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Welcome from the Chairs 

Nous kontan vwè zot 

Bienvenue 
�

7KH� 0DWKHPDWLFV� DQG� &RPSXWHU� 6FLHQFH� /DE� �/$0,$�� LV� SOHDVHG� WR� ZHOFRPH� WKH� ��WK�

HGLWLRQ� RI� WKH� ELHQQLDO� FRQIHUHQFH� RI� WKH� ,QWHUQDWLRQDO� *UDSKRQRPLFV� 6RFLHW\�� ,*6������

KRVWHG�E\� WKH�8QLYHUVLW\�RI� WKH�)UHQFK�:HVW�,QGLHV� LQ�*XDGHORXSH�IURP�-XQH���WK�XQWLO� WKH�

��WK��������

7KH� WKHPH� RI� WKH� ,*6� IRU� ����� LV� ³Drawing, Handwriting Processing Analysis: New 

Advances and Challenges´���

:H�PDGH� WKLV� FKRLFH�EHFDXVH�GUDZLQJ� DQG�KDQGZULWLQJ� DUH� FRPPXQLFDWLRQDO� VNLOOV� WKDW� DUH�

IXQGDPHQWDO� LQ� JHRSROLWLFDO�� LGHRORJLFDO� DQG� WHFKQRORJLFDO� HYROXWLRQV� RI� DOO� WLPH�� 3ULPDULO\�

XVHG� E\� WKH�$PHULQGLDQV�� RQH� RI� WKH� YHU\� ILUVW� LQKDELWDQWV� RI�*XDGHORXSH�� RQ� URFNV�� WRGD\�

GUDZLQJ� DQG� ZULWLQJ� UHPDLQ� WKH�PRVW� QDWXUDO� DQG� TXLFN� ZD\� WR� VLJQLI\�� H[SUHVV� LGHDV� DQG�

RSLQLRQV���

$GPLWWHGO\��WKRVH�³EDVLF´�JUDSKRPRWRU�VNLOOV�DUH�TXHVWLRQHG�QRZDGD\V�DQG�VHHP�WR�KDYH�JRQH�

RXW� RI� XVH� E\� WKH� QHZ� PRGDOLWLHV� RI� FRPPXQLFDWLRQ�� ZKLFK� ZHUH� LQWURGXFHG� E\� QHZ�

WHFKQRORJLHV�DQG�OLIHVW\OHV���

+RZHYHU��ZH� WKLQN� WKDW� DOWKRXJK�RXU� VRFLHWLHV� DUH� LQWHUFRQQHFWHG�ZLWK� WHFKQRORJ\��GUDZLQJ�

DQG�KDQGZULWLQJ�DUH�VWLOO�XVHIXO�LQ�GHILQLQJ�LQQRYDWLYH�DSSOLFDWLRQV�LQ�QXPHURXV�ILHOGV��,Q�WKLV�

UHJDUG�� UHVHDUFKHUV� KDYH� WR� VROYH� QHZ� SUREOHPV� OLNH� WKRVH� UHODWHG� WR� WKH�PDQQHU� LQ� ZKLFK�

GUDZLQJ�DQG�KDQGZULWLQJ�EHFRPH�DQ�HIILFLHQW�ZD\�WR�FRPPDQG�YDULRXV�FRQQHFWHG�REMHFWV��RU�

WR�YDOLGDWH�JUDSKRPRWRU�VNLOOV�DV�HYLGHQW�DQG�REMHFWLYH�VRXUFHV�RI�GDWD�XVHIXO�LQ�WKH�VWXG\�RI�

KXPDQ�EHLQJV��WKHLU�FDSDELOLWLHV�DQG�WKHLU�OLPLWV�IURP�ELUWK�WR�GHFOLQH��

7KURXJK�RXU�OHFWXUH�ZH�PHDQ�WR�SUHVHQW�WKH�FKDOOHQJHV�WKDW�DOO�UHVHDUFKHUV�RI�WKH�,QWHUQDWLRQDO�

*UDSKRQRPLFV�VRFLHW\�DUH�IDFHG�ZLWK���

'XULQJ�WKLV���WK�HGLWLRQ�LQ�*XDGHORXSH��DW�D�GLVFLSOLQDU\�FURVVURDG���WKDQNV�WR�WKH�GLVFXVVLRQV�

RQ�RXU�UHVSHFWLYH�ZRUNV����WKH�SXUSRVH�ZLOO�EH�IRU�XV��WKH�PHPEHUV�RI�WKH�FRPPXQLW\�RI�,*6��

WR� JLYH� HYLGHQFH� WKDW� QHZ� PHWKRGV� RI� SURFHVVLQJ� DQG� DQDO\]LQJ� PRGDOLWLHV� RI� DFWLRQ� DQG�
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H[SUHVVLRQ�FDQ�FRQWULEXWH��HYHQ�WRGD\��WR�WKH�RSHQLQJ�RI�QHZ�ILHOGV�RI�VWXG\�LQ�KRSHV�RI�EHWWHU�

XQGHUVWDQGLQJ�KXPDQ�EHLQJV�DQG�DGYDQFLQJ�RXU�TXDOLW\�RI�OLIH��

1LQH� VHVVLRQV� ZLOO� IRFXV� RQ� WKHVH� REMHFWLYHV� WKURXJKRXW� WKH� VHYHQWHHQWK� HGLWLRQ� RI� WKH�

,*6�����FRQIHUHQFH��

+RZHYHU�� D� FRQIHUHQFH� FDQQRW� NHHS� DOO� LWV� SURPLVHV� LI� LW� LV� OLPLWHG� WR� FRQYHUVDWLRQV� DPRQJ�

VSHFLDOLVWV�DERXW�OHDUQHG�DQG�VFLHQWLILF�WKLQJV��7KHUHIRUH��ZH�ZLOO�KDYH�WKH�SOHDVXUH�WR�UHYHDO�

WR�\RX�D�IHZ�RI�WKH�FKDUPV�RI�WKH�EHDXWLIXO�DUFKLSHODJR�RI�*XDGHORXSH��RXU�LVODQG�ZHOFRPHV�

\RX�WR�SDUWDNH�LQ�VRFLDO�DQG�FXOWXUDO�HYHQWV�ZKLFK�ZLOO�DOVR�LQFOXGH�VRPH�VXUSULVHV��

)LQDOO\��WKDQNV�WR�WKH�FRRSHUDWLRQ�RI�)UHQFK�VSHFLDOLVWV�PHHWLQJ�ZLWK�*XDGHORXSHDQ�DFWRUV�DQG�

IDPLOLHV� FRQFHUQHG� ZLWK� KDQGZULWLQJ� OHDUQLQJ� GLIILFXOWLHV�� ZH� ZLOO� WU\� WR� RIIHU� WR� WKH�

SDUWLFLSDQWV�RI�,*6������RWKHU�VRXUFHV�RI�TXHVWLRQLQJ���

7KLV� VHHPHG� WR� XV� WKH�PRUH� REYLRXV� *XDGHORXSH� NQRZV� QXPHURXV� GLIILFXOWLHV� VXFK� DV� WKH�

VLJQLILFDQW� UDWHV� RI� ZKLFK� YDULRXV� JHQHUDWLRQV� DUH� QRW� XVLQJ� KDQGZULWLQJ� DV� DQ� HIILFLHQW�

PRGDOLW\�RI� H[SUHVVLRQ�DQG�FRPPXQLFDWLRQ��:H�KRSH� WKDW� WKLV�RSHQ�PHHWLQJ�RI� UHVHDUFKHUV�

ZLOO�EH�IUXLWIXO�DQG�ZLOO�DOORZ�LWV�SDUWLFLSDQWV�WR�SXW�WRJHWKHU�WKH�RXWOLQHV�RI�VRPH�VROXWLRQV��

:H�H[SUHVV�RXU�SURIRXQG�DQG�VLQFHUH�JUDWLWXGH�WRZDUGV��

x 3U�5HMHDQ�3ODPRQGRQ�DQG�3U�(ULF�$QTXHWLO�ZKR�UHVSHFWLYHO\�DFFHSWHG�WR�EH�,*6�����

+RQRUDU\�&KDLU�DQG�6FLHQWLILF�&KDLU���

x WKH� WKUHH�KLJKO\� VNLOOHG� VFLHQWLVWV� ��'U�7UDF\�$QQ�+DPPRQG��'U�0D[�2UWL]�&DWDODQ�

DQG�'U�-HDQ�/XF�9HOD\�ZKR�JLYH�XV�WKH�KRQRU�RI�DFFHSWLQJ�WKH�LQYLWDWLRQ�RI�/$0,$���

x WKH�KXQGUHG�UHVHDUFKHUV�RI�PRUH�WKDQ����FRXQWULHV�ZKR�KRQRUHG�XV�E\�VXEPLWWLQJ�WKHLU�

VFLHQWLILF�FRQWULEXWLRQV�FRQFHUQLQJ�WKH�SURFHVVHV�RI�UHYLHZ��UHTXLUHG�E\�WKH�VFLHQWLILF�

FRPPLWWHH� RI� ,*6����� ZKR� WKHQ�� SK\VLFDOO\� RU� YLUWXDOO\�� DUH� DEOH� WR� MRLQ� XV� LQ�

*XDGHORXSH��

�:H�DOVR�ZDUPO\�WKDQN�DOO�WKH�VWDIIV�DQG�VHUYLFHV�RI�RXU�ULVLQJ�8QLYHUVLW\�RI�WKH�)UHQFK�:HVW�

,QGLHV� ZKLFK�� LQ� *XDGHORXSH� DV� LQ� 0DUWLQLTXH�� EURXJKW� XV� JHQHURXV� DQG� HQWKXVLDVWLF�

DVVLVWDQFH� WR� DUUDQJH� WKH� EHVW� FRQGLWLRQV� IRU� ZHOFRPH� DQG� IRU� WKH� UHDOL]DWLRQ� RI� WKH�

SURFHHGLQJV�RI�WKH�FRQIHUHQFH�,*6�������

:H�ZLVK�WKDW�WKH�FRRSHUDWLRQ�DPRQJ�HDFK�PHPEHU��GHVSLWH�WKH�UHFHQW�GLIILFXOWLHV�ZLWKLQ�RXU�

LQVWLWXWLRQ��LV�WKH�JXDUDQWHH�RI�D�EHDXWLIXO�,*6�����FRQIHUHQFH�DQG�PDQ\�PRUH�WR�FRPH��

�
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Handwriting 
The most taught motor skill  
Yet too little researched  
 
.  

 
z Pen tablet, touch tablet, mouse  
z Import online, offline data  
z Audiovisual stimuli, interactive targets  
z Experimental settings 
z Quantify features 
z Integrate external apps, Matlab 
z Summarize, visualize, animate 
z Norm database 
z Multi-site studies 
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Google: handwriting movement software 
www.neuroscriptsoftware.com 

Tempe, Arizona, USA 
Tel. +1-480-350 9200 
Skype: NeuroScript 
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Script&Go�


 contact@intuiscript.com �
���www.intuiscript.com

� �+33.(0)2.30.96.20.62�

Laure�GILBERT
Education�project�manager�–�Script&Go

� +33.(0)2.99.84.72.38�

Eric�Anquetil
IntuiDoc�team�manager�–�IRISA�Rennes

�«�At�Script&Go�our�goal�is�to�improve�the�productivity�and�working�conditions�of�today’s�
mobile�professionals.�Simplifying�their�processes�and�saving�them�time�as�well�as�money�
through�the�development�of�software,�that�is�our�mission.�»�M.�Benoît�Jeannin,�CEO�

Based�on�20�years�of�research�and�
6�years�of�industrial�collaboration�

Expertise�in�measuring�and�tracing�hand�
writing�

Includes�all�the�educational�
exercises�for�pupils�aged�3Ͳ7�

Trace�both�finger�and�
stylus�

Based� in�Rennes,�France,�the�company�Script&Go�creates�solutions�on�tablets�dedicated�to�mobile�professionals�and�based�
on�writing,�gesture�and�symbol�recognition�software.�These�solutions�are�designed�to�simulate�what�you�would�do�on�paper,�
this�facilitates�digital�data�entry�and�communication.�Our�software�also�enables�you�to�use�diagrams�and�building�plans�on�
site.�

Script&Go�is�a�young,�growing�company�which�already�has�solid�references�and�big�national�clients,�especially�in�the�fields�of�
energy,�construction,�transport�and�telecom.�Besides�the�success�of�these�professional�applications�we�are�also�dedicated�to�

The�project�«�IntuiScript�»�has�been�selected�during� the�call� for� the� third�national�project� (investments� for� the� future):�«�
innovative�services�and�digital�content�for�learning�fundamentals�at�school�»�in�the�sector�of�EͲeducation.�IntuiScript�is�being�
developed�by�the�company�Script&Go,�of�which�the�EͲeducation�department�is�managed�by�Laure�Gilbert,�and�the�research�
team�IntuiDoc�(IRISA�laboratory)�managed�by�Eric�Anquetil,�Professor�at�INSA�Rennes.�

The�objective�of� the�project� is� to�offer� an� approach�dedicated� to� learning� to�
write� in� this� digital� age� through� the� use� of� hybrid� tablets� (tactile� and� stylus�
enabled).�The�targeted�audience�are�preschools�and�elementary�schools,�most�
notably,�children�aged�3�to�7.��
�
The�interesting�element�of�the�solution�resides�in�the�development�of�a�digitally�
enriched� educational� tool� which� is� at� the� service� of� current� pedagogical�
practices.�This�tool� is�to�be�easily�remodelled�by�the�teacher�and�personalized�
corresponding�to�the�needs�of�each�child.��
�
The� tests�start� in� the� first�semester�of�2015� for�a�duration�of�32�months,� the�
software�will�be�subjected�to�a�panel�of�more�than�1000�students.��
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PROGRAM AT A GLANCE 
�
�
�
�

Sunday,�21� � Monday,�22� Tuesday,�23 Wednesday,�24� � Thursday,�25

�
L’esplanade�
PointeͲàͲPitre�

Fouillole�

� PointeͲàͲPitre
Fouillole�
EH4�room� �

SaintͲClaude�
Camp�Jacob�

Amphitheater�G�
Archimède�

�

�� 08H00� Registration� 08H00 Touristic�Tour� 08H00�
�� 08H30� Opening�Session� � �
�� � 09H00 Registration �
�� 09H30� Keynote�Speech�1� 09H30 Keynote�Speech�3 �
�� � 10H00 Coffee�Break �
�� 10H30� Coffee�Break� 10H30 Coffee�Break 10H30 Keynote�Speech�4� �
�� 11H� Oral�Session�1� 11H Oral�Session�5 �

��
� Handwriting�&�

Recognition�� �� 11H30

Oral�Session�7�
�

Touristic�Tour�

��

11H50� Poster�and�Demo�
Teaser� ��

��

� cruising�to�“Les�
Saintes”�

��
12H30� Poster�and�Demo�

Session�1� �� ��
�

�� 13H00� Lunch� 12H45 Lunch 13H00 Lunch �
�� � �
�� � �
�� 14H20� Keynote�Speech�2� 14H05 Oral�Session�6 14H20 Oral�Session�8� �
�� 15H20� Oral�Session�2� �

��
� Medical�

Applications�� �� ��
�

��
15H50� Poster�and�Demo�

Session�2�
15H25

Free�Time� ��
�

�� 16H20� Coffee�Break� �
�� 16H50� Oral�Session�3� 16H50 Pause �

��
� Education�&�

Handwriting�
17H00

Social�Program� 17H00 Award�and�Closing�
Session�

�

�� 17H40� Pause� 17H30 Botanical�Garden 17H30 Farewell�Cocktail� 18H00�
17H30�

Registration�
18H00� Rencontre�autour�

de�l’écriture�et�ses�
difficultés�

18H30

Cocktail�
18H30 Bus�Departure� �

18H00� �Welcome�
Reception�

19H30� 19H00
Gala�Dinner� �

�

20H00� �� 21H30 Bus�Departure � �

�
�
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PROGRAM   
L :  Long  presentation  (25’  +  5’),  S :  Standard  presentation  (15’  +  5’),  Poster  and  Demo  teaser  (5’) 

 

JUNE, SUNDAY, 21 (campus of fouillole, l’Esplanade, faculty of science) 
  
17H30 Registration 
18H00 Welcome party  
19H30 Surrounding Caribean sea, with traditional cocktail and Caribean Jazz ambiance. 
 
  
JUNE, MONDAY, 22 (Campus of Fouillole, Faculty of Science, Méhaut EH4 room) 
  
08H00 Registration 
08H30 Opening Session  (Chair C. REMI) 
09H30 Keynote Speech: Pr. Réjean Plamondon (Chair : A MARCELLI) 

 
Personal digital bodyguard for e-security, e-health and e-learning 

10H30 Coffee Break 
11H00 Oral Session 1: Handwriting Analysis and Recognition 1 (Chair : G PIRLO) 
11H00 
 

L: An Incremental Approach towards Online Sketch Recognition 
Lukas  Tencer,  Marta  Režnáková  and  Mohamed  Cheriet 

11H30 
 
 

S: Feature evaluation for discriminating handwriting fragments 
Claudio De Stefano, Francesco Fontanella, Angelo Marcelli, Antonio Parziale and 
Alessandra Scotto di Freca 

11H50 Pause 
12H00 Poster and Demo Teaser (Chair : J NAGAU) 
12H05 
 
 

Relationships between Handwriting Features and Executive Control among Children with 
Developmental Dysgraphia 
Sara Rosenblum 

12H10 
 

The timing of eye-hand movements during signature simulations 
Avni Pepe and Jodi Sita 

12H15 
 
 

Stress and Motor Learning: Does the Presentation of Physical or Cognitive Stress Influence 
Motor Skill Acquisition? 
Christopher Aiken, Sarah Odom and Arend Van Gemmert 

12H20 
 

Subspace method with multi scale wavelet for identification of handwritten lines 
Takeshi Furukawa 

12H25 
 

Haar like features for query by string word spotting 
Nicole Vincent, Adam Ghorbel and Jean-Marc Ogier 

12H30 
 

Writer identification – clustering letters with unknown authors 
Johanna Putz-Leszczynska  

12H35 
 

An assessment of dynamic signature forgery creation methodology and accuracy 
Luiz Felipe Belem de Oliveira and Richard Guest 

12H40 
 

Universum Learning for Semi-Supervised Signature Recognition from Spatio-Temporal Data 
Lukas  Tencer,  Marta  Režnáková and Mohamed Cheriet 

12H45 Lunch 
  



  
14H00 Keynote Speech: Dr. Max Ortiz Catalan(Chair : A MARCELLI) 

 
Skeletal attachment and neural control of artificial limbs 

15H00 Oral Session 2: Medical Applications 1 (Chair : S GAUCHER-CAZALIS) 
15H00 
 
 

L: Predicting Hand Forces from Scalp Electroencephalography During Isometric Grip and 
Object Grasping 
Andrew Paek, Alycia Gailey, Pranav Parikh, Marco Santello and Jose Contreras-Vidal 

15H30 Poster and Demo Session 
16H00 Coffee Break (Poster and Demo Session) 
16H30 Oral Session 3: Education and Handwriting 1 (Chair : C REMI) 
16H30 
 

L: Ortho-syllable and syllable affect the dynamics of adjectives handwriting in French 
Eric Lambert and Pauline Quémart 

17H00 
 

S: How Handwriting Evolves: An Initial Quantitative Analysis of the Development of Indic 
Scripts 
Vinodh Rajan 

17H20 End of the scientific sessions of IGS2015 first day 
18H00 Concomittant to IGS2015 meeting with Guadeloupean actors of handwriting learning 

and its rehabilitation (Chair : J-L HENRY) 
(Free access – language : French) 

Thème : Réalités  et  défis  de  l’apprentissage  de  l’écriture 
19H30 et de la prise en charge de ses difficultés en Guadeloupe 
 
 
JUNE, TUESDAY, 23 (Campus of Fouillole, Faculty of Science, Méhaut EH4 room) 
  
09H00 Registration 
09H30 Keynote Speech:  Dr. Tracy A. Hammond (Chair : E ANQUETIL) 

 
The personal nature of sketching and the impact of sketch recognition systems 

10H30 Coffee Break 
11H00 Oral Session 4: Handwriting Analysis and Recognition 2 (Chair : A FISHCHER) 
11H00 
 

L: An algorithm based on visual perception of similarity for handwriting comparison 
Antonio Parziale, Stanislao Davino and Angelo Marcelli 

11H30 
 

L: Recognize multi-touch gestures by graph modeling and matching 
Zhaoxin Chen, Eric Anquetil, Harold Mouchère and Christian Viard-Gaudin 

12H00 
 

L: The generation of synthetic handwritten data for improving on-line learning 
Marta  Režnáková,  Lukas  Tencer,  Réjean  Plamondon  and  Mohamed  Cheriet 

12H45 Lunch 

 
  

14H00 Oral Session 5: Medical Applications 2 (Chair : J VAILLANT) 

14H00 
  

L: Omega-Lognormal Analysis of Oscillatory Movements as a Function of Brain Stroke 
Risk Factors 
Albert Bou Hernandez, Andreas Fischer and Réjean Plamondon 

14H35 
 
 

L: Monitoring Neuromotricity On-line: a Cloud Computing Approach. 
Olivier Lefebvre, Pau Riba, Charles Fournier, Alicia Fornes, Josep Llados, Réjean 
Plamondon and Jules Gagnon-Marchand 

15H05 
 
 

S: A neurocomputational model of spinal circuitry for controlling the execution of arm 
voluntary movements 
Antonio Parziale, Jacopo Festa and Angelo MarcellI 



  
15H25 Free time 

 
  

17H00 Bus departure 
17H30 Botanical Garden Valombreuse 
18H30 Cocktail (+ surprises) 
19H30 Gala Dinner 
21H45 Bus departure 
 

June, Wednesday, 24 (Campus Camp Jacob, Amphitheater G Archimède ) 
  
8H00 Bus departure to St-Claude Campus 

 
  

10H00 Coffee Break / Registration 
10H30 Keynote Speech: Dr. Jean Luc Velay (Chair : L PREVOST) 

 

Translating graphical movements into sounds and music to facilitate handwriting 
rehabilitation 

11H30 Oral Session 6: Education and Handwriting 2 (Chair : J-L VELAY) 
11H30 
 

L: Online Handwriting Analysis with Fuzzy Models 
Manuel Bouillon and Eric Anquetil 

12H00 
 

L: Evaluation of Different Handwriting Teaching Methods by Kinematic and Quality 
Analyses 
Pierluigi D'Antrassi, Agostino Accardo, Paola Ceschia, Iolanda Perrone and 
Carmen Mandarino 

12H30 
 

L: Exploring the Kinematic Dimensions of Kindergarten Children’s  Scribbles 
Céline Remi, Jean Vaillant, Réjean Plamondon, Lionel Prevost and Thérésa Duval  

13H00 Lunch 

 
  

14H20 Oral Session 7: Forensic Sciences 1 (Chair : A MARCELLI) 

14H20 
 

L: A Dissimilarity Measure for On-Line Signature Verification Based on the Sigma-
Lognormal Model 
Andreas Fischer and Réjean Plamondon 

14H50 L: Hyper-spectral Analysis for Automatic Signature Extraction 
Muhammad Imran Malik, Sheraz Ahmed, Faisal Shafait, Ajmal Saeed Mian, Andreas 
Dengel, Marcus Liwicki and Christian Nansen 

15H20 
 

L: Stability/Complexity Analysis of Dynamic Handwritten Signatures 
Giuseppe Pirlo, Donato Impedovo and Tommaso Ferrante 

15H50 
 

Pause 

14H20 Oral Session 7: Forensic Sciences 2 (Chair : H HARRALSON) 
15H50 
 

S: Characteristics of Constrained Handwritten Signatures: An Experimental 
Investigation 
Giuseppe Pirlo, Donato Impedovo and Fabrizio Rizzi 

16H10 
 

S: Handwriting and Visual Impairment: A Forensic Analysis of J. S. Bach's 
Signatures 
Heidi H. Harralson, Clare Kaufman and Martin W. B. Jarvis 

  



  
16H30 
 

S: Training- and Segmentation-Free Intuitive Writer Identification with Task-
Adapted Interest Points 
Angelika Garz, Marcel Würsch and Rolf Ingold 

16H50 
 

S: A Survey of Forensic Handwriting Examination Research in Response to the NAS 
Report 
Heidi H. Harralson, Elizabeth Waites and Emily J. Will 

