
x1,x2

,

where

I(x1, x2) =

∫

R2

eix1ηeix2κϕ(Sηκ)ϕ(η)ϕ(κ)dηdκ, S ≈ T
7
12 .

Then one may show that

|I(x1, x2)|+ |x1I(x1, x2)|+ |x2I(x1, x2)| . 1, |x1x2I(x1, x2)| . log(1 + T ) .
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Indeed,

|x1I(x1, x2)| =

∣∣∣∣∣∣

∫

R2

1

i
∂η(e

ix1η)eix2κϕ(Sηκ)ϕ(η)ϕ(κ)dηdκ

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

R2

eix1ηeix2κ[Sκϕ′(Sηκ)ϕ(η)ϕ(κ) + ϕ(Sηκ)ϕ′(η)ϕ(κ)]dηdκ

∣∣∣∣∣∣

. 1 +

∣∣∣∣∣∣

∫

R2

eix1ηeix2κ(Sκϕ′(Sηκ)ϕ(η)ϕ(κ))dηdκ

∣∣∣∣∣∣
.

Notice that |Sηκ| ≤ 2, then the second term turns out to be

∣∣∣∣∣∣

∫

R2

eix1ηeix2κ(Sκϕ′(Sηκ)ϕ(η)ϕ(κ))dηdκ

∣∣∣∣∣∣
.

∫

D:={|Sηκ|,|η|,|κ|≤2}

|Sκ|dηdκ . 1.

Thus we get the first inequality, and we use the similar strategy to prove the second one.

|x1x2I(x1, x2)| .
∫

R2

|∂η∂κ
(
ϕ(Sηκ)ϕ(η)ϕ(κ)

)
|dηdκ

.

∫

D

|Sκϕ′(Sηκ)ϕ(η)ϕ′(κ)|+ |SκSηϕ′′(Sηκ)ϕ(η)ϕ(κ)|

+ |Sηϕ′(Sηκ)ϕ′(η)ϕ(κ)|+ |ϕ(Sηκ)ϕ′(η)ϕ′(κ)|+ |Sϕ′(Sηκ)ϕ(η)ϕ(κ)|dηdκ

. (

T−7/12∫

0

2∫

0

+

2∫

T−7/12

2T−7/12

κ∫

0

)[1 + |Sκ|+ |Sη|+ |SκSη|+ S]dηdκ

. log(1 + T ) .

Then

(1 + |x1|)(1 + |x2|)|I(x1, x2)| . log(1 + T ) .

One also have a polynomial in T bound

(1 + |x1|2)(1 + |x2|2)|I(x1, x2)| . T 7/12 .

Therefore by interpolation one obtains that for every 0 < ε < 7/12, there exists κ > 1/2
such that

|I(x1, x2)| . (1 + T )ε(1 + |x1|2)−κ(1 + |x2|2)−κ .

We hence deduce that ‖Fηκm̃‖L1(R2) . t
δ

100 . �
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3.3. The Resonant Level sets.

We now turn to the contribution of the resonant part in (3.18),

FN t
0 [F,G,H ](ξ, p) =

∑

(p,q,r,s)∈Γ0

FxIt[Fq(t), Gr(t), Hs(t)](ξ).

This term yields the main contribution in Proposition 3.1 and in particular is responsible
for the slowest 1/t decay. We show that it gives rise to a contribution which grows slowly
in S, S+ and that it can be well approximated by the resonant system in the Z norm.

In this subsection, we will bound quantities in terms of

‖F‖Z̃t
:= ‖F‖Z + (1 + |t|)−δ‖F‖S ,

so that F (t) remains uniformly bounded in Z̃t under the assumption of Proposition 3.1

due to the definition of XT and Z̃t norm. Our main statement of this subsection is as
follows.

Lemma 3.6. Let t ≥ 1. There holds that

‖N t
0 [F

a, F b, F c]‖S . (1 + |t|)−1
∑

{α,β,γ}={a,b,c}

‖F α‖Z̃t
· ‖F β‖Z̃t

· ‖F γ‖S (3.40)

and

‖N t
0 [F

a, F b, F c]‖S+ .(1 + |t|)−1
∑

{α,β,γ}={a,b,c}

‖F α‖Z̃t
· ‖F β‖Z̃t

· ‖F γ‖S+

+ (1 + |t|)−1+2δ
∑

{α,β,γ}={a,b,c}

‖F α‖Z̃t
· ‖F β‖S · ‖F γ‖S.

(3.41)

Moreover,

‖N t
0[F,G,H ]− π

t
R[F,G,H ]‖Y s . (1 + |t|)−1−20δ‖F‖S‖G‖S‖H‖S . (3.42)

and

‖N t
0 [F,G,H ]− π

t
R[F,G,H ]‖S . (1 + |t|)−1−20δ‖F‖S+‖G‖S+‖H‖S+ . (3.43)

In addition, we also have

‖R[F a, F b, F c]‖S .
∑

{α,β,γ}={a,b,c}

‖F α‖Z̃t
· ‖F β‖Z̃t

· ‖F γ‖S (3.44)

‖R[F a, F b, F c]‖S+ .
∑

{α,β,γ}={a,b,c}

‖F α‖Z̃t
· ‖F β‖Z̃t

· ‖F γ‖S+ (3.45)

+ (1 + |t|)2δ
∑

{α,β,γ}={a,b,c}

‖F α‖Z̃t
· ‖F β‖S · ‖F γ‖S.
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Proof. As before, we will study the L2 norm and then apply Lemma 6.2 to get the S(+)

norm estimate. Using (2.17), we have

‖N t
0 [F

a, F b, F c]‖L2
x,y

≤
∥∥∥

∑

(p,q,r,s)∈Γ0

|eit∂xxF a
q | · |eit∂xxF b

r | · |eit∂xxF c
s |
∥∥∥
ℓ2pL

2
x

. min
{α,β,γ}={a,b,c}

‖F α‖L2
x,y

∑

p

‖eit∂xxF β
p ‖L∞

x

∑

p

‖eit∂xxF γ
p ‖L∞

x
.

To calculate
∑
p

‖eit∂xxFp‖L∞
x
, we start with the following estimate for |t| > 1,

∣∣∣eit∂xxf(x)− c
e−ix2/(4t)

√
t

f̂(− x

2t
)
∣∣∣ . |t|−3/4‖xf‖L2 , c is a constant. (3.46)

One may refer to [12, Lemma 7.3] for the proof of (3.46). Then

|eit∂xxf(x)| . |t|−1/2 sup
ξ

|f̂(ξ)|+ |t|−3/4‖xf‖L2 . (3.47)

Then ∑

|p|≤t1/8

‖eit∂xxFp‖L∞
x
. t−1/2 sup

ξ

∑

p

|F̂p(ξ)|+ t−3/4
∑

|p|≤t1/8

‖xFp‖L2

. t−1/2‖F‖Z + t−5/8‖xF‖S ,

while ∑

|p|>t1/8

‖eit∂xxFp‖L∞
x
.

