
HAL Id: hal-01166680
https://hal.science/hal-01166680

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GREEDY ALGORITHM FOR RELOCATION
PROBLEM IN ONE-WAY CARSHARING SYSTEMS

Rabih Zakaria, Laurent Moalic, Alexandre Caminada, Mohammad Dib

To cite this version:
Rabih Zakaria, Laurent Moalic, Alexandre Caminada, Mohammad Dib. GREEDY ALGORITHM
FOR RELOCATION PROBLEM IN ONE-WAY CARSHARING SYSTEMS . MOSIM 2014, 10ème
Conférence Francophone de Modélisation, Optimisation et Simulation, Nov 2014, Nancy, France. �hal-
01166680�

https://hal.science/hal-01166680
https://hal.archives-ouvertes.fr

10the International Conference on Modeling, Optimization and Simulation - MOSIM’14 – November 5-7-2014-

Nancy – France “Toward circular Economy”

GREEDY ALGORITHM FOR RELOCATION PROBLEM IN ONE-WAY
CARSHARING SYSTEMS

Rabih ZAKARIA, Laurent MOALIC, Alexandre

CAMINADA

OPERA, UTBM

Belfort, France

{rabih.zakaria, laurent.moalic,

alexandre.caminada}@utbm.fr

Mohammad DIB

GDF SUEZ - CEEME

Paris, France

mohammad.dib@gmail.com

ABSTRACT: In one-way carsharing systems, users can take a car from a station and return it to any other station.

Available cars and free parking space at each station, play a major role in the success of these systems. Therefore,

carsharing operators recruit employees to relocate cars between the stations. This is done to avoid rejection of users’

demands for taking cars from the station or returning them. In this paper, we present a greedy algorithm in order to

reduce the number of rejected users' demands, using the minimum number of employees. We used mobility data

collected from an operational system to build the users’ demand matrices as input for our algorithm. For example, in a

carsharing system which has 20 stations, 150 cars, through more than 1,370 trips made during one day and more than

555 expected rejected demands, results show that our algorithm is able to reduce 55% of expected rejected demands

using 5 employees and more than 80% of these rejected demands using 10 employees. We compared the algorithm with

a Mixed Integer Linear Programming model solved using IBM ILOG CPLEX optimizer and made the proof of

performance.

KEYWORDS: Transport, Carsharing, Optimization, Approximation algorithm.

1 INTRODUCTION

Nowadays, cars are at the core of environmental con-

cerns due to their significant contribution to the envi-

ronmental problems that affect our globe. Most of the

major cities worldwide suffer from congestion, vehicles

emissions, lack of parking spaces and noise pollution.

Over the last few years, cities have started to think dif-

ferently about private car usage and have provided new

solutions that reduce car ownership while simultaneously

offering private car advantages. For instance, the concept

of carsharing service is one of these solutions that can

contribute positively to solve these problems.

There are different ways to share vehicles such as com-

pany and neighborhood carsharing, station cars, and

carsharing with multiple stations (Barth and Shaheen,

2002). In the first two models, trips are mostly round-

trips whereas in the third one, they are almost one-way.

One-way trips lead to additional cost for the system

operator because they require recruiting staff to relocate

vehicles periodically between the stations (Kek et al.,

2009). This is done to maintain a minimum number of

vehicles in each station in order to satisfy clients’ de-

mands. Consequently, it is necessary to avoid the in-

stances of overfull stations that do not have any available

parking space to users who want to return a car; also to

avoid empty station instances that do not have any avail-

able vehicles for use. In this kind of systems, the demand

fluctuates throughout the day. Hence, the system may

become imbalanced: some stations become empty so the

client’s request to take a car will be rejected. At the same

time, other stations may become full, so the client’s

request to return a car will be rejected as well. Therefore,

the client has to wait or look for another station in the

neighborhood to get or return a car. To solve this imbal-

ance problem, carsharing operators have to recruit staff

to move cars between the stations to meet the clients’

demands; in the following, we refer to this staff by

“jockeys”. Jockeys will have to relocate cars between

stations. In other words, they will bring cars to the empty

stations and remove cars from the full stations. Obvious-

ly, relocating cars would be ideal if it alleviates two

rejected demands at the same time. However, the way to

do it is not so simple, because it depends on the car rent-

al demand along the day and the distance and the time

needed to move between the full and the empty stations.