17H10 Pause 
  
17H30 Award & Closing Session (Chair : R PLAMONDON) 
18H00 Farewell Cocktail 
18H45 Bus departure 
 



 

Invited Presentations 
 
 

 
Prof. Réjean Plamondon, IGS 2015, Honorary Chair 
'LUHFWRU��6FULEHQV�/DE�
%LRPHGLFDO�6FLHQFH�DQG�7HFKQRORJLHV�5HVHDUFK�&HQWUH��*567%��
'HSDUWPHQW�RI�(OHFWULFDO�(QJLQHHULQJ���
(FROH�3RO\WHFKQLTXH�GH�0RQWUpDO��&DQDGD�
Email���UHMHDQ�SODPRQGRQ�#�SRO\PWO�FD�

Title:��3HUVRQDO�'LJLWDO�%RG\JXDUGV�IRU�H�6HFXULW\��H�+HDOWK�DQG�H�/HDUQLQJ��

Abstract :�,Q�WKH�IRUWKFRPLQJ�\HDUV��WKH�XELTXLW\�RI�KDQG�KHOG�WDEOHWV�DQG�FHOO�SKRQHV��DORQJ�ZLWK�
WKHLU�LQFUHDVHG�FRPSXWLQJ�SRZHU�DQG�HUJRQRPLF�GDWD�FDSWXUH�SHUIRUPDQFHV��ZLOO�PDNH�LW�SRVVLEOH�WR�
FRQYHUW� WKHVH� GHYLFHV� LQWR� Personal Digital Bodyguards �PDBV��� 3'%V� ZLOO� SURWHFW� SHRSOH¶V�
VHQVLWLYH�GDWD�ZLWK�VLJQDWXUH�YHULILFDWLRQ��SURYLGH�HTXLSPHQW�XVH�VHFXULW\�ZLWK�ZULWHU�DXWKHQWLFDWLRQ��
KDQGZULWWHQ�&$37&+$V� (e-security��DQG�SHUIRUP�ZRUG�VSRWWLQJ�DQG� UHFRJQLWLRQ� WR�PRQLWRU�XVHU�
ILQH�PRWRU�FRQWURO��ZKLFK�FDQ�GHWHFW�VWUHVV��DJLQJ�DQG�KHDOWK�SUREOHPV�(e-health)��,Q�WKH�KDQGV�RI�
FKLOGUHQ�� WKHVH� WRROV�ZLOO� WXUQ� LQWR� WR\V�KHOSLQJ� WKHP� WR� OHDUQ�DQG�PDVWHU� WKHLU� ILQH�PRWULFLW\�DQG�
EHFRPH�EHWWHU�ZULWHUV�DQG�VWXGHQWV�(e-learning)��

$W� 6FULEHQV� ODERUDWRU\��ZH� KDYH� EHHQ�ZRUNLQJ� RQ� VRPH� RI� WKHVH� SRWHQWLDO� DSSOLFDWLRQV� IRU�PDQ\�
\HDUV�� GLUHFWO\� RU� LQGLUHFWO\� JXLGHG� E\� WKH� Lognormality Principle�� ,Q� LWV� VLPSOHVW� IRUP�� WKLV�
IXQGDPHQWDO�SUHPLVH�VWDWHV� WKDW�the lognormality of the neuromuscular impulse responses is a 
basic global feature reflecting the behaviour of individuals who are in perfect control of their 
movements��$V�D�FRUROODU\��LI�ZH�VSHFLILFDOO\�IRFXV�RQ�WKH�EDVLF�PDWKHPDWLFDO�FRQYHUJHQFH�WRZDUG�
ORJQRUPDOLW\��PRWRU� FRQWURO� OHDUQLQJ� LQ� \RXQJ� FKLOGUHQ� FDQ� EH� LQWHUSUHWHG� DV� D�PLJUDWLRQ� WRZDUG�
ORJQRUPDOLW\��7KHQ��IRU�WKH�JUHDWHU�SDUW�RI�WKHLU�OLYHV��KXPDQ�DGXOWV�WDNH�DGYDQWDJH�RI�ORJQRUPDOLW\�
WR� FRQWURO� WKHLU�PRYHPHQWV�� )LQDOO\�� DV� DJLQJ� DQG� KHDOWK� LVVXHV� LQFUHDVH�� D� SURJUHVVLYH� GHSDUWXUH�
IURP�ORJQRUPDOLW\�LV�DQWLFLSDWHG���

)URP� D� SUDFWLFDO� SRLQW� RI� YLHZ�� WKH� FRQFHSW� RI� ORJQRUPDOLW\� SURYLGHV� D� FRPPRQ� WKUHDG�� DQ�
LQWHJUDWLYH� VWDQGSRLQW� WR� WUDFN� WKH� SUREOHPV� RI� VLJQDWXUH� YHULILFDWLRQ�� ZULWHU� LGHQWLILFDWLRQ��
KDQGZULWLQJ�JHQHUDWLRQ��UHFRJQLWLRQ�DQG�OHDUQLQJ��7KLV�NH\QRWH�SUHVHQWDWLRQ�ZLOO�SRLQW�RXW�KRZ�WKH�
UHVXOWLQJ�PHWKRGRORJLHV�FRXOG�EH�RI�JUHDW�KHOS�WR�PHHW�WKH�3'%�FKDOOHQJH��,W�ZLOO�KLJKOLJKW�ZKLFK�
SDWKZD\V�ZH�KDYH�GHFLGHG�WR�IROORZ�WR�UHDFK�WKLV�JRDO��ZKHUH�ZH�VWDQG�QRZ�DQG�ZKDW�VKRXOG�EH�RXU�
QH[W�PRYHV��7KURXJKRXW� WKH� WDON�� WKH�ZRUOGZLGH� FROOHFWLYH� HIIRUWV� WKDW�ZH�KDYH� LQLWLDWHG� WR� WUDFN�
VRPH�VSHFLILF�SUREOHPV�ZLOO�EH�SRLQWHG�RXW��HPSKDVL]LQJ�WKH�VSHFLILF�H[SHUWLVH�RI�RXU�QDWLRQDO�DQG�
LQWHUQDWLRQDO�SDUWQHUV��

Biography: Réjean Plamondon received a B.Sc. degree in Physics, and M.Sc.A. and Ph.D. degrees in 
Electrical Engineering from Université Laval, Québec, P.Q., Canada in 1973, 1975 and 1978 
respectively. In 1978, he joined the faculty of the École Polytechnique, Université de Montréal, 
Montréal, P.Q., Canada, and became a Full Professor in 1991. He has been Head of the Department of 
Electrical and Computer Engineering from 1996 to 1998 and President of École Polytechnique from 
1998 to 2002. He is now Head of Laboratoire Scribens at this institution. Along the various stages of 
his career, Professor Plamondon have been working in Pattern Recognition particularly on the study of 
emerging phenomena and behavior in biological and physical systems exploiting various convergence 
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theorems. Over the last thirty years, Professor Plamondon has been involved in many pattern 
recognition projects, particularly in the field of on-line and off-line handwriting analysis and processing. 
He has proposed many original solutions, based on exhaustive studies of human movement generation 
and perception, to problems related to the design of automatic systems for signature verification and 
handwriting recognition, as well as interactive electronic pen pads to help children learning handwriting 
and powerful methods for analyzing and interpreting neuromuscular signals. His main contribution has 
been the development of a kinematic theory of rapid human movements which can take into account, 
with the help of a unique set of lognormal functions, the major psychophysical phenomena reported in 
studies dealing with rapid movements. The theory has been found successful in describing the basic 
kinematic properties of velocity profiles as observed in finger, hand, arm, head and eye movements. 
Professor Plamondon has studied and analyzed these bio signals extensively in order to develop 
creative and powerful methods and systems in various domains of engineering. In the last twelve years, 
he has also been deeply involved in the generalization of his kinematic theory to the study of emerging 
phenomena in physical systems, mainly focussing on the unification of general relativity and quantum 
mechanics. He published, in June 2012, “Patterns in Physics: Toward a Unifying Theory,", a book on 
this topic, and recently summarized the conducting thread used all along his research career in “Strokes 
against Stroke, Strokes for Strides, Pattern Recognition,vol.47, No.3, pp. 929-944. Full member of the 
Canadian Association of Physicists, the Ordre des Ingénieurs du Québec, the Union nationale des 
écrivains du Québec, Dr Plamondon is an also active member of several international societies. He is a 
lifelong Fellow of the Netherlands Institute for Advanced Study in the Humanities and Social Sciences 
(NIAS; 1989), of the International Association for Pattern Recognition (IAPR; 1994) and of the 
Institute of Electrical and Electronics Engineers (IEEE; 2000). From 1990 to 1997, he was the 
President of the Canadian Image Processing and Pattern Recognition Society and the Canadian 
representative on the board of Governors of IAPR. He has been the President of the International 
Graphonomics Society (IGS) from 1995 to 2007. He has been involved in the planning and 
organization of numerous international conferences and workshops and has worked with scientists 
from many countries all over the world. He is the author or co-author of more than 300 publications 
and owner of four patents. He has edited or co-edited five books and several Special Issues of scientific 
journals. He has also published a children book, a short story and three collections of poems. He 
recently received the IAPR/ICDAR 2013 outstanding achievement award “for theoretical 
contributions to the understanding of human movement and its applications to signature verification, 
handwriting recognition, instruction, and health assessment, and for promoting on-line document 
processing in numerous multidisciplinary fields.” 

��
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Jean-Luc Velay�
&RJQLWLYH�1HXURVFLHQFHV�/DERUDWRU\��PHPEHU��
&156�5HVHDUFKHU�
$L[�0DUVHLOOH�8QLYHUVLW\�
Email���MHDQ�OXF�YHOD\�#�XQLY�DPX�IU  
 
�

Title: 7UDQVODWLQJ� JUDSKLFDO� PRYHPHQWV� LQWR� VRXQGV� DQG� PXVLF� WR� IDFLOLWDWH� KDQGZULWLQJ�
UHKDELOLWDWLRQ�

Abstract:�7KH�PDVWHULQJ�RI�KDQGZULWLQJ�LV�VR�HVVHQWLDO� LQ�RXU�VRFLHW\�WKDW�LW� LV� LPSRUWDQW�WR�WU\�WR�
ILQG� QHZ� PHWKRGV� IRU� IDFLOLWDWLQJ� LWV� OHDUQLQJ� DQG� UHKDELOLWDWLRQ�� 8S� WR� QRZ�� WKH� TXDOLW\� RI�
KDQGZULWLQJ�ZDV�HYDOXDWHG�IURP�WKH�YLVXDO� LQVSHFWLRQ�RI� LWV� OHJLELOLW\�DQG�QRW�IURP�WKH�PRYHPHQW�
WKDW�JHQHUDWHV� WKH� WUDFH��DOWKRXJK� WKH�DELOLW\� WR�FRQWURO� WKH�JUDSKLF�PRYHPHQWV�FOHDUO\� LPSDFWV�RQ�
WKH�TXDOLW\�RI�WKH�ZULWLQJ��1HZ�WHFKQRORJLHV�LPSURYH�H[LVWLQJ�WHFKQLTXHV�RU�HQDEOH�QHZ�PHWKRGV�WR�
VXSSO\� WKH� WKHUDSLVW� ZLWK� QHZ� GLDJQRVWLF� WRROV� DQG� WKH� ZULWHU� ZLWK� UHDO�WLPH� FRPSXWHU�DVVLVWHG�
IHHGEDFN�� ,Q� SDUWLFXODU�� VRXQGV� FDQ� EH� XVHG� WR� LQIRUP� DERXW� WKH� FRUUHFWQHVV� RI� DQ� RQJRLQJ�
PRYHPHQW��ZLWKRXW�GLUHFWO\� LQWHUIHULQJ�ZLWK� WKH�YLVXDO�DQG�SURSULRFHSWLYH� IHHGEDFN��)XUWKHUPRUH��
WKH� G\QDPLF� IHDWXUHV� RI� VRXQGV� PDNH� WKHP� SDUWLFXODUO\� DSSURSULDWH� PHDQV� RI� DFFHVVLQJ� WKH�
VSDWLRWHPSRUDO� FKDUDFWHULVWLFV� RI� PRYHPHQWV�� )LQDOO\�� EHFDXVH� RI� WKHLU� SOD\IXO� FKDUDFWHULVWLFV��
VRXQGV� DUH�SRWHQWLDOO\� HIIHFWLYH� IRU�PRWLYDWLQJ�FKLOGUHQ� LQ�SDUWLFXODU�QHHG�RI� VXFK�DVVLVWDQFH��:H�
ZLOO�SUHVHQW�H[SHULPHQWDO�GDWD�VXJJHVWLQJ�WKDW�WUDQVIRUPLQJ�NLQHPDWLF�YDULDEOHV�LQWR�VRXQGV�PLJKW�
EH�D�UHOHYDQW�WRRO�DOORZLQJ�D�WKHUDSLVW�WR�FRPSOHWH�WKH�YLVXDO�DVVHVVPHQW�RI�WKH�ZULWWHQ�WUDFH�E\�DQ�
DXGLWRU\� FRQWURO� RI� WKH� KDQGZULWLQJ� PRYHPHQW� TXDOLW\�� )XUWKHUPRUH�� ERWK� DGXOWV� ZLWK� D�
SURSULRFHSWLYH�ORVV�DQG�G\VJUDSKLF�FKLOGUHQ�DUH�DEOH�WR�ZULWH�IDVWHU�DQG�ZLWK�PRUH�IOXHQW�PRYHPHQWV�
ZLWK�WKH�DLG�RI�DXGLWRU\�IHHGEDFN��:H�SURSRVH�WKDW�VRXQGV�DQG�PXVLF�PD\�EH�XVHG�DV�D�SDOOLDWLYH�
ZD\�WR�DVVLVW�KDQGZULWLQJ�PRYHPHQW�OHDUQLQJ�DQG�UHKDELOLWDWLRQ��

Biography :�,�UHFHLYHG�D�3K�'��GHJUHH�LQ�1HXURVFLHQFHV�IURP�$L[�0DUVHLOOH�8QLYHUVLW\��)UDQFH�LQ�
������$IWHU� D� SRVW�GRFWRUDO� WUDLQLQJ� XQGHU� WKH� VXSHUYLVLRQ� RI� 3��9LYLDQL� LQ�0LODQ� �,WDO\��ZKHUH� ,�
VWXGLHG�YLVXDO�SHUFHSWLRQ�DQG�RFXORPRWRU�FRQWURO��,�ZDV�UHFUXLWHG�DV�SHUPDQHQW�VHQLRU�UHVHDUFKHU�E\�
WKH� )UHQFK� Centre for Scientific Research� �&156�� LQ� ������ ,� DP� FXUUHQWO\� LQ� WKH� &RJQLWLYH�
1HXURVFLHQFHV�/DERUDWRU\�LQ�0DUVHLOOH��'XULQJ�VHYHUDO�\HDUV��,�KDYH�EHHQ�VWXG\LQJ�WKH�UROH�RI�DUP�
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Abstract. In this paper, we present a novel method for recognition of handwritten sketches. Unlike previous 
approaches, we focus on online retrieval and ability to build our model incrementally, thus we do not need to 
know all the data in advance and we can achieve very good recognition results after as few as 15 samples. The 
method is composed of two main parts: feature representation and learning and recognition. In feature 
representation part, we utilize SIFT-like feature descriptors in combination with soft response Bag-of-Words 
techniques. Descriptors are extracted locally using our novel sketch-specific sampling strategy and for support 
regions we follow patch-based approach. For learning and recognition, we use a novel technique based on 
fuzzy-neural networks, which has shown good performance in incremental learning. The experiments on state-
of-the-art benchmarks have shown promising results. 

 
1. Introduction  

"It is better to see once than to hear a hundred times." Is saying old Russian proverb, which clearly favorizes 
visual form of communication. Since ancient times, it was specifically sketch, which allowed people to 
communicate visual information, record memories. Even after thousands of years, sketching is one of few ways, 
how majority of people can render their mental images (see Fig. 1). Since direct visualization of mental images 
using  “mind-reading”  techniques  is clearly progressing (Miyawaki et al., 2008). Though they are far away from 
practical use and therefore sketch is the momentarily the best option for a human being to capture mental image. 
Also, as proved by recent research results (Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011), sketches are sufficient 
enough to create stimuli at the same level as real-world images. This fact also justifies our choice of features based 
on edges.  

I.      II. 

 
Figure 1. I. Sketches through the history. a) cave painting b) sketches from Leonardo da Vinci c) 

sketches from Pablo Picasso; II. Examples from our database 
 

Unlike batch approaches, our approach does not rely on the fact, that the whole dataset is available a priori. 
In real-world, applications should be adaptable to the user, and it should be intelligent to learn new examples. To 
have  one  model,  which  represents  the  system  “forever”  is  not  feasible.  As  the  user  is  using  the sketching system 
more   and   more,   his   performance   improves   and   the   old   model   becomes   obsolete   and   cannot   capture   user’s  
performance anymore, as noted before for gestures. Therefore, we aim to develop a model, which can learn 
incrementally and adapt to user’s  drawing  performance.  At  last,  even  though  prior  works  did  have  available  wide  
variety of data, this statement is not always true for commercial applications. Once sketch-based interaction is 
integrated  into  the  system,  it  needs  to  capture  user’s  sketching performance as soon as possible, with minimum 
number of examples. Therefore, our second motivation in the learning part of our work is to learn from scratch, 
with a minimum amount of prior learning data. 

Prior works in the area of sketch-based focused mostly on area-specific recognition of sketches within very 
limited domain. These include user interfaces, chemical diagrams, architectural designs, faces or mathematical 
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equations (Caetano, Goulart, Fonseca, & Jorge, 2002) (Ouyang & Davis, 2007) (Tang & Wang, 2004) (Jr & 
Zeleznik, 2007). Therefore presence of structure and prior knowledge about the domain allows high recognition 
rates in these cases. Other prior works focused on more general applications and they approached sketch 
recognition independent of the domain of application. These techniques, are usually based on graphical models 
(T. Sezgin & Davis, 2007) (T. M. Sezgin & Davis, 2008) (T. M. Sezgin & Davis, 2005) (Alvarado & Davis, 2004)  
and require significant amount of data during the training phase, or they generate training data artificially by 
applying noise function to examples (T. M. Sezgin & Davis, 2005). Since we are aiming incremental learning, 
none of these approaches satisfies our primal condition on a good performance with a low amount of data. The 
most advanced approach so-far was introduced by Eitz (Eitz, Hays, & Alexa, 2012), although this one processed 
images in batch-manner; thus no incremental learning was performed. 

 
2. Sketch Representation 

As an input for our recognition system at learning and recognition stages is a binary image, which represents 
sketched image. In our method we focus on descriptors, which emphasize information abundant in sketches, that 
is edge orientation. After experimentation with various descriptors (Histogram Of Gradients (HOG), Edge 
Histogram Descriptor (EHD)), we observed best results for Scale Invariant Feature Transform (SIFT) descriptor 
and therefore we decided to use it in our method. Although original SIFT method as presented by (Lowe, 2004) is 
composed of  two separate parts, interest point detection and feature extraction, we need to adapt the original 
technique for application to sketched images. 

Our proposed descriptor is patch-based and calculated on local support region. Since many previous 
applications used densely sampled small regions, in case of sketches we need to lean toward larger support regions, 
because small regions do not capture sufficient amount of sketched regions. Size of our region depends on size of 
the image and amount of sampled points, so that area covered by sampled patches is about 𝑄 = 50  𝑡𝑖𝑚𝑒𝑠 the size 
of the image (𝑝_𝑤𝑖𝑑𝑡ℎ, 𝑝_ℎ𝑒𝑖𝑔ℎ𝑡 = ඥ(𝑖𝑚𝑔_𝑠𝑖𝑧𝑒ଶ ∙ 𝑄)/𝑛_𝑝𝑜𝑖𝑛𝑡𝑠). We have experimented with different amounts 
of sampled area and we have found minimal gain in increase over 50, although an increase in computational cost 
was significant. This yields for images of size 256 × 256 as they are stored in testing dataset, size of support 
region that accounts for 9% of total image area for each patch, which is at size of about 70 pixels with 600 sampled 
interest points.  

Our main adaptation for SIFT-like descriptors for sketches lies in a change of interest point detector. As 
noted by (Eitz, Hildebrand, Boubekeur, & Alexa, 2010), most prominent interest points lies on sketched lines. We 
would like to add an assumption, that it is also in between and in close distance to sketched lines, where we can 
find fine regions to sample interest points. Therefore we propose interest point detector, based on importance 
sampling on, between and around sketched lines, with a soft gradient between importance of different regions. 

Once we have obtained sampled interest points, we calculate a descriptor on a given support region. We 
subdivide the image into 4 × 4 grid and calculate orientation histogram for each of the regions. Final descriptor is 
created by concatenation of the histograms for all of the regions, contribution of each pixel to the histogram of the 
region is weighted by Gaussian placed in the middle of the region. Normalization is applied to achieve better scale 
invariance. The final representation of the image is then collection of features 𝐹 = {𝑓௜}, where 𝑓௜ is descriptor 
extracted for single local patch. 

The final descriptor for representing sketches is calculated based on bag-of-words representation. For this 
representation, we first need to acquire a visual codebook, which we will use to encode the sketch. We construct 
the visual codebook by clustering the space of descriptors into 𝑘 disjunct clusters, so the inner cluster scatter is 
minimal. The vocabulary of visual words is then represented as 𝑉 = {𝑣௜}. 

Once we obtain 𝑉, then we can represent the image as a frequency histogram of visual words, where each 
extracted descriptor is assigned to the nearest bin given 𝐿ଶ distance. Although this can be further improved by 
considering  “soft”  response  histogram.  In  this  version  of  the  descriptor,  not  frequency  is  stored,  but   the relative 
distance to each of the visual words, this is accumulated for all the extracted local patches. Gaussian kernel is used 
to determine the distance between visual word and a given sample.  

 
3. Sketch Recognition 

For the recognition part, we use an online learning model, where the samples are learned incrementally and 
inference is calculated in real time. Thus, we will divide this section into learning and inference and describe the 
method used for this work. The whole model described in this paper is a hybrid ART (Adaptive Resonance Theory) 
and TS (Takagi-Sugeno) fuzzy neural networks originally created for online handwritten recognition. 

Learning of the model is composed of two parts: generating rules for TS network and learning parameters 
of the rules. Generation of the rules is thus driven by ART-2A neural network, which is self-adaptive unsupervised 
clustering method. Here, the number of rules is not necessary set and does not equal the number of classes in the 
system. This is following the fuzzy logic, where all classes are defined by the possibility of occurrence within each 
rule. 
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The learning process of rule manipulation is based on an update of committed rule in a case of resonance 
and generating of a new rule in a case of reset. To decide this, a choice function (1) is compared with a vigilance 
ρ.  If (2) is satisfied, resonance occurs, otherwise the reset is detected. 

 𝑡௝ = ൞
𝑥 ∙ 𝑤௝              𝑖𝑓  𝑗  𝑖𝑠  𝑖𝑛𝑑𝑒𝑥  𝑜𝑓  𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑  𝑛𝑜𝑑𝑒        

𝛼 ∙෍ 𝑖௞
ௗ

௞ୀଵ
  𝑖𝑓  𝑗  𝑖𝑠  𝑖𝑛𝑑𝑒𝑥  𝑜𝑓  𝑢𝑛𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑  𝑛𝑜𝑑𝑒 

 

 𝑇௃ = 𝑚𝑎𝑥
௝

𝑡௝ ≥ 𝜌  
Then, the rule to be updated is either winning one (if resonance) or a new rule (if reset) and the update is 

performed (3), where 𝑤௃ is a weight vector and λ a learning parameter. 
 𝑤௃

௡௘௪ = 𝒩(𝜆 ∙ 𝑥 + (1 − 𝜆) ∙ 𝑤௃
௢௟ௗ)  

After clustering updates, the TS network is to be learned. Each rule is in a form of (4), where both IF and 
THEN (antecedent and consequent) parts are learned separately. For antecedent part, we are using the incremental 
density update (5-7). 

