
10th International Conference on MOdeling, Optimization and SIMlation - MOSIM14 - November 5-7-2014-
Nancy - France “Toward circular Economy”

INSERTION HEURISTIC FOR A DYNAMIC DIAL-A-RIDE

PROBLEM USING GEOGRAPHICAL MAPS

Sacha Varone∗ Vytenis Janilionis

University of Applied Sciences Western Switzerland Independant Consultant

Haute École de Gestion de Genève

1022 Carouge - Switzerland Kaunas - Lithuania

sacha.varone@hotmail.com vytjani@gmail.com

ABSTRACT: We present an insertion heuristic for a dynamic Dial-a-Ride Problem, applied to a real world
application on taxi sharing. The application relies on city-sized geographical maps and location coordinates
for taxis and customers. A customer sends a ride request to a taxi call center, which assigns to it in (quasi)
real-time the most appropriate taxi, with respect to capacity and time constraints: maximum waiting time before
pick up and maximum drive duration for each passenger’s request. Passengers may share a taxi along some part
of their journey. Our methodology relies on the computation of four shortest paths, followed by an insertion
algorithm with a validity check. Each new request is so tentatively inserted into a taxi route. Experiments on
real data shows the viability of our methods.

KEYWORDS: Dynamic DARP, Taxi sharing, Geographical maps.

1 INTRODUCTION

The Dial-a-Ride Problem (DARP) is a type of a vehi-
cle routing problem where multiple customers specify
pick-up and drop-off requests, and vehicle route and
schedules have to be defined. Customers specify their
pick-up and drop-off locations usually associated with
time window constraints that represent their desired
pick-up and/or drop-off times. The usual objective
of a DARP is to find for each vehicle a set of routes
that can accommodate all customer requests, while
minimizing customers’ inconvenience with respect to
transportation constraints.

In this paper we focus on a taxi company which wants
to optimize its daily running costs by implementing a
new business model allowing customers to share taxis.
The idea is the following: while a customer is being
taken to his destination in a taxi, a new customer
ride request may arrive and it may be convenient to
adjust the route of this taxi in order to include the
new customer. Each customer specifies his pick up
and drop off locations, and the most appropriate taxi
has to be assigned to fulfil the ride request while re-
specting capacity constraints and assuming that mul-
tiple customers may share one taxi along some part
of their journey. Additionally, to take customer con-
venience into account, specific time constraints have
to be fulfilled: maximum waiting time before pick up

∗This research was funding thanks to the swiss CTI grant
15229-1 PFES-ES received by Sacha Varone

and maximum drive duration for each customer.

Since customer requests arrive randomly during the
day have to be fulfilled in real time, our problem is
a Dynamic Dial-a-Ride Problem (DDARP). In lit-
erature such problems are not associated with the
difficulty of finding the shortest paths needed to in-
clude each new customer (Cordeau and Laporte 2007,
Berbeglia, Cordeau and Laporte 2010). Instead it is
assumed that all shortest (quickest) paths between all
possible locations can be pre-calculated and a result-
ing fixed distance (duration) matrix can be used by
DDARP solving algorithms every time a new solu-
tion needs to be found. However, such approach has
practical limitations: real road networks are dynamic
and the traversal time for any given road segment
may change significantly during the day (i.e. rush
hours). As such circumstances may result in reason-
ably high solution quality losses, we find it insufficient
to use the usual fixed distance (duration) matrix ap-
proach. Therefore we develop a heuristic based on
Dijkstra (Dijkstra 1959) and A* (Floyd 1962) short-
est paths computations and on insertion (Coslovich,
Pesenti and Ukovich 2006, Häme 2011) algorithms.
By using the DDARP constraints to cut down the so-
lution space of the corresponding shortest paths prob-
lems (SPP), our heuristic is able to find solutions in
(quasi) real time for city size problems even while
dealing with live route searches.

