Z. Pan, Z. Dai, and Z. Wang, Nanobelts of Semiconducting Oxides, Science, vol.291, issue.5510, pp.1947-1956, 2001.
DOI : 10.1126/science.1058120

U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov et al., A comprehensive review of ZnO materials and devices, J Appl Phys, vol.98103, pp.1-041301, 2005.

G. Li, C. Dawa, X. Lu, X. Yu, and Y. Tong, /ZnO Films for Photoluminescent Devices, Langmuir, vol.25, issue.4, pp.2378-84, 2009.
DOI : 10.1021/la801601g

Y. Yang, G. Du, X. Xin, and B. Xu, Hierarchical ZnO microrods: synthesis, structure, optical and photocatalytic properties, Applied Physics A, vol.15, issue.4
DOI : 10.1007/s00339-011-6452-7

S. Cho, J. Jang, H. Park, D. Jung, J. A. Lee et al., A method for synthesizing ZnO???carbonaceous species nanocomposites, and their conversion to quasi-single crystal mesoporous ZnO nanostructures, RSC Adv., vol.95, issue.2, pp.566-72, 2012.
DOI : 10.1039/C1RA00661D

D. Lee, J. Bang, M. Park, J. Lee, and Y. H. , Organic acid-based wet etching behaviors of Ga-doped ZnO films sputter-deposited at different substrate temperatures, Thin Solid Films, vol.518, issue.14, pp.4046-51, 2010.
DOI : 10.1016/j.tsf.2010.01.063

G. Jimenez-cadena, E. Comini, M. Ferroni, A. Vomiero, and G. Sberveglieri, Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells, Materials Chemistry and Physics, vol.124, issue.1, pp.694-702, 2010.
DOI : 10.1016/j.matchemphys.2010.07.035

A. Umar, A. Hajry, Y. Hahn, and D. Kim, Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods, Electrochimica Acta, vol.54, issue.23, pp.5358-62, 2009.
DOI : 10.1016/j.electacta.2009.04.015

L. Ke, B. Dolmanan, S. Shen, L. Pallathadk, P. Zhang et al., Degradation mechanism of ZnO-based dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol.94, issue.2, pp.323-329, 2010.
DOI : 10.1016/j.solmat.2009.10.007

Z. Jia, D. Ren, L. Xu, and R. Zhu, Preparation, characterization and photocatalytic activity of porous zinc oxide superstructure, Materials Science in Semiconductor Processing, vol.15, issue.3, pp.270-276, 2012.
DOI : 10.1016/j.mssp.2012.02.012

D. Xie, L. Chang, F. Wang, G. Du, and B. Xu, Ultrasound-assisted synthesis of macro-/mesoporous ZnO double-pyramids and their optical and photocatalytic properties, Journal of Alloys and Compounds, vol.545, pp.176-81
DOI : 10.1016/j.jallcom.2012.08.059

J. Zheng, Z. Jiang, Q. Kuang, Z. Xie, R. Huang et al., Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties, Journal of Solid State Chemistry, vol.182, issue.1, pp.115-136, 2009.
DOI : 10.1016/j.jssc.2008.10.009

S. Dhage, R. Pasricha, and V. Ravi, Synthesis of fine particles of ZnO at 100 ??C, Materials Letters, vol.59, issue.7, pp.779-81, 2005.
DOI : 10.1016/j.matlet.2004.11.019

T. Ahmad, S. Vaidya, N. Sarkar, S. Ghosh, and A. Ganguli, Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO, Nanotechnology, vol.17, issue.5, pp.1236-1276, 2006.
DOI : 10.1088/0957-4484/17/5/012

Q. Hu, S. Wang, and W. Tang, Effects of alkali on the morphologies and photoluminescence properties of ZnO nanostructures, Materials Letters, vol.64, issue.16, pp.1822-1826, 2010.
DOI : 10.1016/j.matlet.2010.05.030

S. Music, D. Dragcevia, S. Popovic, and M. Ivanda, Precipitation of ZnO particles and their properties, Materials Letters, vol.59, issue.19-20, pp.2388-93, 2005.
DOI : 10.1016/j.matlet.2005.02.084

Y. Zhu, G. Zhou, H. Ding, A. Liu, Y. Lin et al., Controllable synthesis of hierarchical ZnO nanostructures via a chemical route, Physica E: Low-dimensional Systems and Nanostructures, vol.42, issue.9, pp.2460-2465, 2010.
DOI : 10.1016/j.physe.2010.06.007

Z. Hui, D. Yang, S. Li, X. Ma, J. Y. Xu et al., Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process, Mater Lett, vol.59, pp.1696-700, 2005.

