SOLVING ONE-TO-ONE INTEGRATED PRODUCTION AND OUTBOUND DISTRIBUTION SCHEDULING PROBLEMS WITH JOB RELEASE DATES AND DEADLINES
Liang-Liang Fu, Mohamed Ali Aloulou, Christian Artigues

To cite this version:
Liang-Liang Fu, Mohamed Ali Aloulou, Christian Artigues. SOLVING ONE-TO-ONE INTEGRATED PRODUCTION AND OUTBOUND DISTRIBUTION SCHEDULING PROBLEMS WITH JOB RELEASE DATES AND DEADLINES. MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et Simulation, Nov 2014, Nancy, France. <hal-01166588>

HAL Id: hal-01166588
https://hal.archives-ouvertes.fr/hal-01166588
Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SOLVING ONE-TO-ONE INTEGRATED PRODUCTION AND
OUTBOUND DISTRIBUTION SCHEDULING PROBLEMS
WITH JOB RELEASE DATES AND DEADLINES

Liang-Liang FU, Mohamed Ali ALOULOU Christian ARTIGUES

PSL, Université Paris Dauphine
CNRS, LAMSADE
75775 Paris Cedex 16 - France
liangliang.fu@dauphine.fr, mohamed-ali.aloulou@dauphine.fr

LAAS CNRS
7 avenue du Colonel Roche BP 54200
31031 Toulouse - France
artigues@laas.fr

ABSTRACT: In this paper, we study an integrated production and outbound distribution scheduling problem with one manufacturer and one customer. The manufacturer has to process a set of jobs and deliver them in batches to the customer. Each job has a release date and a delivery deadline. The objective of the problem is to decide a feasible integrated production and distribution schedule minimizing the transportation cost subject to the delivery deadline constraints. We consider three problems with different ways how a job can be produced and delivered: Non-splittable production and delivery (NSP-NSD) problem, Splittable production and non-splittable delivery (SP-NSD) problem and Splittable production and delivery (SP-SD) problem. We provide a polynomial-time algorithm that solves two special cases of problems SP-NSD and SP-SD. We also develop a B&B algorithm that solves the NP-hard problem NSP-NSD. The computational results show that the B&B algorithm outperforms an ILP formulation of the problem implemented on a commercial solver.

KEYWORDS: Supply chain scheduling, batching and delivery, single manufacturer, single customer, release dates, delivery deadlines.

1 INTRODUCTION

1.1 Motivation

Supply chain management is an active domain consisting of the optimization and management of flows between different actors that generally have conflicting objectives, which makes the coordination of their decisions a crucial issue in supply chain management. In recent years, supply chain coordination issues have received great attention from several researchers. Before 2000, most of the work has focused on coordination at the strategic and tactical levels, see e.g. the surveys by (Sarmiento and Nagi, 1999) and (Erenguç et al., 1999). (Thomas and Griffin, 1996) pointed out the need for research that addresses supply chain issues at an operational level rather than a strategic level. This has triggered a certain amount of research on supply chain coordination at the operational level. (Hall and Potts, 2003) were the first to study coordination issues among scheduling, batching and delivery decisions in a three-stage supply chain formed by suppliers, manufacturers, and customers. They study two individual decision models, corresponding to the viewpoint of one supplier or one manufacturer respectively. Recently, growing attention have been devoted to integrated supply chain scheduling issues. (Chen, 2010) surveys integrated production and outbound distribution scheduling (IPODS). Outbound distribution deals with a manufacturer shipping his products to the next stage of the supply chain, that typically belongs to another company. As a consequence, the receiving firm may set due dates or deadlines that will constrain the production/distribution problem. The focus of the analysis is on coordinating production decisions (typically, sequencing) and distribution decisions (typically, batching).