 𝑅௜: 𝐼𝐹  𝑥  𝑖𝑠  𝑃௜  𝑇𝐻𝐸𝑁  𝑦௜ଵ = 𝜋௜ଵ𝑥, … , 𝑦௜௖ = 𝜋௜௖𝑥  
 𝛽௜ =

𝑁௜
𝑁௜ + 𝑁௜𝛼௜−2𝑥𝜌௜ + 𝛾௜

  

 𝑁௜ = 𝑁௜,௢௟ௗ + 1  
 𝛼௜ = 𝑥ଶ  
 𝛾௜ = 𝛾௜,௢௟ௗ + 𝑥௢௟ௗଶ = 𝛾௜,௢௟ௗ + 𝛼௜,௢௟ௗ, 𝛾௜,௜௡௜௧ = 0  
 𝜌௜ = 𝜌௜,௢௟ௗ + 𝑥௢௟ௗ  , 𝜌௜,௜௡௜௧ = 0  

When learning the THEN part, the learning is not competitive as in the previous parts, but based on fuzzy 
logic. Thus, for each sample all the rules are updated with a proper increment (8-9). 

 𝛱௜ =   𝛱௜,௢௟ௗ +  𝐶௜𝛽௜𝑥൫𝑦 −  𝛱௜,௢௟ௗ𝛽௜𝑥൯  ;      𝛱௜ = ൛𝜋௜௝ൟ  
 𝐶௜ = 𝐶௜,௢௟ௗ −

𝐶௜,௢௟ௗ𝛽௜𝑥𝛽௜𝑥்𝐶௜,௢௟ௗ
1 + 𝛽௜𝑥்𝐶௜,௢௟ௗ𝛽௜𝑥

 
 

The inference if based purely on TS fuzzy network, where as shown in (4), the fuzzy results of each rule 
𝑦௜௝ are calculated as linear combinations of proper parameters and input sample. Then, their results are weighted 
by the antecedent density (5) and a final inference for every class in the system is derived (10). Then the choice of 
the winning class is set by the maximum over all such inferences. 

 𝑦௝ =෍𝛽௜𝜋௜௝𝑥
௥

௜ୀଵ
  

 
5. Experiments and Results 

In this work, we have used state-of-the-art dataset of sketched images collected by Eitz (Eitz et al., 2012). 
It consists of 20,000 sketches in 250 categories (see Fig. 1). Categories consists of objects regularly encountered 
in everyday life and are aimed to capture general semantics of objects. Best reported results on this dataset are by 
(Eitz et al., 2012) at 56% (where chance is 4%), although it processes the data in batch manner, not in incremental 
manner. 

We evaluate the performance of our system during the whole process of learning, thus precision should be 
high with every incoming sample. As evaluation criterion, we use several metrics. First criterion is simple accuracy 
evaluated as a ratio correctly classified element over total number of processed elements until current time 𝑡௜. In 
second criterion, we change the success recognition criterion. We consider an example to be recognized correctly, 
if correct label is one of first 𝑛 returned examples, where 𝑛 is set to be 2% of total number of classes. At last, we 
use fall-off function to increase the effect of recent errors and decrease penalization for errors, which happened in 
a distant past. We use two falloff functions, linear and Gaussian with a cut-off threshold at 95% of values. 

As we can see Fig. 2, our results are very promising, although at the beginning of the training the 
performance is low. This is mostly due to low number of examples present for a given class. Also according to our 
observations, errors are more frequent, when new class is introduced. Using evaluation criterion of top 𝑛 samples, 
we can see increased accuracy, even at the beginning of training. One can observe qualitative results in Fig. 2. 
where we present top 𝑛 labels for selected queries. At last, we can see the recognition rate for the whole learning 
process in Fig. 2. Decreased performance in the beginning is caused by insufficient number of labeled samples. 

Our method is capable of performance in real-time and execution of incremental learning and recognition 
of a single example takes about 340ms on standard desktop PC. 

(1) 

(2) 

(4) 

(5) 

(7) 

(8) 

(9) 

(10) 

(3) 

(6) 
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Figure 2. a) Results of the recognition algorithm, showing top 4 results. True label is 
highlighted in red. b) And Recognition rate evaluation, comparison of our method and the best result of 

state-of-the-art Eitz2012 method 
 

6. Conclusion and Future Work 
We presented a method capable of retrieval of sketched objects of everyday life. This method can process 

incoming data in incremental manner and is capable of learning the representation of classes in interactive and on-
line mode. This is achieved through a combination of special sketch-specific features and incremental fuzzy-neural 
learning method. Up to our knowledge, there is no state-of-the-art method capable of incremental learning of 
sketched images, which can over-perform our technique. 

Although our system is working in incremental manner, it still needs pre-processing to obtain the codebook. 
To remove this obstacle we need to devise an efficient unsupervised incremental learning algorithm, so besides 
incremental learning in feature space, we can also construct incrementally the visual codebook. Also the 
representation of the codebook itself is shallow, and we may consider higher level hierarchy to represent composite 
primitives as hierarchy levels in the codebook, so we can achieve higher rate of recognition. At last we are looking 
into combining visual and semantic retrieval for sketch-based image recognition, thus we will develop an approach 
to combine these two slightly distant metaphors. 

The authors would like to thank to SSHRC Canada and NSERC Canada for their financial support. 
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Abstract. The large majority of methods proposed in literature for handwriting recognition assume that 

words are produced drawing large parts of the ink without lifting the pen, other than horizontal bars and dots. 

This fundamental assumption, however, does not always hold: while some educational systems provide 

explicit training for producing continuous handwriting, minimizing the number of pen-up during the 

production of a word, others do not. As a consequence, whenever the handwriting presents pen-up within a 

word, the recognition performance can drop significantly. In a preliminary study, we presented an algorithm 

for discriminating among different types of ink appearing in handwriting, namely isolated characters, cursive, 

dots, horizontal and vertical bars, based on the use of a suitable set of features. In this paper, we have 

characterized the discriminative power of each considered feature according to different measures and we 

have proposed a method for combining the different feature rankings. We have also used the Fischer’s Linear 

Discriminant Analysis (LDA) for exhaustively selecting the best feature subsets with increasing number of 

features. Finally, we have compared the results obtained by using the feature subsets provided by LDA with 

those obtained with the feature subsets selected according to our feature ranking. The experimental results, on 

different datasets of handwritten words, showed that our approach successfully achieves its aim allowing to 

reduce the computational cost without affecting the overall performance of the recognition process.  
1. Introduction 

Handwriting generation studies, and more in general studies on motor control and trajectory planning, show that 

the complex movements involved in handwriting are composition of elementary movements, each corresponding 

to an elementary shape or stroke. Such strokes are drawn one after the other during handwriting and the fluency 

emerges from the time superimposition of them (Plamondon 1995, Grossberg & Paine 2000). Following this line 

of thought, we have conjectured that handwriting recognition can be achieved by providing the system with a 

reference set, i.e. a set of words whose transcripts are given, decomposing each of the reference word into 

strokes, and matching the strokes with the transcript so as to associate to each of them the ASCII code 

corresponding to the character the stroke belongs to. Once the reference set has been provided, handwriting 

recognition can be achieved by looking within the unknown word for sequences of strokes whose shape 

resembles that of sequences of strokes found in the reference set, labeling the sequence of the unknown as the 

matching ones in the reference set, and then combining the labels according to the writing order (De Stefano & 

al., 2010). 

There are cases, however, when our conjecture does not hold. Those are the cases when the word is not 

produced by keeping the pen-tip in constant contact with the paper, so to have a continuous ink, but lifting the 

pen here and there while drawing. While such a habit is still within the domain of handwriting generation 

models, that can explain why and under which circumstances such a behavior appears, it may produce undesired 

effects in our prototype. Because of the pen lift, in fact, some of the movements do not produce an ink trace on 

the paper, and therefore some of the strokes are missed. So the sequence of strokes cannot be reconstructed 

completely, and some of the invariants may disappear, compromising the results of whole process.  

To deal with those cases, we proposed in a preliminary study (De Stefano & al., 2011) a method for 

extracting from a word image the sub-images corresponding to pieces of ink produced without lifting the pen. 

Each sub-image was described by a suitable set of features and then classified as cursive, isolated character, 

vertical line, horizontal line, dot or noise. According to this approach, sub-images corresponding to cursive 

fragments can be processed as described before, while those containing characters can be passed to an OCR 

module. Thus, the recognition of the whole word can be obtained by composing the results of each module 

according to the position of the corresponding sub-images in the word image. 

To better understand the effectiveness of the above approach, in this study we have characterized the 

discriminative power of each considered feature in classifying the pieces of ink produced without lifting the pen 
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as isolated characters or cursive. The basic motivation of our work is to answer this main question: “is it possible 

to describe handwriting movements just analyzing static images?” We will show that with a suitable set of 

features extracted from the original images it’s often possible to associate each pieces of ink to one of the above 

two classes. 

The remainder of the paper is organized as follows: Section 2 describes the set of considered features, 

Section 3 illustrates the feature evaluation measures, while the analysis and the discussion of the experimental 

results, together with some concluding remarks, are eventually left to Section 4. 

 

2. Feature description 

The aim of the feature extraction process is that of allowing the classification of connected components of ink 

traces, possibly produced by writers without lifting the pen, in two main classes: isolated characters and cursive. 

The basic idea is that a simple shape is generated by a simple motor program. The simpler the motor program, 

the smaller the quantity of ink the connected component contains. However, in order to improve the fluency of 

handwriting, a writer may introduce extra strokes, or ligatures, to connect the last stroke of a character and the 

first of the following one, instead of lifting the pen between the final point of the former and the initial point of 

the latter. Accordingly, we expect that images of isolated characters will contain less ink (and less strokes) than 

those of cursive, and that the ink will not span prevalently along the writing direction (De Stefano & al., 2011) 

In order to estimate the features of connected components of ink traces, we proceed as follows: The word 

image is processed for extracting the bounding box of each connected component (see Figure 1a). Then, each 

component is analyzed by considering its size, the number and the distribution of its black pixels and the size of 

the word it belongs to (see Figure 1b). In particular, we consider the coordinates of the top-left and bottom right 

vertices of the bounding box (Xmin , Ymin , Xmax , Ymax), the width and the height of the bounding box (Wcomp , 

Hcomp), the total number of pixels and the number of black pixels included in the bounding box (Pcomp , BPcomp), 

the width and the height of the bounding box of the word (Wword , Hword).  

Starting from these basic features, an additional set of features is computed, whose description is reported in 

Table 1. The features HR, AR and PAR are meant to capture the spatual, and hence the temporal, extension of the 

handwriting, while FF is meant to capture the spatial density of ink. 

In order to evaluate the shape complexity of the ink trace, we have considered the number of transitions 

between white and black pixels along consecutive rows/columns of the component. These values have been 

arranged in two histograms, namely ink-mark on the horizontal (IMx) and vertical (IMy) axis, where each bin 

represents the above number of transitions for a group ∆ along a row or a column, respectively (see Figure 1b). 

These features can be seen as a measurement of the complexity of the ink: an empty or flat ink-mark on both 

horizontal and vertical axis suggests that the component presents scattered black pixels and is likely to be noise, 

whereas higher values correspond to more complex shapes. 

Finally, we have estimated the center-zone of the word and we have considered as features the y-coordinate 

of the upper side of the center-zone (say CZYmin ). Table 2 summarizes the whole set of considered features. 

 

                   

Figure 1: the image of word "Trani" with the bounding box of each connected component and the center 

zone; a connected component extracted from the word image (right). 

 

Table 1: description of additional features 

height ratio (HR) aspect ratio (AR) proportional aspect ratio (PAR) fill factor (FF) 
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Table 2: the set of adopted features 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

IMx IMy Xmin Ymax BPcomp FF AR Wword Hword HR PAR CZYmin 
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3. Feature evaluation 

Two different approaches have been followed for evaluating the effectiveness of each feature and for 

identifying the subset of them having the highest discriminative power. The first approach is based on the use of 

standard univariate measures, while the second one uses the Fischer’s Linear Discriminant Analysis (LDA). 

In the first case, we have considered five standard univariate measures, where each of them ranks the 

available features depending on their ability in discriminating pieces of ink belonging to either isolated 

characters or cursive. In our study, we have considered the following univariate measures: Chi-square (CS) (Liu 

& Setiono, 1995), Relief (R) (Kononenko, 1994), Gain Ratio (GR), Information Gain (IG) and Symmetrical 

Uncertainty (SU) (Hall, 1999). The final ranking of all the features is computed by using the Borda Count rule, 

according to which, a feature receives a score that depends on its position in the rankings provided by each 

univariate measure. Once the final ranking has been obtained, subsets including increasing number of features 

(top1; top1 and top2; etc.) are used by a Support Vector Machine (SVM) classifier for testing their 

discriminating power. 

The second approach for evaluating the behavior of subsets including increasing number of features is based 

on the use of the Fischer’s Linear Discriminant Analysis (LDA). In this case we have exhaustively generated 

from the 12 available features, all the possible subsets of k distinct features, without repetitions, varying k from 1 

to 12. Thus we created 4095 feature subsets, including 12 sets with only 1 feature, 66 sets with 2 features, 220 

sets with 3 features, and so on up to the only set of 12 features. For each subset, the separation index S between 

the two classes has been computed. Denoting with 0 and 1 the two classes to be discriminated, S is defined as the 

ratio of the variance between classes to the variance within classes, using the mean vectors µ
0
, µ

1
 and the 

covariance matrices Σ
0
, Σ

1
 of class 0 and 1, respectively, and ω  is described in (De Stefano & al., 2014) 
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The parameter S is a measure of how well the feature subset is able to discriminate between the two classes. 

It is worth noticing that S is a non-decreasing function with respect to the number of features included in a 

subset. This is the reason why we used S for ranking subsets including the same number of features. Once the 

best subset including k distinct features has been determined using the parameter S (with k ranging from 1 to 12), 

we used once again the SVM classifier for testing the discriminating power of that subset. 

 

4. Experimental results 

In order to ascertain the effectiveness of the proposed approach, two real world datasets involving handwritten 

words have been taken into account, namely RIMES and ELSAG database.  

The RIMES database is a publicly available dataset used for performance evaluation of handwriting 

recognition systems (Grosicki, & 2008). It is composed of French words written by more than 1300 volunteers. 

To validate our algorithm, we extracted 4047 words from the test set and we showed them to 6 human experts. 

For each word, an expert had to classify manually each connected component and provide its transcript. At the 

end of this process, 9869 components were manually classified and transcribed, 5101 of them were cursive and 

4768 isolated characters. 

In the ELSAG database, a set of images representing postal addresses, acquired at 200/300 dpi, was 

processed in order to segment single words. Then, from each word, the connected components of ink traces, 

corresponding to cursive or isolated character, were extracted and described by using the above mentioned 

features. Moreover, in order to evaluate the classification results, each fragmented word image has been shown 

to 10 experts, and they were asked to label each fragment, to produce the ground truth. At the end of this process, 

a dataset of 26143 labeled samples has been obtained, containing 15838 isolated characters and 10305 cursive. 

Feature evaluation based on the univariate measures has been applied to both databases, producing the results 

summarized in Table 3. Similarly, LDA approach produced the results reported in Figure 2, where the 

occurrence of each feature in the optimal subsets selected by LDA is shown. On the basis of these results and 

applying the previously discussed criteria, we obtained for both evaluation approaches, 12 subsets with 

increasing number of features, starting from the one including just 1 feature to that including all the 12 features. 

The effectiveness of each feature subset has been evaluated by implementing a SVM classifier using those 

features and measuring the recognition performance. In particular, we used for the SVM’s the standard algorithm 

of regularized Support Vector Classification (C-SVC) with a Radial Basis Function kernel. The classification 

results reported in Figure 3 refer to the application of the 10-fold validation approach and show the plot of the 

recognition rate as a function of the number of features. 

The analysis of these results confirms the effectiveness of the considered features, allowing us to obtain a 

maximum recognition rate equal to 92.55% and 93.65% for RIMES and for ELSAG database, respectively. The 

data in the plot show that satisfactory results can be obtained even considering only the top 3 features according 
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to the Borda Count overall ranking: in this case, in fact, a recognition rate of about 90% is obtained for RIMES 

database, while a recognition rate higher than 92% is obtained for ELSAG database. It is worth noticing that the 

results of the Borda Count are comparable, or in some cases better, than those obtained by the LDA. This aspect 

is particularly meaningful since the univariate measures combined by the Borda Count perform the feature 

ranking considering one feature at a time, while LDA performs an exhaustive search considering all the possible 

feature combination, thus implying a very high computational cost. 

Future work will include exploiting the information about the classification reliability. Such kind of 

information would allow the designer of the system the implementation of a reject option for accepting only the 

high reliable classification on the basis of few features, thus limiting the use of more complex and 

computationally expensive feature only to the confused cases. 

 

Table 3: Feature ranking according to the Borda Count overall measure. For each row, the leftmost value 

indicates the best feature, while the rightmost value denotes the worst one.  
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Figure 2: Occurrence of each feature in the optimal subsets selected by LDA for RIMES database (left) 

and ELSAG database (right).  

            

Figure 3: SVM classification results with 10 fold validation on features subsets for RIMES database (left) 

and for ELSAG database (right).  
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Abstract. In this study, we demonstrate the feasibility of predicting hand forces from brain activity recorded 
with scalp electroencephalography (EEG). Three able-bodied subjects participated in two tasks: an isometric 
force production task and a grasp-and-lift task using unconstrained and constrained grasps. We found that 
EEG electrodes spanning central areas of the scalp were highly correlated to force rate trajectories. Moreover, 
EEG grand averages in central sites resembled force rate trajectories as opposed to force trajectories. The 
grasp-and-lift task resulted in higher decoding accuracies than the isometric force production task: for each 
subject, median accuracies for the isometric force production task were r=0.31 and r=0.43 whereas median 
accuracies for unconstrained grasping were r=0.61 and r=0.54 and for constrained grasping were r=0.55 and 
r=0.59. Such results could lead to an understanding of the neural representation behind the control of hand 
forces and could be implemented in the neural control of closed-loop hand-based neuroprostheses. 

 
1. Introduction  
A key component of manipulating objects with the hand involves controlling the forces exerted by the fingers. 
The hand, with multiple digits, imposes complex calculations throughout the human nervous system in order to 
determine how much force should be exerted   on   each   finger   in   order   to   stabilize   an   object’s   position (Fu & 
Santello, 2014). Forces that are too small can cause an object to slip through the fingers, while forces that are too 
large can cause the object to break. Understanding force control strategies in the human body could be helpful 
for developing control strategies for hand-based neuroprosthetic devices. Current prosthetic devices suffer from 
issues of controlling interaction forces because, unlike hand shaping, finger forces are not easily conveyed 
through visual feedback. Understanding the neural representation of hand control in forces is also essential for 
the development of brain machine interfaces, which can allow a disabled user to control a robotic hand through 
his/her own neural activity. 
 Scalp electroencephalography (EEG) studies have been performed to determine neural correlates of the 
finger force control. Specifically, isometric force production has been found to generate less alpha band (8-13 
Hz) power modulation compared to repetitive hand opening and closing actions (Nakayashiki, Saeki, Takata, 
Hayashi, & Kondo, 2014). In a force tracking task, alpha band power oscillations have been found to be stronger 
in subjects with higher tracking performance, and delta band activity has been found to shift in peak frequency 
depending on the rate of force production (Huang, Su, & Hwang, 2014). Provided that delta band EEG can 
change depending on the rate of force production, it is surmised that delta band EEG may be correlated to force 
production. Our previous work has shown moderate success in reconstructing finger movements from the delta 
band (< 4 Hz) during repetitive finger tapping (Paek, Agashe, & Contreras-Vidal, 2014) and grasping of objects 
(Agashe & Contreras-Vidal, 2011).  Considering that finger movements have been found to be correlated with 
finger force magnitudes (Fu, Zhang, & Santello, 2010), it may be possible to reconstruct forces trajectories 
produced by the hand, as we have done in reconstructing the kinematics of hand movements. 
 In this initial study, we explore the feasibility of using delta band EEG signals to reconstruct digit forces 
during an isometric force production task, and a grasp-and-lift task. We show grand averages of delta band EEG 
in relation to force production, spatial correlations between delta band EEG and generated digit forces, and 
performance in using delta band EEG to reconstruct force trajectories. 
  
2. Methods 
A grip device was instrumented with two force/torque transducers that measured interaction forces from the 
index finger and thumb. This work focused on the normal grip forces exerted on the device. These forces were 
recorded at a rate of 1000 Hz using a National Instruments data acquisition card. EEG signals were recorded 
with 64 channel active electrode caps and sampled at 1000 Hz using BrainAmps DC amplifiers (Brain Products 
GLMB). Surface electromyography (EMG) data was also collected, but will be presented elsewhere. 
 Three able-bodied right-handed subjects participated in two pilot experiments. Figure 1 shows 
photographs of subjects, showing the tasks and instrumentation. In the first experiment, subjects performed 
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isometric grip force production at three distinct magnitudes. During   this   task,   the   subjects’   forearm   rested  
comfortably on a table while the subjects’ digits were placed around the grip device in a pinch gesture. Subjects 
were instructed to observe a computer monitor that displayed two numbers: the first showing the target grip force 
the subject was instructed to exert on the grip device, and the second showing the grip force that was exerted on 
the grip device in real time. The target grip force magnitudes were 5%, 10%, and 15% of the maximum 
voluntary contraction force subjects were able to grip the device. The magnitudes were presented in a 
pseudorandom order for each trial. Throughout the trial, the displayed target grip force magnitude was static and 
subjects were provided 5 seconds to match the target grip force. A 5 second resting period was provided in 
between each trial. About 100 trials for each subject were collected. 
 In the second experiment, subjects were instructed to grasp and lift the grip device. We note that the 
device contained three compartments at the bottom, and a 400 g mass was inserted in the right compartment to 
shift the mass distribution to the right side of the device. This inserted mass generated an external torque of 255 
Nmm, and the total mass of the device including the inserted mass was 790 g. The device was designed so that 
the shift in mass distribution was not visually apparent. This allowed us to study how the   subjects’   grasps 
compensated for the imbalanced mass distribution through digit placement. This experiment was recorded in two 
blocks that corresponded  to  “constrained”  and  “unconstrained”  grasping.    In  constrained  grasping, subjects were 
instructed to grasp the device while placing their digits on areas of the device’s   surface that were visually 
marked with adhesive tape.  In unconstrained grasping, subjects were free to place their digits on any location 
while grasping the device. 50 trials of constrained and unconstrained grasps were performed, with each trial 
lasting 8 seconds. Rest periods of about 6 seconds were provided in between each trial. 
 

 
 
 Force trajectories and EEG signals were synchronized with recorded event markers and resampled 
through decimation to 250 Hz. Force recordings were low pass filtered at 1 Hz with a zero-phase 8th order 
Butterworth filter. Force trajectories were transformed into their derivative as it was found to yield higher 
correlations between delta band EEG and forces. EEG signals were high pass filtered at 0.1 Hz and low pass 
filtered at 1 Hz with zero-phase 8th order Butterworth filters. Data from peripheral sensors (corresponding to the 
10-20 montage: Fp1, AF7, F7, FT7, T7, TP7, P7, PO7, Fp2, AF8, F8, FT8, T8, TP8, P8, PO8) were removed as 
they were mostly affected by artifacts from eye movements and facial muscles. To further reduce common noise 
across all sensors, common average referencing was applied. The synchronized data were segmented based on 
the lengths of the trials. Grand averages of the delta band EEG activity and grip force trajectories were generated 
across trials for each of the 3 magnitudes instructed during isometric force production task, and for each of the 
conditions in the grasp-and-lift task. To assess EEG sensors that were correlated to the grip force trajectories, 
coefficients of determination were calculated between the delta band EEG and grip force rate trajectories on a 
trial-by-trial basis. The 5 most correlated EEG sensors were used to reconstruct the force trajectories. These 
reconstructions were performed using a linear model with temporal lags in the past (i.e., a Wiener filter): 
 

𝐹ᇱ(𝑡) = ∑ ∑ 𝑚௜௞𝑆௜(𝑡 − 𝜏௞)௅ୀଵଵ
௞

ேୀହ
௜ + 𝑚଴     (1) 

 
F’(t)  is the force rate at time t, Si(t – tk) is the delta band EEG amplitude at time t – τk from the ith sensor.  N=5 
EEG sensors are used and L=11 temporal lags from the past up to 200 ms in 20 ms increments was used.  The 
linear model coefficients mik and m0 were generated through the MATLAB glmfit functions. The linear model 
was trained and tested through 10-fold cross validation. To measure accuracy, the Pearson correlation coefficient 
between reconstructed and observed trajectories was calculated. To demonstrate that high accuracies cannot be 
obtained from random data that have similar spectral properties to the delta band EEG, this process was repeated 
where the delta  band  EEG  signals’ angular phase was randomized for each sensor and trial. 
 
