
HAL Id: hal-01166621
https://hal.science/hal-01166621

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NEW APPROACH FOR DECENTRALIZATION OF
A*

Mohammed Chennoufi, Fatima Bendella, Maroua Bouzid

To cite this version:
Mohammed Chennoufi, Fatima Bendella, Maroua Bouzid. NEW APPROACH FOR DECENTRAL-
IZATION OF A* . MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et
Simulation, Nov 2014, Nancy, France. �hal-01166621�

https://hal.science/hal-01166621
https://hal.archives-ouvertes.fr

1

 New Approach for Decentralization of A*

Mohammed Chennoufi

Computer Mathematics Faculty,

 University of Science and

Technology of Oran BP 1505,

Oran 31000 Algeria

Mohammed.chennoufi@univ-usto.dz

Fatima Bendella

Computer Mathematics Faculty,

 University of Science and

Technology of Oran BP 1505, Oran

31000 Algeria.

Fatima.bendella@univ-usto.dz

 Maroua Bouzid

University of Caen, Basse-

Normandie Campus Cote de Nacre,

BP 5186 - 14032 Caen France

 bouzid@unicaen.fr

 Abstract: In this paper, we propose a new approach for the

decentralization of the A* algorithm called DEPA*

(decentralization parallel A*), which is a quick algorithm for

finding the shortest path between two nodes in a large graph.

The main disadvantage of the A* algorithm is that over the

course instance to be processed is large and complex more

resolution will be difficult in time of execution and space

memory. For this, we propose an approach based on multi-

agent systems that decomposes the graph into sub-graphs

connecting (many agents). This connection is guaranteed

thanks to the characteristics of intelligent agents all

computing an A* at each sub-graph in a parallel way. The

initial and final states of each agent will be chosen according

to well-defined heuristics. A coordinator agent resolves the

conflict in the case of many final states in a sub-graph. Then,

the agents interact to achieve the goal. We illustrate this

approach on a grid connected by square cells.

Keywords: Agent;A*;DEPA*;Grid;Node;Muli-Agent Systems.

1 INTRODUCTION

The distributed approach is presented in our daily lives such
as traffic for example going from city A to city B can escalate
the latter. Another case is 0the Web Service. If you ask query
<how to get from A to B>, the answer may be passed through
several server. Booking in a travel agency is also regarded as a
distributed approach (car, bus, avian ...).

 Our objective is to design an intelligent and effective DEPA*
able to accelerate the search of the shortest path between two
nodes if it exists. Our algorithm is developed to find an optimal
and complete solution. We illustrate our approach on a grid,
this grid is divided into several agents: Some A* are run in
parallel in accordance with the concept of depth (A* that do not
meet certain conditions are not executed), each Agent calculate
the shortest path as well as the successor to its final state. A
coordinator agent solves the problem of conflict if it exists by
calculating the minimum distance to the final state in the sub
graph or global heuristics with adjacent agent.

This article is organized according to the following provisions.
In the first section, we present previous works in the field of
distributed planning and the variations of A*. In the second
section, we discuss the modeling of the problem and the
explanation of A*. The third section is devoted to the
presentation of our approach based on the agents with a pseudo

code. Results are given in the fourth section. Conclusion and
perspectives are presented in the last section.

2 RELATED WORKS

The Djikstra algorithm (Research in width) (Hart,NJ. Nilsson
PE. and B. Raphael, 1968) and its variations as A* so-called A
START (search in depth) (Russell S., 1992) are well-known
algorithms in artificial intelligence specifically in planning (the
calculation of shortest path).

Our art state is divided into three major axes. The first is on

the extensions of A* while the second on the distributed

planning and the third on the decentralization of A*. (Koenig

S. and M. Likhachev, May 2006a) Proposes an algorithm of

shortest path based on A* algorithm, its main advantage is in

the use of a bounded memory while the A* algorithm uses

exponential memory. All other features are inherited from A*.