Moving a car from a full station to a station with free

parking spaces may be also a good compromise solution

to increase the car’s rental demand satisfaction and to

limit the jockey cost. As known, limiting the number of

rejected cases, to take or to return a car into stations, is

crucial to define the right number of jockeys and this

number may change along days and weeks.

There are many related works in the literature dealing

with this problem, both for car and Bike sharing. (Barth,

Todd and Xue, 2004) proposed to use the client himself

to contribute in the relocation operation; although this

approach was successful in reducing 42% of the overall

number of relocation operations, this only works when

100% of clients participate, which is obviously not al-

ways guaranteed. (Cheu et al., 2006) compared two-trip

forecasting models, namely neural networks and support

vector machines, in a multiple-station shared-use vehicle

MOSIM’14 – November 5-7-2014 - Nancy - France

system, but they did not deal with the cars relocation

problem. Whilst (Kek et al., 2006) developed a simula-

tion model that helps multiple-station shared-use vehicle

operators to recognize the efficient resources’ combina-

tion and system set up according to two selected reloca-

tion techniques: shortest time and inventory balancing.

Shortest time technique stands for moving a car from a

near station in the shortest possible time. While invento-

ry balancing technique means moving a car from over-

full station to another one that needs cars. In another

paper, (Kek et al., 2009) presented a decision support

system for car sharing companies to determine a set of

staff and operating parameters for the car relocation

problem. Tested on a set of commercial network from a

car sharing company in Singapore, the simulation results

recommend a set of parameters which can lead to reduce

the staff cost and the number of cars relocation opera-

tions.

In next sections, we will first present physically and

formally the problem we tackle, the data we used for the

study, and then the description of the optimization algo-

rithm and the results based on simulation.

2 RELOCATION PROBLEM

2.1 Physical description for the relocation problem

In our study, we consider a carsharing system where a

client can take a car from a station and then, he can re-

turn it to any other one. Each station has a given capacity

of cars. During the day, the number of available cars in

each station will vary depending on the clients’ demand.

Knowing the limited capacity and the number of availa-

ble cars in each station at different times, we can expect

that some clients’ demands will not be satisfied. Thus,

we say that a client’s demand is not satisfied or rejected

in two cases:

- The client arrives at a station to take a car and can-

not find any available one. We refer to this by

“Demand Rejected Because a Station is Empty” or

simply “RSE”.

- The client arrives at a station to return the car, and

cannot find an empty place. We refer to this by

“Demand Rejected Because a Station is Full” or

simply “RSF”.

To reduce rejected demands, carsharing operators recruit

employees to relocate cars from full stations to other

stations that need cars to satisfy client demands. The

objective is to minimize the rejected demands as well as

to minimize the number of relocation operations. The

relocation problem can be seen as a pickup and delivery

problem in a metric space where employees move cars in

a time-expanded network. Each employee will follow a

path where he will take a car from a station and deliver it

to another one, depending on the need to reduce rejected

demands at different times.

Figure 1 shows a representation of a simple carsharing

system, which has four stations. On the first column to

the left we can find the station names
i

S , beside them to

the right, between parentheses, we read the number of

initial available cars at each station. Each disc in the

columns represents a station
i

S at time t, which is indicat-

ed in the top of the columns. The solid arrows represent

the demands. The beginning of the solid arrow is a de-

mand to take a car from the station at the time indicated

in the top of that column. While the end of the solid

arrow represents the demand for returning the car to the

station target of the arrow at the time indicated at the top

of the column. Based on the demand and the number of

initial vehicles, we can calculate the number of available

vehicles in each station at each time step. If the maxi-

mum number of parking places of a station is three, in

this example, a user who will arrive at station S1 at time

t1 will not find a place to park his car and therefore the

client demand for returning a car will be rejected since

the total cars in the station cannot exceed three. Another

rejected demand is going to occur when a user wants to

take a car from station S3 at time t2 since there is no

available cars. To avoid these demands from being re-

jected, ideally a jockey should bring out a car from sta-

tion S1 at time t1 and move it to station S3 at time t2.