The main existing algorithms and heuristics for SPP
were reviewed in (Fu, Sun and Rilett 2006) while

MOSIM14 - November 5-7-2014 - Nancy - France

the most important research papers for DARP were
summarized in (Cordeau and Laporte 2007) and
(Berbeglia et al. 2010). Since, to our knowledge, there
is no other research combining the two before men-
tioned problems, we give a brief overview of the meth-
ods and findings in both areas which gave foundations
to our developed heuristic.

Dijkstra Algorithm (Dijkstra 1959) is a label set-
ting algorithm used to solve one-to-one and one-to
all SPPs. The most popular area limiting heuristic is
the A* search algorithm (Floyd 1962). The main dif-
ference is that the latter uses an evaluation function
instead of just labels when selecting nodes to examine.
In addition to the value of the labels, the evaluation
function includes an estimate of the minimum weight
needed to reach the target node from each scanned
node. This results in selecting nodes that are more
likely to be on the shortest path from source to target
and the search area can therefore be reduced signifi-
cantly if the estimate function is properly chosen. A*
algorithm is guaranteed to find the optimal solution if
the estimate function never overestimates the actual
weight to the destination node.

DDARP algorithms’ performance has been investi-
gated in (Hyyti̊a, H̊ame, Penttinen and Sulonen 2010)
and route selection criteria for solving a large scale
dynamic pickup and delivery problem. They showed
that trying to assign a new customer to each vehicle
one by one (i.e. immediate allocation) results in a rea-
sonably small loss in the solution quality compared to
an optimal allocation, where the existing customers
may be reassigned to different vehicles. Addition-
ally, they investigated the performance of an inser-
tion algorithm, where the original customer sequence
is preserved in each vehicle and the pick-up and drop-
off points of the new customer are inserted in this
sequence optimally. They showed that the solution
quality of the insertion algorithm decreases with the
increase in the number of customers per vehicle com-
pared to an optimal complete enumeration algorithm.
However, as these algorithms are asymptotically iden-
tical, the solution quality gap between them is almost
negligible if there are few existing customers in vehi-
cles. This gap was shown to decrease with the number
of vehicles available.

(Coslovich et al. 2006) proposed a two-phase inser-
tion technique for new customer queries. The first
phase is designed to run off-line, while a vehicle is in
movement, and finds a feasible neighbourhood for the
current route of the vehicle. These results are then
used for the second phase which is performed online
when a new customer query arrives. This phase at-
tempts to insert the pick-up and drop-off points of
the new customer into routes belonging to the pre-
calculated feasible neighbourhood. It was shown that
such approach is able to produce real-time solutions

that are close to an optimal static solution in quality.

(Häme 2011) studied an adaptive insertion algorithm
for DARP with narrow time windows that could also
be used for the dynamic case. They exploited the
fact that having narrow time windows makes most
of the new potential routes infeasible when trying to
insert a new customer into an existing route. Using
this, along with a parameter to limit the number of
feasible routes considered, their adaptive insertion al-
gorithm reduces the solution space greatly and speeds
up the insertion procedure. Moreover, the algorithm
is adaptive in a way that the parameter can adjust
itself dynamically and expand the solution space, if
no feasible solutions are found at first.

The remainder of the paper is organized as follows.
Section 2 describes the problem of predicting the lo-
cation of a moving vehicle, whose solution enables
to accurately estimate the positions of vehicles. Sec-
tion 3 describes the method that we use to solve the
DDARP. In Section 4 we give an insight on practi-
cal applications of our heuristic by presenting results
of a simulation experiment on real road maps. Fi-
nally, Section 5 summarizes our achievements, out-
lines limitations and provides recommendations for
future work.

2 PREDICTION

Driver devices send their geographical coordinates
generally at regular time intervals. However, tech-
nical problems such as loss of signal while passing
through a tunnel, battery’s device expiration, ap-
plication turned off, etc. may prevent the send-
ing of this information. Precise location of current
driver’s position has therefore to be estimated. For-
mally, the problem of predicting trajectories on a
road network can be defined as follows, based on
Eisner et al.(Eisner, Funke, Herbst, Spillner and
Storandt 2011): let G = (V,A,w) be a (road) network
with a set V of vertices, a set A of arcs, and a function
w on the arc set that gives a measure associated to
an arc, usually a duration or a length. Given a path
P = vt0 , vt1 , . . . , vti which gives object’s positions at
times t0 < . . . < ti, what could be the position of this
object at times ti+1 < . . . < ti+k? Based on histori-
cal data, one may estimate the probability of reaching
some target points from the last sent GPS positions,
as done in (Liu, Jou and Lee 2010, Kim, Won, Kim,
Shin, Lee and Kim 2007). In our application we do
not have such historical data. We use the following
scheme to solve this problem: either a driver has not
defined a target position, meaning that he has no cus-
tomer, or the taxi already has a destination.