It avoids repeated states as long as the related memory permits

it. In (Koenig S., M. Likhachev and D. Furcy, 2004a), the

author introduces the notion of time, in order to accelerate

repeated heuristic A* research with the same state toward a

goal. The idea is to place dates at the state level in its local

search spaces in order to make the heuristics better informed

after each A* heuristic search. The works of (Koenig S. and

M. Likhachev, 2005b) are inspired from (Koenig S. and M.

Likhachev, 2002b) Dynamic A* which behaves like A*,

except that the costs of arc can vary as the algorithm works.

Two other states are added namely Raise indicating that its

cost is higher than the last time on the Open list and Lower

indicating that the cost is less than the last time on the Open

list. (Koenig S., M. Likhachev, Y. Liu and D. Furcy, 2004b)

Proposes an incremental version of A* so-called D*. The idea

is to take advantage of previous researches that they reuse after

repair. These changes allow the graph of a well gained

execution time better than rescheduling from zero. In (Sun X.,

S.Koenig and W. Yeoh, 2008a), the authors combine both

incremental and heuristic searches. They reuse information

from previous searches to speed up searches for similar

sequences. GAA* (Generalized Adaptive A*) solves search

problems potentially faster. The heuristic search often based

on A* heuristics uses heuristics knowledge in the form of

approximations of goal distances. GAA* is much faster than

uninformed search algorithms. Recently, another algorithm

(Sun X., W. Yeoh and S.Koenig,2009b) has been proposed. It

is modeled as a grid it depends on a forward chaining search

2

called FRA*(Efficient Incremental Search for Moving Target

Search).Whenever the target moves, FRA* quickly adapts the

search tree previously built to the new target position and

recalls the function of A* search. This tree adaptation is

largely dependent on environmental modeling. The changes in

the environment are not treated. (Sun X., W. Yeoh and

S.Koenig, 2010c) Developed a variant of this algorithm called

GFRA*(Generalized Fringe-Retrieving A*) which enables

FRA* to operate in environments modeled by arbitrary graph.

In addition, the used heuristic function is ineligible. This is

the case in the field of planning. (C. Hernández., X.Sun.,S.

Koenig., P. Meseguer,2011) proposes a new incremental

heuristic search algorithm called Tree Adaptive A* uses the

update principle of Adaptive A* to make the h-values of the

current A* search more informed.
 In (David S., 2005), the author resolves collision; he added the
concept of priority in the context of cooperation between agents
in finding the shortest path. Each agent is assigned to a priority
where agents will be executed in the order of this priority. In
(Cáp M, P.Novák, J.Vokrínek and M. Pechoucek, 2012), the
authors present an asynchronous variant of decentralized
planning, exploiting the parallelism in distributed systems,
which gives a speed in calculations. Unlike synchronized
planning approaches, algorithm allows an agent to call his local
planner of the spatial-temporal trajectory to find the best path.
In (C.Hernández ,J.Baier,T.Uras and S.Koenig 2012) the
authors introduce the game time model, where time is
partitioned into uniform time intervals, an agent can execute
one action during each time intervals (Standley1 T. and R.
Korf, 2011) propose a complete algorithm that is fast enough
for real-time applications based on MAS, at any time when an
agent finds a solution. It uses the rest of the time to gradually
improve the solution until it is optimal. Algorithm can solve
problems at 80% with small grid but with the scale, the
problem remains. In (Kamoun M., 2007) the cooperation
between agents illustrated by the author is based on two
algorithms: First, to find the interface agents that should
cooperate to answer a query "how to get from A to B? ", and
how to make these agents cooperate. The two algorithms are
based on the Djikstra where each agent details the itinerary.
The author did not unfortunately give a pseudo code that
clarifies how this distribution is achieved.