1.2 Problem settings

In this paper, we consider an integrated production and outbound distribution model in a supply chain consisting of one manufacturer and one customer. The customer orders a set of jobs (or orders) \(N = \{1, \ldots, n\} \) to the manufacturer who has to process them on a single machine, and then deliver them in batches to the customer location. Each job \(j \in N \) has a release date \(r_j \) (the date when raw material is available to process \(j \)), a processing time \(p_j \) and a delivery deadline \(d_j \). After processing on the machine, the jobs can be grouped into batches of maximum...
size \(c > 0 \), corresponding to a full truck load, and then sent to the customer location. The jobs are unit sized, i.e. a truck can carry at most \(c \) jobs at a time. The delivery operation is operated by a third party logistic provider that is supposed to be able to deliver any batch at any time. The batch is available to be delivered when all jobs of this batch are completed. The transportation time of a batch and the corresponding subcontracting cost are supposed to be independent on the batch constitution. Hence, we can assume without loss of generality that the transportation time is 0 and the transportation cost of a batch is equal to 1.

Let \((\sigma, \theta)\) denote the integrated schedule, where \(\sigma \) and \(\theta \) are respectively the production schedule and the delivery schedule. In this integrated schedule, \(C_j(\sigma) \) is the completion time of job \(j \) on the machine and \(D_j(\theta) \) is the delivery time of job \(j \) to the customer location. An integrated schedule is feasible, if \(D_j(\theta) \leq d_j \), for all \(j \in N \). The objective of the problem is to decide a feasible integrated production and distribution schedule minimizing the transportation cost \(TC \), which is here equal to the number of delivery batches.

We consider three problems with different ways how a job can be produced and delivered.

- **Non-splittable production and delivery (NSP-NSD) problem**: A job is non-preemptable (or non-splittable) in production and a finished job must be delivered in one batch. Using the five-field notation proposed by (Chen, 2010), this problem can be denoted by \(1|r_j, d_j|v(\infty, c), direct|1|TC \).

- **Splittable production and non-splittable delivery (SP-NSD) problem**: A job can be split in production, but a finished job must be delivered in one batch. This problem can be denoted by \(1|r_j, pmtn, d_j|v(\infty, c), direct|1|TC \).

- **Splittable production and delivery (SP-SD) problem**: A job can be split in both production and delivery. This problem can be denoted by \(1|r_j, pmtn, d_j|v(\infty, c), direct, split|1|TC \).

We do not consider the non-splittable production but splittable delivery (NSP-SD) problem, because we can show that for any optimal solution of NSP-SD problem, if it exists, its splittable delivery schedule can be transformed into a non-splittable delivery schedule with the same transportation cost, while maintaining the same production schedule. Hence this problem reduces to problem NSP-NSD.

Illustrative example: To illustrate the three problems, we consider the following example with six jobs where the vehicle capacity \(c \) is equal to 2. Table 1 gives the jobs’ parameters.

<table>
<thead>
<tr>
<th>Job</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_j)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(r_j)</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>12</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>(d_j)</td>
<td>12</td>
<td>5</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Illustrative example: jobs’ parameters

Figure 1 shows the optimal schedules for the three problems. In a production schedule, \([j]\) means that the whole job \(j \) is produced. In a delivery schedule, \([j]\) means that the whole job \(j \) is delivered. When \([j]\) is preceded by a constant \(\alpha \), \(0 < \alpha < 1 \), this means that a part of job \(j \) is produced or delivered.

Case NSP-NSD: In the optimal schedule, the production sequence is \([2], [1], [3], [4], [5], [6], [7]\). There exists an idle time before job 2, because if job 1 is processed before 2, then job 2 would be late. A similar reason for the second idle time holds. There are five delivery batches: \([2], [1], [3], [4], [5], [6] \) and \([7]\), which depart respectively at time 4, 10, 12, 15, 18 and 19 as shown in Figure 1(a).

Case SP-NSD: The production sequence is \([\frac{2}{3}, [2], [3], [\frac{1}{2}], [4], [\frac{1}{2}], [6], [5], [2], [6], [7]\]), where the job 1 and 6 are split respectively into two parts. The optimal schedule has four delivery batches: \([2], [1], [3], [4], [5], [6], [7]\), which depart respectively at time 4, 8, 10, 15 and 18 as shown in Figure 1(b). Since job 2 cannot be delivered with any other job because of its release time and deadline, transportation cost cannot be improved for the first 4 jobs with the non-splittable delivery. However, we can split job 6 in production in order to deliver the jobs 6 and 7 in one batch.