In the former case, since there is generally no other
information than its previous GPS position, the only
reliable position’s estimation consists in observing its

MOSIM14 - November 5-7-2014 - Nancy - France

environment. For example, if the driver’s last posi-
tions are along a highway, or along a one-way street,
the next best possible position’s estimation is toward
the next junction or the next motorway exit. If the
difference between the current time and the last GPS
position is low, knowing the speed limitation of the
road and with an assumption on the taxi’s speed, it
is possible to specify its approximate position.

In the latter case, when the taxi’s route and its stops
are known, the following assumption is made: the
taxi follow a set of shortest paths along the stops.
It is therefore possible to estimate its position, with
an assumption on the taxi’s speed on different types
of roads. The method consists in running a shortest
path algorithm to find the couples (position, time)
along the (shortest) route.

3 RIDE INSERTION HEURISTIC

The following problem has to be solved: given a ride
request from a source point s to a target destina-
tion t, which taxis can service this request, such that
maximum waiting time before pick-up, and maximum
time-to-target are respected for all passengers?

Our approach consists in first finding a set of short-
est/quickest path toward the source point s. In this
first step, all taxis able to pick up the new cus-
tomer at the source point s within a maximum wait-
ing time, are discovered. Next, three other sets of
shortest/quickest paths are computed, which might
be used as components of new routes for the taxis
previously discovered. Last, the aforementioned new
routes are constructed for those taxis by an insertion
procedure, with an admissibility check.

The four sets of shortest paths are described as follows

1. a pick up: from the positions of the taxis to the
location of the request

2. a pick up to destination: from the origin of the
request to its destination

3. a destination to drop off: from the request des-
tination to the drop off of current passengers in
the taxi considered

4. a drop off to destination: from the drop off of
current passengers in the taxi considered to the
request destination

Quickest paths resulting from those four steps are de-
noted as, respectively, P. s, Ps ., P. t, Pt .. Those
are sets of quickest paths.

Those quickest paths are then combined to form a
new route for a taxi. This route is checked for its
admissibility: maximum waiting time before pick-up,

as well as maximum drive request duration for each
passenger.

We note a quickest path from a to b as a b, whereas
its duration is noted δ(a, b).

3.1 Pick-up

The first problem to be solved consists in the selection
of taxi candidates able to fulfill a ride request within
a maximum waiting time, maxwait, before pick up.

One way to get such a taxi selection list could be to
apply n times a shortest path algorithm, n being the
number of taxis in the fleet, from their position to
the customer’s position. This means that a shortest
path algorithm has to be applied each time a new
request arrives. Knowing that the frequency of new
requests in big cities may easily reach several dozens
per seconds, such a methodology is not efficient.

In our approach, the taxi selection list is based on a
many-to-one shortest paths, computed reversly from
the pick-up position of the customer. Our shortest
path algorithm is based on the well-known Dijkstra
algorithm (Dijkstra 1959) for several reasons: first,
the problem is restricted to a city-size problem since
we consider a taxi company operating in a city. Sec-
ond, using the true road network instead of a com-
pact form as it is the case for highway hierarchies
(Sanders and Schultes 2005) or contraction hierar-
chies (Geisberger 2008) algorithms, allows us to use
real-time information such as temporary road restric-
tions, traffic jams, temporal speed limitations,

The adaptation of the Dijkstra algorithm is made as
follows:

• All arcs are reversed: all arcs (i, j) in the under-
lying road network G(V,A,w) become arcs (j, i).
That is to say that, started from the location o
of the request, each path πod discovered during
the algorithm represent a path from d to o.