Time 0 1 2 4 5 6 … T

Station
S1 (3)

S2 (2)

S3 (0)

S4 (1)

Figure 1: Simple representation of a carsharing system in

an urban area.

Thus, to reduce a rejected demand, a jockey should relo-

cate cars between stations. We assume that each reloca-

tion operation is performed by one jockey, and will take

two time steps: the first time step to move from the start-

ing station to the intermediate station where he will take

the car, and the second time step to reach the destination

station where he will return the car. For instance, we

chose two time steps because in the region, subject of

our study, the maximum time needed to go from a sta-

tion to any other station in traffic jam situation (worst

case) is one time step of 15 minutes. So for simplicity,

we fixed this time for all the relocation operations.

2.2 Mixed Integer Linear Programming formula-

tion for the relocation problem

Starting from (Kek et al., 2009), the relocation problem

can be modeled as a two dimensional time-space matrix

of size 𝑁 × 𝑇, where N is the total number of stations

𝑆 = {1,2, . . , 𝑁} and T is the number of all the time steps

in the day starting from 1 to T. Each element of the ma-

MOSIM’14 – November 5-7-2014 - Nancy - France

trix represents a station Si at time t. For each station s 

S we created T nodes to represent that station at each

time t. Then we put all the 𝑆 × 𝑇 nodes in one row

vector V = {11,...,it-1,it, it+1, NT}. During the day, we con-

sider that an employee is involved in three types of activ-

ity: Waiting, Moving and Relocation tasks. Therefore,

we created three sets of arcs in the time-space network to

represent these activities. For each node it  V, we con-

struct an arc that represents a waiting activity between it

and it+1, we call this set A1= {..., a1(it, it+1), …}. Then, for

each node it in V, we construct N-1 arcs to represent

moving activities between station i and j ∀ i, j  S, i ≠ j,

from time step t to time step t+tij where tij is the number

of time steps needed to go from station i to station j, we

named this set A2{..., a2(it, jt+tij), …}. In the same way of

creating moving activities, we created N-1 arcs to repre-

sent relocation activities for each station, and we denote

this set A3{..., a3(it, jt+tij), …}. We represent the available

staff that will be involved in doing these activities by a

set 𝐸 = {1, … , 𝑒 , … , 𝑊} where W is the maximum num-

ber of available employees.

We have formulated our relocation problem as a Mixed

Integer Linear Programming Model.

We used six types of decision variables:
e

u : Binary variable, that takes the value of one if the

employee e has been used during the day and zero oth-

erwise.

1t t

e

i i
wait




: Binary variable associated with the set of

waiting activities A1. It takes the value of one if employ-

ee e has been waiting at station i from time step t to t+1

and zero otherwise.

t t tij

e

i j
move



: Binary variable associated with the set of

moving activities A2. It takes the value of one if employ-

ee e has been moving from station i to station j, from

time step t to t+tij and zero otherwise.

t t tij

e

i j
rel



: Binary variable associated with the set of reloca-

tion activities A3. It takes the value of one if employee e

has been relocating a car from station i to station j, from

time step t to t + tij and zero otherwise.

r

it
out : Integer variable to represent the number of reject-

ed demand to take a car out of a station i at time step t.

r

it
in : Integer variable to represent that number of reject-

ed demand to return a car into a station i at time step t.

On the other hand, here are our constants that we will be

used as input for our model:

0
av : Represents the number of Available Vehicles at

time step 0 in each station 𝑖.

it
out : Represents the number of demands to take a car

out of a station i at time step t.

it
in : Represents the number of demands to return a car

into a station i at time step t.

i
p : Number of parking places in each station i.

ijc : Cost of a moving or relocating activity from station

i to station j.

ec : Cost of using one staff during the day.

inc : Cost of rejecting a client demand for returning a car

into a station.

outc : Cost of rejecting a client demand for taking a car

from a station.