Case SP-SD: The production sequence is the same as problem SP-NSD. The optimal schedule has three full delivery batches: \([\frac{2}{3}, [2], [\frac{1}{2}], [3], [\frac{1}{2}], [1], [4], [\frac{5}{2}], [6], [7]\], which depart respectively at time 5, 10, 15 and 18 as shown in Figure 1(c). For example, the first full filled delivery batch consists of half of job 1, job 2 and half of job 3. With the splittable delivery, the first four jobs can be delivered in two full batches.
Remark that in the three cases, jobs delivered together are not necessarily sequenced consecutively, which makes the considered problems different from classical batching models.

1.3 RELATED LITERATURE

First, consider the production settings. Recall that the single machine scheduling problem with job release dates and deadlines $1|r_j, d_j|\sum d_j$ is NP-complete, see (Garey and Johnson, 1979). (Carlier, 1982) proposed an efficient binary B&B algorithm to solve the corresponding optimization version $1|r_j|L_{\max}$, where $L_{\max} = \max_{j \in N} L_j = \max_{j \in N}(\hat{C_j} - d_j)$. Here d_j, $j \in N$, are no more deadlines, but due dates (i.e. they can be violated). When preemption is allowed, problem $1|r_j, \text{pmtn}|L_{\max}$ can be solved in polynomial time $O(n \log n)$ using Jackson’s algorithm, see (Jackson, 1955).

It can be observed easily that problem $1|r_j, d_j|\sum d_j$ reduces to our problem NSP-NSD, i.e. it is a special case of our problem with $c = 1$. Consequently, problem NSP-NSD is NP-hard in the strong sense.

When considering delivery, a similar model has been considered by Chen and Pundoor 2009 with the difference that all the jobs are available for processing at time 0, i.e. $r_j = 0, j \in N$, and the jobs may have different sizes. The corresponding problem SP-SD is proved to be polynomially solvable in time $O(n^2)$. The other problems (NSP-NSD and NSP-SD) are NP-hard in the strong sense. When the sizes of the jobs are all equal to one, the problem NSP-NSD is polynomially solvable in time $O(n^2 \log n)$, see (Pundoor and Chen, 2005).

When release dates are not all equal, to the best of our knowledge, only individual delivery to several customers is considered, i.e. $c = 1$. The objective is to minimize the maximum delivery time. Almost all considered problems in the literature are proved to be NP-hard, see for example (Chen, 2010) and (Liu and Cheng, 2002).

In this paper, we study in particular the problem NSP-NSD and propose a B&B algorithm to solve it optimally. This algorithm takes advantage of the binary B&B algorithm proposed by (Carlier, 1982) and lower bounds on the transportation cost TC computed by solving special cases of problem SP-NSD.

The paper is structured as follows. Section 2 considers problems SP-SD and SP-NSD. Section 3 presents the B&B algorithm for the problem NSP-NSD followed, in section 4 by numerical experiments to evaluate the performance of this algorithm. Finally, we provide conclusions and perspectives in section 5.

2 PROBLEMS SP-SD AND SP-NSD

In this section, we give some properties for problems SP-SD and SP-NSD. Then we provide a polynomial time algorithm that solves these problems in two special cases.

2.1 Properties

We introduce the definitions of production block and the preemptive EDD (earliest due date) rule, (Jackson, 1955).

Definition 1 In a production schedule, a production block is defined as a subset of jobs which are processed consecutively without idle times. Set the minimum starting processing time of jobs of the block as the starting time of the block and the maximum completion time of jobs of the block as the ending time of the block. The order of jobs is not taken into account in the definition of the block.

Preemptive EDD rule: At each decision point t in time, consisting of each release date and each job completion time, schedule an available job j (i.e. $r_j \leq t$) with the earliest due date. If no job is available at a decision point, schedule an idle time until the next release date.