∑

|p|>t1/8

‖Fp‖H1

=
∑

|p|>t1/8

(1 + |p|2)N/2‖Fp‖H1(1 + |p|2)−N/2

. t−
2N−1

16 ‖F‖HN+1
x,y

,

therefore

‖N t
0 [F

a, F b, F c]‖L2
x,y

. (1 + |t|)−1 min
{α,β,γ}={a,b,c}

‖F α‖L2
x,y
‖F β‖Z̃t

‖F γ‖Z̃t
. (3.48)

Apply the first part of Lemma 6.2, we get (3.40). The proof of (3.41) follows from the

second part of Lemma 6.2, and we only need to check Z̃t norm satisfies (6.6). Due to
the definition of S+, we only need to prove the following inequality,

‖(1− ∂xx)
4F‖Z + ‖xF‖Z . T−δ‖F‖S+ + T 2δ‖F‖S . (3.49)

Indeed, following the proof of (2.14), we are able to show

‖(1− ∂xx)
4F‖Z . ‖F‖S ,

thus we only need to prove (3.49) for ‖xF‖Z . Since Hs(T) ⊂ B1 with s > 1, then

‖xF‖2Z = sup
ξ
(1 + |ξ|2)2‖x̂F‖2B1

y

. sup
M

(1 +M2)
∑

p

(1 + |p|2)s|FxQM(xFp)|2 .



ENERGY GROWTH AND MODIFIED SCATTERING 27

We notice that for any M, |p| 6= 0, denote R = (1+M2)(1+ |p|2)sT 2δ, and we decompose
xFp(x) into two parts

x(1− ϕ(
x

R
))Fp and xϕ(

x

R
)Fp ,

then

‖xF‖2Z . sup
M

(1 +M2)
∑

p

(1 + |p|2)s‖FxQM

{
x(1− ϕ(

x

R
))Fp

}
‖2L∞

ξ
:= I

+ sup
M

(1 +M2)
∑

p

(1 + |p|2)s‖FxQM

{
xϕ(

x

R
)Fp

}
‖L∞

ξ
:= II .

I . sup
M

(1 +M2)
∑

p

(1 + |p|2)s‖xFp‖2L1
x(|x|>R)

. sup
M

(1 +M2)
∑

p

(1 + |p|2)sR−1‖x2Fp‖2L2

. T−2δ‖x2F‖L2 ≤ T−2δ‖F‖S+ ,

while

II . sup
M

(1 +M2)
∑

p

(1 + |p|2)s‖QM

{
xϕ(

x

R
)Fp

}
‖2L1

x(|x|≤R)

. sup
M

(1 +M2)
∑

p

(1 + |p|2)sR2‖Fp‖L2
x
‖xFp‖L2

x

.
∑

p

T 4δ‖Fp‖L2
x
‖xFp‖L2

x
. T 4δ‖F‖2S ,

thus we proved (3.49), the estimate on R is the same.
Now we turn to the proof of the error estimates (3.42) and (3.43). We first decompose

the functions as we did for estimating Ot
1,

F = Fc + Fe, with Fc compactly supported as Fc = ϕ(
x

t1/4
)F ,

and reduce the problem to the estimates on Fc, Gc, Hc. We start with the L2 estimates
of

N t
0 [F,G,H ]−N t

0 [Fc, Gc, Hc] and R[F,G,H ]−R[Fc, Gc, Hc] ,

without loss of generalities, it suffices to considerN t
0 [Fe, G,H ] and 1

t
R[Fe, G,H ]. Indeed,

using (3.48) and the definition of Fe,

‖N t
0 [Fe, G,H ]‖L2 +

1

t
‖R[Fe, G,H ]‖L2 . (1 + |t|)−1‖Fe‖L2‖G‖S‖H‖S

. (1 + |t|)−5/4‖F‖S‖G‖S‖H‖S , (3.50)

while

‖N t
0 [Fe, G,H ]‖S +

1

t
‖R[Fe, G,H ]‖S . (1 + |t|)−1‖F‖S‖G‖S‖H‖S . (3.51)
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Thus by (2.16), we are able to bound

‖N t
0[F,G,H ]−N t

0 [Fc, Gc, Hc]‖Y s +
1

t
‖R[F,G,H ]−R[Fc, Gc, Hc]‖Y s

. (1 + |t|)−17/16‖F‖S‖G‖S‖H‖S .
(3.52)

For the S norm estimate, we use (3.51) again,

‖N t
0 [Fe, G,H ]‖S +

1

t
‖R[Fe, G,H ]‖S . (1 + |t|)−1‖Fe‖S‖G‖S‖H‖S

. (1 + |t|)−5/4‖F‖S+‖G‖S+‖H‖S+ .
(3.53)

Therefore, we only need to show the inequalities below to complete our proof of this
lemma,

‖N t
0[Fc, Gc, Hc]−

π

t
R[Fc, Gc, Hc]‖Y s . (1 + |t|)−1−20δ‖F‖S‖G‖S‖H‖S , (3.54)

‖N t
0[Fc, Gc, Hc]−

π

t
R[Fc, Gc, Hc]‖S . (1 + |t|)−1−20δ‖F‖S+‖G‖S+‖H‖S+ . (3.55)

For abbreviation, we assume for the rest part of proof, F = Fc, G = Gc, H = Hc.

F
(
N t

0 [F,G,H ]− π

t
R[F,G,H ]

)
(ξ, p)

=
∑

(p,q,r,s)∈Γ0

∫

R2

eit2ηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dκdη − π

t
F̂q(ξ)Ĝr(ξ)Ĥs(ξ) .

(3.56)

Rewrite the integration part,

∫

R2

eit2ηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dκdη

=

∫

R3

Fq(x1)Gr(x2)Hs(x3)

∫

R2

eit2ηκe−ix1(ξ−η)−ix2(ξ−η−κ)−ix3(ξ−κ)dκdηdx1dx2dx3

=
1

2t

∫

R3

Fq(x1)Gr(x2)Hs(x3)e
−iξ(x1−x2+x3)e

−i
x1−x2√

2t

x3−x2√
2t





∫

R2

e
i
[
η+

x3−x2√
2t

][
κ+

x1−x2√
2t

]

dηdκ



 dx1dx2dx3

=
π

t

∫

R3

Fq(x1)Gr(x2)Hs(x3)e
−iξ(x1−x2+x3)e

−i
x1−x2√

2t

x3−x2√
2t dx1dx2dx3 ,
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then ∣∣∣∣∣∣

∫

R2

eit2ηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dκdη − π

t
F̂q(ξ)Ĝr(ξ)Ĥs(ξ)

∣∣∣∣∣∣

=
π

|t|

∣∣∣∣∣∣

∫

R3

Fq(x1)Gr(x2)Hs(x3)e
−iξ(x1−x2+x3)

(
e
−i

x1−x2√
2t

x3−x2√
2t − 1

)
dx1dx2dx3

∣∣∣∣∣∣

. |t|−11/10‖Fq‖L2
x
‖Gr‖L2

x
‖Hs‖L2

x
.

Actually, using the proof above, we may obtain for any integer m,

|ξ|m
∣∣∣∣∣∣

∫

R2

eit2ηκF̂q(ξ − η)Ĝr(ξ − η − κ)Ĥs(ξ − κ)dκdη − π

t
F̂q(ξ)Ĝr(ξ)Ĥs(ξ)

∣∣∣∣∣∣

. |t|−11/10‖Fq‖Hm
x
‖Gr‖L2

x
‖Hs‖L2

x
.