 

Figure 1. Photographs of the subjects 
participating in the pilot experiments. 
For the isometric force production task 
(A), a monitor displayed the target force 
and  the  force  exerted  by  the  subject’s  grip. 
For the grasp-and-lift task (B), subjects 
grasped and lifted the imbalanced grip 
device with unconstrained or constrained 
grasps. Shown are the grip device, the 
scalp EEG cap, and the applied surface 
EMG sensors. 
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3. Results 
Figure 2A-B shows the distribution of sensors on the scalp that were found to be maximally correlated to the 
force rate trajectories in the isometric force production task and the grasp-and-lift task. For subjects 2 and 3, 
central areas of the scalp contained localized areas with highly correlated neural activity. Particularly for subject 
3, the neural activity over central areas contralateral to the hand was highly correlated with force rates. For 
subject 1 however, such a localized distribution with high correlations was not found.  
 In figures 2C and 2D, grand averages of the force and force rate trajectories are shown respectively for 
subjects 2 and 3 for the different tasks. Figure 2C shows the 3 discrete forces that subjects were instructed to 
exert during the isometric force production task. Peak force rates increased as subjects exerted larger forces. The 
grand average of sensor C1, one of the most correlated EEG sensors, shows an early negative deflection, 
followed by a late positive deflection. The early negative deflection appears to be synchronized to the early 
positive deflection found in the force rates.  However the late positive deflection found in EEG does not appear 
to correlate well with the period of static forces. Sensor C3 did not yield consistent trajectories across the three 
instructed grip force magnitudes. In figure 2D, subject 3’s  grand  average  force  rate  traces  for  both  unconstrained 
and constrained grasp start with an initial positive deflection followed by a late negative deflection. They 
coincide well with the grip and release of the grip device. Regarding delta band EEG traces, both C1 and C3 
sensors have early negative and late positive deflections that coincide to those found in the force rate trajectories. 
 Figure 3A shows representative examples of force rate trajectory reconstruction using delta band EEG 
signals.  While some deflections in the predicted trajectories appear to coincide with those found in the observed 
trajectories, deflections are also present in predicted trajectories when none are apparent in the observed 
trajectories. Figure 3B shows the distribution of decoding accuracies that was measured with the Pearson 
correlation coefficient between reconstructed and observed trajectories. Median accuracies for isometric force 
production for subjects 1 and 2 were respectively r=0.31 and r=0.43. Median accuracies for unconstrained 
grasping for subjects 1 and 3 were r=0.61 and r=0.54.  Median accuracies for constrained grasping for subjects 1 
and 3 were respectively r=0.55 and r=0.59. Attempts at reconstructing force trajectories with phase randomized 
EEG signals yielded accuracies that were close to r=0. 
 

 
Figure 2. (A) The EEG sensors involved in the study. The circled sensors corresponds to the grand averages 
shown in (C) and (D). (B) Topographic map showing areas of the scalp that correlate to the force rate 
trajectories.  Lighter colors indicate higher correlations.  (C) and (D) Grand average force, force rate, and C1 
and C3 EEG sensors traces respectively for isometric force production and grasp-and-lift tasks. 
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Figure 3. (A) Representative examples of observed and predicted force rate trajectories generated from 
the decoding of EEG signals. Black and gray traces respectively correspond to observed and predicted force 
rates. Amplitudes are standardized based on mean and standard deviation. (B) Reconstruction accuracies 
across all subjects and tasks. Black and gray boxplots respectively correspond to reconstructions from EEG 
where the original phase was used and EEG where the phase was randomized for each sensor and trial. 
 
4. Discussion 
We demonstrate the feasibility of reconstructing the first derivative of digit forces exerted on a grip device. As 
shown in reconstructions with EEG signals that were modified by phase randomization, the phase of the EEG 
features is critical in yielding high accuracies and also demonstrates that the presented decoding methods cannot 
artificially yield high accuracies with random data. Interestingly, we found that reconstructing force rates during 
the grasp-and-lift task yielded higher accuracies than those from the isometric force production task. This may be 
related to the grand averages observed in force rate trajectories and EEG signal. In both experimental tasks, a 
late positive deflection is observed in EEG signals. This deflection does not correlate well in the isometric force 
production task during the period with static forces, and thus presented itself with a nonlinearity that provided 
difficulties in constructing a linear model. We also note that for isometric force production, subject 2 yielded 
higher accuracies than subject 1. This may coincide with the finding that subject 2 contained EEG sensors with 
larger correlations to forces than subject 1. Why subject 1 yielded high decoding accuracies for the grasp-and-lift 
task despite having generally low correlations between delta band EEG and forces remains unexplained. 
 As we have mapped areas of the brain related to the commanded forces of the hand, it may be feasible 
that the methods presented herein could be used to extract motor commands from EEG for hand-based 
neuroprostheses. Based on our preliminary findings with the two experiments, our methods may be more suitable 
for natural opening and closing of the hand-like prosthesis during object grasping as opposed to producing static 
forces. Yet we also observe that the grand average of the neural activity from the central area is similar for both 
of the experimental tasks. A neural signature that distinguishes isometric force production from grasp and lift 
remains to be found, and would be desirable to further the robustness in neuroprosthetic hand control.  Further 
work will also confirm if the neural signatures found here are consistent with more subjects. 
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Abstract. Some research on written production has focused on the role of the syllable as a processing unit. 
However, the precise nature of this syllable unit has yet to be elucidated. The present study examined whether 
the nature of this processing unit is orthographic (i.e., the ortho-syllable) or phonological. Thirty-two native 
French speakers were asked to copy adjectives on a digitizer, successively adding a plural and a feminine 
one-letter morpheme to the same adjective. The adjective agreement could modify the structure of both 
phonological and orthographic syllables, only ortho-syllabic structure, or leave both unchanged. When the 
change modified only the orthographic syllable structure, there was an increase in duration at the letter before 
the syllable boundary. By contrast, when adding a letter changed both orthographic and phonological 
structures, an increase in the duration of the inter-letter interval was observed. Importantly, the increase in 
duration cannot be explained exclusively by the addition of a letter because the addition of a plural inflection 
did not significantly influence the dynamics of handwritten production. These results are consistent with the 
idea that ortho-syllables serve as a processing unit during handwriting, and that this type of syllable is specific 
to the written code.  
 
 

1. Introduction  
Although many studies have investigated the nature of the units involved in processing during language 

activities, very few have examined the nature and format of the units that are involved in the production of 
written words specifically. Some recent research suggests that the syllable may be one such processing unit. 
Research on handwriting dynamics in adults has revealed that word writing is regulated by syllable structure 
(Álvarez et al., 2009; Kandel et al., 2006; Kandel et al., 2011; Lambert et al., 2008; Sausset et al., 2012). Kandel 
et al. (2006) provided evidence that syllable boundaries within words modulate the timing of motor 
programming in the production of French and Spanish words. Movement durations – i.e., inter-letter intervals, 
such as the time period between the letters a and c in the French words traceur (“tracer”) and tractus (“ tractus”) 
– are longer when the two letters occur at a syllable boundary (e.g., tra.ceur: syllable boundaries are indicated by 
a dot hereinafter) than when they belong to the same syllable (e.g., trac.tus). Similar syllable boundary effects 
have been found in word dictation and picture-naming tasks (Álvarez et al., 2009), and with keystroke intervals 
when typing in French (Zesiger et al., 1994), English (Kreiner, et al., 2008), Finnish (Service & Turpeinen, 
2001), and German (Weingarten, et al., 2004). The impact of syllables on the dynamics of word writing has also 
been demonstrated by in analyses of writing latency (Lambert et al., 2008).  

Although there is now a relative consensus on the role of the syllable in handwriting, the precise nature of 
this unit is still under debate. One view is that it is equivalent to the spoken syllable. This idea comes from 
phonological mediation view, according to which orthographic representations can only be accessed via prior 
retrieval of sound-based codes (Luria, 1970). According to this view, the processing units involved in the 
production of written syllables are the same as those involved in speech: letter chunks correspond to 
(phonological) syllables (Chetail & Mathey, 2010). An alternative approach suggests that written language 
production is relatively autonomous with respect to speech (Bonin, et al., 2001; Ward & Romani, 2000), and that 
the processing units involved in written language production do not derive exclusively from oral language.  

Neuropsychologists were the first to introduce the concept of a unit which is similar to the syllable used 
in speech, but which based on graphemes, not phonemes: namely, the ortho-syllable (Caramazza & Miceli, 1990; 
Ward & Romani, 2000). In French, a mute e may affect the orthographic syllabification of a word and increase 
the number of syllables in the written form in comparison to speech segmentation. For example, the word samedi 
(“Saturday”) is a bi-syllable in speech (/sam.di/) but a three-syllable word in written language (sa.me.di). It thus 
provides a useful means for distinguishing between phonological and orthographic syllables. In this context, 
Lambert et al. (in press) asked French adults to copy three-syllable and two-syllable words with or without a 
mute e on a digitizer . In Experiment 1, the presence of a mute e in final position (e.g., culture vs. couloir vs. 
cabinet) increased writing latencies. In Experiment 2, which compared words with or without an internal mute e 
(saleté vs. citron vs. salami), latencies for three-syllable words (i.e., salami) did not differ from those for two-
syllable words containing a schwa (i.e., saleté). However, writing latencies in these two conditions were longer 
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than for two-syllable words (i.e., citron). The results of the two experiments argue strongly in favour of a 
processing unit which is specific to written production, based on graphemic units rather than on phonological 
components such as spoken syllables. 

Although they are very important, the results of Lambert et al. (in press) leave open the possibility that 
the activation of phonological representations is responsible for this effect. When processing words with an 
internal schwa (e.g., saleté) the participants might have first activated the phonological nucleus of the syllable 
(i.e., the mute e), which explains why such words are not processed differently from three-syllable words.  

We thus sought to gather further evidence on the existence of orthosyllables in a new experiment. We 
asked undergraduate students to perform a copying task, in which they had to copy French adjectives on a 
digitizer. Their singular masculine form was presented on a computer screen (e.g., noir, “black”). Participants 
had to copy them first exactly and then with the addition, successively, of a plural and a feminine morpheme to 
the same adjective (e.g., noir – noirs – noire). Three different types of adjectives were used. In the first 
condition, feminine agreement did not modify the phonological or the orthographic syllable (e.g., bleuø – bleus – 
bleue). In the second condition, feminine agreement changed the orthographic structure of the syllable but not 
the phonological structure (e.g., noir – noirs – noire). And finally, in the third condition, feminine agreement 
changed both the phonological and the orthographic structure of the syllable (e.g., vertø – verts – verte). Note 
that in all three conditions, plural agreement requires the addition of a final -s but does not modify the 
phonological or orthographic structure of the syllable. Comparison of these three conditions will shed light on 
the type of unit (phonological syllable vs. orthosyllable) that is activated when handwriting.  

 
2. Method 

  2.1 Participants.  Thirty-two undergraduate students participated in the experiment. They were all 
native French speakers with normal or corrected-to-normal vision. 

 2.2 Material. The corpus consisted of a total of 36 adjectives that were divided into three conditions: 1) 
Feminine agreement did not change the syllabic structure of the adjective: e.g., BLEU /blE/ vs. BLEUE / blE /. 
2) Feminine agreement changed the orthographic structure of the syllable only (e.g., NOIR  /nwaR/ vs. NOI.RE 
/nwaR/. 3). Feminine agreement changed both the phonological and orthographic structure of the syllable e.g., 
VERT /vèR/ vs. VER.TE /vèR.t/. 

 2.3 Procedure. The experiment was run on a PC computer with a Wacom Intuos® 4 digitizer. Data 
were collected using the real time analysis software Eye and Pen© (Alamargot, et al., 2006). The adjective (in 
singular - masculine) appeared at the center of the screen, and the participants had to copy it in uppercase letters 
four times in a row (see Figure 1): 1) singular - masculine, 2) singular - feminine, 3) singular - masculine, 4) 
plural - masculine. All the conditions were counterbalanced across participants. Only the second, third and fourth 
copies were analyzed. 

 
 

 
Figure 1. Each adjective was written four times: two times in masculine singular form, once in feminine singular 
form, and once in masculine plural form. The duration of the letter preceding (N-1) and following (N+1) the 
syllable boundary was analyzed, as well as the inter-letter interval (ILI) 

 
2.4 Data analysis. Data were analyzed using a linear mixed-effect model with two fixed-effect factors 

(condition and type of agreement) and two random-effect factors (items and participants) for each dependent 
variable: letter duration before the syllabic boundary (N-1 duration), letter duration after the syllabic boundary 
(N+1 duration), and inter-letter interval (ILI). 
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3. Results and Discussion. 

 
Table 1. Mean N-1 and N+1 durations and inter-letter interval (in ms) 
 

Condition Dependent 
variable 

Masculine Feminine Plural 

No change N-1 duration 393 (138) 386 (153) 394 (146) 
N+1 duration 350 (194) 352 (191) 347 (176) 

ILI 144 (78) 154 (86) 152 (78) 
Orthographic 

change 
N-1 duration 295 (142) 317 (171) 299 (150) 
N+1 duration 399 (159) 378 (135) 392 (140) 

ILI 149 (72) 157 (71) 153 (65) 
Orthographic and 

phonological 
change 

N-1 duration 367 (138) 361 (153) 367 (146) 
N+1 duration 378 (122) 368 (85) 374 (93) 

ILI 147 (71) 168 (87) 152 (77) 
 
In the condition with no change (Condition 1) there was no effect of the type of agreement (singular vs. 

masculine, feminine, plural) on the duration of the letter preceding the boundary, F(2, 2461) = 1.19, p = .31, the 
letter following the boundary, F(2, 2461) = 0.27, p = .76, or the ILI, F(2, 2461) = 1.27, p = .28. 

In the condition with orthographic change only (Condition 2) there was no effect of the type of agreement 
on the ILI, F(2, 2461) = 0.97, p = .38, or on the letter following the boundary, F(2, 2461) = 1.17, p = .31. 
However, there was a significant effect of type of agreement on the letter preceding the boundary, 
F(2, 2461) = 3.44, p = .032. The mean production time of the letter preceding the boundary was longer when 
writing feminine adjectives (NOI.RE) than masculine adjectives (NOI.R), t(2461) = 2.42, p = .016, and plural 
adjectives, (NOI.RS), t(2461) = 2,10, p = .036. The two last conditions did not differ from each other, 
t(2461) = 0.31, p = .75. 

In the condition with both phonological and orthographic change (Condition 3) there was no effect of the 
type of agreement on the letter preceding the boundary, F(2, 2461) = 0.04, p = .97, or on the letter following the 
boundary, F(2, 2461) = 0.78, p = .46. However, although there was also no significant effect of type of 
agreement on the ILI, F(2, 2461) = 2.13, p < .12, ILIs at the critical boundaries were longer for feminine 
adjectives (VER/TE) than for masculine adjectives (VER/T), t(2461) = 2.00, p = .045, or plural adjectives 
(VER/TS), t(2461) = 1.97, p = .051. The two last conditions did not differ from each other, t(2461) = 0.56, 
p = .57.  

These results show that the impact of feminine agreement, with its addition of a mute e, on the dynamics 
of the handwritten production of adjectives depends on the type of syllabic modification created by letter 
addition. When the addition of a mute e changed only the orthographic syllable structure – NOIR vs. NOI.RE – 
there was an increase in duration at the letter before the syllable boundary. By contrast, when adding a letter 
changed both the orthographic and phonological structures – VERT /vèR/ vs. VER.TE /vèR.t/ – an increase in 
the duration of the inter-letter interval was observed. Finally, when adding a letter did not change the syllabic 
structure – BLEU / BLEUE – there was no effect of agreement. Importantly, the increase in duration cannot be 
explained simply by the addition of a letter, because the addition of a plural inflection did not significantly 
influence the dynamics of handwritten production: the difference between the masculine singular and masculine 
plural was never significant despite the addition of the plural marker –s. It is also important to note that the 
results are not related to letter differences (in terms of frequency or number of strokes for example): the letters 
compared were always exactly the same (eg. NOI.R / NOI.RE / NOI.RS).   

These results are consistent with the idea that the ortho-syllable serves as a processing unit during 
handwriting, and that this type of syllable is specific to the written code. If the dynamics of handwriting were 
influenced by phonological representations, then we should have observed an impact of the addition of the 
feminine only when it modified the phonological syllable. To the contrary, our results show that the effect of the 
addition of the feminine is also significant when it affects only the orthographic syllable structure of the words. 
Thus, the modification of the syllabic structure by the addition of a feminine marker occurs at the orthographic 
level rather than at the phonological level.  

Importantly, the addition of feminine agreement influenced handwriting dynamics at different points of 
word production. The effect occurs earlier when only orthographic structure is modified than when both 
orthographic and phonological structures are modified. This result might be explained by the greater complexity 
of the modification of the syllabic structure in the latter condition. This process is more complex and might 
therefore not be managed as early in processing. The modification of the syllabic structure involved in the 
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orthographic condition might be easier to process and thus be managed during the production of the letter 
preceding the boundary rather than afterward. More research is needed to further explore this issue.  

The influence of phonological representations on written word writing is highly debated. According to the 
phonological mediation hypothesis (Luria, 1970), the activation of orthographic representations requires the 
activation of phonological representations. Evidence for such mediation has been found with a cross-modal 
repetition priming task: Participants were shown to systematically activate phonological representations (Damian 
et al., 2011). According to the orthographic autonomy hypothesis (Rapp et al., 1997), on the other hand, 
orthographic codes are activated directly from meaning, although phonological codes can also be activated in 
parallel. Our results are consistent with the existence of the ortho-syllable, and therefore favor the orthographic 
autonomy hypothesis. If orthographic processing occurs at least partly independently of phonological 
constraints, then this shows that orthographic codes can be activated directly from meaning. Further research is 
needed to establish a more precise model of the role of the ortho-syllable in handwriting. 
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Abstract. Indic scripts are among few scripts in the world that have had continuous development for more 
than two millennia. The modern forms of the scripts are the result of infinitesimal changes in handwriting 
being accumulated over centuries. They present us with a unique opportunity to understand various changes 
occurring in handwriting behavior. We have taken four major Indic scripts in six different stages of evolution 
and extracted features quantifying their handwriting behavior. We have derived these features by applying the 
principles of handwriting production and gesture analysis on a paleographic data set. We present various 
trends and behaviors that occurred during script development and discuss our interpretation of the results in 
terms of evolution of handwriting behavior. We then briefly discuss the detailed analyses that will be 
performed on the dataset in the future. We also consider the applications of these results in digital 
paleography and handwriting-driven systems.  

 
1. Introduction  
The myriad of modern Indian scripts that exist today were all derived from the same source script i.e. Brahmi. 
There have been several competing theories about the origins of Brahmi itself, but the general consensus is that it 
was largely inspired or derived from the Aramaic script (Salomon, 1998). Probably due to partial constructed 
nature, the initial shape of the Brahmi script was largely geometrical, but it has given rise to a wide variety of 
scripts over time due to inherent variations in human handwriting. Indic scripts are among the few script families 
around the world that have existed as a continuum for several centuries. Hence, for any Indic script, we can 
derive an   “almost”   linear  evolutionary line from Brahmi. Therefore, we have a unique opportunity to analyze 
script developments in terms of changes in handwriting behavior. We can investigate how the different 
handwriting features have evolved in terms of handwriting production and visual appearance. This will also 
enable us to understand the variations in handwriting that occur due to the complex interplay of different 
features. 
 
2. Data Set 
To obtain a comprehensive view of the script development process we have taken four major scripts belonging to 
the Brahmic family – Devanagari, Tamil, Kannada and Grantha. These scripts represent most of the important 
Brahmic scripts in India. We consider the scripts in six stages of evolution. A single stage of a script can be 
considered to represent ~300 years covering ~1800 years of development.  It is to be noted that the scripts 
themselves show large geographical and scribal variations even over the same time period. Ojha (1959) had 
presented the development of the scripts by normalizing the shapes, which is utilized by us. However, some 
characters have had fewer distinct variations compared to others. In such cases we have normalized the number 
of characters in each script by carrying over the stabilized characters to subsequent developments. We have also 
considered only glyphs that have had consistent development from Brahmi and ignored secondary developments 
that have occurred later (such as characters getting derived from other characters using diacritical signs). 
Grantha, Devanagari and Kannada have ~40 characters each in their repertoire while Tamil has ~20 characters. 
In total, we have 20 (4 × 5) distinct stages consisting of ~730 distinct glyphs with Brahmi as the source script. 
(All four scripts share Brahmi as their initial form.) 
 

 
 

Figure 1. Devanagari Character KA in six different stages of development (Ojha, 1959) 
 
3. Data Extraction 
The scripts were digitized using the script analysis framework that was proposed in Rajan (2014a). Characters 
were first converted into splines, followed by reconstruction of their trajectories and then finally decomposed 
into their respective strokes. At the end of the process we had the stroke structure of the characters digitized and 
ready for feature extraction. Rajan (2014b) also proposed a set of objective features that quantify various aspects 
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of handwriting. From this normalized stroke structure we extract two types of features, geometric features and 
production features, which were used for subsequent quantitative analyses. The geometric features consisted of 9 
different features based on the static shape of characters and the production features consisted of 12 different 
features based on the written trajectories. 
 

   
  
 Figure 2. Script Repository    Figure 3. Digitized Character 

 

 
 

Figure 4. Decomposed Character 
 
4. Trends in Features 
 

 

 
 

Figure 5. Trends in geometric features 
 

 Figure 5 shows the general trend in the averages of various geometric features of scripts across the 
timescale of development. We can see that the size and length of the glyphs steadily increased over time. Also, 
the LBIndex (the ratio of width & length) indicates that the glyphs were becoming more and more wide. The 
outline shapes of the glyphs approached an ideal geometric shape as noted by the increase in circularity and 
rectangularity. This may be ascribed to the latent human nature to idealize the overall glyph outlines into 
symmetric shapes. In terms of pen positions, divergence (the difference between starting and ending position of 
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the pen) increased over time. This appears to be a consequence of a corresponding increase in length of 
characters. As a result, it would take more effort to maintain the starting and ending positions of the writing 
instrument near each other. With respective to total length, however the pen positions became closer as shown by 
the decrease in openness (the ratio of divergence to length). Compactness (the ratio of length and area) also 
appears to have dropped significantly. Brahmi had more strokes constricted into the same area with scribes 
further spreading out the strokes. In terms of curvature, the latent trend is towards highly curved glyphs. This is 
understandable, as it has been suggested that it is easier for humans to produce curved segments as compared to 
straight lines (Altmann et al., 2008),  because the latter requires more effort.  
 To summarize, in terms of the geometric appearance, the general trend appears to be towards  “long”, 
“large”, “symmetric”, “divergent”, “wide”, “curved”, “closed”  and  “loose”  glyphs.   
 

 

 
 

Figure 6. Trends in production features 
 
 Figure 6 shows the general trends for the production features. The split in pen count is due to the fact 
that Devanagari and Kannada developed an additional pen stroke uniformly in all characters. If this is factored 
in, all the scripts have maintained their characters as effectively requiring a single pen stroke. The average 
disjoint count (strokes with sharp velocity break during handwriting production), though seen to be increasing, 
apparently bounds itself, fluctuating between 3.5 and 4.5. This is slightly higher than the proposed average 
stroke count of three by Changizi et al. (2005). There also seems to be some fluctuation in retraces but at the end 
it averages to one retrace per character. In terms of the length of upstrokes and downstrokes, it again shows a 
uniform increase as one would expect based on the increase in the length and size of the characters in Figure 5. 
Also, Brahmi starts with very low stroke changeability but as scripts developed it increased. This appears to 
contradict the initial diversification of scripts. (Changeability here refers to the ratio of up and down strokes and 
hence implies changes in glyphs occurring due to the instability of fundamental strokes, since up strokes are less 
stable than down strokes (Teulings et al., 1993)). We can assume that such instability effectively contributed the 
least (if at all) to the diversification, with other factors probably contributing more. Entropy of writing is also 
shown to be increasing but tending to reach a limit ultimately. In terms of stroke features, length of basic strokes 
fell initially and then showed a slow growth. In terms of complex strokes (major strokes), there is a more or less 
uniform increase. In terms of stroke angles, there seem to be a general increase in angles with both the mean and 
the sum corresponding to the increase in disfluency. 
 In Figure 5 and Figure 6 we can see that many features show logarithmic  or  “near”  logarithmic growth 
with compactness and openness showing a negative logarithmic growth. Most of these are major features that 
define handwriting behavior. This shows that characters after an initial period of diversification began to 
stabilize slowly. Explicit logarithmic growth is seen in cognitively related features like disfluency and entropy, 
which we consider as significant.  
 One would expect that humans tend to reduce disfluency to increase writing speed but on a large scale it 
appears not to be the case. Writing appears to have gathered more disfluency, more disjoint strokes and a 
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corresponding increase in entropy. As discussed earlier, in terms of static features, characters have also gained 
length and size as time progressed. It also points to the fact that characters show a logarithmic increase in 
complexity in terms of production and appearance, which is counter-intuitive. Our interpretation is that this is 
due   to   “information”   being   continuously added albeit in minute amounts in terms of production and static 
appearance. In the end this resulted in complex glyphs that had resulted from what started out as simple 
geometric figures.  But the logarithmic profile of many features points to the fact that the rate of new information 
being injected into the characters slows down after some time and scripts tend towards stability.  
 