• A limit maxwait is introduced as the maximum
allowed waiting time before pickup. This limit
is used as a stopping criterion: if the node cur-
rently considered in the Dijkstra algorithm has a
duration label greater than maxwait, then there
is no path from this node to the request location
with a duration less than or equal to maxwait.

In the following pseudo-algorithm, we adopt the for-
mulation available in (Cormen, Stein, Rivest and
Leiserson 2001).

3.2 Pick up to destination

A taxi able to pick-up the new customer ck may not
have time to first drive to the destination of this new

MOSIM14 - November 5-7-2014 - Nancy - France

Algorithm 1 ReverseBoundedDijkstra(G, s,maxwait)

Require: Graph G = (V,E,w >= 0), source s,
length maxwait

Ensure: The single-source s shortest-paths problem
on a weighted, directed graph G, restricted to an
upper bound length maxwait.
for all v ∈ V do
v.d =∞
v.π = nil

end for
s.d = 0
S = ∅
Q = V
while Q 6= ∅ do
u = extract-min(Q)
if u.d > maxwait then

STOP
end if
S = S ∪ {u}
for all v such that (v, u) ∈ A do

if v.d > u.d+ w(u, v) then
v.d = u.d+ w(u, v)
v.π = u

end if
end for

end while

customer and then drive to the drop off locations of its
other customers c1, c2, . . . , ck−1. In this case, it might
be efficient, after the pick-up of the new customer
ck, to first drive to the drop off locations of some
already-in customers c1, c2, . . . , ck−1, before driving
to the destination t.

We use a modified A* algorithm (Hart, Nilsson and
Raphael 1968) from the pick-up location s of the new
request k, toward its destination t. The A* algo-
rithm stops after the destination has been reached.
Therefore we modify it so that detours can be done.
For that purpose, let’s define λ as an increase coeffi-
cient on the duration of a quickest path δ(s, t) from
the pick-up location s to the destination t. Once the
”pure” A* algorithm has reached the destination t,
hence δ(s, t) is known, then it is not stopped but con-
tinue until all reached nodes have a label duration
greater than or equal to λδ(s, t). In our case, we set
λ = 1.2, which means that all customers allow trip
duration at most 20% greater than that of a quickest
path.

From this algorithm the greatest duration until des-
tination Ddest

k for customer ck is computed as

Ddest
k = maxwait+ λδ(s, t)

We set the latest arrival time as

tmax k = t0 +Ddest
k

where t0 is the time when the request has been sent
by customer ck. Note that this maximum time tmax k

remains constant until the drop off of customer k.

3.3 Destination to drop off

Once the taxi has reached the destination t of the new
customer ck, it might happen that other customers
are still waiting for their drop off. In this case, short-
est paths have to be computed from the destination
t to the next drop off locations. This is done with
a Bounded Dijkstra algorithm, in which we limit the
expansion until a maximal duration Ddest−drop

k has
been reached.

Ddest−drop
k = max

i=1,...,k−1
(tmax i − (t0 + δ(s, t)))

This limit corresponds to the situation in which a taxi
is at time t0 at the pick-up location s, drives to the
destination t, and then drives to the other drop off
locations.

3.4 Drop off to destination

Suppose that a taxi has picked up the new customer
ck, but then drives to a drop off location of some of
its other customers. Therefore, shortest paths have
to be computed from the drop off locations to the
destination t.

This shortest path computation is done with a Re-
verse Bounded A* algorithm. The bound Ddrop−dest

k

is set to

Ddrop−dest
k = λδ(s, p)

We use a similar modification of the A* algorithm as
done in Section 3.1.

3.5 Ride insertion

So far, four sets of shortest paths have been com-
puted. A schematic representation of the situation is
shown in Figure 1. The new request is represented
with a green node as the pick-up location, and its
destination with a red node. Other nodes represent
either the current location of the taxis, or the drop
off locations of their customers. In Figure 1 there are
two taxis with their routes: the first one contains four
nodes, and the second one contains two nodes. The
pick up shortest paths are represented in the upper
left, pick-up to destination in the upper right, desti-
nation to drop off in the bottom left, and drop off to
destination in the bottom right.