In addition, we used one dependent variable:

it
av : Number of available vehicles at station i at time

step t.

The MILP model for the problem is:

(,) 3 (,) 4

()
t t t t t tij ij

t t t t t tij ij

e e

i j i j

i j A e E i j A e E

ijMin Z c move rel
 

 
   

     

t t

r r e

it it

i V i V e E

out in ec out c in c u
  

    (1)

:Subject to

1 2 1 1 1 1

, ,
t tij ij

e e e e

i i i j i j

i S i j S i j S

i j i j

wait move rel u e E
 

  

 

      

(2)

1

(,) 3 (,) 4
t t t t t t t tij ij

t t t t t tij ij

e e e

i i j i j i

j i A j i A

wait move rel
  

 
 

   

1

(,) 3 (,) 4
t t t t t t t tij ij

t t t t t tij ij

e e e

i i i j i j

i j A i j A

wait move rel
  

 



 

  

0 , , 1
t
i V e E t     (3)

1
() ()

r r

it it it it it it
av av in in out out


     

(,) 4 (,) 4
t t t t t tij ij

t t t t t tij ij

e e

j i i j t

j i A e E i j A e E

rel rel i V
 

 
   

     
(4)

MOSIM’14 – November 5-7-2014 - Nancy - France

it i t
av p i V  

(5)

r

it it t
in in i V  

(6)

r

it it t
out out i V  

(7)

(0,1)
e

u e E  
(8)

1
1 1(0,1) (,) ,

t t

e

i i t t
wait i i A e E




   
(9)

2(0,1) (,) ,
t t t ijij

e

i j t t t
move i j A e E




    (10)

3(0,1) (,) ,
t t t ijij

e

i j t t t
rel i j A e E




    (11)

0
r

it t
in i V  

(12)

0
r

it t
out i V  

(13)

0
it t

av i V  
(14)

The objective function (1) minimize the number of re-

jected demands and the number of relocation operations

needed to reduce the rejected demands. Constraint (2) is

used to make sure that each employee is involved in just

one activity at a time and it is used to set the variable ue

to one if the employee e is used at t = 1. Constraint (3) is

used to make sure that an employee will not start a new

activity until he finished the previous one. We used Con-

straint (4) to calculate the number of available vehicles at

each station at each time step. This depends on the num-

ber of available vehicles in the previous time step, the

number of vehicles moving in/out of station, and the

number of vehicles relocated in/out of the station. Con-

straint (5) is used to make sure that the number of avail-

able vehicles at a station cannot be greater than the ca-

pacity of the station. Constraints (6) and (7) ensures that

the number of rejected demands at a station cannot ex-

ceed the demand itself. Constraints (8)-(11) forces their

variables to take binary values, while constraints (12)-

(14) make sure that their variables are positive.

3 MOBILITY DATA

In this section, we will describe the mobility data that we

used in our study to generate the inputs for our

algorithm.

To build the mobility data, we used two main types of

information:

- GIS shape files describing the geographical entities

- Survey data and socio-economical information

collected by professionals for regional planning

needs, describing the main flows of people

mobility.

Collected data concerns a 20 km * 10 km area in a

region of Paris, France. More details can be found in

(Moalic et al., 2013). The area is divided into a grid of

equal cell size. Each cell is characterized by two

properties:

- Terrain type: static information representing the

dominant structure type of the area covered by the cell

(roads, buildings, houses, company locations, etc.)

- Attraction weight: dynamic information that varies

every 15 minutes during the day. Attraction weights are

computed according to cells terrain type and all other

survey data.

This mobility data is used to build the people mobility

between each cell during the day. All the flows are set in

a 3D matrix F = (fi,j,t) where fi,j,t represents the number of

people moving from cell i to cell j at time period t.

Figure 2 shows the outflows from the selected cell,

obtained from macro data and geographical description.