Next, we give some properties for problems SP-NSD and SP-SD.

Lemma 1 If the problem is feasible, there exists an optimal integrated schedule for problems SP-NSD and SP-SD such that the following properties hold:

1. Every job is processed in one production block only.
2. Each production block starts at the minimum release date of the jobs within this block.

We construct all the jobs composition, the starting time and the ending time of each block, is the same as that constructed by the preemptive EDD rule.

Lemma 2 If the problem is feasible, there exists an optimal integrated schedule for problems SP-NSD and SP-SD such that the structure of production blocks, consisting of the jobs composition, the starting time and the ending time of each block, is the same as that constructed by the preemptive EDD rule.

2.2 A polynomial time algorithm for two special cases

We first introduce the Shortest Remaining Processing Time (SRPT) rule to construct a production schedule in the problems with preemption.
SRPT rule: at each decision point \(t \) in time, consisting of each release date and each job completion time, schedule an available job \(j \) (i.e. \(r_j \leq t \)) with the shortest remaining processing time. If no job is available at a decision point, schedule an idle time until the next release date.

Next, we provide a polynomial time algorithm (see Algorithm A1) for problems SP-NSD and SP-SD in the following two special cases:

case 1: the truck capacity is unlimited, i.e. \(c = \infty \).

case 2: In any production block of the schedule constructed by preemptive EDD rule, the jobs have the same release date.

Algorithm A1

Step 1: Generate a production schedule \(\sigma \) with the preemptive EDD rule. If \(C_j(\sigma) \leq \overline{d}_j, \forall j \in N \) go to Step 2, otherwise there is no solution and STOP.

Step 2: Let \(N' \subseteq N \) denote the set of undelivered jobs. Set current delivery time \(T = \max_{j \in N'} C_j(\sigma) \).

Step 3: Find the set of undelivered jobs with the deadline greater than or equal to \(T \). Let \(S \) denote this jobs’ set.

Step 4: If \(|S| \leq c \), deliver all jobs of \(S \) in one batch which departs at time \(T \). Otherwise, deliver the last \(c \) completed jobs of \(S \) in one delivery batch which departs at time \(T \). If all jobs are delivered, then STOP. Otherwise, go to step 2.

Theorem 1 Algorithm A1 finds an optimal integrated schedule for problems SP-NSD and SP-SD in the special case 1 in \(O(n^2) \) time, and the special case 2 in \(O(n^2 \log n) \) time.

Remark that the computational complexity of problems SP-NSD and SP-SD in the general case is still open.

3 A B&B ALGORITHM FOR PROBLEM NSP-NSD

As it has been observed in section 1, the problem NSP-NSD is strongly NP-hard. In this section, we first present two heuristics to determine upper bounds on \(TC \). Then we describe a B&B algorithm to solve our problem.

3.1 Heuristics

We first propose a polynomial time algorithm (see Algorithm A2) to construct an optimal delivery schedule for a given feasible non-preemptive production schedule \(\sigma \), i.e. \(C_j(\sigma) \leq \overline{d}_j, \forall j \in N \).

Algorithm A2

Step 1: Let \(N' \subseteq N \) denote the set of undelivered jobs. Set current delivery time \(T = \max_{j \in N'} C_j(\sigma) \).

Step 2: Find the set of undelivered jobs with the deadline greater than or equal to \(T \). Let \(S \) denote this jobs set.

Step 3: If \(|S| \leq c \), deliver all jobs of \(S \) in one batch which departs at time \(T \). Otherwise, deliver the last \(c \) completed jobs of \(S \) in one delivery batch which departs at time \(T \). If all jobs are delivered, then STOP. Otherwise, go to Step 1.

This algorithm can be used to determine an upper bound of \(TC \) for a given production schedule without preemption. In our B&B algorithm, we will use two heuristics that try to construct a feasible integrated schedule for problem NSP-NSD.

The first heuristic, denoted H1, uses the non-preemptive EDD rule, which forces to create a production schedule without preemption. If the obtained production sequence is feasible, then we apply algorithm A2.