Work on the A* decentralization is little although the areas
covered are decentralized in nature such as road traffic, web
service, game theory ...(EL Falou M.,M.Bouzid and M.
Mouaddib,2012) proposed a distributed search algorithm DEC-
A*(a Decentralized Multiagent Pathfinding) modeled as
follows: when a problem is presented, each agent calculates its
overall heuristic that estimates the cost of its shortest path to the
goal intermediary to its neighboring gents. Then, the agent
containing the initial state develops locally in A* by
minimizing the cost until it reaches the border. After that, it
stimulates on the other side a new execution of A*. These steps
are repeated to reach the goal. So, the author has made an
extension of the heuristic evaluation of the distance like the
sum of two functions, a local, which evaluates the cost to reach
the closest node, neighbor to the objective and the overall
distance that estimates the cost of sub graph in the target
through other graphics. His work decreases the time to find the

shortest path and reduces complexity but it is not effective in a
graph without hindrance.

 In this domain, several studies have been carried out
especially in the last 10 years, but we noticed that most of the
researchers work on variations or extensions of A* applied in
different areas such as game theory, robotics, traffic road....
But, little work on decentralization of A* especially on
coordinating agents at boundaries nodes, that is the object of
our work

3 MODELLING OF THE PROBLEM

3.1 Notation

Our approach is illustrated in a square grid that represents

blocked cells in grey and unblocked in blond. The initial state is

colored in green and red for the end state.

S is the finite set of unblocked states, є S is the initial

state (starting node) of our research, є S represents the

final state (arrival node), є S (heuristics) is the

approximation of a current state s to a state s' .In our illustration

we work with the Manhattan distance (Pearl J., 1985).

 h(s) = |xs-xs’|+|ys-ys’| , where x and y are the coordinates of

the cell. C (s, s') = 1 is the cost of transition between adjacent

cells in the 4 directions , C(s, s′) >0 is the cost of

transition between the cell s є S and s' є S.

G={ , } where is the nth sub graph, each is

a sub graph of agent , the agents communicate using a

border node Succ()= , s є and s’ є with i ≠j,

let λ ={ , ,…. } a set of path to each sub graph

starting from an initial border state of to a final boundary

state .

A* uses the formula F (x) = g (x) + h (x) which is the current

approximation of the shortest path to the goal, where g (x) is

the total distance between the initial position to the current

position and h(x) is the heuristic function which represents the

approximate distance from the current location to the goal c

3.2 Standard A* Algorithm Search

A* pronounced A Star [4] is an algorithm search of artificial

intelligence that performs a heuristic search [18] in an area to

find an optimal path from the root node to the goal node. The

algorithm search is based on a heuristic evaluation between two

nodes in order to eliminate many paths of high costs. Two

representations are possible namely tree or grid in Figure 1 and

2.

 Figure 1: Representation in Greed and Tree

3

 To find a path from one point to another, we must begin by

heading to the destination. It is precisely this idea that the A*

algorithm uses. The idea is very simple: at each iteration A*

will try to get closer to the destination, it will therefore focus

on possibilities directly closer to the destination, putting aside

all others. All possibilities not allowing to get closer to the

destination are set aside, but not suppressed. They are simply

put in a list of possibilities to explore (open list) if ever the

solution currently explored is poor. Indeed, we cannot know

in advance whether a path will lead or be shorter. Enough for

this path lead to a dead end that the solution becomes

unusable. Algorithm will therefore first move towards more

direct paths. And if these paths fail or prove wrong later, it will

examine solutions being put aside. This going back to review

the solutions that we set aside the algorithm ensures that we

always find a solution (if it exists, of course). What makes this

algorithm search complete, fast and optimal figure 2. Several

distances can be used like the Manhattan distance, diagonal,

Euclidean…

An illustrative example of A* running on a grid and a tree with

the trace of open list and closed list is shown in Figure 2.