By performing two forward and two reverse short-
est path searches, our algorithm finds all paths that
construct a possibly feasible solution for the DDARP
problem. Not all routes constructed from those four
sets of paths are feasible solutions, but all feasible

MOSIM14 - November 5-7-2014 - Nancy - France

Reverse Bounded Dijkstra A*

Bounded Dijkstra Reverse A*

Figure 1 – Sets of shortest paths computation

routes can be constructed from them. An admissi-
bility check is therefore performed on the maximum
travel time for each passenger, to ensure the feasibil-
ity of the solution.

The idea of this ride insertion heuristic is the follow-
ing: start from a taxi path, from its current location
x0, to its drop off locations x1, . . . , xk−1. The con-
sidered path is therefore x0, x1, . . . , xk−1. From this
path, try to insert the new pick up location s, and the
new drop off location t. We do not change the rela-
tive ordering of the drop off locations x1, . . . , xk−1, so
that the number of solutions is kept reasonable : k
possibilities for the insertion of the pick up location
s, and at most k possibilities for the destination t,
which has to be inserted after s on the path. The

number of such paths which include s and t is k(k+1)
2 .

Each solution path uses some shortest (or quickest)
sub-paths. The construction of the new path for a
taxi is given by Algorithms 2 and 3:

In Algorithm 2, we consider a stop as either a pick
up position or a drop off position. Starting from a
route P associated to a taxi, a new point x is tried to
be inserted after the position i in the route P . Since
this new route could be inadmissible, a check has to
be performed to test if the quickest path from i to
x and then from x to i + 1 is possible, i.e. respects
the maximum waiting time limit maxwait. If this
is not the case, then the algorithm returns null as
this solution is not admissible, else, an update of the
estimated time to arrival is done with t′. This allows
to check for the maximum arrival time tmax i at each
drop off location. If each estimated time to arrival is
below its maximum arrival time, then the new route
P ′ is admissible and the algorithm returns P ′. Its
complexity is in O(k), where k is the number of stops
of the current driving path P .

Algorithm 3 tries to insert the new pick up location
s and the new drop off location t inside the current

Algorithm 2 LocalInsertion

Require: A path P = v0, v1, . . . , vk−1
ti, i = 0 . . . k − 1 estimated arrival times at vertex
vi
tmax i, i = 0 . . . k − 1 maximal time to destination
vi
i ∈ {0, . . . , k − 1} insertion position
x new stop (either s or t).

Ensure: A new path P ′ with new estimated arrival
times t′

if vi x 6∈ P. x OR x vi+1 6∈ Px . then
return null

end if
P ′ = Insert x after vi in P
for all j = 0 . . . i do
t′j = tj

end for
t′x = ti + δ(vi, x)
t′i+1 = t′x + δ(x, vi+1)
for all j = i+ 2 . . . k − 1 do
t′j = t′j−1 + (tj − tj−1)

end for
if t′x > tmax x then

return null
end if
for all j = i+ 1 . . . k − 1 do

if t′j > tmax j then
return null

end if
end for
return P ′, t′

route P of a taxi. It uses Algorithm 2 as a subrout-
ing. Not all solutions are tested, since the relative
order of the stops are maintained during the inser-
tion attempts. If the insertions of s and t result in a
feasible solution, then this new solution may be the
best possible solution and therefore an update on the
latter is done via Algorithm 4. Its complexity is in
O(k3) since there is a main loop, with an inner loop
and the call to Algorithm 2, where k is the number
of stops of the current driving path P .

Algorithm 4 first checks if it is the first time that a
feasible solution P ′′ is submitted. If it is the case,
then P ′′ is de facto the best solution found so far.
Else, the value of the objective function is compared
between the current best solution Pbest and the new
solution P ′′. Its complexity is in O(1).

3.6 Objective function

The definition of the objective function f depends on
the goal of the managers: the quality of service might
be improved in several aspects

• The waiting time before pick up could be mini-

MOSIM14 - November 5-7-2014 - Nancy - France

Algorithm 3 Insertion of a new customer

Require: A path P = v0, v1, . . . , vk−1
s, t new pick up and drop off positions).

