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ABSTRACT: In one-way carsharing systems, users can take a car from a station and return it to any other station. 

Available cars and free parking space at each station, play a major role in the success of these systems. Therefore, 

carsharing operators recruit employees to relocate cars between the stations. This is done to avoid rejection of users’ 

demands for taking cars from the station or returning them. In this paper, we present a greedy algorithm in order to 

reduce the number of rejected users' demands, using the minimum number of employees. We used mobility data 

collected from an operational system to build the users’ demand matrices as input for our algorithm. For example, in a 

carsharing system which has 20 stations, 150 cars, through more than 1,370 trips made during one day and more than 

555 expected rejected demands, results show that our algorithm is able to reduce 55% of expected rejected demands 

using 5 employees and more than 80% of these rejected demands using 10 employees. We compared the algorithm with 

a Mixed Integer Linear Programming model solved using IBM ILOG CPLEX optimizer and made the proof of 

performance. 

 

KEYWORDS: Transport, Carsharing, Optimization, Approximation algorithm. 

 

1 INTRODUCTION 

Nowadays, cars are at the core of environmental con-

cerns due to their significant contribution to the envi-

ronmental problems that affect our globe. Most of the 

major cities worldwide suffer from congestion, vehicles 

emissions, lack of parking spaces and noise pollution. 

Over the last few years, cities have started to think dif-

ferently about private car usage and have provided new 

solutions that reduce car ownership while simultaneously 

offering private car advantages. For instance, the concept 

of carsharing service is one of these solutions that can 

contribute positively to solve these problems. 

 

There are different ways to share vehicles such as com-

pany and neighborhood carsharing, station cars, and 

carsharing with multiple stations (Barth and Shaheen, 

2002). In the first two models, trips are mostly round-

trips whereas in the third one, they are almost one-way. 

One-way trips lead to additional cost for the system 

operator because they require recruiting staff to relocate 

vehicles periodically between the stations (Kek et al., 

2009). This is done to maintain a minimum number of 

vehicles in each station in order to satisfy clients’ de-

mands. Consequently, it is necessary to avoid the in-

stances of overfull stations that do not have any available 

parking space to users who want to return a car; also to 

avoid empty station instances that do not have any avail-

able vehicles for use. In this kind of systems, the demand 

fluctuates throughout the day. Hence, the system may 

become imbalanced: some stations become empty so the 

client’s request to take a car will be rejected. At the same 

time, other stations may become full, so the client’s 

request to return a car will be rejected as well. Therefore, 

the client has to wait or look for another station in the 

neighborhood to get or return a car. To solve this imbal-

ance problem, carsharing operators have to recruit staff 

to move cars between the stations to meet the clients’ 

demands; in the following, we refer to this staff by 

“jockeys”. Jockeys will have to relocate cars between 

stations. In other words, they will bring cars to the empty 

stations and remove cars from the full stations. Obvious-

ly, relocating cars would be ideal if it alleviates two 

rejected demands at the same time. However, the way to 

do it is not so simple, because it depends on the car rent-

al demand along the day and the distance and the time 

needed to move between the full and the empty stations. 

Moving a car from a full station to a station with free 

parking spaces may be also a good compromise solution 

to increase the car’s rental demand satisfaction and to 

limit the jockey cost. As known, limiting the number of 

rejected cases, to take or to return a car into stations, is 

crucial to define the right number of jockeys and this 

number may change along days and weeks. 

  

There are many related works in the literature dealing 

with this problem, both for car and Bike sharing. (Barth, 

Todd and Xue, 2004) proposed to use the client himself 

to contribute in the relocation operation; although this 

approach was successful in reducing 42% of the overall 

number of relocation operations, this only works when 

100% of clients participate, which is obviously not al-

ways guaranteed. (Cheu et al., 2006) compared two-trip 

forecasting models, namely neural networks and support 

vector machines, in a multiple-station shared-use vehicle 
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system, but they did not deal with the cars relocation 

problem. Whilst (Kek et al., 2006) developed a simula-

tion model that helps multiple-station shared-use vehicle 

operators to recognize the efficient resources’ combina-

tion and system set up according to two selected reloca-

tion techniques: shortest time and inventory balancing. 