 Figure 2: Illustrative Example of A*

4 PROPOSED APPROACH

Our idea is simple but effective. After the decomposition of the
graph into a sub-graph (sub-matrix). Each agent calculates
respectively the initial state which represents the minimum cost
of the border states and the final state representing the minimum
of the heuristics of the border states. Then, A* will execute in
parallel with the sub-graphs provided that its initial state is a
successor of the final status of another sub-graph (red crosses in

Figure 3 for the case of untreated parallel). In case of a single
processor, a multi thread is run. The agents communicate using
a coordinator agent which calculates the overall heuristic [17]
of each agent. It will be used in case of conflicts between the
final states of each sub-graph and build the final path from

 to .

 Figure 3: Illustration of an Example DEPA *

Here is a sample execution which explains the algorithm 1 and

2: Our grid is divided into 16 agents from .In

each square, the value presented at the upper left corner

represents the cost. The bottom left represents the heuristic

and f = g+ h is in the middle of the cell. All initial and final

states are stored in two vectors provided that the initial state is

a successor of the final state.

The initial state of the A9 agent is which is a successor

of for agent. So will be considered contrary to

the agent as its initial state is not a successor of

of Then, we calculate the A* for agents well sorted

and we appeal to the coordinate agent which regulates the

conflict in case there are more final states in the same agent

(two A* in the case of agent). The Figure 4

Agent 1

Agent 7

Agent 16

Order

Close List Open List

4

shows an example of cooperation between agents where each

agent sends a message send () and receives message answer ()

of the coordination agent which contains the partial path λ i

4.1 Pseudo code

 Algorithm 1: DEPA*

 1: Begin

 # Initialization

 2: Decomposition (grille, nbr noeud);

 3: For each of A do

 # Calculate the initial and final state of each sub graph

 4: = MIN (of node neighbor in);

 5: = MIN (of node neighbor in);

 # Condition for parallelism

 6: If S == Succ (S) i≠j then

 7: Vector1 = ;

 8: Vector2= ;

 9: End of if

 10: End of for

 11: For i=1 to length[Vector1] do

 # calculate of A * for each agent in parallel

 12: Thread[i]. A* (Vector1[S)] , Vector2 [S)];

 13: End of for

 # Communication between agents

 14: Cordiagent ();

 15: Pathfinal= =

 16: End.

The line 2 of the algorithm 1 represents the decomposition of

the grid in sub-grid depending on the desired number of

agents. Take our example for a grid of 12*12. If we want to

have agents with 09 nodes. We must split the rows and

columns in 3.3, which gives us 16 agents (4*4). The 4 and 5

lines calculate the minimum of the costs and heuristics for

boundary nodes for each agent. They will be stored in two

vectors (lines 7 and 8). Much implementations is shown in line

12, which uses the standard function A * in parallel. Line 14

calls he coordinator agents (algorithm 2).

The Algorithm 2 guaranteed the communication between

agents (boundary nodes). It is used to calculate the best paths f

or each agent (line 12). Three tests are performed (lignes 3,

6.9) to solve the problem of multiple final states. Line 10 calls

the heuristic function , which represents the minim

um distance for to the final state , is calculated by achai

nigback for = to the initial state = [17].

DEPA* is complete, unless there is an infinite number of nodes

 with f ≤ f (G). Since h is admissible, best is optimal bec

ause it is a simple A *. So is optimal.
 Algorithm 2: Cordiagent ()

 1: Begin

 # Initialization;

 2: For each node of do

 3: If == then

 4: = MIN(c(,) / s’ є)

 5: End of if

 6: If c(,)== c() then

 7: = MIN (Succ , Succ);

 # s’ є j≠i

 8: End of if

 9: If == then

 10: = MIN (Succ ,

 Succ); # s’ є j≠i)

 11: End of if

 12: Return best ;

 13: End of for

 14: End.