Ensure: Best insertion or null
nbsolution = 0
for all i = 0 . . . k − 1 do
P ′ =LocalInsertion(P, i, s)
if P ′ is not null then

for all j = s, i+ 1 . . . k − 1 do
P ′′ =LocalInsertion(P ′, j, t)
if P ′′ is not null then

nbsolution = nbsolution +1
UpdateBest(Pbest,P ′′,nbsolution)

else
break

end if
end for

end if
end for
return Pbest

Algorithm 4 UpdateBest

Require: Path Pbest, P ′′

Number of solutions nbsol
Ensure: Best path

if nbsol = 1 then
Pbest = P ′′

else
if P ′′ is ”better” than Pbest then
Pbest = P ′′

end if
end if
return Pbest

mized.
min f(P, s, t) = min ts

• The mean time to destination may be minimized,
which is similar to the maximization of the mar-
gin. This might also be adapted, for example by
the summation of the square differences, so that
no passenger stay too long in the taxi, and thus
reduces extreme service time to destination.

max f(P, s, t) = max
∑

(tmax i − ti)

• The last drop off time might be minimized, so
that trip duration is kept small for the driver.
The idea is to take the makespan of the drive as
the objective function.

min f(P, s, t) = min tlast

• The detour length for the taxi might be min-
imized so that fuel consumption would be re-
duced. This has been our choice.

min f(P, s, t) = min δ(i, s) + δ(s, i+ 1)

+δ(j, t) + δ(t, j + 1)

Remark: some δ(·, ·) might be 0

4 PRACTICAL APPLICATION

Real routing applications need geographical maps, so
that routing algorithms can be applied on. There ex-
ist several different map sources such as google maps1,
which is one of the most known and used maps, the
Microsoft Bing maps2, nokia maps3 or also open-
streetmap4 (OSM). OSM is a a collaborative open
source project whose goal is to create a free editable
map of the world. This has been our choice to run
our application. Download of parts of this world map
is available from Geofabrik5 for example.

We use OsmSharp6, described as ”an open-source
mapping tool designed to work with OpenStreetMap-
data.” for data processing. It uses the C# program-
ming language, developed by Microsoft. We use its
OSM data processing as well as its routing library to
test our algorithms.

As there was no taxi sharing services from the com-
pany with which we are working, we tested our al-
gorithm with simulations. We have adopted the
methodology used by Erbawi and Weber (Herbawi
and Weber 2012), that we applied to the real data
set from the company. From the log file of a taxi fleet
company, that contains the Origin/Destination and
timestamp of the drives, the data is partitioned into
2/3 as requests and 1/3 as drives. We then solve the
ridematching problem in dynamic ridesharing, i.e. to
match the requests to the available drives, considering
time-windows.

For illustration purpose only, we present the results
from a randomly selected few hours of a particular
day in a small swiss city (real data): 138 requests
and 69 drives. In the following tables the exponent
m means that ride-sharing is allowed, that is to say
that a taxi might serve several customers at the same
time, whereas no exponent means that at most one
customer is served at a given time.

wu = maximum waiting time maxwait [min]
nbs = number of satistied requests
nbd = number of potential drivers
did = mean distance for drivers [km]
dud = mean duration for drivers [min]
dir = mean distance for riders [km]
dur = mean duration for riders [min]
w = mean waiting time for riders before pickup [min]

Table 1 illustrates that the number of satisfied requests in
a ride-sharing environment is greater than in a non ride-

1https://maps.google.com/
2http://www.bing.com/maps/
3http://m.here.com
4http://www.openstreetmap.org
5http://download.geofabrik.de/
6http://www.osmsharp.com/

MOSIM14 - November 5-7-2014 - Nancy - France

Table 1 – Global

λ wu nbsm nbs nbdm nbd
1.8 30 106 88 65 67
1.8 20 94 75 63 64
1.8 10 64 50 49 50
1.5 30 85 76 62 64
1.5 20 74 63 58 58
1.5 10 48 42 41 42
1.2 30 35 33 29 31
1.2 20 28 26 23 25
1.2 10 18 18 17 18

sharing environment, and needs, of course, less drives to
fulfil those requests.