Non-preemptive EDD rule: At each decision point \(t \) in time, consisting of each starting of a production block and each job completion time, schedule an available job \(j \) (i.e. \(r_j \leq t \)) with the earliest due date. If no job is available at a decision point, schedule an idle time until the next release date.

The second heuristic, denoted H2, uses a feasible SP-NSD integrated schedule to construct, if possible, a feasible integrated schedule for problem NSP-NSD.

Heuristic H2

Step 1: Create a priority list of jobs, such that in the given schedule, if \(D_i < D_j \), job \(i \) must be before job \(j \) in the list, and if \(D_i = D_j \) and \(C_i < C_j \), job \(i \) must be before job \(j \) in the list.
Step 2: Schedule each job as early as possible without preemption. When there are several jobs which can be scheduled, we choose the job with the highest priority. Let σ be the constructed schedule. If \(C_j(\sigma) \leq \overline{d}_j, \forall j \in N \), go to step 3. Otherwise, there is no feasible solution and STOP.

Step 3: Apply the algorithm A2 to compute a delivery schedule.

3.2 B&B algorithm

We recall the B&B algorithm by (Carlier, 1982) for problem 1|\(r_j | L_{\text{max}} \). The algorithm computes a lower bound and an upper bound for each node based on preemptive and non-preemptive EDD rule, respectively. Branching is done by modifying release times or deadlines. At every node, the algorithm constructs the non-preemptive EDD schedule, then defines a critical job and a critical set of jobs and considers two subsets of schedules: the schedules where the critical job precedes the jobs of the critical set and the schedules where the critical job follows the jobs of critical set.

We propose a B&B algorithm (see Algorithm B2) for problem NSP-NSD based on the B&B algorithm of Carlier. Let \(LB(L_{\text{max}}, u) \) and \(UB(L_{\text{max}}, u) \) denote the lower bound of \(L_{\text{max}} \) and the lower bound of \(L_{\text{max}} \) of node \(u \) respectively. Let \(LB(TC, u) \) and \(UB(TC, u) \) denote the lower bound of \(TC \) and the upper bound of \(TC \) of node \(u \) respectively. Let \(UB^*(TC) \) denote the current best upper bound of \(TC \). The algorithm B2 uses the same branching as Carlier’s algorithm. When a feasible solution is found at node \(u \), we apply another B&B algorithm from the node \(u \) to try to find a local optimal solution for \(TC \). Branching of B1 is done by assigning at each position of the schedule a respecting a set of rules (see algorithm B1). When algorithm B1 stops, algorithm B2 continues the branching for the remaining active nodes.

Algorithm B1: Algorithm B2

1. Generate the root associated with \(LB(L_{\text{max}}, \text{root}) \) and \(UB(L_{\text{max}}, \text{root}) \) as the algorithm of Carlier, and put this node in list \(L \);
2. while \(L \neq \emptyset \) do
3. Choose one node \(u \) in \(L \) with minimum \(LB(L_{\text{max}}, u) \);
4. if \(UB(L_{\text{max}}, u) > 0 \) and \(LB(L_{\text{max}}, u) \leq 0 \) then
5. Generate \(LB(TC, u) \) and \(UB(TC, u) \) using algorithm B1;
6. if \(LB(TC, u) < UB^*(TC) \) then
7. if \(UB(TC, u) < n + 1 \) then
8. Apply algorithm B1 with the original \(p_j \) and \(\overline{d}_j \), the modified \(r_j \) of node \(u \), and the precedence relations between jobs imposed at the path from the root to the node \(u \);
9. else
10. Branch as the algorithm of Carlier and add new nodes with the bounds of \(L_{\text{max}} \) in \(L \);
11. else
12. if \(LB(L_{\text{max}}, u) \leq UB(L_{\text{max}}, u) \leq 0 \) then
13. Apply algorithm B1 with the original \(p_j \) and \(\overline{d}_j \), the modified \(r_j \) of node \(u \), and the precedence relations between jobs imposed at the path from the root to the node \(u \);
14. Remove \(u \) from \(L \).