(3.57)

Due to the definition of Y s norm (2.8) and S norm (2.10), and the fact that Hs(T) ,
s > 1 is an algebra, the proof of (3.54) follows from (3.57). For (3.55), recall that the
functions are spectrally compacted supported, then the terms

‖N t
0 [Fc, Gc, Hc]−

π

t
R[Fc, Gc, Hc]‖L2

xH
N
y

and ‖x
(
N t

0 [Fc, Gc, Hc]−
π

t
R[Fc, Gc, Hc]

)
‖L2

x,y

are easy to deal with by (3.57) and (2.17). We should be more careful with the terms
admitting x derivatives, since this x derivative may fall on ϕ( x

t1/4
). Anyhow, since ϕ′

holds the similar properties as ϕ, (3.57) still works, and we are able to get the estimate
(3.55). The proof is complete. �

3.4. Proof of Proposition 3.1. Now, we can give the proof of Proposition 3.1.

Proof of Proposition 3.1. We may firstly decompose the non-linearity N t as the high
frequency part and then the lower frequency part combined with the resonant and non
resonant parts,

N t[F,G,H ] =
∑

A,B,C

max(A,B,C)≥T
1
6

N t[QAF (t), QBG(t), QCH(t)]

+ Ñ t[Q
≤T

1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)] +N t

0 [Q≤T
1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)] .

Then, we rewrite the last term as

N t
0 [Q≤T

1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)] =

π

t
R[F (t), G(t), H(t)]

+
(
N t

0 [Q≤T
1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)]− π

t
R[Q

≤T
1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)]

)

− π

t

∑

A,B,C

max(A,B,C)≥T
1
6

R[QAF (t), QBG(t), QCH(t)] .
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Finally, we have the formula for the remainder

E t[F,G,H ] =
∑

A,B,C

max(A,B,C)≥T
1
6

N t[QAF (t), QBG(t), QCH(t)] + Ñ t[Q
≤T

1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)]

+
(
N t

0 [Q≤T
1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)]− π

t
R[Q

≤T
1
6
F (t), Q

≤T
1
6
G(t), Q

≤T
1
6
H(t)]

)

− π

t

∑

A,B,C

max(A,B,C)≥T
1
6

R[QAF (t), QBG(t), QCH(t)] .

Let us exam the terms on the right hand side one by one. The first term contributes to
E1 by Lemma 3.2. The second term contains E2 as it can be written by lemma 3.4 as

Ẽ1 + E2 with Ẽ1 contributing to E1. The last two terms contributes to E1 by Lemma 3.6
and its remark. This finishes the proof of Proposition 3.1. �

4. The Resonant System

In this section, we will study the following resonant system

i∂tG = R[G,G,G] . (4.1)

Before further discussions, let us recall a useful result on the structure of the resonances
at first.

Lemma 4.1. [6, Lemma 1] Given (p1, p2, p3, p4) ∈ Γ0, namely,

p1 − p2 + p3 − p4 = 0 and |p1| − |p2|+ |p3| − |p4| = 0

if and only if at least one of the following properties holds :

(1) ∀j, pj ≥ 0 ;
(2) ∀j, pj ≤ 0 ;
(3) p1 = p2 , p3 = p4 ;
(4) p1 = p4 , p3 = p2 .

The following proposition shows us that we are able to get rid of the resonances
corresponding to cases (3) and (4), and deduce our resonant system to a decoupling
system, which only contains cubic Szegő equations.

Proposition 4.1. Given G0 ∈ L2
xH

s
y , s > 1, ‖G0‖L2

xH
s
y
= ε, ε > 0 and G0(x, y) =

−G0(x, y + π). Set G1(t) = e2it‖G0‖2
L2G(t) with G as the corresponding solution to the

resonant system (4.1), then G1(t) satisfies the following cubic Szegő equation,

i∂tG
1
± = R±[G

1
±, G

1
±, G

1
±] , (4.2)

where

FxR±[G
1
±, G

1
±, G

1
±](ξ, y) = Π±(|Ĝ1

±|2Ĝ1
±)(ξ, y) , (4.3)

with G1
+ = Π+(G

1) :=
∑
p>0

G1
p(x)e

ipy and G1
− = Π−(G

1) :=
∑
p<0

G1
p(x)e

ipy.
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Proof. The proof of the proposition above is easy. First, by the transformation,

G1(t) = e2it‖G0‖2
L2G(t) ,

and using the fact that the L2 norm is conserved, we get our first reduction to the
resonant system corresponding to cases (1) and (2). And thanks to our initial condition
G0(x, y + π) = −G0(x, y), we have

FyG0(x, p) = 0, p even numbers ,

which insures the decoupling. �

4.1. The cubic Szegő equation.

Let us begin with a simpler model, a resonant system for a vector a = {ap}p>0,

i∂tap(t) =
∑

(p,q,r,s)∈Γ0,+

aq(t)ar(t)as(t) := R+[a(t), a(t), a(t)]p , (4.4)

where Γ0,+ := {(p1, p2, p3, p4) : p1 − p2 + p3 − p4 = 0, pj > 0 ∀j}. If we denote
v(t, y) :=

∑
p>0

ap(t)e
ipy, then v satisfies the following cubic Szegő equation

i∂tv = Π+(|v|2v) . (4.5)

Let us recall more for the cubic Szegő equation (4.5), especially the Lax pair structure
and its conserved quantities. Gérard and Grellier have showed that the cubic Szegő
equation is a completely integrable system with two Lax pairs. One may refer to [5, 7]
for more details. To define the Lax pairs, one may need to introduce the Hankel operator

Hv and the Toeplitz operator Tb with v ∈ H
1
2
+(T), b ∈ L∞(T),

Hvh := Π+(vh̄) , Tbh := Π+(bh) , h ∈ L∞ . (4.6)

We remark that Hv is C−antilinear, and is a Hilbert-Schmidt operator. Now we are able
to introduce the Lax pair structure of the cubic Szegő equation (4.5),

Theorem 4.1. [5, Theorem 3.1] Let v ∈ C(R, Hs
+(T)) for some s > 1

2
. The cubic Szegő

equation (4.5) has a Lax pair (Hv, Bv), namely, if v solves (4.5), then

dHv

dt
= [Bv, Hv] , (4.7)

where Bv =
i
2
H2

v − iT|v|2,

A direct consequence of this Lax pair structure is that the spectrum of the trace
class operator H2

v , is conserved by the evolution, in particular, the trace norm of H2
v is

conserved by the flow. A theorem by Peller [17, Theorem2, P454], says that the trace
norm of a Hankel operator Hv is equivalent to the Besov norm B1

1,1(T) of v. One may
also see [6].
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4.2. Estimation of solutions to the resonant system.

We are now able to state a result concerning the long time behavior and stability of
the asymptotic system (4.1).