Table 2 – Riders

λ wu wm w dirm dir durm dur
1.8 30 15.8 17.2 14.5 11.1 18.9 13.6
1.8 20 11.3 11.2 13.8 10.5 17.8 13.1
1.8 10 6.6 6.7 13.4 11.2 16.8 13.4
1.5 30 15.2 15.8 14.3 12.5 16.3 13.8
1.5 20 10.8 11.0 13.5 12.1 15.7 13.5
1.5 10 6.4 6.3 11.2 10.5 13.8 12.6
1.2 30 14.5 14.6 13.6 14 13.5 13.2
1.2 20 10.5 10.7 13.7 14.2 13.2 12.9
1.2 10 5.9 5.8 13.4 13.3 12.5 12.5

Table 3 – Drivers

λ wu didm did dudm dud
1.8 30 69.0 68.2 69.2 67.7
1.8 20 71.7 70.3 69.2 66.4
1.8 10 65.3 64.3 61.5 59.3
1.5 30 65.1 66.3 62.5 62.3
1.5 20 66.0 66.0 60.8 59.5
1.5 10 62.5 62.5 55.7 55.0
1.2 30 60.7 60.8 50.7 50.7
1.2 20 59.3 59.3 49.7 49.7
1.2 10 59.2 59.2 49 49.1

Table 2 and 3 illustrate that riders’ mean waiting time
decrease in a ride-sharing environment since more vehi-
cles might be able to pick them up. On the other side,
mean durations and mean lengths of the drives generally
increase, but might also in some cases decrease.

In order to get robust results, we suggest a second set
of simulations to be done in the following way: generate
n = 100 taxi routes simultaneously on a city sized area.
The number of passengers in those taxis are distributed
uniformly between 0 and 4. The demand of a new ride,
i.e. a new pick up location and a new drop off location
is based on the Poisson distribution P(λ) where λ = 20
is the average demand per hour. The mean quickest ride
duration is δ̄ = 10 minutes and the average time a cus-
tomer spends in the system is δ̃ = 20 minutes. The mean
service time µ = 1

δ̃
= 0.05 is the mean duration between

the demand and service completion. The experimental

conditions is chosen in such a way that for a taxi com-
pany without taxi sharing, which is usually the case, the
arrival rate λ exceeds the system’s total capacity nµ̃ = 5.
Then perform the test on a time horizon of 1 hour.

Results from simulations show that our approach is viable
since it only requires 1-2 seconds to obtain a solution and
increased the number of served customer’s requests.

5 CONCLUSION

We have presented a heuristic method that solves a dy-
namic Dial-A-Ride Problem, that occurs in the case of a
taxi sharing application. Although an optimal solution
is not guaranteed, our method benefits from very short
running time, since it has been designed for a real time
application. This allows a taxi company to serve more
customers with the same capacity, at the price of a com-
pletely disruptive business system, compared to what is
available now.

We fix two parameters maxwait and λ as constant. It is
also possible to make them dependent on the customer,
which would reflect the sensibility of each customer to
the time. The question to know if such a possibility is ap-
propriate or not has to be answered through a marketing
research: would the customer always choose the quickest
trip or would he prefer to stay more time in the taxi, so
that the price is decreased?

Extension to this work may be done considering real-time
traffic information. In that case, it might be useful to
reject some demands (!) in order to keep the system run-
ning as smooth as possible. Another extension would be
booking in advance, so that this static part of the prob-
lem could be solved optimally. The key point would be
to define the threshold value between exact methods and
heuristic methods.

Some limitations occur if applying the same heuristic
without adaptations to bus sharing application, in which
buses act as taxis. In this case, the number of passengers
might increase up to 50 or more, which results in an in-
crease in computational time that could not be acceptable
for a real-time application.