Shortest time technique stands for moving a car from a 

near station in the shortest possible time. While invento-

ry balancing technique means moving a car from over-

full station to another one that needs cars.  In another 

paper, (Kek et al., 2009) presented a decision support 

system for car sharing companies to determine a set of 

staff and operating parameters for the car relocation 

problem. Tested on a set of commercial network from a 

car sharing company in Singapore, the simulation results 

recommend a set of parameters which can lead to reduce 

the staff cost and the number of cars relocation opera-

tions.  

 

In next sections, we will first present physically and 

formally the problem we tackle, the data we used for the 

study, and then the description of the optimization algo-

rithm and the results based on simulation. 

 

2 RELOCATION PROBLEM 

2.1 Physical description for the relocation problem 

In our study, we consider a carsharing system where a 

client can take a car from a station and then, he can re-

turn it to any other one. Each station has a given capacity 

of cars. During the day, the number of available cars in 

each station will vary depending on the clients’ demand. 

Knowing the limited capacity and the number of availa-

ble cars in each station at different times, we can expect 

that some clients’ demands will not be satisfied. Thus, 

we say that a client’s demand is not satisfied or rejected 

in two cases: 

- The client arrives at a station to take a car and can-

not find any available one. We refer to this by 

“Demand Rejected Because a Station is Empty” or 

simply “RSE”. 

- The client arrives at a station to return the car, and 

cannot find an empty place. We refer to this by 

“Demand Rejected Because a Station is Full” or 

simply “RSF”. 

 

To reduce rejected demands, carsharing operators recruit 

employees to relocate cars from full stations to other 

stations that need cars to satisfy client demands. The 

objective is to minimize the rejected demands as well as 

to minimize the number of relocation operations. The 

relocation problem can be seen as a pickup and delivery 

problem in a metric space where employees move cars in 

a time-expanded network. Each employee will follow a 

path where he will take a car from a station and deliver it 

to another one, depending on the need to reduce rejected 

demands at different times.  

 

Figure 1 shows a representation of a simple carsharing 

system, which has four stations. On the first column to 

the left we can find the station names
i

S , beside them to 

the right, between parentheses, we read the number of 

initial available cars at each station. Each disc in the 

columns represents a station 
i

S at time t, which is indicat-

ed in the top of the columns. The solid arrows represent 

the demands. The beginning of the solid arrow is a de-

mand to take a car from the station at the time indicated 

in the top of that column. While the end of the solid 

arrow represents the demand for returning the car to the 

station target of the arrow at the time indicated at the top 

of the column.  Based on the demand and the number of 

initial vehicles, we can calculate the number of available 

vehicles in each station at each time step. If the maxi-

mum number of parking places of a station is three, in 

this example, a user who will arrive at station S1 at time 

t1 will not find a place to park his car and therefore the 

client demand for returning a car will be rejected since 

the total cars in the station cannot exceed three. Another 

rejected demand is going to occur when a user wants to 

take a car from station S3 at time t2 since there is no 

available cars. To avoid these demands from being re-

jected, ideally a jockey should bring out a car from sta-

tion S1 at time t1 and move it to station S3 at time t2. 

 
Time  0 1 2 4 5 6 … T 

Station  
S1   (3) 

 
    

 
 

        
S2   (2)              
        
S3   (0)              
        
S4   (1)              

 

Figure 1: Simple representation of a carsharing system in 

an urban area. 

 

Thus, to reduce a rejected demand, a jockey should relo-

cate cars between stations. We assume that each reloca-

tion operation is performed by one jockey, and will take 

two time steps: the first time step to move from the start-

ing station to the intermediate station where he will take 

the car, and the second time step to reach the destination 

station where he will return the car. For instance, we 

chose two time steps because in the region, subject of 

our study, the maximum time needed to go from a sta-

tion to any other station in traffic jam situation (worst 

case) is one time step of 15 minutes. So for simplicity, 

we fixed this time for all the relocation operations. 