Lemma 4.2. For every function G1, G2, G3, the following estimates hold true

‖R[G1, G2, G3]‖L2
x,y

. min
{j,k,ℓ}={1,2,3}

‖Gj‖L2
x,y
‖Gk‖Z‖Gℓ‖Z , (4.8)

‖R[G1, G2, G3]‖Z . ‖G1‖Z‖G2‖Z‖G3‖Z , (4.9)

‖R[G1, G2, G3]‖S . max
{j,k,ℓ}={1,2,3}

‖Gj‖S‖Gk‖Z‖Gℓ‖Z . (4.10)

Proof. The first inequality comes from (2.17). Indeed, by the definition of R,

‖R[G1, G2, G3]‖L2
x,y

=
∥∥∥

∑

Γ0,+∪Γ0,−

Ĝ1
qĜ

2
rĜ

3
s

∥∥∥
L2
ξℓ

2
p

. min
{j,k,ℓ}={1,2,3}

‖Gj‖L2
x,y
‖Ĝk‖L∞

ξ B1
y
‖Ĝℓ‖L∞

ξ B1
y

. min
{j,k,ℓ}={1,2,3}

‖Gj‖L2
x,y
‖Gk‖Z‖Gℓ‖Z ,

Apply Lemma 6.2, we get the third inequality. The second inequality comes from the
fact that B1 is an algebra. �

Proposition 4.2. Assume G0 ∈ S(+), ‖G0‖S(+) = ε with ε small enough, and G evolves
according to (4.1). Then there holds that for t ≥ 1,

‖G(π ln t)‖Z ≃ ‖G0‖Z , (4.11)

‖G(π ln t)‖S . (1 + |t|)δ′‖G0‖S , (4.12)

‖G(π ln t)‖S+ . (1 + |t|)δ′′‖G0‖S+ , (4.13)

with δ′ ≃ ‖G0‖2Z, δ′′ ≃ ‖G0‖3S‖G0‖−1
Z .

Proof. For the first conservation, we use the complete integrability of the cubic Szegő
equation, especially its Lax pair and the conservation of the B1 norm, which is stated
in the previous subsection. First, one may use Proposition 4.1 to reduce our problem to
the cubic Szegő equation, and the transformation we used keeps the Z norm. Then we
use Peller’s theorem to obtain

‖Ĝ(ξ, t)‖B1 ≃ Tr|HĜ(ξ,t)| .
Combined with the Lax Pair structure, we have

‖Ĝ(ξ, t)‖B1 ≃ Tr|HĜ(ξ,t)| ≃ Tr|HĜ0(ξ)
| ≃ ‖Ĝ0(ξ)‖B1 .

For the second one, taking G̃(t) = G(π ln t), then G̃ satisfies

i∂tG̃ =
π

t
R[G̃, G̃, G̃] . (4.14)

The main idea is to estimate the S(+) norm of R[G̃, G̃, G̃], and then apply the Gronwall’s
inequality.
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Indeed, using (4.10),

∂t‖G̃‖S .
1

t
‖R[G̃, G̃, G̃]‖S .

1

t
‖G̃‖2Z‖G̃‖S .

1

t
‖G0‖2Z‖G̃‖S ,

thus we get the S norm estimate by Gronwall’s inequality.
We now turn to the S+ norm estimate, by the proof of the estimate (3.49), we may

gain another more general version,

‖(1− ∂xx)
4G‖Z + ‖xG‖Z . t−δ′‖G0‖−1

S ‖G0‖Z‖G‖S+ + t2δ
′′‖G0‖S+‖G0‖S‖G0‖−2

Z ‖G‖S ,

with δ′ . δ′′ ≃ ‖G0‖3S‖G0‖−1
Z . We apply the second part of Lemma 6.2,

‖R[G̃, G̃, G̃]‖S+ . ‖G̃‖S+

(
‖G0‖2Z + t−δ′‖G0‖−1

S ‖G0‖Z‖G̃‖S
)

+ t2δ
′′‖G0‖S+‖G0‖S‖G0‖−1

Z ‖G̃‖2S ,

then plugging the estimate of ‖G̃‖S,
d

dt
‖G̃‖S+ . t−1‖R[G̃, G̃, G̃]‖S+ . t−1‖G̃‖S+‖G0‖2Z + t−1+4δ′′‖G0‖S+‖G0‖3S‖G0‖−1

Z ,

thus using the inhomogeneous Gronwall’s inequality, we gain the estimate of the S+

norm in (4.13). �

Proposition 4.3. If A = Π+A and B = Π+B solve (4.2) with R+ and satisfy

sup
0≤t≤T

{‖A(t)‖Z + ‖B(t)‖Z} ≤ θ

and

‖A(0)−B(0)‖S(+) ≤ δ

then, there holds that, for 0 ≤ t ≤ T ,

‖A(t)− B(t)‖S(+) ≤ δeCθ2t. (4.15)

Proof. By (4.2), A− B satisfies

i∂t

(
Âp(ξ)− B̂p(ξ)

)
= R+[Â(ξ)− B̂(ξ), Â(ξ), Â(ξ)]p

+R+[B̂(ξ), Â(ξ)− B̂(ξ), Â(ξ)]p +R+[B̂(ξ), B̂(ξ), Â(ξ)− B̂(ξ)]p ,

then an application of Lemma 4.2 completes the proof. �

5. The main results

In this section, we will prove our main theorems. We will start with constructing a
modified wave operator and gain the small data scattering as the theorem below.
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5.1. Modified scattering. Given a small initial data in S+, we may find a solution
to our original system (1.1) by constructing a corresponding solution to the resonant
system (1.10), which also leads to the global well-posedness of our wave guide Schrödinger
equation with small data. In the other hand, the solution with small initial data admits
some modified scattering property.

Theorem 5.1. There exists ε > 0 such that if U0 ∈ S+ satisfies

‖U0‖S+ ≤ ε , (5.1)

(1) If G̃ is the solution of (1.10) with initial data U0, then there exists a unique solution
U of (1.1) such that e−itAU(t) ∈ C([0,∞) : S) and

‖e−itAU(t)− G̃(π ln t)‖S → 0 as t → +∞ .

(2) Conversely, consider the corresponding solution U of (1.1) with initial data U0 sat-

isfying (5.1), if ε is small enough, then there exists a solution G̃ of (1.10), such that

‖e−itAU(t)− G̃(π ln t)‖S → 0 as t → +∞ . (5.2)

Proof. Let us begin with (1). Set

G(t) = G̃(π ln t), K(t) = e−itAU(t)−G(t)

and define a mapping

Φ(K)(t) = −i

∞∫

t

{
N σ[K +G,K +G,K +G]− π

σ
R[G(σ), G(σ), G(σ)]

}
dσ .

The main idea is to find a fixed point for Φ in a suitable space. Define

A :={K ∈ C1([1,∞) : S) : ‖K‖A < ∞}
‖K‖A := sup

t>1

{
(1 + |t|)δ‖K(t)‖S + (1 + |t|)2δ‖K(t)‖Z + (1 + |t|)1−δ‖∂tK(t)‖S

}
.

We claim that if ε is sufficiently small, there exists ε1 such that Φ defines a contraction
on the complete metric space {K ∈ A : ‖K‖A ≤ ε1}. As in [12, Theorem 5.1], we
decompose

N t[K +G,K +G,K +G]− π

t
R[G,G,G] = E t[G,G,G] + Lt[K,G] +Qt[K,G] (5.3)

where



E t[G,G,G] := N t[G,G,G]− π

t
R[G,G,G] ,

Lt[K,G] := N t[G,G,K] +N t[K,G,G] +N t[G,K,G] ,

Qt[K,G] := N t[K,K,G] +N t[G,K,K] +N t[K,G,K] +N t[K,K,K] .