References

Berbeglia, G., Cordeau, J.-F. and Laporte, G., 2010. Dy-
namic pickup and delivery problems, European Jour-
nal of Operational Research 202(1): 8–15. A lire ab-
solutment, tres souvent cite.

Cordeau, J.-F. and Laporte, G., 2007. The dial-a-
ride problem: models and algorithms, Annals OR
153(1): 29–46.

Cormen, T. H., Stein, C., Rivest, R. L. and Leiserson,
C. E., 2001. Introduction to Algorithms, 2nd edn,
McGraw-Hill Higher Education.

Coslovich, L., Pesenti, R. and Ukovich, W., 2006. A two-
phase insertion technique of unexpected customers
for a dynamic dial-a-ride problem, European Journal
of Operational Research 175(3): 1605–1615.

MOSIM14 - November 5-7-2014 - Nancy - France

Dijkstra, E. W., 1959. A note on two problems in connex-
ion with graphs., Numerische Mathematik 1: 269–
271.

Eisner, J., Funke, S., Herbst, A., Spillner, A. and
Storandt, S., 2011. Algorithms for matching and pre-
dicting trajectories, in M. Müller-Hannemann and
R. F. F. Werneck (eds), ALENEX, SIAM, pp. 84–
95.

Floyd, R. W., 1962. Algorithm 97: Shortest path, Com-
mun. ACM 5(6): 345.

Fu, L., Sun, D. and Rilett, L., 2006. Heuristic short-
est path algorithms for transportation applications:
State of the art, Computers & Operations Research
33(11): 3324 – 3343. Part Special Issue: Operations
Research and Data Mining.

Geisberger, R., 2008. Contraction hierarchies: Faster
and simpler hierarchical routing in road networks,
Master’s thesis, Institut für Theoretische Informatik,
Universität Karlsruhe.

Häme, L., 2011. An adaptive insertion algorithm for the
single-vehicle dial-a-ride problem with narrow time
windows, European Journal of Operational Research
209(1): 11 – 22.

Hart, P. E., Nilsson, N. J. and Raphael, B., 1968. A formal
basis for the heuristic determination of minimum cost
paths, IEEE Transactions on Systems, Science, and
Cybernetics SSC-4(2): 100–107.

Herbawi, W. M. and Weber, M., 2012. A genetic and in-
sertion heuristic algorithm for solving the dynamic
ridematching problem with time windows, Proceed-
ings of the Fourteenth International Conference on
Genetic and Evolutionary Computation Conference,
GECCO ’12, ACM, New York, NY, USA, pp. 385–
392.

Hyyti̊a, E., H̊ame, L., Penttinen, A. and Sulonen, R.,
2010. Simulation of a large scale dynamic pickup
and delivery problem, Proceedings of the 3rd In-
ternational ICST Conference on Simulation Tools
and Techniques, SIMUTools ’10, ICST (Institute for
Computer Sciences, Social-Informatics and Telecom-
munications Engineering), ICST, Brussels, Belgium,
Belgium, pp. 77:1–77:10.

Kim, S.-W., Won, J.-I., Kim, J.-D., Shin, M., Lee, J. and
Kim, H., 2007. Path prediction of moving objects
on road networks through analyzing past trajecto-
ries, in B. Apolloni, R. Howlett and L. Jain (eds),
Knowledge-Based Intelligent Information and Engi-
neering Systems, Vol. 4692 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, pp. 379–
389.

Liu, C.-L., Jou, E. and Lee, C.-H., 2010. Analysis and pre-
diction of trajectories using bayesian network, Nat-
ural Computation (ICNC), 2010 Sixth International
Conference on, Vol. 7, pp. 3808–3812.

Sanders, P. and Schultes, D., 2005. Highway hierar-
chies hasten exact shortest path queries, 13th Euro-
pean Symposium on Algorithms, Vol. 3669 of LNCS,
Springer, pp. 568–579.

	INTRODUCTION
	PREDICTION
	RIDE INSERTION HEURISTIC
	Pick-up
	Pick up to destination
	Destination to drop off
	Drop off to destination
	Ride insertion
	Objective function

	PRACTICAL APPLICATION
	CONCLUSION