 

2.2 Mixed Integer Linear Programming formula-

tion for the relocation problem 

Starting from (Kek et al., 2009), the relocation problem 

can be modeled as a two dimensional time-space matrix 

of size 𝑁 ×  𝑇, where N is the total number of stations 

𝑆 = {1,2, . . , 𝑁} and T is the number of all the time steps 

in the day starting from 1 to T. Each element of the ma-
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trix represents a station Si at time t. For each station s  

S we created T nodes to represent that station at each 

time t. Then we put all the 𝑆 ×  𝑇 nodes in one row 

vector V = {11,...,it-1,it, it+1, NT}. During the day, we con-

sider that an employee is involved in three types of activ-

ity: Waiting, Moving and Relocation tasks. Therefore, 

we created three sets of arcs in the time-space network to 

represent these activities. For each node it  V, we con-

struct an arc that represents a waiting activity between it 

and it+1, we call this set A1= {..., a1(it, it+1), …}. Then, for 

each node it in V, we construct N-1 arcs to represent 

moving activities between station i and j ∀ i, j  S, i ≠ j, 

from time step t to time step t+tij where tij is  the number 

of time steps needed to go from station i to station j, we 

named this set A2{..., a2(it, jt+tij), …}. In the same way of 

creating moving activities, we created N-1 arcs to repre-

sent relocation activities for each station, and we denote 

this set A3{..., a3(it, jt+tij), …}. We represent the available 

staff that will be involved in doing these activities by a 

set 𝐸 = {1, … , 𝑒 , … , 𝑊} where W is the maximum num-

ber of available employees. 

We have formulated our relocation problem as a Mixed 

Integer Linear Programming Model.  

 

We used six types of decision variables: 
e

u : Binary variable, that takes the value of one if the 

employee e has been used during the day and zero oth-

erwise. 

 

1t t

e

i i
wait




: Binary variable associated with the set of 

waiting activities A1. It takes the value of one if employ-

ee e has been waiting at station i from time step t to t+1 

and zero otherwise. 

 

t t tij

e

i j
move



: Binary variable associated with the set of 

moving activities A2. It takes the value of one if employ-

ee e has been moving from station i to station j, from 

time step t to t+tij and zero otherwise. 

 

t t tij

e

i j
rel



: Binary variable associated with the set of reloca-

tion activities A3. It takes the value of one if employee e 

has been relocating a car from station i to station j, from 

time step t to t + tij and zero otherwise. 

 
r

it
out : Integer variable to represent the number of reject-

ed demand to take a car out of a station i at time step t. 

 
r

it
in  : Integer variable to represent that number of reject-

ed demand to return a car into a station i at time step t. 

 

On the other hand, here are our constants that we will be 

used as input for our model: 

0
av : Represents the number of Available Vehicles at 

time step 0 in each station 𝑖. 

 

it
out : Represents the number of demands to take a car 

out of a station i at time step t. 

 

it
in : Represents the number of demands to return a car 

into a station i at time step t. 

 

i
p : Number of parking places in each station i. 

 

ijc  : Cost of a moving or relocating activity from station 

i to station j. 

 

ec  : Cost of using one staff during the day. 

 

inc  : Cost of rejecting a client demand for returning a car 

into a station. 

 

outc  : Cost of rejecting a client demand for taking a car 

from a station. 

 

In addition, we used one dependent variable: 

it
av  : Number of available vehicles at station i at time 

step t. 

 

The MILP model for the problem is: 

 

( , ) 3 ( , ) 4

( )
t t t t t tij ij

t t t t t tij ij

e e

i j i j

i j A e E i j A e E

ijMin Z c move rel
 

 
   

       

t t

r r e

it it

i V i V e E

out in ec out c in c u
  

     (1) 

 
:Subject to  

 

 

1 2 1 1 1 1

, ,
t tij ij

e e e e

i i i j i j

i S i j S i j S

i j i j

wait move rel u e E
 

  

 

      

 

(2) 

 

1

( , ) 3 ( , ) 4
t t t t t t t tij ij

t t t t t tij ij

e e e

i i j i j i

j i A j i A

wait move rel
  

 
 

      