For K ∈ A, we have

(1 + |t|)2δ‖K(t)‖Z + (1 + |t|)δ‖K(t)‖S + (1 + |t|)1−δ‖∂tK(t)‖S . ε1 , (5.4)

taking ε . δ1/2, by Proposition 4.2, we have

‖G(t)‖S+ + (1 + |t|)‖∂tG(t)‖S+ . ε(1 + |t|)δ/100 ,

‖G(t)‖Z . ε .
(5.5)
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To show our claim, it suffices to show that the quantities below are small with
K,K1, K2 ∈ A,

‖
∞∫

t

Eσ[G,G,G]dσ‖A . ε3 , (5.6)

‖
∞∫

t

Lσ[K,G]dσ‖A . ε2‖K‖A , (5.7)

‖
∞∫

t

Qσ[K,G]dσ‖A . ε‖K‖2
A
, (5.8)

‖
∞∫

t

{Qσ[K1, G]−Qσ[K2, G]} dσ‖A . εε1‖K1 −K2‖A . (5.9)

Proof of (5.6). Because of the definition of E t, we can easily gain for t > 1,

‖E t[G,G,G]‖S = ‖N t[G,G,G]− 1

t
R[G,G,G]‖S

≤ ‖N t[G,G,G]‖S +
1

t
‖R[G,G,G]‖S .

(5.10)

Using (2.18),

‖N t[G,G,G]‖S ≤ t−1‖G‖3S ≤ t−1+δε3 ,

while by (4.10),

‖Rt[G,G,G]‖S ≤ ‖G‖2S‖G‖Z ≤ tδε3 ,

then

‖E t[G,G,G]‖S ≤ t−1+δε3 ,

this controls the time derivative in the A norm,

t1−δ

∥∥∥∥∥∥
∂t

( ∞∫

t

Eσ[G,G,G]dσ
)
∥∥∥∥∥∥
S

≤ ε3 .

By (5.5), we have ‖G‖
X

(+)
T

≤ ε for any T > 1, so the other two terms of the A norm,

‖
∫∞

t
Eσ[G,G,G]dσ‖S and ‖

∫∞

t
Eσ[G,G,G]dσ‖Z can be deduced by the estimates in

Proposition 3.1.

Proof of (5.7). We estimate the norm ‖
∫∞

t
N σ[G,G,K]dσ‖A for example.

As in the proof of (5.6), using (2.18) and (5.5), we have the following estimate which
controls the time derivative in the A norm,

‖N t[G,G,K]‖S . t−1‖G‖2S‖K‖S . t−1+δε2‖K‖A .

For the other two term in the A norm, we shall reproduce the decomposition as in the
proof of Proposition 3.1 on N t[G,G,K]. Using Lemma 3.2 and Lemma 3.4, it only
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remains to show that

‖R[G,G,K]‖Z . (1 + |t|)−2δε2ε1 , (5.11)

‖N t
0 [G,G,K]− π

t
R[G,G,K]‖Z . (1 + |t|)−1−2δε2ε1 , (5.12)

‖N t
0 [G,G,K]‖S . (1 + |t|)−1−δε2ε1 . (5.13)

The first estimate follows from (4.9),

‖R[G,G,K]‖Z . ‖G‖2Z‖K‖Z . (1 + |t|)−2δε2ε1 .

The second estimate follows from (3.42),

‖N t
0 [G,G,K]− π

t
R[G,G,K]‖Z . (1 + |t|)−1−20δ‖G‖2S‖K‖S . (1 + |t|)−1−2δε2ε1 .

For the third estimate, we use (3.40) to get

(1 + |t|)
{
‖N t

0 [G,G,K]‖S + ‖N t
0 [G,K,G]‖S

}
. ‖G‖2

Z̃t
‖K‖S + ‖G‖Z̃t

‖K‖Z̃t
‖G‖S

. ε2ε1(1 + |t|)−δ.

Proof of (5.8). The proof of (5.8) is similar to the proof of (5.7).

Proof of (5.9). We may rewrite

N t[K1, K1, G]−N t[K2, K2, G] = N t[K1, K1, G]−N t[K1, K2, G] +N t[K1, K1, G]

−N t[K2, K2, G]

= N t[K1, K1 −K2, G] +N t[K1 −K2, K2, G] ,

we take similar decompositions on the termsN t[K1, G,K1]−N t[K2, G,K2],N t[G,K1, K1]−
N t[G,K2, K2] and N t[K1, K1, K1] −N t[K2, K2, K2]. Similar strategy we used to prove
(5.7) can be applied to obtain the estimate on the norm ‖N t[F1, F2, F3]‖A with one of
these Fj be K1 −K2 while the other two functions belong to {K1, K2, G}. The proof of
the first part is complete.

Let us turn to (2), we will prove it in two steps.
Step 1: Global existence and bounds. Let U0 ∈ S+, ‖U0‖S+ ≤ ε with ε small
enough. The local existence is classical via its integral equation. We denote F (t) :=
e−itAU(t), then (1.1) can be rewritten as

i∂tF = N t[F, F, F ] . (5.14)

F (t) = U0 − i

t∫

0

N σ[F, F, F ]dσ . (5.15)

By the estimate (2.18), we have

‖N t[F, F, F ]‖S+ . (1 + |t|)−1‖F‖3S+ .

This allows us to use a fixed point argument on a small time interval [0, T ], and t 7→
‖F (t)‖S+ is C1. We claim that

‖F‖X+
T
≤ ‖U0‖S+ + C‖F‖3

X+
T

(5.16)
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for all T > 0 and all U solving (1.1) such that ‖F‖X+
T

≤ √
ε. Then by a bootstrap

argument, we gain the global existence and the solution satisfies for all T > 0

‖FU(t)‖X+
T
≤ 2ε . (5.17)

Let us begin the proof of our claim (5.16). Recall the definition of the X+
T norm (2.11),

we have to consider the S and S+ norm of F and ∂tF and also the Z norm of F .
It is easy to deduce from the equation on F that ‖∂tF‖S(+) = ‖N t[F, F, F ]‖S(+).

Thanks to (2.18), we have

‖∂tF‖S = ‖N t[F, F, F ]‖S ≤ (1 + |t|)−1‖F‖3S ,

‖∂tF‖S+ = ‖N t[F, F, F ]‖S+ ≤ (1 + |t|)−1‖F‖2S‖F‖S+ ,

thus

(1 + |t|)1−3δ‖∂tF‖S ≤
(
(1 + |t|)−δ‖F‖S

)3
+ ≤ ‖F‖3

X+
T
, (5.18)

(1 + |t|)1−7δ‖∂tF‖S+ ≤
(
(1 + |t|)−δ‖F‖S

)2
(1 + |t|)−5δ‖F‖S+ ≤ ‖F‖3

X+
T
. (5.19)

We now turn to estimate ‖F‖Z , by the decomposition result of N t in Proposition 3.1,
and notice that R defined as (4.4) is self-adjoint on ℓ2p and that there is a cancellation

〈iFR[F, F, F ](ξ), FF (ξ)〉hσ
p ,h

σ
p
= 0 .

So we will study the ‖F‖Y σ with σ > 1 where Y σ is defined in (2.8), then to control the
Z norm.

d

ds

1

2
‖F̂p(ξ, s)‖2hσ

p
=
〈
FN t[F, F, F ](ξ, s), F̂p(ξ, s)

〉
hσ
p ,h

σ
p

= 〈Ê1(ξ, p, s), F̂p(ξ, s)〉hσ
p×hσ

p
+ 〈∂sÊ3(ξ, p, s), F̂p(ξ, s)〉hσ

p×hσ
p
.