Figure 4: Coordination between Agents

5

5 EXPERIMENTATION

We have compared our DEPA* algorithm with A* and

DECA* on a machine with an Intel (R) Core 2 Duo 3.16 GHz

CPU and 2 GB of RAM. After several experiments, we

obtained results that illustrate the execution time by varying the

size of the problems with respect to the number of input nodes

and the number of agents used for their resolution.

Obstacles in our grid that represent walls, rivers, mountains are

programmed in a way random all depends on the problem. We

used a Boolean function. When creating the grid. It is true for

Adjace0nt nodes (not obstacle) if Math .random exceeds 0.1.

 Grid size A* en ms DECA* en ms

DEPA* en

ms

12*12 32 15 15

20*20 47 17 16

50*50 218 256 150

100*100 1000 410 300

TABLE 1: EXPERIENCE WITH DIFFERENT GRID

The first aspect we noted in figure 5 is the execution time of
DEPA* which calculates the shortest path from node (0, 3) to
(40, 40). This time with DEPA* is the least by contribution to
A* and DECA*. Even if the grid is large (table 1: 10000,
25000 nodes).

Figure 5: Comparaison between Variations of A*

 Grid size

 Number of

agents

 A*

ms

DECA*

ms

DEPA*

ms

 30*30=

900

10*10

agents of

3*3 nodes

 153

 145

16

2*2 agents

of 15*15

nodes

110

59

 38

TABLE 2: EXPERIENCE WITH A GRID (30*30)

 Figure 6: Grid of 30*30 Nodes

 In Figures 6 and 7, which illustrate the tables 2 and 3, we
notice the profit in the execution time in relation with the
number of agents for 03 algorithm. DEPA* is the best in the
time of executions. Consider the case of Figure 6, which shows
a grid of 30 * 30 with initial and final states are (0.3) and
(29.29), for a breakdown of 10 * 10 agents where each agent
has 3 * 3 node. DEPA* runs in 16 milliseconds but in the
decomposition of 2* 2 agents with 15 * 15 node, DEPA* runs
in 38 ms which expresses the power of parallelism and
coordination between agents.
 Figure 8 shows the performance of the DEPA* on scale with
initial and final states are at the end of the grid: (3.3) and
(170.170). We notice that as the number of agents increases the
time is decreased 983 ms for 4 agents and for 36 agents we
have 109ms. This expresses a time saving through the parallel
execution of A * at each agent.

Grid Size

 Number of

agents

 A*

 ms

DECA*

 ms

DEPA*

 ms

50*50=

2500

10*10 agents

of 5*5 nodes

218

57

15

2*2 agents of

25*25 ndes

313

413

94

TABLE 3: EXPERIENCE WITH A GRID (50*50)

6

 Figure 7 : Grid of 50*50 Nodes

 Figure 8: Grid of 180*180 Nodes

 Figure 9: Grid of 180*180 Nodes

The figure 9 shows the relationship between the increase in the
number of agents contribution to the reduction of time
execution and the number of nodes for each agent on a grid of
180 * 180 nodes using the parallelism of A*.

We notice that, in our experiments, DEPA* finds a solution if
it exists in at least a second with grids that can contain up to
32400 nodes.

 From these results, we can say that decentralization is an
appropriate approach for this type of problem when the graph is
large.

 6 CONCLUSION AND FUTURE WORKS

Networks grow continuously, which makes the system more

complex. More recent works in artificial intelligence handle

the problem of shortest path. The multi-agent systems are

helping to solve this complexity with a decentralized manner

through a "send and answer" communication and the

coordination between agents in order to achieve the goal.

The proposed DEPA* algorithm is in keeping with this

problem. We have illustrated our approach on a square grid

like the game grid, which allows computing the shortest path

from an initial state of an agent to a final state of another. It is

based on the parallel A* that is run on agents of which their

initial states are successors of the final states of other assistants

agents. Much of the work is devoted to the coordination

between agents to arrive at the final path in the case of several

A* (several final states) in the sub grid (agent).