1

( , ) 3 ( , ) 4
t t t t t t t tij ij

t t t t t tij ij

e e e

i i i j i j

i j A i j A

wait move rel
  

 



 

    
 

0 , , 1
t
i V e E t      (3) 

 

1
( ) ( )

r r

it it it it it it
av av in in out out


       

 

( , ) 4 ( , ) 4
t t t t t tij ij

t t t t t tij ij

e e

j i i j t

j i A e E i j A e E

rel rel i V
 

 
   

       
(4) 
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it i t
av p i V    

(5) 

 
r

it it t
in in i V    

(6) 

 
r

it it t
out out i V    

(7) 

 

(0,1)
e

u e E    
(8) 

 

1
1 1(0,1) ( , ) ,

t t

e

i i t t
wait i i A e E




     
(9) 

 

2(0,1) ( , ) ,
t t t ijij

e

i j t t t
move i j A e E




     (10) 

 

3(0,1) ( , ) ,
t t t ijij

e

i j t t t
rel i j A e E




     (11) 

 

0
r

it t
in i V    

(12) 

 

0
r

it t
out i V    

(13) 

 

0
it t

av i V    
(14) 

 

The objective function (1) minimize the number of re-

jected demands and the number of relocation operations 

needed to reduce the rejected demands. Constraint (2) is 

used to make sure that each employee is involved in just 

one activity at a time and it is used to set the variable ue 

to one if the employee e is used at t = 1. Constraint (3) is 

used to make sure that an employee will not start a new 

activity until he finished the previous one. We used Con-

straint (4) to calculate the number of available vehicles at 

each station at each time step. This depends on the num-

ber of available vehicles in the previous time step, the 

number of vehicles moving in/out of station, and the 

number of vehicles relocated in/out of the station. Con-

straint (5) is used to make sure that the number of avail-

able vehicles at a station cannot be greater than the ca-

pacity of the station. Constraints (6) and (7) ensures that 

the number of rejected demands at a station cannot ex-

ceed the demand itself. Constraints (8)-(11) forces their 

variables to take binary values, while constraints (12)-

(14) make sure that their variables are positive. 

3 MOBILITY DATA 

In this section, we will describe the mobility data that we 

used in our study to generate the inputs for our 

algorithm.  

 

To build the mobility data, we used two main types of 

information:  

- GIS shape files describing the geographical entities  

- Survey data and socio-economical information 

collected by professionals for regional planning 

needs, describing the main flows of people 

mobility.  

 

Collected data concerns a 20 km * 10 km area in a 

region of Paris, France. More details can be found in 

(Moalic et al., 2013). The area is divided into a grid of 

equal cell size. Each cell is characterized by two 

properties: 

- Terrain type: static information representing the 

dominant structure type of the area covered by the cell 

(roads, buildings, houses, company locations, etc.) 

- Attraction weight: dynamic information that varies 

every 15 minutes during the day. Attraction weights are 

computed according to cells terrain type and all other 

survey data. 

 

 
This mobility data is used to build the people mobility 

between each cell during the day. All the flows are set in 

a 3D matrix F = (fi,j,t) where fi,j,t represents the number of 

people moving from cell i to cell j at time period t. 

Figure 2 shows the outflows from the selected cell, 

obtained from macro data and geographical description. 

The thickness of the arrows reflects the number of 

people moving between cells. For the purpose of this 

study, we define a cell’s size to be 300 m. Since some 

cells cannot be an origin or destination of a mobility 

flow, such as fields or lakes, for our experimentation, 

nearly 400 cells are considered. That gives 160,000 

origin/destination couples. Considering time steps of 15 

minutes each (96 per day), the flow matrix used contains 

more than 15,000,000 records describing how people are 

moving during the day. 

 

3.1 Stations location 

In this section, we will describe how we located the 

carsharing stations in our zone of study in a way that 

they cover the maximum demand in an appropriate 

manner. In our mobility data, stations are located using a 

Figure 2 Flows distribution in mesh 
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multi-objective local search algorithm. In this algorithm, 

we aim to optimize three objectives: 

f1: flow maximization i.e. the locations must allow us to 

maximize the flows between themselves. 

f2: balance maximization i.e. the location must allow us 

to maximize the balance between inflows and outflows 

of a station. 

f3: minimization of flow standard deviation i.e. the 

location must allow us to get a uniform flow along the 

day. 