(5.20)

Thus multiplying with (1 + |ξ|2), using the estimates of ‖Ej‖Y σ in Proposition 3.1, then
we have for any ξ, we have

(1 + |ξ|2)|
t∫

0

〈Ê1(ξ, p, s), F̂p(ξ, s)〉hσ
p×hσ

p
| . ‖F‖3

X+
T

t∫

0

(1 + |s|)−1−δds · sup
[0,t]

‖F (s)‖Y σ ,

while

[1 + |ξ|2]

∣∣∣∣∣∣

t∫

0

〈∂tÊ3(ξ, p, s), F̂p(ξ, s)〉hσ×hσ
p
ds

∣∣∣∣∣∣
≤ [1 + |ξ|2]

∣∣∣〈Ê3(ξ, p, t), F̂p(ξ, t)〉hσ×hσ
p

∣∣∣

+ [1 + |ξ|2]
∣∣∣〈Ê3(ξ, p, 0), F̂p(ξ, 0)〉hσ×hσ

p

∣∣∣+ [1 + |ξ|2]

∣∣∣∣∣∣

t∫

0

〈Ê3(ξ, p, s), ∂tF̂p(ξ, s)〉hσ×hσ
p

∣∣∣∣∣∣
. ‖F‖3

X+
T
· sup
[0,t]

‖F (s)‖Y σ + ‖F‖6
X+

T
.

Combining the above estimates, we have

‖F (t)‖Z ≤ ‖F (t)‖Y σ + C‖F‖3
X+

T
. (5.21)
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For the norm ‖F (t)‖S(+), when 0 ≤ t ≤ 1,

‖F‖S ≤ ‖F‖S+ ≤ ‖U0‖S+ + ‖F (t)− F (0)‖S+

≤ ‖U0‖S+ + sup
0≤t≤1

‖∂tF‖S+

≤ ‖F‖3
X+

T
.

While 1 ≤ t ≤ T , using Proposition 3.1, we have

‖F (t)− F (1)‖S(+) ≤
∥∥∥

t∫

1

N σ[F, F, F ]dσ
∥∥∥
S(+)

≤
∥∥∥

t∫

1

R[F, F, F ]dσ/σ
∥∥∥
S(+)

+
∥∥∥

t∫

1

(
E1(σ) + E2(σ)

)
dσ
∥∥∥
S(+)

,

then using (3.44) and the, we have

∥∥∥
t∫

1

R[F, F, F ]dσ/σ
∥∥∥
S
.

t∫

1

σ−1‖F‖2
Z̃t
‖F‖Sdσ (5.22)

.

t∫

1

σ−1+δdσ‖F‖3
X+

T
≤ tδ‖F‖3

X+
T
, (5.23)

while by (3.45),

∥∥∥
t∫

1

R[F, F, F ]dσ/σ
∥∥∥
S+

≤
t∫

1

(
σ−1‖F‖2

Z̃t
‖F‖S+ + σ−1+2δ‖F‖Z̃t

‖F‖2S
)
dσ (5.24)

≤
t∫

1

σ−1+5δdσ‖F‖3
X+

T
≤ t5δ‖F‖3

X+
T
, (5.25)

together with the estimates in Proposition 3.1,

‖F (t)− F (1)‖S ≤ (1 + |t|)δ‖F‖3
X+

T
, (5.26)

‖F (t)− F (1)‖S+ ≤ (1 + |t|)5δ‖F‖3
X+

T
. (5.27)

Hence, we finally gain

(1 + |t|)−δ‖F‖S + (1 + |t|)−5δ‖F‖S+ ≤ ‖F‖X+
T
. (5.28)

Our priori estimate (5.16) comes out from (5.18), (5.19), (5.21) and (5.28).

Step 2: Asymptotic behavior. Define Tn = en/π and Gn(t) = G̃n(π ln t), where G̃n

solves (1.10) with Cauchy data such that G̃n(n) = Gn(Tn) = F (Tn). We claim that for
all t ≥ Tn,

‖Gn(t)‖Z + (1 + |t|)−δ‖Gn(t)‖S + (1 + |t|)−5δ‖Gn(t)‖S+ + (1 + |t|)1−δ‖∂tGn(t)‖S . ε
(5.29)
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uniformly in n ≥ 0. Indeed, first we get from the global bounds result (5.17) that
uniformly in n,

‖Gn(t)‖Z = ‖G̃n(π ln t)‖Z = ‖G̃n(n)‖Z = ‖F (Tn)‖Z . ε ,

‖Gn(Tn)‖S . εT δ
n ,

and by (4.10),

‖∂tGn(s)‖S . s−1‖Gn‖2Z‖Gn(s)‖S . ε2s−1‖Gn(s)‖S . (5.30)

An application of Gronwall’s lemma gives, for ε small enough,

‖Gn(s)‖S . εsδ, s ≥ Tn

which, combined with (5.30), provides control of the second and last term in (5.29). We
can estimate the S+ norm similarly, using (3.45),

‖∂tGn(s)‖S+ . s−1ε2‖Gn(s)‖S+ + ε3s−1+4δ, ‖Gn(Tn)‖S+ . εT 5δ
n .

This concludes the proof of (5.29).
Since

i∂tF = N t[F, F, F ] ,

i∂tGn =
t

π
R[Gn, Gn, Gn] ,

and

F (Tn) = Gn(Tn) ,

then

F (t)−Gn(t) = i

t∫

Tn

(
N σ[F, F, F ]− σ

π
R[Gn, Gn, Gn]

)
dσ

= i

t∫

Tn

Eσ[F, F, F ]dσ + i

t∫

Tn

σ

π

(
R[F, F, F ]−R[Gn, Gn, Gn]

)
dσ .

Using the estimates in Proposition 3.1, we gain for t > Tn,

‖F −Gn‖Z . ε3T−2δ
n +

t∫

Tn

(
‖F‖2Z + ‖Gn‖2Z

)
‖F −Gn‖Z

dσ

σ

. ε3T−2δ
n + ε2

t∫

Tn

‖F −Gn‖Z
dσ

σ
,

we may then deduce by Gronwall,

‖F −Gn‖Z . ε3T−2δ
n for Tn ≤ t ≤ Tn+4 .
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We may deduce the estimate on ‖F −Gn‖S similarly and

‖F −Gn‖S . ε3T−2δ
n +

t∫

Tn

(
‖F‖2Z + ‖Gn‖2Z

)
‖F −Gn‖S

dσ

σ

+

t∫

Tn

(
‖F‖Z + ‖Gn‖Z

)
‖F −Gn‖Z

(
‖F‖S + ‖Gn‖S

)dσ
σ

. ε3T−δ
n + ε2

t∫

Tn

‖F −Gn‖S
dσ

σ
,

Again, we use Gronwall’s inequality and get

sup
Tn≤t≤Tn+4

‖F (t)−Gn(t)‖S . ε3T−δ
n . (5.31)

Therefore,

‖G̃n+1(n+ 1)− G̃n(n + 1)‖S = ‖F (Tn+1)−Gn(Tn+1)‖S . ε3T−δ
n , (5.32)

and thus by Lemma 4.3, we gain

‖G̃n+1(0)− G̃n(0)‖S . ε3e−nδ/2 .