Algorithm 1: Algorithm B2

1. Generate the root associated with \(LB(L_{\text{max}}, \text{root}) \) and \(UB(L_{\text{max}}, \text{root}) \) as the algorithm of Carlier, and put this node in list \(L \);
2. while \(L \neq \emptyset \) do
3. Choose one node \(u \) in \(L \) with minimum \(LB(L_{\text{max}}, u) \);
4. if \(UB(L_{\text{max}}, u) > 0 \) and \(LB(L_{\text{max}}, u) \leq 0 \) then
5. Generate \(LB(TC, u) \) and \(UB(TC, u) \) using algorithm B1;
6. if \(LB(TC, u) < UB^*(TC) \) then
7. if \(UB(TC, u) < n + 1 \) then
8. Apply algorithm B1 with the original \(p_j \) and \(\overline{d}_j \), the modified \(r_j \) of node \(u \), and the precedence relations between jobs imposed at the path from the root to the node \(u \);
9. else
10. Branch as the algorithm of Carlier and add new nodes with the bounds of \(L_{\text{max}} \) in \(L \);
11. else
12. if \(LB(L_{\text{max}}, u) \leq UB(L_{\text{max}}, u) \leq 0 \) then
13. Apply algorithm B1 with the original \(p_j \) and \(\overline{d}_j \), the modified \(r_j \) of node \(u \), and the precedence relations between jobs imposed at the path from the root to the node \(u \);
14. Remove \(u \) from \(L \).
4 Experimental results

We evaluate the performance of the B&B algorithm B1 by comparing it with an ILP (integer linear programming) model for the problem NSP-NSD. The B&B algorithm B1 was implemented in C++ and the ILP was implemented in Cplex V12.5.1. The experiments were carried out on a DELL 2.50GHz personal computer with 8GB RAM. The ILP model extends the well-known disjunctive scheduling model as follows. Suppose that each batch departs at one deadline, and let s_1, \ldots, s_u denote the possible departure dates. Let M be a sufficiently large number.

Decision variables:

- $x_{ij} = \begin{cases} 1, & \text{if job } i \text{ precedes job } j, i = 1, \ldots, n, j = 1, \ldots, n \\ 0, & \text{otherwise} \end{cases}$
- $t_j = \text{production starting time of job } j, j = 1, \ldots, n$
- $y_{iq} = \begin{cases} 1, & \text{if job } i \text{ is delivered at time } s_q, i = 1, \ldots, n, q = 1, \ldots, u \\ 0, & \text{otherwise} \end{cases}$
- $w_q = \text{number of batches departing at time } s_q, q = 1, \ldots, u$

ILP:

\[
\begin{align*}
\text{min} & \quad \sum_{q=1}^{u} w_q \\
\text{s.t.} & \quad t_j - t_i \geq p_i - (1 - x_{ij})M, i, j = 1, \ldots, n \quad (2) \\
& \quad x_{ij} + x_{ji} = 1, i, j = 1, \ldots, n, i \neq j \quad (3) \\
& \quad t_j \geq r_j, j = 1, \ldots, n \quad (4) \\
& \quad t_j + p_j \leq \sum_{q=1}^{u} (y_{iq}s_q), j = 1, \ldots, n \quad (5) \\
& \quad \sum_{i=1}^{n} y_{iq} \leq cw_q, q = 1, \ldots, n \quad (6) \\
& \quad \sum_{q=1}^{u} y_{iq} = 1, i = 1, \ldots, n \quad (7) \\
& \quad y_{iq} = 0, \text{ if } d_i < s_q, i = 1, \ldots, n, q = 1, \ldots, u \quad (8) \\
& \quad x_{ij} \in \{0,1\}, i = 1, \ldots, n, j = 1, \ldots, n \quad (9) \\
& \quad y_{iq} \in \{0,1\}, i = 1, \ldots, n, q = 1, \ldots, u \quad (10) \\
& \quad w_q \in \mathbb{N}, q = 1, \ldots, u \quad (11)
\end{align*}
\]

In the ILP model, the objective function is to minimize the number of delivery batches. Constraints 2 ensure that, in the production schedule, job j starts after the completion of job i if job i precedes job j. Constraints 3 guarantee that, in the production schedule, either job i precedes job j or job j precedes job i for any two different jobs i and j. Constraints 4 guarantee that, in the production schedule, each job starts after its release date. Constraints 5 ensure that each job is delivered after its production completion time. Constraints 6 are the constraints of the truck capacity. Constraints 7 ensure that each job is delivered in one batch only. Constraints 8 are the constraints of the delivery deadline. Constraints (9) – (11) give the domain of definition of each variable.