 

3.2 Forecasting who will use the service 

The algorithm for locating the stations and the evaluation 

of users’ demand during each time step, suppose a good 

understanding of who will use the service. This part was 

realized with the operator who will deploy the carsharing 

service. 

 

Among all the mobility flows, some filters are used for 

selecting the rate of users who will use the service de-

pending on their profile (age, sex, etc.). Moreover, we 

defined a capture radius for each station, which defines 

the maximum distance within it, users are ready to walk 

to reach the station. Based on this radius value, a station 

sti can cover one or more cells. In territory planning it is 

generally considered that one can walk 300m for taking a 

public transportation. 

 

 
Figure 3 Stations and cells coverage 

 

Figure 3 shows stations and their coverage area (disc). 

The inflows / outflows associated to each station are the 

weighted sum of the flows from the covered cells. The 

weight depends on the proportion of coverage. If several 

stations cover the same part of a cell, the associated 

flows are divided between all of them. 

 

Using the mobility data, we were able to locate 20 sta-

tions in the region where we did our study; we assumed 

that each station contains 10 stalls. Hence, each station 

can contain 10 cars at maximum. Then using the demand 

data, we calculate the expected rejected demand in each 

station that we used as input data for our model. 

 

Furthermore, to decide the client assignment to the cars, 

we used a probabilistic distribution on the demand data. 

This distribution is fixed by sociological survey and 

input hypothesis done by the carsharing exploitation 

company. After that, using the client assignment to the 

cars and the demand data from each station to all other 

stations at each time step we were able to construct two 

new matrices: 

 

out: Contains the number of cars that will be taken from 

each station at each time step. 

 

in: Contains the number of cars that will be dropped off 

into each station at each time step.    

 

Knowing the number of vehicles that will be taken and 

returned in each station at each time step, we could cal-

culate the number of available vehicles in each station at 

each time step. However, since each station has a limited 

capacity, and sometimes there are no available cars, 

some demands will be rejected. To calculate the number 

of rejected demands in each station at each time step 

without using any employee for relocating cars, we used 

some constraints from the MILP described earlier in this 

paper. When we set the number of employees to zero, 

constraint (4) will be simplified to take the form below: 

 

1
( ) ( )

r r

i i i i i it t t t t t
av av in in out out


                        (4a) 

 

Using this new constraint and the other boring con-

straints, we were able to construct two new matrices for 

rejected demands: 
r

it
out  : Matrix of rejected demands to take a car from a 

station i at time step t. This type of rejected demand 

occurs because the station i is empty at time step t, so the 

demand will not be satisfied. 
r

it
in  : Matrix of rejected demands for returning a car into 

a station i at time step t. This type of rejected demand 

occurs because the station i is full at time step t, so the 

demands to return cars, will not be satisfied. 

 

These new matrices will reflect the number of rejected 

demands in each station during each 15 minutes of the 

day. In the following, we consider a carsharing system 

that has 20 stations, 150 cars and more than 1370 trips 

during 24 hours of a day. 

4 JOCKEYING ALGORITHMS 

4.1 Solving the relocation problem using CPLEX 

solver. 

We solved our MILP model using IBM CPLEX solver 

on an Intel core I5 machine of 16 GB RAM. Although 

the MILP model gives us an optimal solution for the 

relocation problem, the time needed to solve the 

problem, increases dramatically when we add the 
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number of employees involved in the relocation 

processes. Figure 4 shows the time needed (minutes) to 

solve the MILP relocation problem when we increase the 

number of jockeys. At the beginning, when the number 

of jockeys involved in the relocation operation is small, 

the resolution of the MILP model using CPLEX takes 

less than one minute. However, the execution time 

increases dramatically when the number of jockeys 

exceeds five where it takes more than one hour to solve 

the MILP model. After that, when the number of jockeys 

exceed thirteen, the execution time exceeded three hours 

to give the optimal solution for our relocation problem. 