5. Diversifying Features 
Discriminant analysis is a frequently used multivariate statistical technique to find aggregate variables that best 
discriminate groups in a given set of data. This technique when applied to the entire script development data 
results in discriminants that identify/label characters as belonging to a particular script. These discriminants can 
be interpreted as the major factors on the basis of which different scripts are identified and differentiated. 
Consequently, in terms of script development these can be further elaborated as the factors, which caused 
diversification. The analysis was performed separately with geometric and production features.  
 

Table 1. Coefficients of geometric linear discriminants 
 

Features LDG
1 LDG

2 
Length -0.00059865341 0.007731254 
Size 0.00009528834 -0.000115424 
LBIndex 1.28843838989 0.186680755 
Circularity -3.48149787949 8.526610933 
Rectangularity 8.27051387586 -14.373985382 
Divergence -0.00159561490 0.008506504 
Openness -0.06621315085 0.124090255 
Avg. Curvature 9.73404814509 -27.513799916 
Compactness 34.75293555964 -30.978259631 

 
 With geometric features, we find that the first two linear discriminants - LDG

1 and LDG
2 - contribute up 

to ~85% of the discriminatory power. LDG
1 discriminates scripts using mostly compactness with minor 

contributions from average curvature and rectangularity. LDG
2 on the other hand discriminates based on nearly 

equal contribution from average curvature and compactness and significant contribution from rectangularity and 
circularity. It follows that scripts have diversified based on the following major geometric features - 
compactness, average curvature, circularity and rectangularity. Characters’ curvature and their shape outlines 
have together played a major role in diversification. However, the fact that compactness has turned out to be a 
major factor that determines a script is rather surprising. If we consider compactness as related to the 
arrangement of strokes in a character, it is indeed one of the diversifying factors during script development.  
 

 Table 2. Coefficients of productive linear discriminants 
 

Features LDP
1 LPP

2 
Pen Count 0.0739570676 -1.2215776695 
Disjoint Count -0.4456953605 -0.2275291566 
Retrace Count -0.2803731156 -0.1119661255 
Disfluency 0.0325610130 0.0350712045 
Up Strokes 0.0066029962 -0.0001094251 
Down Strokes 0.0035771170 -0.0018496560 
Changeability 0.0785589768 -0.1844057565 
Entropy -0.3723920326 -0.7759867001 
Sum of Disjoint Angles 0.0043322933 0.0084563084 
Mean of Disjoint Angles 0.0019477094 -0.0061158837 
Mean of Fundamental Stroke Lengths -0.0047329371 0.0035754377 
Mean of Major Strokes Lengths -0.0000481335 0.0003249647 

 
 With production features, we find that the first two linear discriminants – LDP

1 and LDP
2 – contribute up 

to ~72% of the discriminatory power. Though this is not very high compared to the geometric features, it is still 
a reasonable amount of cumulative discrimination. LDP

1 classifies characters mainly based on entropy, retrace 
count and disjoint count with minor contributions from pen count and changeability. LDP

2 classifies mostly 
based on entropy and pen count with significant contributions from disjoint count and retrace count. With 

44



production characteristics, scripts have diversified mostly based on entropy of writing and the number of major 
strokes in characters contained in a script. 
 
6. Spread of Variations in Characters  

 
 
Figure 7. Plot of PC1 vs PC4 for scripts in all 6 stages of development. The labels for the data points refer to the 

Unicode name of the characters.  
 

 In section 4, we discussed the general trends in various features of scripts during the script development 
process. In this section, we analyze the individual character variations that occurred. The original feature set 
consisting of 9+12 features is too large for individual character-wise analysis. Hence, we proceeded to perform 
Principal Component Analysis (PCA), which reduced the feature set and also resulted in descriptive aggregate 
features. 

 
Table 3. Loadings of Principal Components 

  
Features  PC1 PC2 PC3 PC4 
Length -0.476 0.183  0.449 
Size -0.324 0.493 -0.300 0.171 
LBIndex -0.244 0.253 0.299  
Circularity -0.478 -0.245 0.274 -0.246 
Rectangularity -0.463 -0.269 0.348 -0.237 
Divergence  0.485 0.512 0.230 
Openness 0.350 0.256 0.526 -0.139 
Avg. Curvature -0.204 0.261 -0.131 -0.473 
Compactness  -0.399 0.244 0.597 

 
 Table 3 shows the first four principal components derived by applying PCA to geometric features in the 
dataset. The shown principal components account for nearly 78% of all variance in the dataset and hence are 
sufficient to abstract the multivariate dataset. PC1 is a comparison between openness and mainly circularity, 
rectangularity, and length. Characters   that   are   “open”, “short” and “asymmetric”   have positive scores, while 
“closed”, “long”   and “symmetric” characters will have large negative scores. PC2 compares compactness, 
circularity and rectangularity with mostly size and divergence. Characters with negative PC2 scores are 
typically   “compact”   and   very   “symmetric”. Positive   scores   indicate   characters   that   are   “large”   “loose”  
“divergent”. For PC3, high negative scores indicate “large”   and   highly  
“curved” characters. For PC4, large negative scores point to highly “curved” and “symmetric”  characters with 
positive scores pointing to characters that lack those characteristics.  
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 We specifically discuss the plots of PC1 vs PC4 for illustration. It can be clearly seen from Figure 7 that 
Brahmi characters had very similar geometric profiles initially (evident by the crowded overlap of characters). 
But as time passed by, the characters did diverge significantly as discussed earlier. Here we can see a particular 
pattern in the diversification process. In Brahmi, the characters are primarily around the first and fourth quadrant 
boundary. The  characters  are   just  “open”  “short”  and  “asymmetric” During the second stage of diversification 
characters gain more  “symmetry”  “closure”  and “length” moving towards other quadrants but mostly dispersing 
towards the first and third quadrants with ultimately many of the characters moving into the second and third 
quadrants   thus   gaining   “curved symmetry”   along   with   “lengthy closure”. We can clearly see the interplay of 
features that cause the variations.  
 Other principal components were also compared to derive information on other aspects of variations 
that occurred. We performed similar analysis on the production features.  
 
6. Future Work 
The nature of distribution of features and their corresponding changes are very interesting phenomena, which 
needs to be analyzed. The influence of usage frequency on character properties is also to be studied in detail. We 
are currently analyzing the change in stroke inventory and their impacts on character self-similarity within the 
scripts. We also plan to extract specific feature sets that have produced fairly stable characters. The very 
important interaction between the geometric and production features behavior is to be studied in the future.  
 
7. Applications 
Paleography has mostly been a subjective field. The quantitative techniques and feature sets used by us 
contribute towards a more objective and quantitative paleographic analysis. Although, the results presented here 
are specific to Indic scripts, the techniques can be duplicated and expanded for other kinds of paleographic 
scripts. Findings from paleography can also be applied to Human-Computer Interaction. If Brahmi is considered 
as  an  archetypical  “constructed”  set,  many  of  the  results  presented  here  (and  the  results  of  our  future  work)  can  
be   used   to   construct   “optimal”   gesture   sets.   Learning   from   such paleographic patterns and behavior, we can 
attempt to construct gesture sets that are natural, easy to use and stable.  
 
7. Conclusion 
We have presented our initial quantitative analysis of the development of Indic scripts using Devanagari, 
Kannada, Tamil and Grantha as archetypes. We have presented the general trends in handwriting that occurred 
during script development and our analysis and interpretation of those trends.  We also found the major features 
on the basis of which the scripts diversified over the years. Additionally, we analyzed the variations acquired by 
individual characters using aggregate features. We briefly discussed future work and possible practical 
applications of this analysis in the fields of Digital Paleography and HCI. 
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Abstract.  We propose an algorithm based on a model of visual perception that is meant to reflect the human 
judgment about the similarity of handwritten samples. The algorithm builds upon the Fuzzy Feature Contrast 
model and proposes an implementation of such a model in the domain of handwriting. The algorithm has been 
validated on the RIMES dataset, by comparing its performance with those of a panel of human experts. The 
experimental results show that the performance of the proposed algorithm is almost indistinguishable from the 
expert one and therefore may be a viable tool for handwriting comparison.   

 
1. Introduction 
Human perception of shape similarity has been the subject of many studies in diverse fields, such as 
experimental psychology, neuroscience, visual perception and artificial intelligence, just to mention a few. In 
such a context, the similarity/dissimilarity between stimuli seems to play a key role in defining the categories the 
organism needs to properly behave in an ever-changing environment. A concise yet comprehensive survey of the 
current opinions on the subject from such a point of view may be found in (Blough, 2001). 

In the realm of handwriting analysis and recognition, when dealing with the problem of building a machine 
capable of comparing the shape of handwriting sample, the usual assumption is that the similarity of the samples 
is reflected by the distance of their representations in a feature space: the closer the representations are, the more 
similar the samples are.  The approach makes two fundamental assumptions: the samples can be represented by 
values of a few distinctive characteristics, or features, and their distance in the feature space reflects their 
similarity (Plamondon & Shrihari, 2000).  Although this approach has lead to applications for handwriting 
analysis and recognition that are routinely used, such as signature verification, OCR, postal address recognition 
and check processing, in case of cursive handwriting it provides solutions that are in contrast with the results of 
experiments with human beings. The book by Pekalska and Duin discusses the limitations of such an approach, 
argues that the notion of similarity is more fundamental than that of a feature or a class, introduces similarity 
representations and methodologies to deal with them (Pekalska & Duin, 2005).  

Among the theoretical approaches to similarity, the Feature Contrast model originally introduced by Tversky 
accounts for several characteristics of similarity data that contradict the metric assumption discussed above, 
mainly asymmetry and angular inequality (Tversky, 1977).  The model, however, assumes that each sample is 
described by a binary vector, each element of which represents whether or not the corresponding features is 
present in the sample. Santini and Jain have extended the original model into the Fuzzy Features Contrast model, 
by proposing to represent the sample by a fuzzy feature vector, each element of which represents the fuzziness of 
the presence of the corresponding features in that sample, thus allowing to deal with cases when features 
enumeration is either impractical or impossible (Santini & Jain, 1999). 

Along this line of investigation, and assuming that cursive handwriting is a sequence of strokes as suggested 
by many studies on handwriting generation, in Section 2 we propose an implementation of the Fuzzy Feature 
Contrast model for cursive handwriting that builds upon a novel set of features to describe both the shapes and 
the spatial arrangement of the strokes, and an algorithm for evaluating the similarity between two cursive 
fragments. In Section 3 we presents the results of two experiments performed to validate the model and to assess 
its performance. Eventually, we discuss the experimental results and outline possible directions for future 
investigations. 

2. Ink Similarity  
Most of the features used by the Ink Similarity algorithm are based upon measures and classification related to 
single strokes. The Fuzzy Feature Contrast Model assumes that the feature vectors of the two stimuli have the 
same dimension; for this reason, to   generate   “global”   features   vectors   of   the   same   dimension   starting   from  
“local”   features   vectors   of   different   dimension,   we   decide   to   aggregate   “local”   strokes   information   to   obtain  
“global”   information. For each handwritten fragment image, the algorithm creates a vector of 54 elements that 
holds 3 different types of features: Zone, Curvature and Shape features, as described below. 
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2.1 Zone features 
The sequence of strokes extracted from the ink is preliminarily partitioned in three subsequences: the first one 
containing the strokes that span over the first 30% of the horizontal size of the word, the second containing the 
strokes that span over the following 40% of the word, and the third containing the remaining strokes. Each stroke 
is then classified depending on which part of the word layout it occupies. A zoning algorithm, based on the 
histogram of the horizontal projection, evaluates the size of the center, the bottom and the upper zones of the 
word layout. We have defined 15 zone features for each stroke, depending on the position of the stroke in the 
zone and the way they are drawn: Ascender (Up/Down), Descender (Down/up), Upper (Center/Bottom/Top), 
Lower (Center/Top/Bottom), Center (Center/Upper/Lower), Pipe and Loop. As each features is evaluated for the 
three subsequences, we have 45 zone features in total. Fig. 1a) shows the features from left to right, and Fig. 1b) 
the  partition  of   the   sequence  of  strokes  of   the  word  “est”  and  the  zones  detected  by  the  zoning  algorithm. For 
each of them, the Ink Similarity counts how many times the i-th zone feature appears in the sequence, and then 
calculate the ratio between such a count and the total number of strokes. This number is then used as a crisp 
value of a linear membership function to obtain the fuzzy value. 
 

                                                                                
   a)       b) 
Figure 1 The “zone”  features.  a)  The  features: their labels depend on both the writing direction (represented by 
the arrow) and the zones of the stroke extremes. The arrows are not representative of the actual shape of the 
strokes. b) the partitioning into subsequences: begin (green), middle (magenta) and end (yellow)  
 
2.2 Curvature features 
As in the zone features case, the curvature features are extracted from subsequences of the sequence of strokes 
extracted from the ink, but in this case there are five subsequence, each one containing the strokes that span over 
the 20% of the word horizontal size, from the beginning to the end.  For each subsequence we compute the 
average of the curvature maxima of the strokes, obtaining 5 curvature features.  Such a count, normalized as 
above, is then used as crisp value of a linear membership function. 
 
2.3 Shape features 
In contrast to the previous ones, shape features do not build up on stroke features, but have the purpose of 
describing the entire shape of the word. We adopted the 4 word features proposed in (Powalka & al, 1997): 
Middle, Middle-Upper, Middle-Lower and Upper-Middle-Lower. From the output of the zoning algorithm, and 
for each word feature, we compute two parameters: the vertical size of the center zone, (Width) and the distance 
between the middle line of the center zone and the bottom line of the bottom zone (YPos). Their values are then 
used as crisp value for two membership functions, FYPos(YPos) and FWidth(Width) as in fig. 2, whose outputs are 
eventually combined to obtain the feature score as min( FYPos(YPos), FWidth(Width)). Eventually, from each score, 
the  degree  of  ownership  of  the  word’s  shape  features  is  computed  by  means  of  a  linear  membership  function. 

 

 
 

Figure 2. The membership function for the shape features. 

48



 
2.4 Similarity measure 
Given two handwritten words, each one represented by the feature vector described above, we assume as 
similarity measure between them the following: 
 

 

where: 
x a and b represent the image of two cursive handwritten words; 
x A and B represent the fuzzy features vectors associated to a and b as described before; 
x A  ∩  B   represents the intersection between the two fuzzy vectors. The resulting vector represents the 

common features between a and b; 
x A - B and B - A represent the complements between A and B. The resulting vectors represent the distinct 

features between a and b; 
x f(FV) is the saliency function that associates to an entire feature vector FV a single number; in our 

implementation we choose the function f as: 𝑓(𝐹𝑉) =   ∑ 𝐹𝑉ହସ
௜ୀଵ ௜ 

x D and E are two weights that model the imbalance of the judgment of inequality that is typical of human 
judgment. 

 
3. Experimental results 
In order to validate the proposed model, we have performed a set of experiments on the RIMES dataset, a 
publicly available dataset largely used for performance evaluation of handwriting analysis and recognition 
systems (Grosicki & al., 2008). From the data set, we  have  selected  10  images  of  the  bigram  “en”  and  10  images  
of   the  word  “es” as Reference Set (RS) and again 10 images of the bigram “en” and 10 images of the bigram 
“es”, different from the previous ones, as Test Set (TS).  

In each experiment, 1 image of TS and 5 images of RS, randomly selected but the same for all the subjects, 
were shown to each subject, and he/she was asked to rate the similarity between the Test image and each of the 
Reference one. The rating was reported by using a 5-point scale, ranging from 1, the most similar, to 5, the least 
similar. Figure 3 shows the GUI designed for the experiments with the human subjects. The same task was 
assigned to the algorithm, so as to have, for each image of TS, the ranks of 17 subjects and the rank of the 
algorithm.  

 

 
 

Figure 3. The GUI used during the experiments. The subjects were requested to rank the similarity between each 
of the Reference images shown in the bottom pane with the Test image shown on the top pane by using a 5 point 
scale, with 1 representing the most similar Reference image and 5 the least similar one. 

 
Then, for each image of TS, we measures the difference D in the ranks by the formula: 
  

𝐷 =   ෍𝑑௜ ∗ 𝑤௜

ହ

௜ୀଵ
 

 
where di is the difference between the position of the i-th image of RS in the two ranks and wi = 1 for the 
top/bottom position of the rank, 0.5 for the following/preceding one and 0.25 for the middle position. The 
weights have been fixed so as to ensure that very similar/dissimilar feature plays a major role in the final 
judgment, as in the case of human perception of similarity. Figure 4a) reports the level of agreement between the 
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subjects for 10 of the images of TS, while figure 4b) reports, for the same images, the value of D between the 
rank provided by the proposed algorithm and the one obtained by combining the ranks of the subjects by the 
Borda count method (deBorda, 1781),  as  to  represent  the  “mean”  behavior  of  the  human  subjects. 

 

              
          a)      b) 

Figure 3. The experimental results: a) the agreement on the ranking between the subjects: each of the 5 bars 
refers to the agreement on the corresponding position of the rank; b) the difference between the algorithm and the 
“mean”  subject. For sake of legibility, the figure reports the results on a few images selected as representative of 
the performance on the whole Test set. 
 
Conclusions  
We have presented an algorithm to evaluate the similarity between handwritten words that builds upon a fuzzy 
computational model proposed to account for the visual perception of similarity. Such a general model has been 
customized by adopting a suitable set of features to represent the distinctive feature of handwriting and its 
performance compared with that of human subject in a similarity evaluation task.  

The experimental results allow for the following preliminary conclusions: 
- the ranks of the human subjects are more similar as with regards to the most/least similar shapes than 

with regards the shapes that are somehow in between these extreme cases;  
- the difference between the rank of the algorithm and those of the subjects may vary, but even in the 

worst case such a difference is slightly bigger than 0.5, meaning that at most two images were ranked 
differently and that those images were not ranked as the top or the bottom ones; 

- the performance of the algorithm depends to a limited extent from the images, suggesting that it is a 
robust implementation of the fuzzy computational model it builds upon. 

According to those results, the proposed algorithm seems to implement an agent whose behavior resembles 
that of the human subjects in that:  

- its judgment is very similar to those of the subjects as with regard to the most/least similar samples; 
- the differences between the rank of the algorithm and those of the subjects are very similar to the 

differences within the subjects, so as to make the proposed algorithm indistinguishable from any of the 
subject. 

In the future, we will perform further experiments, on larger data sets, including longer words, considering 
different membership function and different implementations for the similarity measures, in order to ascertain the 
performance of the proposed algorithm with different handwriting styles, as well as its robustness with respect to 
the actual values of its parameters. 
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'XH�WR�WKH�UHFHQW�SUHYDOHQFH�RI�PXOWL�WRXFK�GHYLFHV��PXOWL�WRXFK�JHVWXUH�UHFRJQLWLRQ�KDV�JDLQHG�D�ODUJH�LQWHUHVW�
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HYHQWV� �H�J��� WRXFK�GRZQ�� WRXFK�PRYH�� WRXFK�XS�� DQG� KDV� EHHQ� H[WHQVLYHO\� DSSOLHG� LQ� LPDJH� RU� PDS� YLHZ�
DSSOLFDWLRQ� �H�J��� SLQFK� RU� VSUHDG� WZR� ILQJHUV� WR� VFDOH� DQ� LPDJH��� 7KH� ODWWHU� LV�PXFK� VLPLODU� WR� WKH� FKDUDFWHU�
UHFRJQLWLRQ� DV� WKH� UHFRJQLWLRQ� SURFHGXUH� LV� FRQGXFWHG� DIWHU� WKH� HQWLUH� JHVWXUH� EHLQJ� SHUIRUPHG� DQG� WULJJHUV� D�
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���5HSUHVHQW�D�PXOWL�WRXFK�JHVWXUH�E\�JUDSK�
([WUDFWLQJ� JOREDO� IHDWXUHV� KDV� EHHQ� SURYHQ� WR� EH� HIILFLHQW� IRU� KDQGZULWLQJ� FKDUDFWHU�� V\PERO�� LFRQ� RU� JHVWXUH�
UHFRJQLWLRQ�ZKHUH�WKH�GLVFULPLQDWLRQ�LV�PDLQO\�PDGH�DFFRUGLQJ�WR�WKH�VKDSH�RI�WKH�VDPSOH��'RQ�:LOOHPV�HW�DO���
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WHPSRUDO�UHODWLRQ�DV�ZHOO�DV�WKH�UHODWLYH�PRWLRQ�UHODWLRQ�RI�VWURNHV�VKRXOG�DOVR�EH�FKDUDFWHUL]HG��7KHUHIRUH��LQ�RXU�
JUDSK�PRGHO��ZH�SURSRVH�WR�XVH�WKH�QRGH�WR�GHVFULEH�WKH�VKDSH�RI�HDFK�VWURNH�DQG�HGJH�WR�LQGLFDWH�WKHLU�WHPSRUDO�
DQG�PRWLRQ� UHODWLRQ�� ,Q� WKH� IROORZLQJ�SDUDJUDSKV�� WKH�JUDSK�ZLOO�EH�GHQRWHG�E\�݃ ൌ ሺܸǡ �ሻ��ZKHUH�ܸ�GHQRWHV�Dܧ
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LQ�WKH�IROORZLQJ�SURFHGXUH�LV�H[SRQHQWLDO�LQ�WKH�QXPEHU�RI�QRGHV��:H�FRQVLGHU�WR�VHJPHQW�HDFK�UDZ�VWURNHV� ௜ܵ�
LQWR� D� VHTXHQFH� RI� VWUDLJKW� OLQH� VXE�VWURNHV�ሺݏଵǡ ǥ ǡ �௡ሻ�XVLQJݏ SRO\JRQDO� DSSUR[LPDWLRQ�� 7KH� 5DPHU�'RXJODV�
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51



DQG�HQG�WLPHV��(DFK�IHDWXUH�LV�QRUPDOL]HG�WR�>���@��7KXV��DVVXPH�D�PXOWL�WRXFK�JHVWXUH�ZLWK�n�VWURNHV��WKH�QRGH�
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WZR�VWURNHV��,Q�RXU�JUDSK��WKLV�UHODWLRQ�IXQFWLRQ�LV�LPSOHPHQWHG�RQ�HDFK�SDLU�RI�QRGHV��VXE�VWURNHV��ZKLFK�GR�QRW�
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VXE�VWURNHV� ଵǡݏ� ǥ ǡ ���ସݏ 7KHQ��ZH� FRQYHUW� HDFK� VXE�VWURNHV� LQWR� QRGH� LQ� WKH� JUDSK�ZLWK� LWV� VKDSH� DQG�GXUDWLRQ�
LQIRUPDWLRQ�DV�LWV�DWWULEXWH��L�Hݑ��௜ ൌ ሺ݌௜ǡ ܽ௜ǡ ݈௜ǡ �௜ሻ��)LQDOO\��WZR�OLQN�HGJHV�݁௟�DQG�WKUHH�V\QFKURQL]DWLRQ�HGJHV�݁௦ݐ
�VLQFH�WKH�WZR�VWURNHV�DUH�SHUIRUPHG�V\QFKURQRXVO\��QR�VHTXHQFH�HGJH�LV�EXLOW�IRU�WKLV�JHVWXUH��DUH�EXLOW�EHWZHHQ�
QRGHV��
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�D�� �E�� �F�� �G��

)LJXUH� ��� ,OOXVWUDWLRQ�RI� WKH�JUDSK� UHSUHVHQWDWLRQ�� �D��5DZ� LQSXW�PXOWL�WRXFK�JHVWXUH�� �E��5HVDPSOLQJ� WKH� UDZ�GDWD� WR���VXE�
VWURNHV� XVLQJ� SRO\JRQDO� DSSUR[LPDWLRQ�� �F�� (DFK� VXE�VWURNHݏ�௜�LV� UHSUHVHQWHG� E\� D� QRGHݑ�௜�ZLWK� LWV� IHDWXUHV� ௜ǡ݌� ܽ௜ǡ ݈௜ǡ ��௜ݐ DV�
DWWULEXWH���G��/LQN�HGJH�݁௟�DQG�V\QFKURQL]DWLRQ�HGJH�݁௦�DUH�EXLOW�EHWZHHQ�QRGHV��

����*UDSK�PDWFKLQJ�DOJRULWKP�
:H�DGRSW�JUDSK�HGLW�GLVWDQFH� WR�FRPSDUH� WKH�GLVVLPLODULW\�EHWZHHQ� WZR�JUDSKV��6LQFH�HDFK�JUDSK�KDV�PXOWLSOH�
VXE�JUDSKV��WKH�ILUVW�VWHS�LV�WR�ILQG�ZKLFK�VXE�JUDSK�VKRXOG�EH�FRPSDUH�WR�ZKLFK�RQH�IURP�RQH�JUDSK�WR�WKH�RWKHU��
7KLV�LV�D�W\SLFDO�DVVLJQPHQW�SUREOHP�WKDW�FDQ�EH�VROYHG�E\�0XQNUHV¶�DOJRULWKP��7KH�GLVWDQFH�RI�HDFK�VXE�JUDSK�
SDLU�LV�FRPSXWHG�E\�'7:�DOJRULWKP�EDVHG�RQ�WKH�VHTXHQFH�RI�QRGHVݑ�௜ ൌ ሺ݌௜ǡ ܽ௜ǡ ݈௜ሻ��2SWLPDO�PDWFKLQJ�LV�WKHQ�
IRXQG�E\�0XQNUHV¶�DOJRULWKP�WKDW�WRWDO�FRVW�RI�WKH�VXE�JUDSK�DVVLJQPHQW�LV�PLQLPL]HG��2QFH�ZH�KDYH�WKH�QRGHV¶�
DOLJQPHQW� SDWK� DFKLHYHG�E\�'7:�� WKH� HGLW� RSHUDWLRQV� RQ� QRGHV� DQG� HGJHV� FRXOG� EH� LQIHUUHG� IURP� WKH� QRGHV¶�
'7:�SDWK��&RQVHTXHQWO\��WKH�HGLW�GLVWDQFH�RI�WZR�JUDSK�LV�GHILQHG�DV��

݀ሺܩଵǡ ଶሻܩ ൌ෍ܿሺݑ௜ǡ ఝሺ௜ሻሻݑ
௡

௜ୀଵ

൅෍ܿሺ݁௜ǡ ݁ఝሺ௜ሻሻ
௠

௜ୀଵ

�

ZKHUH�ܿሺݑ௜ǡ �ఝሺ௜ሻሻ�GHQRWHVݑ WKH�HGLW�FRVW� IRU�QRGHV�SDLU��ܿሺ݁௜ǡ ݁ఝሺ௜ሻሻ�LV� WKH�HGLW�FRVW� IRU�HGJHV�SDLU��߮�GHQRWHV� WKH�
DVVLJQPHQW�IXQFWLRQ�ZKLFK�PDSV�WKH�QRGHV�DQG�HGJHV�RI�WKH�ILUVW�JUDSKܩ�ଵ�WR�WKH�VHFRQG�JUDSKܩ�ଶ���
���([SHULPHQWV�
:H�GHVFULEH�EHORZ�D�VHULHV�RI�H[SHULPHQWV�WR�HYDOXDWH�RXU�JUDSK�PRGHOLQJ��DQG�JUDSK�PDWFKLQJ�DOJRULWKP��7KH�
UHFRJQLWLRQ�V\VWHP�DQG�GDWDEDVH�ZH�XVH�ZLOO�EH�ILUVWO\�LQWURGXFHG�LQ�WKLV�VHFWLRQ��

6LQFH�ZH�XVH�WKH�JUDSK�HGLW�GLVWDQFH�WR�PHDVXUH�WKH�GLVVLPLODULW\�EHWZHHQ�JUDSKV��D�VLPSOHVW�UHFRJQLWLRQ�
PHWKRG� LV� WKH� N�1HDUHVW� 1HLJKERUV� �N11�� ZKLFK� FODVVLILHV� DQ� REMHFW� E\� D� PDMRULW\� YRWH� RI� LWV� QHLJKERUV��
0HDQZKLOH�� ZH� DOVR� LPSOHPHQW� D� JUDSK� HPEHGGLQJ� DOJRULWKP� LQWURGXFHG� LQ� �.DVSDU� 5LHVHQ� HW� DO��� ������ WR�
UHSUHVHQW�WKH�JUDSKV�LQ�YHFWRU�VSDFH��7KH�EDVLF�LGHD�RI�WKLV�JUDSK�HPEHGGLQJ�DOJRULWKP�LV�WR�UHSUHVHQW�D�JUDSK�
ZLWK�D�QXPEHU�RI�GLVVLPLODULWLHV�WR�D�VHW�RI�SURWRW\SLFDO�JUDSKV��3URWRW\SHV�DUH�LWHUDWLYHO\�VHOHFWHG�IURP�WUDLQLQJ�
VHW�XQGHU�D�SURWRW\SH�VHOHFWLRQ�SULQFLSOHV�QDPHG�Targetsphoere��DOVR�LQWURGXFHG�LQ��.DVSDU�5LHVHQ�HW�DO�����������
$�690�FODVVLILHU�LV�WKHQ�WUDLQHG�IRU�WKH�IHDWXUH�YHFWRU�FODVVLILFDWLRQ���

:H�GHVLJQHG�D�VSHFLILF�JHVWXUH�GDWDEDVH�RI������VDPSOHV�FROOHFWHG�IURP����SDUWLFLSDQWV��%DVHG�RQ�WKHVH�
JHVWXUHV��ZH�GHILQHG� D� URWDWLRQ�GHSHQGHQW� VHW� �6HW����ZLWK����GLIIHUHQW� FODVVHV� DQG� D� URWDWLRQ� LQGHSHQGHQW� VHW�
�6HW����ZLWK����GLIIHUHQW�FODVVHV� �)LJXUH�����%RWK�JHVWXUH�VHWV�KDYH�VDPH�FRQWHQW�EXW�GLIIHUHQW� ODEHOV�RQ�VRPH�
VSHFLDO� FDVHV�� 7KHVH� JHVWXUHV� DUH� GLVWLQJXLVKHG� IURP� VKDSH�� WHPSRUDO� DQG� PRWLRQ� LQIRUPDWLRQ� DQG� FDQ� EH�
JHQHUDOO\�VHSDUDWHG�WR�WZR�FDWHJRULHV��&DWHJRU\�$�FRQWDLQV�ELPDQXDO�RU�XQLPDQXDO�PXOWL�WRXFK�JHVWXUHV�LQ�ZKLFK�
WKH�WUDMHFWRULHV�DUH�V\QFKURQRXVO\�SHUIRUPHG��*HVWXUHV� LQ�WKLV�FDWHJRU\�YDU\�LQ�VKDSH��QXPEHUV�RI� WRXFK�ILQJHU�
DQG�PRWLRQ�� 7R� YDOLGDWH� WKH�PRGHOLQJ� � RI� WHPSRUDO� LQIRUPDWLRQ�� FDWHJRU\�%� FRQWDLQV� �� NLQGV� RI�PXOWL�VWURNH�
JHVWXUHV�ZKLFK�KDYH�VDPH�VKDSH�DV�VRPH�FDVHV�LQ�FDWHJRU\�$�EXW�YDU\�LQ�ZULWWHQ�RUGHU���

�
)LJXUH� ��� 6DPSOHV� IURP� WKH� JHVWXUH� GDWDEDVH�� &DWHJRU\� $� FRQWDLQV� JHVWXUHV� LQ� ZKLFK� WKH� WUDMHFWRULHV� DUH� V\QFKURQRXVO\�
SHUIRUPHG��1RWH�WKDW� WKH� ODVW� WZR�JHVWXUHV�3LQFK��,��DQG�3LQFK��,,��DUH�DOORFDWHG�WR�GLIIHUHQW�FODVVHV� LQ�URWDWLRQ�GHSHQGHQW�VHW�
�6HW����EXW�LQWHJUDWHG�LQ�WKH�VDPH�FODVV�LQ�URWDWLRQ�LQGHSHQGHQW�VHW��6HW�����&DWHJRU\�%�FRQVLVWV�RI�WZR�VHTXHQWLDO�PRQR�WRXFK�
JHVWXUHV�ZKLFK�DUH�GLVWLQJXLVKHG�IURP�ZULWWHQ�RUGHU��

�
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:H�FRQGXFWHG�RXU�H[SHULPHQWV�LQ�D���IROG�FURVV�YDOLGDWLRQ�DQG�ZULWHU�LQGHSHQGHQW�VFKHPH��,Q�HDFK�IROG��
VDPSOHV�IURP���ZULWHUV�DUH�XVHG�IRU�WUDLQLQJ�DQG����ZULWHUV�IRU�WHVW���
���5HVXOWV�
:H� FRPSDUH� WKH� UHFRJQLWLRQ� DFFXUDF\� EHWZHHQ� N11� DQG� JUDSK� HPEHGGLQJ� UHJDUGLQJ� GLIIHUHQW� QXPEHUV� RI�
SURWRW\SHV��5HVXOWV�DUH�JLYHQ�LQ�ILJXUH����

������������������������������� �
������������D�� ��������E��

)LJXUH����&RPSDULVRQV�RI�WKH�WZR�UHFRJQLWLRQ�V\VWHPV�RQ�ERWK�GDWDVHWV��$FFXUDFLHV�DUH�JLYHQ�DV�D�IXQFWLRQ�RI�WKH�QXPEHU�RI�
SURWRW\SHV�SHU�FODVV���
�
7KH�H[SHULPHQWV�RQ�VHW���LQ�)LJXUH���D��VKRZ�WKDW�ZLWK�WKH�LQFUHDVLQJ�RI�WKH�SURWRW\SH�QXPEHU��WKH�DFFXUDF\�RI�
JUDSK� HPEHGGLQJ� V\VWHP�NHHSV� VWDEOH� DURXQG�����DQG�SHUIRUPV� VLJQLILFDQWO\�EHWWHU� WKDQ�N11�V\VWHP��ZKLFK�
LQFUHDVHV� IURP�������� WR���������1RWH� WKDW� HYHQ�ZLWK�D� OLPLWHG�QXPEHU�RI�SURWRW\SHV�� WKH�JUDSK�HPEHGGLQJ�
ZLWK�690�FODVVLILHU�FRXOG�VWLOO�REWDLQ�D�JRRG�SHUIRUPDQFH�ZKLOH�N11�LV�QRW�HIILFLHQW�HQRXJK��6DPH�WUHQG�LV�DOVR�
YLHZHG�LQ�WKH�UHVXOW�RQ�VHW����7KH�JUDSK�HPEHGGLQJ�V\VWHP�SHUIRUPV�DV�JRRG�DV�LQ�VHW���ZKLOH�DFFXUDF\�RI�N11�
V\VWHP�KDV�D�VOLJKWO\�GHFUHDVLQJ�IURP��������WR���������5HVXOWV�SURYH�WKDW�RXU�JUDSK�PRGHOLQJ���PDWFKLQJ�DQG�
HPEHGGLQJ� IUDPHZRUN� LV� SRZHUIXO� WR� H[WUDFW� WKH� GLVFULPLQDWLRQ� LQIRUPDWLRQ� IRU� PXOWL�WRXFK� JHVWXUH� SDWWHUQ�
UHFRJQLWLRQ��
���&RQFOXVLRQ�
,Q�WKLV�SDSHU��ZH�SURSRVH�D�QHZ�PHWKRG�IRU�PRGHOLQJ� � WKH�VKDSH��UHODWLYH�WHPSRUDO�DQG�PRWLRQ�LQIRUPDWLRQ�LQ�
PXOWL�WRXFK�JHVWXUH� E\� D�PRGHO� RI� JUDSK��:H� H[WUDFW� WKHVH� LQIRUPDWLRQ� DQG�TXDQWLI\� WKHP� DV� DWWULEXWH� RQ� WKH�
QRGHV�DQG�HGJHV�LQ�WKH�JUDSK��$�ZD\�WR�PDNH�D�FRPSDULVRQ�EHWZHHQ�JUDSKV�LV�DOVR�RIIHUHG�WKDW�FDQ�EH�XVHG�IRU�
JUDSK�FODVVLILFDWLRQ��5HVXOWV�VKRZ�WKDW�ZLWK�WKH�KHOS�RI�JUDSK�HPEHGGLQJ�DQG�690�FODVVLILHU��RXU�JUDSK�PRGHO�
KDV�WKH�DELOLW\�WR�HIIHFWLYHO\�GLVWLQJXLVK�GLIIHUHQW�PXOWL�WRXFK�JHVWXUHV��%DVH�RQ�WKLV�PRGHO��LQ�RXU�IXWXUH�ZRUN�ZH�
DLP�DW�GHYHORSLQJ�D�VWUDWHJ\�WR�GHWHFW�WKH�SDWWHUQ�RI�PXOWL�WRXFK�JHVWXUH�DW�UXQWLPH�DV�LQ��.HQULFN�.LQ���������

5HIHUHQFHV�
+DR� /��� <DQJ� /L� �������� *HVWXUH� &RGHU�� $� WRRO� IRU� SURJUDPPLQJ� PXOWL�WRXFK� JHVWXUHV� E\� GHPRQVWUDWLRQ�� 3URF�� RI� WKH�

6,*&+,�&RQIHUHQFH�RQ�+XPDQ�)DFWRUV�LQ�&RPSXWLQJ�6\VWHPV��&+,�
�����$&0��1HZ�<RUN��1<��86$�������������
.HQULFN� .LQ�� %M|UQ� +DUWPDQQ�� 7RQ\� 'H5RVH�� 	� 0DQHHVK� $JUDZDOD�� �������� 3URWRQ�� PXOWLWRXFK� JHVWXUHV� DV� UHJXODU�

H[SUHVVLRQV��3URF��RI�WKH�6,*&+,�&RQIHUHQFH�RQ�+XPDQ�)DFWRUV�LQ�&RPSXWLQJ�6\VWHPV��&+,�
�����$&0��1HZ�<RUN��
1<��86$�������������

.HQULFN� .LQ�� %M|UQ� +DUWPDQQ�� 7RQ\� 'H5RVH�� DQG� 0DQHHVK� $JUDZDOD�� �������� 3URWRQ���� D� FXVWRPL]DEOH� GHFODUDWLYH�
PXOWLWRXFK�IUDPHZRUN��3URF��RI�WKH���WK�DQQXDO�$&0�V\PSRVLXP�RQ�8VHU�LQWHUIDFH�VRIWZDUH�DQG�WHFKQRORJ\��8,67�

�����$&0��1HZ�<RUN��1<��86$�����������

.DPPHU��'���:RMG]LDN�� -���.HFN��0��� DQG�7DUDQNR��6�� �������7RZDUGV�D� IRUPDOL]DWLRQ�RI�PXOWL�WRXFK�JHVWXUHV��3URF�� ,76�
���������������±����

=KDR[LQ�&KHQ��(ULF�$QTXHWLO��+DUROG�0RXFKqUH��&KULVWLDQ�9LDUG�*DXGLQ����������$�JUDSK�PRGHOLQJ��VWUDWHJ\�IRU�PXOWL�WRXFK�
JHVWXUH�UHFRJQLWLRQ��,Q���WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�)URQWLHUV�LQ�+DQGZULWLQJ�5HFRJQLWLRQ��3DJHV����������������

'RQ�:LOOHPV�� 5DOSK�1LHOV��0DUFHO� YDQ�*HUYHQ�� DQG� /RXLV� 9XXUSLMO�� �������� ,FRQLF� DQG�PXOWL�VWURNH� JHVWXUH� UHFRJQLWLRQ��
3DWWHUQ�5HFRJQ����������'HFHPEHU�������������������

&KL�0LQ� 2K�� 0G�� =DKLGXO� ,VODP�� DQG� &KLO�:RR� /HH�� �������� 05)�EDVHG� 3DUWLFOH� )LOWHUV� IRU� 0XOWL�WRXFK� 7UDFNLQJ� DQG�
*HVWXUH� /LNHOLKRRGV�� 3URF�� RI� WKH� ����� ,(((� ��WK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� &RPSXWHU� DQG� ,QIRUPDWLRQ�
7HFKQRORJ\��&,7�
�����,(((�&RPSXWHU�6RFLHW\��:DVKLQJWRQ��'&��86$�����������

.DVSDU�5LHVHQ� DQG�+RUVW�%XQNH�� ��������*UDSK�&ODVVLILFDWLRQ� DQG�&OXVWHULQJ�%DVHG� RQ�9HFWRU� 6SDFH�(PEHGGLQJ��:RUOG�
6FLHQWLILF�3XEOLVKLQJ�&R���,QF���5LYHU�(GJH��1-��86$��

.DVSDU�5LHVHQ�DQG�+RUVW�%XQNH����������$SSUR[LPDWH�JUDSK�HGLW�GLVWDQFH�FRPSXWDWLRQ�E\�PHDQV�RI�ELSDUWLWH�JUDSK�PDWFKLQJ��
,PDJH�DQG�9LVLRQ�FRPSXWLQJ�����������������

8UV�5DPHU����������$Q�LWHUDWLYH�SURFHGXUH�IRU�WKH�SRO\JRQDO�DSSUR[LPDWLRQ�RI�SODQH�FXUYHV��&RPSXWHU�*UDSKLFV�DQG�,PDJH�
3URFHVVLQJ�����������±����
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Abstract. ,Q�WKLV�SDSHU��ZH�LQWURGXFH�D�IUDPHZRUN�IRU�RQ�OLQH�OHDUQLQJ�RI�KDQGZULWWHQ�V\PEROV�IURP�VFUDWFK��
$V�VXFK��OHDUQLQJ�VXIIHUV�IURP�PLVVLQJ�GDWD�DW�WKH�EHJLQQLQJ�RI�WKH�OHDUQLQJ�SURFHVV��LQ�WKLV�SDSHU�ZH�SURSRVH�
WKH�XVH�RI�6LJPD�ORJQRUPDO�PRGHO�WR�JHQHUDWH�V\QWKHWLF�GDWD��2XU�IUDPHZRUN�GHDOV�ZLWK�D�UHDO�WLPH�XVH�RI�WKH�
V\VWHP��ZKHUH�WKH�UHFRJQLWLRQ�RI�D�VLQJOH�V\PERO�FDQQRW�EH�SRVWSRQHG�E\�WKH�JHQHUDWLRQ�RI�V\QWKHWLF�GDWD��:H�
HYDOXDWH� WKH�XVH�RI�RXU� IUDPHZRUN�DQG�6LJPD�ORJQRUPDO�PRGHO�E\�FRPSDULVRQ�RI� WKH� UHFRJQLWLRQ� UDWH� WR�D�
EORFN�OHDUQLQJ� DQG� OHDUQLQJ� ZLWKRXW� DQ\� V\QWKHWLF� GDWD�� ([SHULPHQWDO� UHVXOWV� VKRZ� WKDW� ERWK� RI� WKHVH�
FRQWULEXWLRQV�UHSUHVHQW�DQ�HQKDQFHPHQW�WR�WKH�RQ�OLQH�KDQGZULWLQJ�UHFRJQLWLRQ��HVSHFLDOO\�ZKHQ�VWDUWLQJ�IURP�
VFUDWFK��

�
1. Introduction  
,Q�WKH�UHFHQW�\HDUV��ZH�KDYH�VHHQ�D�JURZWK�LQ�WKH�XVH�RI�VPDUW�GHYLFHV�ZKLFK�DUH�RIWHQ�KDQGOHG�ZLWK�KDQGZULWWHQ�
V\PEROV��,Q�PDQ\�V\VWHPV��WKH�XVH�RI�VXFK�V\PEROV�UHTXLUHV�VRPH�SUH�GHILQLWLRQ��ZKLFK�GLVDOORZV�WKH�XVHU�WR�XVH�
V\PEROV� KH� ILQGV� WKH� EHVW� VXLWHG� IRU� HDFK� WDVN��7KXV�� RXU�ZRUN� IRFXVHV� RQ� WKH� RQ�OLQH� OHDUQLQJ� IURP� VFUDWFK��
ZKHUH�QR�SUH�GHILQLWLRQ�WDNHV�SODFH�DQG�LW�LV�XS�WR�WKH�XVHU�WR�GHILQH�KLV�RZQ�V\PEROV��

+RZHYHU��VXFK�D�IUHHGRP�EULQJV�FKDOOHQJHV�IURP�ZKLFK�D�ORZ�QXPEHU�RI�VDPSOHV�VWDQGV�RXW��0RUHRYHU��
LQ�WKLV�VHWXS��QHZ�FODVVHV�RI�V\PEROV�FDQ�EH�GHILQHG�RQH�DIWHU�DQRWKHU�DQG�DW�DQ\�WLPH�RI�WKH�XVH��7KLV�OHDYHV�D�
VPDOO�RU�HYHQ�QR�WLPH�IRU�WKH�V\VWHP¶V�LPSURYHPHQW��PDNLQJ�LW�WR�RYHU�ILW��DV�WKHUH�LV�RIWHQ�RQO\�RQH�VDPSOH�SHU�
FODVV��DQG�NHHSV�WKH�LQLWLDO�UHFRJQLWLRQ�UDWH�ORZ��)RU�WKLV�SXUSRVH��LW�LV�RQO\�QDWXUDO�WR�VHDUFK�IRU�RSWLRQV�WR�REWDLQ�
PRUH�GDWD��VR�WKDW�WKH�V\VWHP�FDQ�EHFRPH�PRUH�UREXVW�VRRQHU�DQG�DYRLG�WKH�RYHU�ILWWLQJ��

7KHUH�KDYH�EHHQ� VHYHUDO� DWWHPSWV� WR� DGGUHVV� WKH� JHQHUDWLRQ�RI� V\QWKHWLF� KDQGZULWWHQ�GDWD�EDVHG�RQ� D�
QXPEHU�RI�PRGHOV��)URP� WKHVH��ZH� OLVW� VRPH�PRUH� UHFHQW�ZRUNV�� L�H��PHWKRGV�SURSRVLQJ� WR�JHQHUDWH� V\QWKHWLF�
GDWD�EDVHG�RQ�EHKDYLRXUDO�PRGHOV��6FKPLGW�DQG�/HH���������NLQHPDWLF�PRGHOV��3ODPRQGRQ�DQG�'MLRXD���������
PLQLPL]DWLRQ� SULQFLSOHV� �1HLOVRQ� DQG� 1HLOVRQ�� ������ 7DQDND�� ������ RU� QHXUDO� QHWZRUNV� �*DQJDGKDU�� �������
:RUN� LQ� WKLV� SDSHU� LV� UHOLHV� RQ� .LQHPDWLF� 7KHRU\� GHVFULELQJ� UDSLG� KXPDQ� PRYHPHQWV� E\� 6LJPD�ORJQRUPDO�
�3ODPRQGRQ�HW�DO��������'MLRXD�DQG�3ODPRQGRQ��������3ODPRQGRQ�HW�DO���������

:H�DSSO\� WKLV�PHWKRG�RQ� HYROYLQJ�PRGHOV� FDSDEOH�RI� RQ�OLQH� OHDUQLQJ� IURP� VFUDWFK��7KHUH� DUH� VRPH�
DWWHPSWV�WR�WDFNOH�RQ�OLQH�OHDUQLQJ�SUREOHP��'LW]OHU��������<DR�HW�DO��������/HLVWQHU��������*UDEQHU�DQG�%LVFKRI��
������/XXJKRIHU���������+RZHYHU��YHU\�IHZ�PHWKRGV�KDQGOH�DOVR�WKH�OHDUQLQJ�IURP�VFUDWFK��1HYHUWKHOHVV�WKHUH�
DUH�ZRUNV�DOVR�FDSDEOH�RI�OHDUQLQJ�IURP�VFUDWFK��VXFK�DV��$QJHORY��������$OPDNVRXU��������5H]QDNRYD��������
$QJHORY���������,Q�WKLV�ZRUN�ZH�XVH�$57,6��5H]QDNRYD���������DQ�HYROYLQJ�IX]]\�PRGHO�FRPELQHG�ZLWK�$57�
QHWZRUN��&DUSHQWHU���������

7KLV� SDSHU� LV� RUJDQL]HG� DV� IROORZV�� ,Q� VHFWLRQ� �� WKH� SURSRVHG� IUDPHZRUN� IRU� RQ�OLQH� OHDUQLQJ� XVLQJ�
V\QWKHWLF� GDWD� LV� GHVFULEHG��7KH�6LJPD�ORJQRUPDO�PRGHO� LV� GHVFULEHG� LQ� VHFWLRQ� �� DQG� WKH�$57,67�PRGHO� LQ�
VHFWLRQ����(YDOXDWLRQ�UHVXOWV�DUH�SURYLGHG�LQ�VHFWLRQ����FRQFOXGHG�DORQJ�ZLWK�IXWXUH�ZRUNV�LQ�VHFWLRQ����
�
2. Framework for online real-time learning using synthetic data  
6LQFH� LQ� RXU� ZRUN� ZH� IRFXV� RQ� UHDO�WLPH� DQG� UHDO�XVH� RQ�OLQH� OHDUQLQJ� V\VWHP� IRU� KDQGZULWWHQ� V\PEROV�
UHFRJQLWLRQ��ZH�QHHG� WR� DGMXVW� WKH�XVH�RI� V\QWKHWLF� GDWD� WR� WKLV� SUREOHP��7R�XVH� WKHVH�GDWD� IRU� WKH� OHDUQLQJ�� D�
V\VWHP�QHHGV�WR�JHQHUDWH�RQ�WKH�IO\��MXVW�DIWHU�D�QHZ�VDPSOH�LV�LQWURGXFHG��,Q�WKH�FDVH�RI�EORFN�OHDUQLQJ��ZKHUH�
HDFK� QHZ� VDPSOH� ZDLWV� IRU� DOO� V\QWKHWLF� VDPSOHV� JHQHUDWHG� IURP� WKH� SUHYLRXV� UHDO� VDPSOH� WR� EH� OHDUQHG�� WKH�
UHFRJQLWLRQ�RI�VXFK�QHZ�VDPSOH�LV�QDWXUDOO\�SRVWSRQHG��7KLV�KDSSHQV�LQ�FDVH�RI�IDVW�DGGLWLRQ�RI�QHZ�UHDO�VDPSOHV�
WR� WKH� V\VWHP�� 7R� SUHYHQW� WKLV� IURP� KDSSHQLQJ� DQG� WR� VXSSRUW� WKH� UHDO�WLPH� RQ�OLQH� OHDUQLQJ�� ZH� SURSRVH� D�
IUDPHZRUN�GHVFULEHG�LQ�IROORZLQJ��

)LJXUH� �� GLVSOD\V� WKH� FRPSOHWH� IUDPHZRUN� ZH� SURSRVH� LQ� WKLV� VHFWLRQ�� ,W� LV� GLYLGHG� LQWR� WZR� PDMRU�
SURFHVVHV�GHQRWHG�ZLWK�VROLG�DQG�GDVKHG�OLQHV��$W�WKH�EHJLQQLQJ��RQH�VDPSOH�;�LV�IHG�WR�ERWK�RI�WKHVH�SURFHVVHV��
RULJLQDO�UHFRJQLWLRQ�DQG�OHDUQLQJ��DQG�JHQHUDWLRQ�RI�V\QWKHWLF�GDWD��2QFH�D�VDPSOH�LV�SURFHVVHV�E\�WKH�V\QWKHWLF�
GDWD�JHQHUDWRU��QHZ�V\QWKHWLF�GDWD�DUH�DGGHG�WR�D�EXIIHU��ZDLWLQJ�IRU�WKHLU�XVH��:KHQ�QR�UHDO�VDPSOH�LV�EHLQJ�IHG�
WR�WKH�V\VWHP��VDPSOHV�IURP�WKH�EXIIHU�FDQ�VWDUW�WR�EH�SURFHVVHG��7KLV�PHDQV�WKDW�UHDO�GDWD�KDYH�D�SULRULW\�RYHU�
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V\QWKHWLF� GDWD� LQ� WKH� PHDQV� RI� IHHGLQJ� WKHP� WR� WKH� PRGHO�� 2QFH� DQG� XQWLO� QR� UHDO� VDPSOH� LV� QHHGHG� WR� EH�
SURFHVVHV��EXIIHU� LQFUHPHQWDOO\� VXSSOLHV� WKH�PRGHO�ZLWK�V\QWKHWLF�GDWD� WKDW�DUH�EHLQJ�SLFNHG�UDQGRPO\�� L�H�� WKH�
EXIIHU�LV�EHLQJ�VKXIIOHG��

�
Figure 1.  Framework for on-line learning from scratch using synthetic data. X refers to an input sample that is fed 
to the model and recognized. The information from the recognition process is then used for the learning and new 

data are added to the model (the model is evolving). The solid line refers to the processing of real samples, where 
based on recognition the system gives an output Y of a predicted label. The dashed line refers to the additional 

processes related to the generation of synthetic data. 
�

,GHDOO\��HDFK�WLPH�D�QHZ�FODVV�LV�LQWURGXFHG��D�QXPEHU�RI�VDPSOHV�DUH�SURYLGHG�WR�WKH�V\VWHP�WR�DOORZ�LW�
WR� OHDUQ� WKHVH�FODVVHV� IDVWHU��7KLV� IUDPHZRUN� LV� WKXV�FRSLQJ�ZLWK� WKLV�SUREOHP��DYRLGLQJ� WKH�VLQJOH�FODVV�EORFN�
OHDUQLQJ�ZKHUH�LW�LV�QRW�DSSURSULDWH�E\�VKXIIOLQJ�LWV�EXIIHU��,Q�WKH�UHVXOWV�VHFWLRQ��ZH�ZLOO�QRWH�WKDW�HYHQ�WKRXJK�
ZH�GR�QRW�OHDUQ�FODVVHV� LQ�EORFNV�ULJKW�DIWHU�WKHLU�RFFXUUHQFH�� WKLV� IUDPHZRUN�LV�DEOH�WR�VXVWDLQ�WKH�UHFRJQLWLRQ�
UDWH�DW�WKH�EHJLQQLQJ�RI�WKH�OHDUQLQJ�DW�WKH�VDPH�OHYHO�DV�WKH�LGHDO�FDVH��
�
3. Log-normal model for artificial handwritten data  
7KH� 6LJPD�ORJQRUPDO� PRGHO� LV� EDVHG� RQ� WKH� .LQHPDWLF� 7KHRU\� RI� UDSLG� KXPDQ� PRYHPHQWV� GHVFULELQJ� WKH�
LPSXOVH�UHVSRQVHV�RI�D�QHXURPXVFXODU�QHWZRUN��3ODPRQGRQ�HW�DO���������,W�LV�FRPSRVHG�RI�D�QXPEHU�RI�YHFWRUV�
ZLWK���SDUDPHWHUV�p = [t଴, D, Ɋ,ɐ, Ʌୱ, Ʌୣ]��'HWDLOV�DERXW�WKH�YDULRXV�HTXDWLRQV�RI�WKH�PRGHO�KDYH�EHHQ�SUHVHQWHG�
TXLWH�RIWHQ�DQG�ZH�UHIHU�WKH�UHDGHU�WR�WKH�SUHYLRXV�UHIHUHQFH�IRU�PRUH�LQIRUPDWLRQ��

(DFK�WLPH�QHZ�VDPSOH�FRPSRVHG�RI�FRRUGLQDWHV�LV�LQWURGXFHG�WR�WKH�V\VWHP��6LJPD�ORJQRUPDO�PRGHO�LV�
GHULYHG� EDVHG� RQ� LWV� WUDMHFWRU\��$IWHU� WKLV�� D� QRLVH�nஜ א [െ0.15Ɋ, 0.15Ɋ]��n஢ א [െ0.15ɐ, 0.15ɐ]� UHVXOWLQJ� LQWR�
YHFWRU�ൣ0, 0, nஜ, n஢, 0, 0൧��0DUWLQ�$OER��������LV�DGGHG�WR�WKH�ORJQRUPDO�PRGHO��7KHQ��6LJPD�ORJQRUPDO�PRGHO�LV�
WUDQVODWHG�EDFN�WR�WKH�FRRUGLQDWHV�WKDW�DUH�XVHG�IRU�IHDWXUH�H[WUDFWLRQ��,Q�WKLV�ZRUN�ZH�XVH�JHRPHWULFDO�IHDWXUHV�
EDVHG�RQ� �5H]QDNRYD��������:LOOHPV��������3HXUD��������5XELQH���������$V�ZH�FDQ�QRWLFH� LQ�)LJXUH���� WKHVH�
VDPSOHV��QRZ�UHSUHVHQWHG�E\�D�IHDWXUH�YHFWRUV��DUH�WKHQ�VXSSOLHG�WR�WKH�EXIIHU�DZDLWLQJ�WKHLU�IXUWKHU�XVH��
�
4. ARTIST  
7KH�$57,67�PRGHO�LV�EDVHG�RQ�7DNDJL�6XJHQR�IX]]\�PRGHO��7DNDJL�DQG�6XJHQR���������,W�FRQWDLQV�WKUHH�PDLQ�
SDUWV��L�H��UXOH�JHQHUDWLRQ��DQWHFHGHQW�SDUW�DQG�FRQVHTXHQW�SDUW��76�PRGHOV�DUH�UHSUHVHQWHG�E\�UXOHV��ZKHUH�HDFK�
UXOH�JLYHV�DQ�RXWSXW�IRU�HYHU\�FODVV��7KH�RXWSXW�RI�RQH�UXOH�LV�GHULYHG�IURP�DQWHFHGHQW�DQG�FRQVHTXHQW�SDUWV������
7KH� DQWHFHGHQW� SDUW� VWDWHV�� KRZ� PXFK� DQ� XQODEHOHG� VDPSOH� LV� VLPLODU� WR� VDPSOHV� WKDW� KDYH� FUHDWHG� WKLV� UXOH�
����7KHQ�ܽ ܵܫ ݔ� WKH�FRQVHTXHQW�SDUW�UHWXUQV�WKH�RSLQLRQ�RI�WKLV�UXOH�DERXW�WKH�ODEHO�RI�WKH�VDPSOH��ܶݕ} ܰܧܪ௜ =
���௜}௜ୀଵ..௖ߨݔߚ
�

௜ݕ} ܰܧܪܶ ܽ ܵܫ ݔ ܨܫ = �௜}௜ୀଵ..௖ߨݔߚ
�
7KH�JHQHUDWLRQ�RI�WKH�UXOHV�LV�EDVHG�RQ�$57��$�QHWZRUN��&DUSHQWHU���������7KLV�DOORZV�JHQHUDWLQJ�WKH�UXOHV�LQ�
DQ�LQFUHPHQWDO�PDQQHU��ZKHUH�WKH�FODVVHV�GR�QRW�QHHG�WR�EH�SUH�GHILQHG�DQG�FDQ�EH�DGGHG�RQ�WKH�IO\��0RUHRYHU��
UXOHV�DUH�QRW�JHQHUDWHG�ZLWK�WKH�LQIOXHQFH�RI�LQIRUPDWLRQ�DERXW�QHZO\�DGGHG�FODVV��EXW�LQ�D�FRPSOHWHO\�DXWRPDWLF�
ZD\��
5. Results  
,Q�WKLV�ZRUN��ZH�IRFXV�RQ�UHDO�WLPH�RQ�OLQH�OHDUQLQJ�IURP�VFUDWFK��7KLV�PHDQV�WKDW�QR�SUH�SURFHVVLQJ�KDV�WDNHQ�
SODFH�EHIRUH�WKH�LQLWLDWLRQ�RI�UHFRJQLWLRQ�DQG�OHDUQLQJ�SURFHVV��0RUHRYHU��HDFK�FODVV�LV�LQWURGXFHG�RQ�WKH�IO\�E\�
UDQGRP� RUGHU�� PRVWO\� FUHDWLQJ� QR� WLPH� IRU� PRUH� WKDQ� RQH�VDPSOH� OHDUQLQJ�� 7KLV� RFFXUV� HVSHFLDOO\� DW� WKH�
EHJLQQLQJ�RI�WKH�OHDUQLQJ�SURFHVV��ZKHQ�RQO\�IHZ�VDPSOHV�DUH�NQRZQ�WR�WKH�V\VWHP��DQG�WKXV�WKH�UHFRJQLWLRQ�LV�
ZHDN��7KXV��E\�XVLQJ�V\QWKHWLF�GDWD��ZH�WU\�WR�VROYH�WKLV�SUREOHP��DQG�DV�ZH�FDQ�VHH�LQ�IROORZLQJ�UHVXOWV��XVLQJ�
WKH�6LJPD�ORJQRUPDO�PRGHO�LV�KHOSIXO��

:H�SHUIRUP�RXU�HYDOXDWLRQ�RQ�D�KDQGZULWWHQ�JHVWXUHV�GDWDVHW��6\QFKURPHGLD��FRQWDLQLQJ�a��N�VDPSOHV�
IRU� ��� FODVVHV�� ,Q� WKLV�ZRUN�KRZHYHU��ZH� XVH�RQO\� D� IHZ� VDPSOHV� WR�EHWWHU� GHPRQVWUDWH� WKH� HQKDQFHPHQW� WKDW�
XVLQJ�V\QWKHWLF�GDWD�RIIHUV��

����
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� �� �
Figure 2. Comparison of recognition rate when using only original data to the use of synthetic data, without (a) 

and with (b) highlighted times of addition of new class (dots). 
�

,Q�)LJXUH��D��ZH�FRPSDUH�WKH�LQLWLDO�OHDUQLQJ�ZLWK�WKH�XVH�RI�SXUHO\�RULJLQDO�GDWD�WR�WKH�LQLWLDO�OHDUQLQJ�
XVLQJ� DOVR� V\QWKHWLF� GDWD� EDVHG� RQ� RXU� SURSRVHG� IUDPHZRUN�� ,Q� UHDO�XVH�� WKHUH� LV� QR� IL[HG� WLPH� OHIW� IRU� WKH�
OHDUQLQJ� RI� V\QWKHWLF� GDWD�� L�H�� WKH� WLPH� EHWZHHQ� WZR� FRQVHFXWLYH� RULJLQDO� VDPSOHV�� 7R�PLPLF� WKLV��ZH� OHW� WKH�
V\VWHP� VHOHFW�D� UDQGRP�QXPEHU�RI� VDPSOHV� IURP� WKH�EXIIHU�ZLWKLQ�D� UDQJH� >��� _EXIIHU_@�� WKDW�DUH�DOORZHG� WR�EH�
OHDUQHG�LQ�WKH�WLPH�EHWZHHQ�WZR�FRQVHFXWLYH�RULJLQDO�VDPSOHV�DUH�DGGHG��$V�LW�FDQ�EH�VHHQ��WKH�XVH�RI�V\QWKHWLF�
GDWD� KHOSV� WKH� V\VWHP� WR� OHDUQ� QHZ� FODVVHV�PXFK� IDVWHU��ZKLFK� UHVXOWV� LQWR� KLJKHU� LQLWLDO� UHFRJQLWLRQ� UDWH�� L�H��
DYRLGLQJ�GURS�LQ�WKH�UHFRJQLWLRQ�UDWH�DIWHU�QHZ�FODVV�LV�LQWURGXFHG��,Q�)LJXUH��E��ZH�FRPSDUH�WKH�WZR�PHWKRGV�
ZLWK�KLJKOLJKWHG� WLPH�RI�ZKHQ� QHZ�FODVVHV� DUH� DGGHG� WR� WKH� V\VWHP��$V�ZH� FDQ� QRWH�� DW� WKH�EHJLQQLQJ�RI� WKH�
OHDUQLQJ�SURFHVV��WKH�UHFRJQLWLRQ�UDWH�VHHPV�WR�EH�YHU\�KLJK��7KLV�LV�EHFDXVH�ZKHQ�D�QHZ�FODVV�LV�LQWURGXFHG�WR�
WKH�V\VWHP��QR�RXWSXW�LV�H[SHFWHG��DQG�WKXV�QR�HUURU�LV�UHFRUGHG��$V�LW�LV�FOHDU�IURP�WKH�JUDSK��PRVW�RI�WKH�FODVVHV�
KDYH� EHHQ� LQWURGXFHG� DW� WKH� EHJLQQLQJ�� ZKLFK� DOVR� LQIOXHQFHV� WKLV� SKHQRPHQRQ�� EXW� KHUH� DJDLQ� WKH� XVH� RI�
V\QWKHWLF�GDWD�LV�EHQHILFLDO��

�
Figure 3. Comparison of recognition rate between block and buffer-based learning.�

�
,Q�)LJXUH����ZH�FRPSDUH� WKH� LQLWLDO� UHFRJQLWLRQ�UDWH�ZLWK�EORFN� OHDUQLQJ�� L�H�� WKH� V\VWHP� OHDUQV�DOO� WKH�

V\QWKHWLF�GDWD� IRU�HDFK�QHZO\�DGGHG�VDPSOH�� WR� WKH�UHFRJQLWLRQ�UDWH�ZKHQ�XVLQJ�EXIIHU�� L�H�� UDQGRP�QXPEHU�RI�
UDQGRPO\�SLFNHG�V\QWKHWLF�VDPSOHV�IURP�D�EXIIHU�DUH�DOORZHG�WR�EH�OHDUQHG��$V�LW�FDQ�EH�VHHQ��WKH�EXIIHU�OHDUQLQJ�
DSSURDFK�LV�DV�HIILFLHQW�DV�WKH�EORFN�OHDUQLQJ��ZLWK�WKH�EHQHILW�RI�ZRUNLQJ�UHDO�WLPH��

$OO�UHVXOWV�H[FHSW�)LJXUH��E�DUH�DQ�DYHUDJH�RI����GLVWLQFW�UXQV��,Q�DOO�UHVXOWV��ZH�FDQ�FOHDUO\�QRWH�WKDW�
XVLQJ� 6LJPD�ORJQRUPDO� PRGHO� IRU� JHQHUDWLRQ� RI� V\QWKHWLF� GDWD� LPSURYHV� WKH� UHFRJQLWLRQ� UDWH� LQ� WKH� LQLWLDO�
OHDUQLQJ��(DFK�RULJLQDO�VDPSOH�LV�XVHG�WR�JHQHUDWH�DGGLWLRQDO����VDPSOHV��7KLV�ZKROH�SURFHVV�WDNHV�RQ�DYHUDJH�
������V��7KH�VL]H�RI�WKH�EXIIHU�LV�XQOLPLWHG��HPSW\LQJ�DW�UDQGRP�RFFDVLRQV��ZKLFK�VLPXODWHV�WKH�UHDO�XVH��
�
6. Conclusion and discussion  
7KH�PDLQ�JRDO�RI�WKLV�ZRUN�ZDV�WR�VROYH�WKH�SUREOHP�RI�ORZ�SHUIRUPDQFH�LQ�UHFRJQLWLRQ�DW�WKH�LQLWLDO�SKDVH�RI�WKH�
OHDUQLQJ��7KH�PDLQ�FDXVHV�RI�WKLV�SUREOHP�DUH�UHODWHG�WR�OHDUQLQJ�IURP�VFUDWFK�DQG�RQ�WKH�IO\��+RZHYHU��ERWK�RI�
WKHVH�IHDWXUHV�DUH�QHFHVVDU\�IRU�XVHU�IULHQGO\�DSSOLFDWLRQV��ZKHUH�WKH�XVHU�LV�OHW�WR�NHHS�KLV�IUHHGRP�RI�FKRLFH�LQ�
ZKDW�V\PEROV�KH�ZLOO�XVH�RQ�KLV�GHYLFH��

,Q�WKLV�ZRUN��ZH�SURSRVHG�WR�XVH�V\QWKHWLF�GDWD�EDVHG�RQ�6LJPD�ORJQRUPDO�PRGHO��$OVR��ZH�SURSRVHG�D�
QHZ�IUDPHZRUN�XVLQJ�VKXIIOHG�EXIIHU�LQ�RUGHU�WR�IROORZ�WKH�UHDO�WLPH�XVH�RI�WKH�UHFRJQLWLRQ�V\VWHP��ZKHQ�WKHUH�LV�

b) a) 
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QR� URRP� WR� SRVWSRQH� LWV� UHVSRQVHV�� )RU� HYDOXDWLRQ�� ZH� KDYH� XVHG� D� UDQGRP� VXEVHW� RI� WKH� VDPSOHV� IURP�
KDQGZULWWHQ�V\PEROV�GDWDEDVH�LQ�RUGHU�WR�VKRZ�WKH�SHUIRUPDQFH�RI�RXU�SURSRVLWLRQV�IRU�WKH�LQLWLDO�SKDVH�RI�WKH�
OHDUQLQJ�SURFHVV��

:H� KDYH� VKRZQ� WKDW� WKH� XVH� RI� V\QWKHWLF� GDWD� LQGHHG� KHOSV� WR� LQFUHDVH� WKH� SHUIRUPDQFH�ZKLFK� LV� VR�
QHHGHG�IRU�RQ�OLQH� OHDUQLQJ�DQG�UHFRJQLWLRQ��:H�KDYH�DOVR�VKRZQ�WKDW� WKH�XVH�RI�EXIIHU�KHOSV� WR� UHWDLQ�VLPLODU�
OHYHO�RI�UHFRJQLWLRQ�UDWH�DV�FRPSDUHG�WR�WKH�EORFN�OHDUQLQJ��

,Q�RXU�IXWXUH�ZRUN��ZH�ZLOO�IRFXV�RQ�WKH�DGMXVWPHQW�RI�QRLVH�DGGHG�WR�WKH�6LJPD�ORJQRUPDO�PRGHO��WR�EH�
PRUH�VXLWHG�IRU�WKH�SXUSRVH�RI�V\QWKHVLV�RI�KDQGZULWWHQ�V\PEROV��$OVR�ZH�ZLOO�ZRUN�RQ�DGMXVWLQJ�WKH�QXPEHU�RI�
JHQHUDWHG�V\QWKHWLF�GDWD�� LQ�RUGHU� WR�HQKDQFH� WKH�V\VWHP�DQG�DW� WKH�VDPH�WLPH� WR�SUHYHQW�ELJ�DPRXQWV�RI�GDWD��
$QRWKHU�VWXG\�RI�LQWHUHVW�ZLOO�EH�WR�H[SORUH�WKH�EHKDYLRXU�RI�WKH�V\VWHP�ZKHQ�QRLV\�GDWD�DUH�EHLQJ�V\QWKHVL]HG��
�
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Abstract. 
The development of predictive tools has been commonly utilized as the most effective manner to prevent illnesses that 
strike suddenly. Within this context, investigations linking fine human motor control with brain stroke risk factors are 
considered to have a high potential but they are still in an early stage of research. The present paper analyses 
neuromuscular features of oscillatory movements based on the Omega-Lognormal model of the Kinematic Theory. On a 
database of oscillatory movements from 120 subjects, we demonstrate that the proposed features differ significantly 
between subjects with and without brain stroke risk factors. This promising result motivates the development of 
predictive tools based on the Omega-Lognormal model. 
 
1. Introduction  
A brain stroke, or cerebrovascular accident, is 
characterized by the sudden manifestation of combined 
cerebral circulatory disorders that negatively affect the 
vasculature of the brain. A brain stroke episode results in 
necrosis of certain brain cell types, which causes 
irreversible damage to an array of neurological functions in 
22% to 25% of the patients and death within one year for 
25% of the patients [1]. Approximately 795.000 people 
experience a new or recurrent stroke annually. Therefore, 
on average, someone dies of a stroke every 4 minutes [2]. 
Furthermore, brain strokes are sudden events and most of 
the time they occur unexpectedly. An effective method of 
addressing this medical issue is therefore prevention 
through the development of predictive tools. Handwriting 
recognition tools have emerged as one such possible 
solution [3, 4]. It is not the first time that pattern analysis 
of fine motor control is employed in disease prevention. 
Noticeable results have been achieved previously in the 
prevention of other diseases, such as Parkinson disease [5] 
or Schizophrenia [6]. 
It has been reported recently that some brain stroke risk 
factors can be associated with the deterioration of several 
cognitive psychomotor characteristics [7], which are 
obtained from the lognormal handwriting model of the 
Kinematic Theory [8, 9, 10]. In this paper, we focus on one 
of the movement modalities suggested in [7], namely 
oscillatory movements at maximum frequency, and 
investigate the feasibility of developing predictive tools in 
more detail. The study and analysis of oscillatory 
movements has a strong history in human motor control, 
from a theoretical and model perspective [11, 12, 13] to 
applications in various field [13, 14]. 
To achieve our goal, a database containing the handwriting 
movements of 120 subjects with and without brain stroke 
risk factors is analysed using the Omega-Lognormal model 
[7]. We propose a set of seven neuromuscular features 
based on the model and demonstrate with ANOVA tests 
that four of these differ significantly between subjects with 
and without risk factors. The results obtained can be 

considered as an initial step towards the development of a 
tool to determine if the performer of oscillatory 
movements has brain stoke risk factors or not. 
The remainder of this paper is organized as follows. First, 
the experimental protocol for the acquisition of oscillatory 
movements is detailed in Section 2. Then, the data analysis 
based on the Omega-Lognormal model and the proposed 
neuromuscular features are presented in Section 3. Finally, 
experimental results are provided in Section 4 and 
conclusions are drawn in Section 5. 
 