We see that {G̃n(0)}n is a Cauchy sequence in S and therefore converges to an element
G0,∞ ∈ S which satisfies that

‖G0,∞‖Z . ε, ‖G̃n(0)−G0,∞‖S . ε3e−nδ/2.

By Proposition 4.3,

sup
[0,Tn+2]

‖G∞(t)−Gn(t)‖S . ε3e−nδ/4

where G∞(t) = G̃∞(π ln t) with G̃∞ the solution of (1.10) with initial data G̃∞(0) =
G0,∞. Now we have

sup
Tn≤t≤Tn+1

‖G∞(t)− F (t)‖S ≤ sup
Tn≤t≤Tn+1

‖G∞(t)−Gn(t)‖S + sup
Tn≤t≤Tn+1

‖Gn(t)− F (t)‖S

. ε3e−nδ/4.

This finishes the proof. �

5.2. Large time Sobolev unboundedness. We will firstly study the dynamics of the
resonant system (1.10), then we apply the modified scattering results above to gain the
large time behavior of the wave guide Schrödinger equation. The following strategy
allows us to transfer informations from a global solution a(t) of (4.4) to a solution of
(4.2), all we need to do is to take an initial datum of the form

G0(x, y) = ϕ̌(x)g(y), ϕ ∈ S(R) ,
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where gp = ap(0), and ϕ̌(x) is the inverse Fourier transform of ϕ. The solution G(t) to
(4.2) with initial data G0 as above is given in Fourier space by

Ĝp(t, ξ) = ϕ(ξ)ap(ϕ(ξ)
2t) . (5.33)

In particular, if ϕ = 1 on an open interval I, then Ĝp(t, ξ) = ap(t) for all t ∈ R and
ξ ∈ I. For ξ ∈ I, the resonant system turns out to be the cubic Szegő equation.

Let us recall the infinite cascade result for the cubic Szegő equation.

Theorem 5.2. [8] For any v0 ∈ C∞
+ := ∩sH

s, for any M , for any r > 1
2
, there exists

a sequence (vn0 ) of elements of C∞
+ tending to v0 in C∞

+ and a sequence of time tn, |tn|
tending to ∞, such that the corresponding solution vn of the cubic Szegő equation

i∂tv = Π+(|v|2v) , v(0) = vn0 , (5.34)

satisfies

‖vn(tn)‖Hr

|tn|M
→ ∞ , n → ∞ . (5.35)

Assumption 5.1. G0 ∈ S+ with ‖G0‖S+ small, G0(y) = −G0(y + π), and there exists
some non empty open set I 6= ∅, such that G0(ξ) = v0 ∀ξ ∈ I, while the corresponding
solution of the cubic Szegő equation (5.34) with v0 as the initial data admits an unbounded
trajectory as described in Theorem 5.2.

Let G be a solution to {
i∂tG = R[G,G,G]

G(0) = G0
(5.36)

with G0 satisfies Assumption 5.1, then

‖G(t)‖L2
xH

s
y
≥
( ∫

I

‖Ĝ(t, ξ)‖2Hs
y
dξ
)1/2

= |I|1/2‖v(t)‖Hs
y
→ ∞ , (5.37)

for any s > 1/2.
By Theorem 5.1, for the solutions to the resonant system G as above, there exists

solutions to the wave guide Schrödinger equation (1.1), such that (5.1) holds. Then the
large time behavior of G(t) (5.37) leads to the large time unbounded Sobolev trajectories
of solutions to the equation (1.1).

Corollary 5.1. Given N ≥ 13, then for any ε > 0, there exists U0 ∈ S+ with ‖U0‖S+ ≤ ε
such that the corresponding solution to (1.1) satisfies

lim sup
t→∞

‖U(t)‖L2
xH

s
y

(1 + log |t|)M = ∞ , ∀s > 1/2 , ∀M . (5.38)

Remark 5.1. As we announced in the introduction of this paper, the unbounded Sobolev
norms in our theorem are just above the energy norm. The growth is as large as (log |t|)M
for any M for solutions with small initial data in S+, which is almost optimal for the
dispersive wave guide Schrödinger equation.
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Moreover, in view of Theorem 5.2 by Gérard and Grellier [8], we expect that there exist
some Banach space B, such that the set

G :=

{
U0 ∈ B : ∀s > 1

2
, ∀M ∈ Z+ , lim sup

|t|→+∞

‖U(t)‖Hs

(log |t|)M = +∞
}

is a dense Gδ subset of B. The difficulty comes from the gap between S and S+ in the
modified scattering argument, which already exists in the early results of Ozawa [16] and
Hayashi–Naumkin–Shinomura–Tonegawa [15].

6. Appendix

We now turn to our basic lemma allowing to transform suitable L2
x,y bounds to bounds

in terms of the L2
x,y-based spaces S and S+. We define an LP-family Q̃ = {Q̃A}A to be

a family of operators (indexed by the dyadic integers) of the form

̂̃
Q1f(ξ) = ϕ̃(ξ)f̂(ξ),

̂̃
QAf(ξ) = φ̃(

ξ

A
)f̂(ξ), A ≥ 2

for two smooth functions ϕ̃, φ̃ ∈ C∞
c (R) with φ̃ ≡ 0 in a neighborhood of 0.

We define the set of admissible transformations to be the family of operators {TA}
where for any dyadic number A,

TA = λAQ̃A, |λA| ≤ 1

for some LP-family Q̃.
If F ∈ B, then for any admissible transformation family T = {TA : A dyadic numbers },∑

A

TAF converges in B. And this norm B is called admissible if

‖
∑

A

TAF‖B . ‖F‖B. (6.1)

Lemma 6.1. Recall the definitions of the norms S, S+, Z and Z̃t,

‖F‖S :=‖F‖HN
x,y

+ ‖xF‖L2
x,y

, ‖F‖S+ := ‖F‖S + ‖(1− ∂xx)
4F‖S + ‖xF‖S ,

‖F‖Z := sup
ξ∈R

[
1 + |ξ|2

]
‖F̂ (ξ, ·)‖B1 , ‖F‖Z̃t

:= ‖F‖Z + (1 + |t|)−δ‖F‖S .

All these norms are admissible.

Proof. Due to the definition of admissible transformation, we may only deal with func-
tions independent on y. Let us prove with the S norm for example. Indeed,

‖
∑

A

TAf‖2HN =

∫

R

〈ξ〉2N
∣∣∣λ1ϕ̃(ξ)f̂(ξ) + λAφ̃(

ξ

A
)f̂(ξ)

∣∣∣
2

dξ

≤
∫

R

(
|λ1|2ϕ̃(ξ) + |λA|2φ̃(

ξ

A
)
)
〈ξ〉2N |f̂(ξ)|2dξ

≤ ‖f‖2HN ,
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while

‖x
∑

A

TAf‖2L2 =

∫

R

∣∣∣∂ξ
(
λ1ϕ̃(ξ)f̂(ξ) + λAφ̃(

ξ

A
)f̂(ξ)

)∣∣∣
2

dξ

≤
∫

R

(
|λ1|2ϕ̃(ξ) + |λA|2φ̃(

ξ

A
)
)
|∂ξf̂(ξ)|2dξ

+

∫

R

(
|λ1|2ϕ̃′(ξ) +

|λA|2
A

φ̃′(
ξ

A
)
)
|f̂(ξ)|2dξ

≤ ‖xf‖2L2 + ‖f‖2L2 ,

thus

‖
∑

A

TAf‖S . ‖f‖S .