 

 
Figure 4 Solving time (minutes) of the MILP model 

using CPLEX when varying the number of employees 

 

4.2 A Greedy Algorithm to solve the relocation 

problem. 

In order to solve the relocation problem in a faster way, 

we developed a greedy algorithm to reduce the rejected 

demands. The algorithm tries to alleviate the maximum 

number of rejected demands using the minimum number 

of relocation operations. At each time step, the algorithm 

tries to find the best path that alleviate the maximum 

number of rejected demand and assign it to the jockey. 

For example, if we expect a Rejected demand because a 

Station is Empty or simply a RSE at time t+2, the jockey 

should bring a car to the empty station to fulfill the 

upcoming request. That is, the jockey should look for a 

station that has available car at t+1 to drive it to the 

required destination station at t+2. On the other side, if 

we expect a Rejected demand because a Station is Full or 

simply RSF at t+1, a jockey should drive a car from the 

full station to another one that would need a car or has an 

empty space at t + 2.  

 

The relocation operation must be optimized in order to 

reduce as much rejected demand as possible. The best 

the jockey can do is to alleviate two rejected demands in 

one relocation operation. For instance, this situation 

occurs when we have a RSE at t+2 and a RSF at t+1. In 

this case, the jockey goes to the station that has a RSF, 

and drives a car to the station that has a RSE, in this way 

the jockey reduces two rejected demands by one 

relocation operation. However, this situation does not 

often occur. In other situation, we only have one rejected 

demand between t+1 and t+2, so in this case, the jockey 

will alleviate this rejected demand and in the same time 

will try to anticipate and avoid another upcoming 

rejected demand (which may appear at time greater than 

t+2). Moreover, we have another situation where we do 

not have any rejected demand between t+1 and t+2.  In 

this case, the jockey tries to move cars between the 

stations at these times in order to anticipate and avoid 

rejected demands before their occurrence in the future. 

Thus, to make the algorithm more general and then more 

efficient, at each time the algorithm will look for the 

soonest upcoming RSF and RSE and try to reduce them 

as it is indicated in the flowchart in figure 5.  

 

 
Figure 5 Flowchart of the Relocation Algorithm 

 

Each relocation operation consists of a path from the 

origin station where the jockey starts the operation to the 

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25

Ti
m

e 
in

 m
in

u
te

s

Number of Employees

Time in minutes

Yes 

No 

No 

No 

Yes 

No 

No 

Yes 

Set t=0 and  

paths_list=null 

Look for stations 

having the soonest 

upcoming RDF at 

time>t 

Look for stations that 
have available 

parking spaces at t+2 

Look for stations 

having the soonest 

upcoming RDE at 

time> t+1 

Look for stations that 

can release cars at t+1 

Look for stations 

having the soonest 

upcoming RDE at 

time > t+1 

Calculate Best Path 

then add it to 

paths_list 

Update time t 

Update Matrices 

Stations  

detected ? 

No more feasible 

paths 

Start 

Stations  

detected ? 

Stations  

detected ? 

Stations  

detected ? 

Stations  

detected ? 

Yes 

No 

End 

End of the 

day ? 

Yes 

Yes 



MOSIM’14 – November 5-7-2014 - Nancy - France 

intermediate station where he will pick up a car and 

drive it to the destination station. After proceeding with 

the relocation operation, we update the number of cars in 

affected stations. We keep in mind that a relocation 

operation can raise rejected demands in the related 

stations in the future time, so when taking the decision to 

relocate a car we must be cautious as to not generate 

much more rejected demands. 

During each relocation operation, the jockey follow a 

path of three stations: 

- Starting station where the jockey starts the 

relocation operation at relocation starting time. 

- Intermediate station where the jockey arrives to pick 

up a car at relocation intermediate time. 

- Destination station where the jockey arrives to 

deliver the picked up car at the relocation destination 

time. 

 

When a jockey is willing to start a relocation operation, 

he must choose a path between different possibilities. 