The thickness of the arrows reflects the number of

people moving between cells. For the purpose of this

study, we define a cell’s size to be 300 m. Since some

cells cannot be an origin or destination of a mobility

flow, such as fields or lakes, for our experimentation,

nearly 400 cells are considered. That gives 160,000

origin/destination couples. Considering time steps of 15

minutes each (96 per day), the flow matrix used contains

more than 15,000,000 records describing how people are

moving during the day.

3.1 Stations location

In this section, we will describe how we located the

carsharing stations in our zone of study in a way that

they cover the maximum demand in an appropriate

manner. In our mobility data, stations are located using a

Figure 2 Flows distribution in mesh

MOSIM’14 – November 5-7-2014 - Nancy - France

multi-objective local search algorithm. In this algorithm,

we aim to optimize three objectives:

f1: flow maximization i.e. the locations must allow us to

maximize the flows between themselves.

f2: balance maximization i.e. the location must allow us

to maximize the balance between inflows and outflows

of a station.

f3: minimization of flow standard deviation i.e. the

location must allow us to get a uniform flow along the

day.

3.2 Forecasting who will use the service

The algorithm for locating the stations and the evaluation

of users’ demand during each time step, suppose a good

understanding of who will use the service. This part was

realized with the operator who will deploy the carsharing

service.

Among all the mobility flows, some filters are used for

selecting the rate of users who will use the service de-

pending on their profile (age, sex, etc.). Moreover, we

defined a capture radius for each station, which defines

the maximum distance within it, users are ready to walk

to reach the station. Based on this radius value, a station

sti can cover one or more cells. In territory planning it is

generally considered that one can walk 300m for taking a

public transportation.

Figure 3 Stations and cells coverage

Figure 3 shows stations and their coverage area (disc).

The inflows / outflows associated to each station are the

weighted sum of the flows from the covered cells. The

weight depends on the proportion of coverage. If several

stations cover the same part of a cell, the associated

flows are divided between all of them.

Using the mobility data, we were able to locate 20 sta-

tions in the region where we did our study; we assumed

that each station contains 10 stalls. Hence, each station

can contain 10 cars at maximum. Then using the demand

data, we calculate the expected rejected demand in each

station that we used as input data for our model.

Furthermore, to decide the client assignment to the cars,

we used a probabilistic distribution on the demand data.

This distribution is fixed by sociological survey and

input hypothesis done by the carsharing exploitation

company. After that, using the client assignment to the

cars and the demand data from each station to all other

stations at each time step we were able to construct two

new matrices:

out: Contains the number of cars that will be taken from

each station at each time step.

in: Contains the number of cars that will be dropped off

into each station at each time step.

Knowing the number of vehicles that will be taken and

returned in each station at each time step, we could cal-

culate the number of available vehicles in each station at

each time step. However, since each station has a limited

capacity, and sometimes there are no available cars,

some demands will be rejected. To calculate the number

of rejected demands in each station at each time step

without using any employee for relocating cars, we used

some constraints from the MILP described earlier in this

paper. When we set the number of employees to zero,

constraint (4) will be simplified to take the form below:

1
() ()

r r

i i i i i it t t t t t
av av in in out out


     (4a)

Using this new constraint and the other boring con-

straints, we were able to construct two new matrices for

rejected demands:
r

it
out : Matrix of rejected demands to take a car from a

station i at time step t. This type of rejected demand

occurs because the station i is empty at time step t, so the

demand will not be satisfied.
r

it
in : Matrix of rejected demands for returning a car into

a station i at time step t. This type of rejected demand

occurs because the station i is full at time step t, so the

demands to return cars, will not be satisfied.

These new matrices will reflect the number of rejected

demands in each station during each 15 minutes of the

day. In the following, we consider a carsharing system

that has 20 stations, 150 cars and more than 1370 trips

during 24 hours of a day.

4 JOCKEYING ALGORITHMS

4.1 Solving the relocation problem using CPLEX

solver.