We reuse the method of (Briand et al., 2010) to generate data for problem NSP-NSD. We consider $n \in \{10, 20, 30, 50, 70, 100, 150, 200, 300, 500\}$. The integers p_j, r_j and d_j are generated respectively from the uniform distribution $[1,50]$, $[0, a \sum_{j=1}^{n} p_j]$ and $[(1 - \beta) a \sum_{j=1}^{n} p_j, a \sum_{j=1}^{n} p_j]$, where $\alpha, \beta \in \{0.2, 0.4, 0.6, 0.8, 1\}$ and $a \in \{100\%, 100\%\}$. If $d_j < r_j + p_j$, d_j has been updated by $r_j + p_j$. We choose a set of hard instances and test them with the B&B algorithm of Carlier to find the minimum L_{max}. This value is added to each d_j to ensure that we have at least one feasible solution. For $n \leq 100$, we consider the batch capacity $c \in \{2, 3, \lceil \frac{n}{5} \rceil, \lceil \frac{n}{2} \rceil \}$, and $c \in \{\lceil \frac{n}{5} \rceil, \lceil \frac{n}{3} \rceil, \lceil \frac{n}{2} \rceil \}$ for $n > 100$. A total number of 554 instances is obtained.

<table>
<thead>
<tr>
<th>n</th>
<th>Fea</th>
<th>Opt</th>
<th>Node</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100%</td>
<td>100%</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td>100%</td>
<td>5</td>
<td>0.38</td>
</tr>
<tr>
<td>30</td>
<td>100%</td>
<td>97.5%</td>
<td>72</td>
<td>7.72</td>
</tr>
<tr>
<td>50</td>
<td>100%</td>
<td>90.00%</td>
<td>255</td>
<td>33.99</td>
</tr>
<tr>
<td>70</td>
<td>100%</td>
<td>87.50%</td>
<td>307</td>
<td>56.22</td>
</tr>
<tr>
<td>100</td>
<td>100%</td>
<td>80.00%</td>
<td>372</td>
<td>85.08</td>
</tr>
<tr>
<td>150</td>
<td>100%</td>
<td>51.19%</td>
<td>368</td>
<td>161.24</td>
</tr>
<tr>
<td>200</td>
<td>100%</td>
<td>62.50%</td>
<td>230</td>
<td>125.81</td>
</tr>
<tr>
<td>300</td>
<td>97.62%</td>
<td>46.43%</td>
<td>199</td>
<td>184.43</td>
</tr>
<tr>
<td>500</td>
<td>70.83%</td>
<td>12.50%</td>
<td>156</td>
<td>289.68</td>
</tr>
</tbody>
</table>

Table 2: Performance of the B&B algorithm.

The Tables 2-5 illustrate the performance of the B&B algorithm and the ILP model. When imposing 5 minutes as the limit of execution time, we use the following measures to compare the B&B algorithm and the ILP model.

Fea: the percentage of instances for which a feasible solution is determined within the given time limit.

Opt: the percentage of instances which are solved to optimality within the given time limit.

Node: the average number of explored nodes.
Table 3: Performance of the ILP model.

<table>
<thead>
<tr>
<th>n</th>
<th>Fea</th>
<th>Opt</th>
<th>Node</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100%</td>
<td>73%</td>
<td>684726</td>
<td>102.43</td>
</tr>
<tr>
<td>20</td>
<td>100%</td>
<td>100%</td>
<td>9840</td>
<td>3.57</td>
</tr>
<tr>
<td>30</td>
<td>97.5%</td>
<td>85%</td>
<td>49955</td>
<td>50.02</td>
</tr>
<tr>
<td>50</td>
<td>40%</td>
<td>32.5%</td>
<td>41059</td>
<td>224.35</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: Gaps for the B&B algorithm.