The path starts from one origin station (from the station 

where the jockey is). However, the jockey has different 

possibilities to choose between many intermediate and 

destination stations. A jockey should consider the path of 

minimum cost, which is the one that reduce the 

maximum of rejected demands in the soonest delays. 

Since we considered that we need one time step to move 

from any station to any other station, we did not 

integrate the distance in our calculation. However, we 

can add it to our formula by simply adding the distance 

factor to our cost function. 

 

We use a cost function to choose the paths that reduce 

the maximum rejected demands in a way that we 

privilege the paths that alleviate the soonest upcoming 

rejected demands. To calculate the minimum path cost 

we use this formula: 

1

1
cost

E G
 

 
              (15) 

 

Where: 

1 1

1 1
G E

G E
t t

    
 

                                            (16) 

  : is used to increase the cost of paths having generated 

demands, and to privilege the path that generates a late 

rejected demand on the path that generates sooner 

rejected demands. 
 

E : Number of Eliminated Rejected Demands, E[1;2]. 
 

G : Number of Generated Rejected Demands, G[0;1]. 
 

Gt : Index of time steps when the demands might be 

generated,  Gt ]1;96[. 
 

:Et  Index of time steps when the demands might be 

eliminated, 
Et ]1;96[. 

 

When the number of eliminated rejected demands E 

increase, the cost value will increase and vice-versa. If 

we have to choose between two paths that reduce the 

same number of rejected demands but in different time 

steps, we will select the path that will eliminate the 

soonest upcoming rejected demands. In other hand, if we 

have to choose between many paths that eliminate one 

rejected demand and generate another, we will choose 

the path that will alleviate the soonest upcoming rejected 

demand and generate the latest upcoming rejected 

demand. 

 

At t = 0, the algorithm starts by looking for the stations 

that have the soonest upcoming RSF at time greater than 

the current time, to give the jockey the required time to 

arrive at the station. If it finds them, then as second step, 

it looks for the stations that have the soonest upcoming 

RSE at time greater than the current time plus one time 

step, to give the employee the necessary time to go from 

the intermediate station to the destination station. If he 

finds those, then the algorithm calculates the minimum 

path cost, after that it adds it to the paths list of the 

involved jockey. 

  

If in the second step, the algorithm did not find any RSE, 

then it will look for all stations that have empty space to 

receive a car at t+2. When the algorithm gets the list of 

these stations, it will choose the minimum path cost and 

add it to paths list. 

 

If in the first step, the algorithm did not find any station 

that has a RSF at t+1, then it looks for all the stations 

that have RSE at t + 2. If it finds them, then, as second 

step, the algorithm looks for the stations that can release 

cars at t+1. If it finds those, then the algorithm calculates 

the minimum path cost, and add it to the paths list. If the 

algorithm did not find any rejected demand or it reaches 

the end of the day, the algorithm will stop.  

 

By this way, the algorithm will try to anticipate any 

rejected demand that will occur later by moving the cars 

between the stations that will have rejected demands in 

the nearest future, in order to prevent these demands 

from being rejected. Even though a relocation operation 

must reduce rejected demands, it can also causes some 

other demands to be rejected. For example, if we relocate 

a car from station st0 at t+1 that can release cars to 

another station st5 at t+2 that has RSE, in this case we 

alleviate one rejected demand in st5 at t+2. However, we 

may cause a new rejected demand in st0 in the future, if 

the number of available cars at st0 is zero at time > t+1. 

In addition, this could happen if we relocate a car from 

station st1 at t+1 that has a RSF to a station that has free 

stalls.To use several jockeys, we run the algorithm 

iteratively for each jockey using the previous output as 

input to the next iteration; the final number of jockeys to 

use, is decided by the exploitation company. 

5 RESULTS AND EXPERIMENTATION 

We did a comparison between the performances of the 

two approaches we used in our study.  The execution 
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time of our greedy algorithm is less than one second 

while that of MILP reaches more than 3 hours when we 

increase the number of jockeys to 15 or more, as we 

described earlier in this paper.  