We solved our MILP model using IBM CPLEX solver

on an Intel core I5 machine of 16 GB RAM. Although

the MILP model gives us an optimal solution for the

relocation problem, the time needed to solve the

problem, increases dramatically when we add the

MOSIM’14 – November 5-7-2014 - Nancy - France

number of employees involved in the relocation

processes. Figure 4 shows the time needed (minutes) to

solve the MILP relocation problem when we increase the

number of jockeys. At the beginning, when the number

of jockeys involved in the relocation operation is small,

the resolution of the MILP model using CPLEX takes

less than one minute. However, the execution time

increases dramatically when the number of jockeys

exceeds five where it takes more than one hour to solve

the MILP model. After that, when the number of jockeys

exceed thirteen, the execution time exceeded three hours

to give the optimal solution for our relocation problem.

Figure 4 Solving time (minutes) of the MILP model

using CPLEX when varying the number of employees

4.2 A Greedy Algorithm to solve the relocation

problem.

In order to solve the relocation problem in a faster way,

we developed a greedy algorithm to reduce the rejected

demands. The algorithm tries to alleviate the maximum

number of rejected demands using the minimum number

of relocation operations. At each time step, the algorithm

tries to find the best path that alleviate the maximum

number of rejected demand and assign it to the jockey.

For example, if we expect a Rejected demand because a

Station is Empty or simply a RSE at time t+2, the jockey

should bring a car to the empty station to fulfill the

upcoming request. That is, the jockey should look for a

station that has available car at t+1 to drive it to the

required destination station at t+2. On the other side, if

we expect a Rejected demand because a Station is Full or

simply RSF at t+1, a jockey should drive a car from the

full station to another one that would need a car or has an

empty space at t + 2.

The relocation operation must be optimized in order to

reduce as much rejected demand as possible. The best

the jockey can do is to alleviate two rejected demands in

one relocation operation. For instance, this situation

occurs when we have a RSE at t+2 and a RSF at t+1. In

this case, the jockey goes to the station that has a RSF,

and drives a car to the station that has a RSE, in this way

the jockey reduces two rejected demands by one

relocation operation. However, this situation does not

often occur. In other situation, we only have one rejected

demand between t+1 and t+2, so in this case, the jockey

will alleviate this rejected demand and in the same time

will try to anticipate and avoid another upcoming

rejected demand (which may appear at time greater than

t+2). Moreover, we have another situation where we do

not have any rejected demand between t+1 and t+2. In

this case, the jockey tries to move cars between the

stations at these times in order to anticipate and avoid

rejected demands before their occurrence in the future.

Thus, to make the algorithm more general and then more

efficient, at each time the algorithm will look for the

soonest upcoming RSF and RSE and try to reduce them

as it is indicated in the flowchart in figure 5.

Figure 5 Flowchart of the Relocation Algorithm

Each relocation operation consists of a path from the

origin station where the jockey starts the operation to the

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25

Ti
m

e
in

 m
in

u
te

s

Number of Employees

Time in minutes

Yes

No

No

No

Yes

No

No

Yes

Set t=0 and

paths_list=null

Look for stations

having the soonest

upcoming RDF at

time>t

Look for stations that
have available

parking spaces at t+2

Look for stations

having the soonest

upcoming RDE at

time> t+1

Look for stations that

can release cars at t+1

Look for stations

having the soonest

upcoming RDE at

time > t+1

Calculate Best Path

then add it to

paths_list

Update time t

Update Matrices

Stations

detected ?

No more feasible

paths

Start

Stations

detected ?

Stations

detected ?

Stations

detected ?

Stations

detected ?

Yes

No

End

End of the

day ?

Yes

Yes

MOSIM’14 – November 5-7-2014 - Nancy - France

intermediate station where he will pick up a car and

drive it to the destination station. After proceeding with

the relocation operation, we update the number of cars in

affected stations. We keep in mind that a relocation

operation can raise rejected demands in the related

stations in the future time, so when taking the decision to

relocate a car we must be cautious as to not generate

much more rejected demands.

During each relocation operation, the jockey follow a

path of three stations:

- Starting station where the jockey starts the

relocation operation at relocation starting time.