�

Given a trilinear operator T and a set Λ of 4-tuples of dyadic integers, we define an
admissible realization of T at Λ to be an operator of the form which converges in L2,

TΛ[F,G,H ] =
∑

(A,B,C,D)∈Λ

TDT[T
′
AF, T

′′
BG, T ′′′

C H ] (6.2)

for some admissible transformations T , T ′, T ′′, T ′′′.

Lemma 6.2. Assume that a trilinear operator T satisfies

ZT[F,G,H ] = T[ZF,G,H ] + T[F, ZG,H ] + T[F,G, ZH ], (6.3)

for Z ∈ {x, ∂x, ∂y} and let Λ be a set of 4-tuples of dyadic integers. With the notation
introduced above, assume also that for all admissible realizations of T at Λ,

‖TΛ[F
a, F b, F c]‖L2 ≤ K min

{α,β,γ}={a,b,c}
‖F α‖L2‖F β‖B‖F γ‖B (6.4)

for some admissible norm B such that the Littlewood-Paley projectors P≤M (both in x
and in y) are uniformly bounded on B. Then, for all admissible realizations of T at Λ,

‖TΛ[F
a, F b, F c]‖S . K max

{α,β,γ}={a,b,c}
‖F α‖S‖F β‖B‖F γ‖B . (6.5)

Assume in addition that, for Y ∈ {x, (1− ∂xx)
4},

‖Y F‖B . θ1‖F‖S+ + θ2‖F‖S , (6.6)

then for all admissible realizations of T at Λ,

‖TΛ[F
a, F b, F c]‖S+ . K max

{α,β,γ}={a,b,c}
‖F α‖S+

(
‖F β‖B + θ1‖F β‖S

)
‖F γ‖B

+ θ2K max
{α,β,γ}={a,b,c}

‖F α‖S‖F β‖S‖F γ‖B .
(6.7)
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Proof. Let us start with (6.5).
1. The weighted component of S norm. By rewriting xTA = [x, TA] + TAx and
using (6.3), we have

xTΛ[F
a, F b, F c] =

∑

(A,B,C,D)∈Λ

xTDT[T
′
AF

a, T ′′
BF

b, T ′′′
C F c]

=
∑

(A,B,C,D)∈Λ

[x, TD]T[T
′
AF

a, T ′′
BF

b, T ′′′
C F c] +

∑

(A,B,C,D)∈Λ

TDT[[x, T
′
A]F

a, T ′′
BF

b, T ′′′
C F c]

+
∑

(A,B,C,D)∈Λ

TDT[T
′
AF

a, [x, T ′′
B]F

b, T ′′′
C F c] +

∑

(A,B,C,D)∈Λ

TDT[T
′
AF

a, T ′′
BF

b, [x, T ′′′
C ]F c]

+ TΛ[xF
a, F b, F c] + TΛ[F

a, xF b, F c] + TΛ[F
a, F b, xF c] .

(6.8)

By simple calculation, we have

[x,QA] = A−1Q′
A .

We notice that if QA is an LP-family, Q′
A is also an LP-family, then [x, TA] is also

an admissible transformation. Thus, we may consider xTΛ[F
a, F b, F c] as the following

summation

TΛ[F
a, F b, F c] + TΛ[xF

a, F b, F c] + TΛ[F
a, xF b, F c] + TΛ[F

a, F b, xF c] , (6.9)

then ‖xTΛ[F
a, F b, F c]‖L2 follows from (6.4).

2. The HN component of S norm. We will use the equivalent definition of HN

norm,

‖F‖2HN :=
∑

M dyadic

M2N‖PMF‖2L2 ,

with PM as the Littlewood-Paley projections on R × T defined in Section 2. Then, we
may decompose

PMTΛ[F
a, F b, F c] = PMTΛ,low[F

a, F b, F c] + PMTΛ,high[F
a, F b, F c] ,

withTΛ,low[F
a, F b, F c] = TΛ[P≤MF a, P≤MF b, P≤MF c].

We have firstly

∑

M dyadic

M2N‖PMTΛ,high[F
a, F b, F c]‖2L2 . K2 max

{α,β,γ}={a,b,c}
‖F α‖2HN‖F β‖2B‖F γ‖2B , (6.10)

since
∑

M

|M |2N‖PMTΛ[P≥2MF a, F b, F c]‖2L2 ≤ K2
∑

M

|M |2N‖P≥2MF a‖2L2‖F b‖2B‖F c‖2B

. K2‖F a‖2HN‖F b‖2B‖F c‖2B .

(6.11)



ENERGY GROWTH AND MODIFIED SCATTERING 45

Let Z ∈ {∂x, ∂y}, we can bound the contribution of TΛ,low as below

MN‖PMTΛ,low‖L2

. M−N‖Z2NPMTΛ,low[P≤MF a, P≤MF b, P≤MF c]‖L2

= M−N‖
∑

α+β+γ≤2N

∑

M1,M2,M3≤M

PMTΛ,low[Z
αPM1F

a, ZβPM2F
b, ZγPM3F

c]‖L2 .

(6.12)

Without loss of generality, we assume M1 = max (M1,M2,M3) ≤ M , then

MN‖PMTΛ,low‖L2 .
∑

M1≤M

M−NM2N
1

∑

M2,M3≤M1

‖TΛ,low[PM1F
a, PM2F

b, PM3F
c]‖L2

. K
∑

M1≤M

(
M1

M
)−NMN

1 ‖PM1F
a‖L2‖F b‖B‖F c‖B ,

(6.13)

the above sum is in ℓ2M by Schur test, then
∑

M dyadic

M2N‖PMTΛ,low[F
a, F b, F c]‖2L2 . K2 max

{α,β,γ}={a,b,c}
‖F α‖2HN‖F β‖2B‖F γ‖2B . (6.14)

Therefore we bound the HN component of S norm, which completes the estimate (6.5).

Now, we turn to prove the estimate (6.7), due to the definition of S+ norm, we only
need to bound ‖xTΛ‖S and ‖(1− ∂xx)

4TΛ‖S. From (6.9) and (6.5), we gain directly

‖xTΛ[F
a, F b, F c]‖S

. max
{α,β,γ}={a,b,c}

‖F α‖S+‖F β‖B‖F γ‖B + max
{α,β,γ}={a,b,c}

‖F α‖S‖xF β‖B‖F γ‖B ,
(6.15)

we then using (6.6) to control the norm ‖xF‖B. The estimate on ‖(1 − ∂xx)
4TΛ‖S can

be calculated similarly by replacing x with (1− ∂xx)
4. The proof is completed. �

Remark 6.1.

We have a Leibniz rule for It[f, g, h] and N t[F,G,H ], namely

ZIt[f, g, h] = It[Zf, g, h] + It[f, Zg, h] + It[f, g, Zh], Z ∈ {x, ∂x} ,

ZN t[F,G,H ] = N t[ZF,G,H ] +N t[F, ZG,H ] +N t[F,G, ZH ] , Z ∈ {x, ∂x, ∂y} .
(6.16)

Property (6.16) will be of importance in order to ensure the hypothesis of the transfer
principle displayed by Lemma 6.2.
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