 

5.1 Greedy Algorithm VS Exact solver results 

Before executing the algorithm, we had 59/96 time steps 

having rejected demands. Therefore, if we are using just 

one jockey, in the best cases, he can reduce 118 rejected 

demands (59 x 2), knowing that the best he can do is 

solving two rejected demands in one relocation operation 

by moving a car from a station that has a RSF to a station 

that has a RSE. However, the number of reduced rejected 

demands will decrease when the number of time steps 

having rejected demands decreases. The graph in figure 

6 shows the total number of remaining rejected demands 

compared to the number of jockeys used by applying our 

two approaches. Our greedy algorithm shows very good 

results when we compare it to the optimal solutions 

solved by the MILP model. Initially, before execution of 

the algorithm we had 556 rejected demands. After 

execution of our greedy algorithm, the results show that 

when we use 10 jockeys, we could reduce 81% of the 

rejected demands, while our MILP model reduced nearly 

82.5%. These results reveal the good performance of our 

greedy algorithm. 

 

 
Figure 6 MILP VS our Greedy Algorithm results 

CONCLUSION AND FUTURE WORKS 

As aforementioned, in this study, we started by present-

ing the relocation problem for a carsharing system. Then, 

we formulated the problem as a Mixed Integer Linear 

Programming Model. After that, we described the mobil-

ity data and our greedy algorithm that we used to relo-

cate the cars between the stations in a carsharing system 

in order to maintain the balance and then maximize the 

client-demand satisfaction. The algorithm tries in each 

relocation operation to reduce the maximum number of 

rejected demands in a minimum path cost either by re-

solving the rejected demands directly or by making an-

ticipated car movements that reduce rejected demands 

before their occurrence. The greedy algorithm showed 

impressive performance in comparison to the MILP 

model. It finds competitive solutions in less than one 

second while the exact MILP solver takes more than one 

day when we use a large dataset and a big number of 

jockeys. After running our algorithm on a set of data, the 

results show that, for a carsharing system that has 20 

stations and 150 cars: 10 jockeys were able to alleviate 

more than 80% of rejected demands.  

 

In future work, we will model a sophisticated simulation 

for the relocating operations, which takes into account 

the distance and the time to move from station to another 

station, and simulate the impact of each relocation opera-

tion, on the whole system. We will also study the effect 

of stochastic data on the performance of the two ap-

proaches describer earlier in this paper to evaluate the 

efficiency of the offline route planning in situations 

similar to real life where stochastic data prevails. 

 

REFERENCES 

 

Barth, M., & Shaheen, S. A. (2002). Shared-use vehicle 

systems: Framework for classifying carsharing, 

station cars, and combined approaches. 

Transportation Research Record: Journal of the 

Transportation Research Board, 1791(1), 105-112. 

Barth, M., Todd, M., & Xue, L. (2004). User-based 

vehicle relocation techniques for multiple-station 

shared-use vehicle systems. 

Cheu, R. L., Xu, J., Kek, A. G., Lim, W. P., & Chen, W. 

L. (2006). Forecasting shared-use vehicle trips with 

neural networks and support vector machines. 

Transportation Research Record: Journal of the 

Transportation Research Board, 1968(1), 40-46. 

Kek, A. G., Cheu, R. L., Meng, Q., & Fung, C. H. 

(2009). A decision support system for vehicle 

relocation operations in carsharing systems. 

Transportation Research Part E: Logistics and 

Transportation Review, 45(1), 149-158. 

Kek, A. G., Cheu, R. L., & Chor, M. L. (2006). 

Relocation simulation model for multiple-station 

shared-use vehicle systems. Transportation Research 

Record: Journal of the Transportation Research 

Board, 1986(1), 81-88. 

Moalic, L., Lamrous, S., & Caminada, A. (2013). A 

Multiobjective Memetic Algorithm for Solving the 

Carsharing Problem. Proceedings Of The 2013 

International Conference On Artificial Intelligence-

Icai 2013, Vol. 1, pp. 877-883. 

 

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

N
u

m
b

er
 o

f 
re

m
ai

n
in

g 
re

je
ct

ed
 d

em
an

d
s

Number of employees
Remaining rejected demands after executing the greedy algorithm

Remaining rejected demands after solving the MILP