<table>
<thead>
<tr>
<th>n</th>
<th>Average</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>20</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>30</td>
<td>0.25%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>50</td>
<td>1.53%</td>
<td>11.1%</td>
<td>25%</td>
<td>15.28%</td>
</tr>
<tr>
<td>70</td>
<td>2.01%</td>
<td>7.14%</td>
<td>30%</td>
<td>16.1%</td>
</tr>
<tr>
<td>100</td>
<td>2%</td>
<td>2.94%</td>
<td>11.76%</td>
<td>10.02%</td>
</tr>
<tr>
<td>150</td>
<td>6.42%</td>
<td>2%</td>
<td>38.1%</td>
<td>13.15%</td>
</tr>
<tr>
<td>200</td>
<td>3.83%</td>
<td>3.33%</td>
<td>24.24%</td>
<td>10.21%</td>
</tr>
<tr>
<td>300</td>
<td>7.54%</td>
<td>3.13%</td>
<td>56.67%</td>
<td>14.38%</td>
</tr>
<tr>
<td>500</td>
<td>19.82%</td>
<td>10%</td>
<td>48.65%</td>
<td>24.07%</td>
</tr>
</tbody>
</table>

Table 5: Gaps for the ILP model.

<table>
<thead>
<tr>
<th>n</th>
<th>Gap1</th>
<th>Gap2</th>
<th>Average</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6.6%</td>
<td>16.67%</td>
<td>44.44%</td>
<td>24.43%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.83%</td>
<td>9.09%</td>
<td>27.27%</td>
<td>14.24%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.51%</td>
<td>13.33%</td>
<td>50.43%</td>
<td>34.75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time: the average CPU time in seconds.

Gap1: the relative gap measured by \(\frac{(UB^*(TC) - LB^*(TC))}{LB^*(TC)} \), where \(UB^*(TC) \) and \(LB^*(TC) \) are the best upper bound and lower bound at the end of the algorithm. We consider the instances for which we obtained at least one feasible solution (optimal solution included).

Gap2: the relative gap for the instances for which we obtained at least one feasible solution (optimal solution excluded).

The results show that the B&B algorithm outperforms the ILP model. Remark that the average execution time and the number of nodes with the ILP model are always larger than the B&B algorithm, and the ILP model cannot find a feasible solution with \(n \geq 70 \) within 5 minutes as time limit. Consulting the gaps, we observe that the B&B algorithm has a much better performance. Besides, the B&B algorithm solves all the instances with \(n \leq 20 \) optimally within a very short execution time less than one second, and more than 80% of the instances with \(n \leq 100 \) optimally within an average execution time less than 100 seconds. The B&B algorithm finds at least a feasible solution with \(n \) up to 200 and 5 minutes as time limit. In average, the Gap1 and the Gap2 of the B&B algorithm are less than 8% and 16% when \(n \leq 300 \). However, the maximum Gap2 shows some hard cases.

5 Conclusion

In this paper, we study an integrated production and outbound distribution scheduling problem with one manufacturer and one customer. We provide a polynomial time algorithm for two special cases of problems SP-NSD and SP-SD. We also provide a B&B algorithm for the problem NSP-NSD and evaluate its performance using numerical experiments. The results show that the proposed algorithm has the better performance than the ILP model and can solve optimally more than 80% of the instances with \(n \leq 100 \) within an average execution time less than 100 seconds.

Several important research issues remain open for future investigations. A first important research direction is to study the complexity of problems SP-NSD and SP-SD. Another issue is to provide a better lower bound for the B&B algorithm. Finally, one might consider extending the model to a production system with parallel machines.

ACKNOWLEDGMENTS

This project was partly funded by ANR (BLANC program 2013 "ATHENA" project)

References