- Intermediate station where the jockey arrives to pick

up a car at relocation intermediate time.

- Destination station where the jockey arrives to

deliver the picked up car at the relocation destination

time.

When a jockey is willing to start a relocation operation,

he must choose a path between different possibilities.

The path starts from one origin station (from the station

where the jockey is). However, the jockey has different

possibilities to choose between many intermediate and

destination stations. A jockey should consider the path of

minimum cost, which is the one that reduce the

maximum of rejected demands in the soonest delays.

Since we considered that we need one time step to move

from any station to any other station, we did not

integrate the distance in our calculation. However, we

can add it to our formula by simply adding the distance

factor to our cost function.

We use a cost function to choose the paths that reduce

the maximum rejected demands in a way that we

privilege the paths that alleviate the soonest upcoming

rejected demands. To calculate the minimum path cost

we use this formula:

1

1
cost

E G
 

 
 (15)

Where:

1 1

1 1
G E

G E
t t

    
 

 (16)

 : is used to increase the cost of paths having generated

demands, and to privilege the path that generates a late

rejected demand on the path that generates sooner

rejected demands.

E : Number of Eliminated Rejected Demands, E[1;2].

G : Number of Generated Rejected Demands, G[0;1].

Gt : Index of time steps when the demands might be

generated, Gt ]1;96[.

:Et Index of time steps when the demands might be

eliminated,
Et ]1;96[.

When the number of eliminated rejected demands E

increase, the cost value will increase and vice-versa. If

we have to choose between two paths that reduce the

same number of rejected demands but in different time

steps, we will select the path that will eliminate the

soonest upcoming rejected demands. In other hand, if we

have to choose between many paths that eliminate one

rejected demand and generate another, we will choose

the path that will alleviate the soonest upcoming rejected

demand and generate the latest upcoming rejected

demand.

At t = 0, the algorithm starts by looking for the stations

that have the soonest upcoming RSF at time greater than

the current time, to give the jockey the required time to

arrive at the station. If it finds them, then as second step,

it looks for the stations that have the soonest upcoming

RSE at time greater than the current time plus one time

step, to give the employee the necessary time to go from

the intermediate station to the destination station. If he

finds those, then the algorithm calculates the minimum

path cost, after that it adds it to the paths list of the

involved jockey.

If in the second step, the algorithm did not find any RSE,

then it will look for all stations that have empty space to

receive a car at t+2. When the algorithm gets the list of

these stations, it will choose the minimum path cost and

add it to paths list.

If in the first step, the algorithm did not find any station

that has a RSF at t+1, then it looks for all the stations

that have RSE at t + 2. If it finds them, then, as second

step, the algorithm looks for the stations that can release

cars at t+1. If it finds those, then the algorithm calculates

the minimum path cost, and add it to the paths list. If the

algorithm did not find any rejected demand or it reaches

the end of the day, the algorithm will stop.

By this way, the algorithm will try to anticipate any

rejected demand that will occur later by moving the cars

between the stations that will have rejected demands in

the nearest future, in order to prevent these demands

from being rejected. Even though a relocation operation

must reduce rejected demands, it can also causes some

other demands to be rejected. For example, if we relocate

a car from station st0 at t+1 that can release cars to

another station st5 at t+2 that has RSE, in this case we

alleviate one rejected demand in st5 at t+2. However, we

may cause a new rejected demand in st0 in the future, if

the number of available cars at st0 is zero at time > t+1.

In addition, this could happen if we relocate a car from

station st1 at t+1 that has a RSF to a station that has free

stalls.To use several jockeys, we run the algorithm

iteratively for each jockey using the previous output as

input to the next iteration; the final number of jockeys to

use, is decided by the exploitation company.

5 RESULTS AND EXPERIMENTATION

We did a comparison between the performances of the

two approaches we used in our study. The execution

MOSIM’14 – November 5-7-2014 - Nancy - France

time of our greedy algorithm is less than one second

while that of MILP reaches more than 3 hours when we

increase the number of jockeys to 15 or more, as we

described earlier in this paper.