 To determine the relevance of this approach, we undertook

tests on different instances, by varying the size of the problems

and the number of agents used for their resolution.

The comparisons between A *, A * DEC and DEPA* show

that on the whole if the results are not significant on small

instances, they become much more visible as soon as you

increase the size of the problems.

 We obtained good results, especially in a scale of 25000

nodes and 32400 nodes where DEPA* finds the solution if it

exists in some milliseconds. In future researches, we are

interested in the extension of the field of application, such as

the simple and dynamic graphs, when the final state changes in

position.

REFERENCES

 Hart,NJ. Nilsson PE. and B. Raphael, 1968. A formal basis
for the heuristic determination of minimum cost paths,
IEEE Transactions on Systems, Science, and Cybernetics,
100-107.

Russell S., 1992. Efficient memory-bounded search methods.
In Neumann, B. Proceedings of the 10th European
Conference on Artificial intelligence. Vienna, Austria:
John Wiley & Sons, New York, NY. pp. 1.

Koenig S. and M. Likhachev, May 2006a. AAMAS,”
Hakodate, Japan

Koenig S., M. Likhachev and D. Furcy, 2004a. Lifelong
Planning A*. Artificial Intelligence Journal, 155, (1–2),
93–146.

Koenig S. and M. Likhachev, 2005. Adaptive A*, In
Proceedings of the International Conference on
Autonomous Agent and Muti-Agent Systems, p. 1311–
1312.

7

 Koenig S. and M. Likhachev, 2002b. D* lite. In Proceedings
of the Association for the Advancement of Artificial
Intelligence, p. 476–483.

Koenig S., M. Likhachev, Y. Liu and D. Furcy, 2004b.
Incremental Heuristic Search in Artificial Intelligence,
Artificial Intelligence Magazine, 25(2), 99-112.

Sun X., S.Koenig and W. Yeoh, 2008a. Generalized adaptive
A*, In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, p. 469–476.

Sun X., W. Yeoh and S.Koenig,2009b. Efficient incremental
search for moving target search, In Proceedings of the
International Joint Conference on Artificial Intelligence, p.
615–620.

Sun X., W. Yeoh and S.Koenig, 2010c. Generalized Fringe-
Retrieving A*. Faster Moving Target Search on State
Lattices”. In Proceedings of the Internation Joint
Conference on Autonous Agents and MultiAgent Systems,
volume 1081–1088.

David S., 2005. Cooperative Pathfinding, Proceedings of the
First Conference on Artificial Intelligence and Interactive
Digital Entertainment: pp. 117-122.

Cáp M, P.Novák, J.Vokrínek and M. Pechoucek, 2012.
Asynchronous Decentralized Algorithm for Space-Time.
Cooperative Pathfinding , Workshop proceedings ECAI.

 Standley1 T. and R. Korf, 2011. Complete Algorithms for
Cooperative Pathfinding Problems, Proceedings of the
Twenty-Second International Joint Conference on
Artificial Intelligence.

Kamoun M., 2007. Designing an information system using
multimodal travel : A multi-agent approach to search and
composition routes online “, PHD thesis lile university.

EL Falou M.,M.Bouzid and M. Mouaddib,2012. DECA*:a

Decentralized Multiagent Pathfinding Algorithm”,
AAAI.

Pearl J., 1985. Heuristics: Intelligent Search Strategies for
Computer Problem Solving, Addison-Wesley.

 Hernández,C., Baier,J.,Uras,T.,Koening,S., 2012. Time –
bounded adaptative A, 11

th
 International Conference on

Autonomous Agents and Multiagent System,
AAMAS:Innovative Application Track,1pp.224-231.

Hernández, C., Sun, X., Koenig, S., Meseguer, P., 2011. Tree
adaptive A*, 10th International Conference on
Autonomous Agents and Multiagent Systems 2011,
AAMAS 2011, 1, pp. 113-120.