M. Zareie, A. Gholami, M. Bahrami, A. Rezaei, and M. Keshavarz, A simple method for preparation of micro-sized ZnO flakes, Materials Letters, vol.91, pp.255-262, 2013.
DOI : 10.1016/j.matlet.2012.10.013

S. Gupta, A. Joshi, and M. Kaur, Development of gas sensors using ZnO nanostructures, Journal of Chemical Sciences, vol.107, issue.1, pp.57-62, 2010.
DOI : 10.1007/s12039-010-0006-y

T. Dittrich, A. Belaidi, and A. Ennaoui, Concepts of inorganic solid-state nanostructured solar cells, Solar Energy Materials and Solar Cells, vol.95, issue.6, pp.1527-1563, 2011.
DOI : 10.1016/j.solmat.2010.12.034

G. Redmond, D. Fitzmaurice, and M. Graetzel, Visible Light Sensitization by cis-Bis(thiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film Prepared by Sol-Gel Techniques, Chemistry of Materials, vol.6, issue.5, pp.686-91, 1994.
DOI : 10.1021/cm00041a020

G. Jimenez-cadena, E. Comini, M. Ferroni, A. Vomiero, and G. Sberveglieri, Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells, Materials Chemistry and Physics, vol.124, issue.1, pp.694-702, 2010.
DOI : 10.1016/j.matchemphys.2010.07.035

J. Mou, W. Zhang, J. Fan, H. Deng, and W. Chen, Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells, Journal of Alloys and Compounds, vol.509, issue.3, pp.961-966, 2011.
DOI : 10.1016/j.jallcom.2010.09.148

L. Lu, R. Li, K. Fan, and T. Peng, Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles, Solar Energy, vol.84, issue.5, pp.844-53, 2010.
DOI : 10.1016/j.solener.2010.02.010

C. Lee, W. Chiu, K. Lee, W. Yen, H. Lin et al., The influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells, Electrochimica Acta, vol.55, issue.28, pp.8422-8431, 2010.
DOI : 10.1016/j.electacta.2010.07.061

L. Chen and Y. Yin, Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells, Nanoscale, vol.103, issue.5, pp.1777-80, 2013.
DOI : 10.1039/c2nr33249c

A. Hagfeldt and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chemical Reviews, vol.95, issue.1, pp.49-68, 1995.
DOI : 10.1021/cr00033a003

J. Langford and D. Louer, Powder diffraction, Reports on Progress in Physics, vol.59, issue.2, pp.131-234, 1996.
DOI : 10.1088/0034-4885/59/2/002

M. Lopez, J. Tirado, P. Vicente, and C. , Structural and comparative electrochemical study of M(II) oxalates, M??=??Mn, Fe, Co, Ni, Cu, Zn, Journal of Power Sources, vol.227, pp.65-71, 2013.
DOI : 10.1016/j.jpowsour.2012.08.100

K. Kanade, B. Kale, R. Aiyer, and B. Das, Effect of solvents on the synthesis of nano-size zinc oxide and its properties, Materials Research Bulletin, vol.41, issue.3, pp.590-600, 2006.
DOI : 10.1016/j.materresbull.2005.09.002

Y. Kondrashev, V. Bogdanov, S. Golubev, and G. Pron, Crystal structure of the ordered phase of zinc oxalate and the structure of anhydrous Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ oxalates, Journal of Structural Chemistry, vol.2, issue.No. 1, pp.74-81, 1985.
DOI : 10.1007/BF00747766

C. Raj, R. Joshi, and K. Varma, Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures, Crystal Research and Technology, vol.88, issue.215, pp.1181-1189, 2011.
DOI : 10.1002/crat.201100201

R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, pp.751-67, 1976.
DOI : 10.1107/S0567739476001551

A. Kolezynski and A. Malecki, First principles studies of thermal decomposition of anhydrous zinc oxalate, Journal of Thermal Analysis and Calorimetry, vol.24, issue.665, pp.645-51, 2009.
DOI : 10.1007/s10973-008-9494-0

H. Iwanaga, A. Kunishige, and S. Takeuchi, Anisotropic thermal expansion in wurtzite-type crystals, Journal of Materials Science, vol.35, issue.10, pp.2451-2455, 2000.
DOI : 10.1023/A:1004709500331

N. Audebrand, J. Auffrédic, and D. Louër, X-ray Diffraction Study of the Early Stages of the Growth of Nanoscale Zinc Oxide Crystallites Obtained from Thermal Decomposition of Four Precursors. General Concepts on Precursor-Dependent Microstructural Properties, Chemistry of Materials, vol.10, issue.9, pp.2450-61, 1998.
DOI : 10.1021/cm980132f

P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey et al., In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition, Bulletin of Materials Science, vol.103, issue.3, pp.573-580, 2008.
DOI : 10.1007/s12034-008-0089-y