5.1 Greedy Algorithm VS Exact solver results

Before executing the algorithm, we had 59/96 time steps

having rejected demands. Therefore, if we are using just

one jockey, in the best cases, he can reduce 118 rejected

demands (59 x 2), knowing that the best he can do is

solving two rejected demands in one relocation operation

by moving a car from a station that has a RSF to a station

that has a RSE. However, the number of reduced rejected

demands will decrease when the number of time steps

having rejected demands decreases. The graph in figure

6 shows the total number of remaining rejected demands

compared to the number of jockeys used by applying our

two approaches. Our greedy algorithm shows very good

results when we compare it to the optimal solutions

solved by the MILP model. Initially, before execution of

the algorithm we had 556 rejected demands. After

execution of our greedy algorithm, the results show that

when we use 10 jockeys, we could reduce 81% of the

rejected demands, while our MILP model reduced nearly

82.5%. These results reveal the good performance of our

greedy algorithm.

Figure 6 MILP VS our Greedy Algorithm results

CONCLUSION AND FUTURE WORKS

As aforementioned, in this study, we started by present-

ing the relocation problem for a carsharing system. Then,

we formulated the problem as a Mixed Integer Linear

Programming Model. After that, we described the mobil-

ity data and our greedy algorithm that we used to relo-

cate the cars between the stations in a carsharing system

in order to maintain the balance and then maximize the

client-demand satisfaction. The algorithm tries in each

relocation operation to reduce the maximum number of

rejected demands in a minimum path cost either by re-

solving the rejected demands directly or by making an-

ticipated car movements that reduce rejected demands

before their occurrence. The greedy algorithm showed

impressive performance in comparison to the MILP

model. It finds competitive solutions in less than one

second while the exact MILP solver takes more than one

day when we use a large dataset and a big number of

jockeys. After running our algorithm on a set of data, the

results show that, for a carsharing system that has 20

stations and 150 cars: 10 jockeys were able to alleviate

more than 80% of rejected demands.

In future work, we will model a sophisticated simulation

for the relocating operations, which takes into account

the distance and the time to move from station to another

station, and simulate the impact of each relocation opera-

tion, on the whole system. We will also study the effect

of stochastic data on the performance of the two ap-

proaches describer earlier in this paper to evaluate the

efficiency of the offline route planning in situations

similar to real life where stochastic data prevails.

REFERENCES

Barth, M., & Shaheen, S. A. (2002). Shared-use vehicle

systems: Framework for classifying carsharing,

station cars, and combined approaches.

Transportation Research Record: Journal of the

Transportation Research Board, 1791(1), 105-112.

Barth, M., Todd, M., & Xue, L. (2004). User-based

vehicle relocation techniques for multiple-station

shared-use vehicle systems.

Cheu, R. L., Xu, J., Kek, A. G., Lim, W. P., & Chen, W.

L. (2006). Forecasting shared-use vehicle trips with

neural networks and support vector machines.

Transportation Research Record: Journal of the

Transportation Research Board, 1968(1), 40-46.

Kek, A. G., Cheu, R. L., Meng, Q., & Fung, C. H.

(2009). A decision support system for vehicle

relocation operations in carsharing systems.

Transportation Research Part E: Logistics and

Transportation Review, 45(1), 149-158.

Kek, A. G., Cheu, R. L., & Chor, M. L. (2006).

Relocation simulation model for multiple-station

shared-use vehicle systems. Transportation Research

Record: Journal of the Transportation Research

Board, 1986(1), 81-88.

Moalic, L., Lamrous, S., & Caminada, A. (2013). A

Multiobjective Memetic Algorithm for Solving the

Carsharing Problem. Proceedings Of The 2013

International Conference On Artificial Intelligence-

Icai 2013, Vol. 1, pp. 877-883.

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

N
u

m
b

er
 o

f
re

m
ai

n
in

g
re

je
ct

ed
 d

em
an

d
s

Number of employees
Remaining rejected demands after executing the greedy algorithm

Remaining rejected demands after solving the MILP