2. Experimental Protocol 
For the assessment of the proposed method, a database 
containing digitized information of oscillatory movements 
from 120 subjects was used. Within the database, 57 
subjects considered as healthy are mixed with 63 
exhibiting some of the following brain stroke risk factors 
(abbreviation, number of subjects affected): diabetes 
mellitus (DM; 15), obesity (OB; 10), hyper-tension (HT; 
40), hypercholesterolemia (HC; 28), cardiac disease (CD; 
24), and cigarette smoking (CS; 13). From these 63 
participants, 25 had only one risk factor, 18 had two, 12 
had three, 7 had four, and 1 had five. In order to evaluate a 
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wide age rage, 27 of the participants are between 25 and 39 
years old, 31 are between 40 and 54, 33 are between 55 
and 69 and 29 are between 70 to 85 years old. Moreover 
the distribution among genders is almost balanced as the 
sample contains 68 women and 52 men. 
During the performance of the trial, a Wacom Intuos2 
tablet was used to digitize the 2D Cartesian coordinates of 
the pen tip at a sampling frequency of 200 Hz. 
To accomplish the trial, the subjects were asked to perform 
oscillatory movements with the pen tip as fast as possible 
between two targets during ten seconds, after a start 
signaled by an auditory cue. Additionally, guiding sheets 
were used to indicate to the participants the starting 
position and the targets to hit as illustrated in Figure 1. The 
movements were performed with the dominant hand. 112 
participants reported themselves as right-handed. 
It is also important to mention that no practice or learning 
period was allowed before the exercise and only one 
acquisition of data was permitted. After removing outliers, 
115 subjects were kept in the database. More information 
about the database can be found in [7]. 
 
3 Data Analysis 
 
3.1 Omega-Lognormal Model 
The Kinematic Theory of rapid human movements is a set 
of models that describe human handwriting movements 
using a unique framework based on the delta-lognormal 
law. A basic unit representing a pen stroke is built up from 
lognormals. These models grant a fitting reconstruction of 
handwriting velocity profile [15]. Amid this set, the 
Omega-Lognormal model, which analyses the motion of 
alternating sequences of lognormals, is the most 
appropriate model to analyse oscillating movements in one 
dimension. It has already been employed in previous 
studies [7] and is defined by: 
 

ΩΛ = ! !!!Λ! ! − !!"!; !!!! , !!!! −!
!

!!!
!!!Λ! ! − !!"!; !!!! , !!!! !

!

!!!
 

!
with! N −M ∈ 0,1 !and!Λ ! − !!!; !!! , !!! !defined!as:! 
 
 Λ = !

!! !!!(!!!!)
exp((!" !!!! !!!)!

!!!!!!
) 

 
The individual pen strokes are initialized at time !! and the 
distance covered is !. The parameters ! and !!are related 
to the neuromuscular execution of the pen stroke. 
Oscillatory movements are modelled as a sequence of 

alternating pen strokes in opposite direction. 
For parameter extraction from the original pen trajectory, a 
modified version of the Robust Xzero extractor was used 
[16, 17]. In order to evaluate the quality of the model, the 
signal-to-noise ratio is computed as a measure of similarity 
between the original velocity !!"# and the reconstructed 
velocity !!"# [8]: 
 

!"# = 10 log ! ! !!"#!! !"
(!!"# − !!"#)! !"

 

 
Figure 2 shows an example of a well-fitted velocity 
reconstruction using the Omega-Lognormal model. In 
order to reach a more precise SNR, the original digitized 
data was first interpolated and low-pass filtered to remove 
high frequency components introduced during the 
digitization.  
 
3.2 Outlier Removal 
Since the parameter extraction software finds local 
minimal solutions, possible outliers or unusual values 
generated during the digitizing stage or the parameter 
extraction process have been removed.  
A certain transient period at the beginning of the signal 
could be considered as less stable since the trials were 
performed without previous training. Also, the last 
movements of the writers could be affected and 
consequently altered by muscular fatigue due to the 
process itself. Hence, the three first and the three last 
lognormals were removed to minimize these fluctuations. 
An approximate distance of 180 mm separated the outer 
limits of the two target zones. Since some writers could 
execute the pen strokes in a somewhat diagonal or even 
bending fashion, the effective distance covered by the pen 
could be somewhat larger than 180mm. Additionally, 
taking into account that the model parameter ! reflects the 
pen stroke distance without the influence of the next pen 
stroke in opposite direction, a final value of 200 mm was 
considered as an upper bound for this parameter. Similarly, 
a lower bound of 45mm has been fixed, which is a bit less 
than the distance between the inner limits of the target 
zones. 
Finally, a minimum SNR was required for each lognormal 
to be taken into account. Several reports have pointed out 
that a quality over 15 dB is sufficient for human movement 
analysis [10]. 
After this process 8326 lognormals remained from the 
original database containing 9412 (11,53% of the 
lorgnormals have been removed). From this percentage, 
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7,33% of the lognormals were removed from the extremes 
directly and 4,2% were removed because they did not fit 
within the limits mentioned above. 
At the end of the cleaning process several lognormals still 
remain for all writers. However, if the remaining number 
of lognormals is low, a statistical analysis may not be 
reliable. This could be either due to a large number of 
removed outliers or due to an unusual number of pen 
strokes during the experiment. All writers with less than 15 
lognormals (4 writers) have been excluded from the 
database. 
 
3.3 Proposed Features 
In order to potentially discriminate between subjects with 
and without brain stroke risk factors, we propose a set of 
seven neuromuscular features based on the Omega-
Lognormal model: 
- !, !,!: The first three features correspond directly with 
model parameters, that is the neuromuscular input 
command D, which correspond to the pen stroke distance  
(when executed in isolation without influence of the next 
pen stroke in opposite direction) and the two parameters ! 
and ! related to the logtime delay and the logresponse time 
of the neuromuscular system responding to the command. 
- Δ!!, !!: The two next features describe the frequency of 
the pen strokes. Δ!! is the time difference between the !! 
parameters of two consecutive lognormals and !! is the 
dominant frequency extracted by means of fast Fourier 
transform (FFT). The FFT has been computed with Matlab 
over the reconstructed signal using 1024 points. Most of 
the subjects present various components in the frequency 
domain; !! corresponds to the frequency of the component 
with the maximum power. 
- !"#, !"#/!"#$%: The final two features are concerned 
with the model quality. !"# is the signal-to-noise-ratio 
(see Section 3.1) and !"#/!"#$% is normalized with the 
number of lognormals. 
For the features !, !,!, and Δ!! the mean value of the 
lognormals is considered for each oscillatory movement. 
 
4 Experimental Evaluation 
 
4.1 Statistical Analysis 
In an experimental evaluation, we aim to demonstrate that 
the proposed neuromuscular features differ between the 
groups of subjects with and without brain stroke risk 
factors. To that end, we perform a one-way ANOVA test 
for each feature. The null hypothesis that the population 
means are the same is rejected if, for at least one of the 
features, the p-value is 

 

! < 0.05
7 = !0.0071 

 
taking into account the commonly used significance level 
! = 0.05 and considering the Bonferroni correction, that is 
an adjustment for multiple parameter testing (7 tests in our 
case, one for each feature) which compensates for the fact 
that a significant result could be observed by chance. 
 
4.2 Results 
Table 1 displays the results obtained from the one-way 
ANOVA tests. Distributed horizontally in columns, the 
table shows all the features considered in this paper. 
Beneath each feature, the corresponding p-value is 
displayed. Likewise, the mean of the considered features is 
presented for subjects with and without rick factors (RF) in 
the table. 
Significant results taking into account the Bonferroni 
correction are marked in bold. In four out of seven cases, 
the tests are significant, demonstrating that the proposed 
neuromuscular features, indeed, differ between subjects 
with brain stroke risk factors and subjects without risk 
factors. 
The results obtained for the individual tests reveal which 
features are most discriminative to classify writers with 
respect to their brain stroke risk factors condition and 
which are less discriminative. Each of the three groups of 
features (see Section 3.3) contains at least one significant 
test result. The lowest p-values are reported for the second 
group of features related to the frequency of lognormals. 
The mean frequency is significantly lower for subjects 
with risk factors, that is they could not execute the 
oscillatory movements as fast as the subjects without risk 
factors. In the first group of features, the ! parameter of 
the Omega-Lognormal model has proven to be most 
discriminative and in the third group, the normalization of 
the !"# with the number of lognormals was necessary to 
achieve a significant result in accordance with previous 
studies [8, 19, 20]. 
In order to develop predictive tools based on the Omega-
Lognormal model, these features could be pointed out as 
discriminative with respect to brain stroke risk factors. A 
combination of these features is expected to provide the 
best prediction result. 
 
 
5 Conclusions 
In this paper, we have investigated possible links between 
fine human motor control and brain stroke risk factors with 

Table 1: ANOVA test p-values for the proposed features 

 ! ! ! !!! !! !"# !"#/!"#$% 

P-value 
 
 

0.0285 0.1545 7.21e-05 2.13e-05 2.02e-07 0.326 1.99e-05 

Mean 
without RF 
 

124.6 -0.171 0.041 0.115 5.0 20.4 0.27 

Mean with 
RF 

116.2 -0.172 0.059 0.170 3.5 21.1 0.46 
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a view to prediction tools. We have focused our study on 
oscillatory movements at maximum frequency and 
proposed a set of seven neuromuscular features based on 
the Omega-Lognormal handwriting model that aim to 
distinguish subjects with risk factors from subjects without 
risk factors. 
A database including 120 subjects, highly balanced in 
terms of gender, brain stroke risk factors, and age range 
has been analysed based on the Omega-Lognormal model. 
One-way ANOVA tests with Bonferroni correction have 
demonstrated that the features differ, indeed, between 
subjects with and without risk factors. 
The results highlight the possibility of developing 
predictive tools based on some of the proposed features. 
The application of pattern recognition and machine 
learning techniques using the most discriminative features 
of the model seem to be the next natural step in this 
process. 
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Abstract. The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a 
patient’s  health  by  analyzing  handwritten  strokes. We use a cloud computing approach to analyze stroke data 
sampled on a commercial tablet working on the Android platform and a distant server to perform complex 
calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the 
data and to ease the development of the project. The communication between the tablet, the cloud and the 
server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests 
are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the 
first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used 
to classify the data obtained by the free drawing test. The functions presented in this paper are still currently 
under development and other improvements are needed before launching the application in the public 
domain. 

 
1. Introduction 
Over the years, at Scribens Laboratory, we have developed algorithms for extracting lognormal parameters that 
describe handwriting movements. The study of the evolution of these parameters over a longer period of time 
would allow us to analyze changes in a  user’s neuro-motor skills. We could monitor the improvements of a child 
learning to write or detect the loss of neuro-motor skill. These programs were until now restricted to Wacom 
tablets connected to standard computers and screens. The goal of this work is to transfer the software to a 
portable Android tablet touch screen to eventually make it more easily accessible to physicians and clinicians. 

To accomplish this, Polytechnique Montréal and the Computer Vision Center (Barcelona, CVC) have 
initiated a collaborative project that aims to create an Android application that is able to: 

x Analyze  a  patient’s  handwriting  strokes  to  determine  relevant  biomedical  data  (Polytechnique  Montréal);; 
x Recognize specific patterns or shapes from a  patient’s drawing or writing (CVC). 

Once completed and fully integrated, this application will be used as a tool for biomedical research. The 
effects of young children (5-7 years old) learning to write and the effects of aging have already been proven 
(Plamondon et al. 2013). Another important application for this tool is to characterize a patient’s   health and 
follow its progression through time (O’Reilly et al. 2010). 

The pattern recognizer developed by the CVC is included in the application to perform word or drawing 
spotting to assess the potentiality of recovering the same biomedical information about a subject state 
(learning/aging/health) without the boundaries of a highly parameterized test. If this hypothesis is confirmed, a 
whole new area of possible applications could be created. 
 
2. Implementation choices and project definition 
By using the Android platform, which is very popular for new electronic tablet and smart phone technology, the 
application will be highly accessible to a very large portion of the targeted population. A Samsung Galaxy Note 
10.1 2014 edition was used to test the application. 

Because the two algorithms used in the application to analyze biomedical data, namely the Delta-
lognormal and Sigma-lognormal algorithms (Plamondon et al. 2009), require a lot of resources (memory, 
computation power), a distant server is used to take over the analysis and the digitizer (tablet, smart phone, etc.) 
serves as an acquisition module with a user interface. 

This interface first presents itself to the user with two main choices: biomedical tests and free drawing 
session. The first choice leads to a panel of options representing different predefined highly parameterized and 
bounded tests that are currently used at the Scribens   laboratory  (O’Reilly  et al. 2014) while the second choice 
leads to a free drawing area. Here, a shape recognizer algorithm detects shapes, and the associated relevant 
information  about  the  subject’s  strokes  is retrieved afterwards. 
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The choice of the shapes for the recognizer to detect is important because we must confirm that a free 
drawing stroke is similar to a stroke made within a highly parameterized test. The triangle is a good example of 
shape that can be used (O’Reilly   et al. 2011). Therefore, we first focused on the triangle as a shape to be 
recognized. Other shapes may be defined later on, and the platform’s modular design allows for easy integration 
of new options. The database in the cloud will also have to be organized such that the data corresponding to a 
specific type of freehand or constrained drawing of a particular shape are easy to recover and analyze. 

A Google Drive account was used as a cloud to facilitate the communication between the digitizer and the 
server. This approach has the advantage of storing all the relevant data in a cloud which allows the application 
part of the project to be developed independently from the server part. It also procures a facilitated way to 
transfer and store the data files via  Google’s  application  programming  interfaces  and file manipulation options.  

 
3. Digitizer using the Android platform 
This section presents the user interface developed on the Android platform to acquire biomedical data from user 
handwriting strokes. The tablet used for this project is the Samsung Galaxy Note 10.1 2014.  The first thing that 
we did was replace the SPencanvas data acquisition class with a standard canvas, written in Java, which 
increased the sampling frequency from 25 to 60 Hz. Then, we focused our efforts on designing three tests: the 
single stroke test, the triangle test and the free drawing area. 

The single stroke test is quite simple: after hearing an audio stimulus, the user must perform a single rapid 
movement from a black dot at the centre of the screen (start zone) to one of the grey areas situated on either side 
of the screen (end zones) (Figure 1a). 

Figure 1b presents the second biomedical test available on the application, the triangle shape test. The 
user must draw the triangle shape appearing on the screen using a single sequence of strokes. This shape is 
defined by three circles that represent the corners of the triangle and by three coloured bands that form the edges 
of the triangle. The user must start their stroke within the circle identified with tag 1, reach the circle tagged with 
the number 2 and then the one tagged with a 3 before finishing their stroke back in the first circle. Like the 
previous test, the stroke must not be drawn until the audio stimulus is launched. 

Those two interfaces contain a drawing area (1) where the user must execute the test, a Tutorial button (2) 
to assist the user by presenting tutorial slides and finally a Settings button (3) to be able to modify the test 
settings. The Help button (4) appears only when a user needs to be reminded of the test rules. The last button (5), 
with  the  user’s  name, is used to access the user settings and to log out from the application. This last button is 
always available throughout the application except from the login interface. 

Figure 1c presents the free drawing interface, which shows a drawing area, a Settings button to change 
parameters such as the colour of the pen used, and  the  user’s  name  button.  It  also  has  a  Delete button (6) to erase 
the drawing area and start a new drawing. Functionalities such as saving a drawing or editing a line (without 
changing the relevant biomedical data) could be added in the future to increase the interface’s  user-friendliness. 

 

 
Figure 1: a) the simple stroke test interface, b) the triangle shape test interface and c) the free drawing interface. 

 
The first two interfaces are highly parameterized, and the properties of the geometrical features and of the 

audio stimulus signal can be modified when accessing the settings menu with the appropriate button (3 on 
Figures 1a and 1b). Table 1 presents the properties that can be modified for each of the two interfaces and the 
audio stimulus signal with their associated default values in parentheses. This allows the experimenter to adjust 
the two tests for each user if necessary. For example, if a particular user suffers from Parkinson’s  disease,   the  
start zone radius of the interfaces may need to be augmented to accommodate them. 

 
Table 1: The settings of the two interfaces including the properties of the audio stimulus signal. Default values 

follow the setting in parentheses. 
Simple stroke test interface 
Velocity threshold (50 mm/s), start zone radius (2.5 mm), end zone inner radius (20 mm), end zone outer radius 
(50 mm), end zone angle (45°), start zone colour (black), end zone colour (grey) 
Triangle test interface 
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Velocity threshold (50 mm/s), first circle radius (10 mm), second and third circle radius (10 mm), triangle 
radius (40 mm), edge width (20 mm), triangle orientation (0°), first circle colour (green), second and third circle 
colour (blue), edge colour (turquoise) 
Audio stimulus signal 
Frequency (1000 Hz), duration (0.5 s), minimum start time (1 s), maximum start time (10 s), volume (50%) 

 
The velocity threshold parameter is used to limit the movement at the beginning of the stroke before the 

movement is initialized. The end zone angle parameter in the simple stroke test interface represents the angle of 
the end  zone’s  arc  divided  by  two.    For  the  triangle test interface, the triangle orientation parameter is the angle 
between the horizontal line that splits the screen in half on its height and the centre of the first circle. The 
minimum and maximum start time associated with the audio stimulus signal represent the limits of the uniform 
distribution of the delay before the audio stimulus is launched. The delay value is picked randomly in this 
distribution. Every kind of error is distinguished and the strokes containing any errors are identified with a 
corresponding tag. Those tags are principally used to identify, on the server side of the project, the strokes 
containing errors, and to analyze them apart from the strokes that were performed correctly. 

The purpose  of  the  application’s  free drawing section is to assess the hypothesis that strokes that are not 
bound to follow specific rules like the ones used in the biomedical tests (start and stop in specific boundaries, 
start the stroke at a specific time, etc.) can also be used to analyze a  user’s biomedical parameters. In order to do 
that, the free drawing interface only presents a blank drawing area where the user is asked to draw triangles 
(Figure 1c). Since this shape is already used as a parameterized test, comparison between the data acquired by 
the triangle test and the data acquired with the free drawing test can provide useful insight on the validity of the 
free drawing data type. The rectangle or circle are other basic shapes that could also be incorporated to this 
application to be recognized and analyzed. We are considering a new function that could draw basic flow charts 
based on the recognition of a few of these basic shapes while at the same time recovering the necessary 
biomedical information. We may investigate this in the near future. 

The data associated with the stroke is saved in an .hws file format which registers the timestamp, position, 
velocity and pressure of every data point. The velocity is estimated using Euclidian distance. All the meta-data 
associated with every stroke, such as an error occurrence and its type, are registered in a different text document. 
Those two files are then transferred from remote to central storage. The Advanced Encryption Standard (AES) 
encryption algorithm is also used to encrypt the data which must be kept private. The encryption process is 
password protected. The communication between the Google Drive, the tablet and the server is secured by using 
a special key that is associated with   this   specific   application’s   account.   This   key   is   hard-coded in the tablet 
application and in the server. 

 
4. Analysis of the data 
This section presents the computation part of the project to analyze the data correctly. Firstly, when the 
encrypted .hws and text files are uploaded on the Google Drive account from the tablet, they are organized by 
user and type of test. Then, a distant server is used to fetch all new files and analyze them according to type. The 
second step is to decrypt the data so that it can be analyzed by the appropriate algorithm. Those algorithms are 
the Delta-lognormal and the Sigma-lognormal (Plamondon et al. 2009) that are used to respectively analyze the 
data from single strokes and from more complex strokes, such as the ones produces during the triangle shape 
test. The algorithms were conceived assuming the data acquired would be sampled at a frequency of 200Hz. This 
caused a problem with commercial tablets since the highest sampling frequency observed was 60 Hz and that 
frequency was not steady. To resolve this issue, a pre-processing step was added, by interpolating the data to 
simulate a 200 Hz frequency sampling. In the end, we want to be able to show the computed results on the tablet, 
which means going through the steps of re-encrypting the results from the analysis and transferring them from 
the server to the cloud. 

One step must be added to properly analyze the data that is acquired during the free drawing test. The 
strokes must first be recognized as triangle-shaped before we try to analyze them in order to achieve the goal of 
validating the use of this kind of data. We use the Blurred Shape Model (BSM) descriptor, which is an improved 
version of the Zoning descriptor that encodes the probability of pixel densities of image regions (Escalera et al. 
2009). This descriptor is computed on the image generated from the stroke that has been drawn on the screen, 
without taking into account the sampling and the speed. First, the image is divided into a grid of n x n equal-
sized sub-regions. Then, each cell in the grid receives votes from the shape points in it and also from the shape 
points in the neighbouring sub-regions. Each shape point contributes to a density measurement of its cell and its 
neighboring cells. This contribution is weighted according to the distance between the point and the centroid of 
each region. Finally the descriptor is normalized within the range 0 to 1. In order to recognize the input symbol, 
the Euclidean distance is used to compute the similarity between the symbols stored in the database. Those 
symbols are specific to each user and are stored in the Google Drive cloud. Then, a k-Nearest Neighbour 
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algorithm is used for classification in order to differentiate different symbols such as rectangle and circles. This 
allows for further development of the application to recognize other shapes than the triangle. Finally, a second 
and a third classification processes are used to distinguish different types of triangles. Because the stroke order is 
important in the biomedical analysis, we make the distinction between the same symbols depending on whether 
they were drawn clockwise or counter-clockwise. The orientation of the stroke (clockwise/counter-clockwise) is 
determined using the formula [1]. The stroke orientation is determined by comparing whether the result is greater 
than 0. If this is the case, then the triangle was drawn clockwise; otherwise it was drawn counter-clockwise. This 
formula comes from the Shoelace formula for computing the area of a polygon. The constant factor from the 
Shoelace formula can be omitted since our sole interest is to compute the orientation and not the total area. 

 
Area = Σ (xi+1-xi) (yi+1+yi)          [1] 

 
The third classification process is useful for spatially locating the triangle’s  starting point. To classify the 

starting point of the triangle, nine different classes are used: up_left, up_centre, up_right, middle_left, 
middle_centre, middle_right, down_left, down_centre and down_right. This classification is performed by 
placing the point in a grid and analyzing where it is placed. 

The BSM algorithm needs to be trained before the user draws the first free drawing strokes. The triangle 
biomedical test is used to accomplish that. In fact, if the user has not tried the triangle biomedical test before the 
free drawing program, they are automatically redirected towards the triangle biomedical test in order to train the 
recognizer. Once the training is done, the reference data is uploaded into their folder in the cloud and the user 
can use the application’s  free drawing test.  

Once the data is analyzed, a new type of file with the results is created (.ana). Those results contain the 
lognormal parameters that model the velocity curves. For the Delta-lognormal algorithm, only one lognormal is 
sufficient to model the data while for the Sigma-lognormal algorithm, multiple lognormals are needed. 
 
5. Conclusion 
This work aims ultimately to produce a useful clinical tool that is able to detect early signs of specific diseases 
by analyzing handwriting-related data. The prototype presented in this paper supports the basic functionalities 
that we want to include in this work, such as the simple stroke and triangle shape tests. It also supports a more 
advanced function which is the detection of freely drawn triangles. Biomedical data is analyzed on a server in a 
secure way but the results still need to be interpreted and investigated. 

A big issue with this process is its duration. Using a computer with low random-access memory for the 
server, the process of computing all the data to create a results file can take up to one minute. A substantial part 
of the processing time can be attributed to the booting of some programs needed by the lognormal algorithms. 
The processing time includes the time required for data transmission, but the transmission part of the process is 
insignificant (less than a second) compared to the computation time. In real-time mobile application, such a 
delay might create user dissatisfaction. Future optimization of the lognormal algorithms and a better 
understanding of the parameters useful in the interpretation of human movement might help reducing the 
processing time. 

Overall, the goal was to create a working prototype – a goal which was successfully reached. All the steps 
were completed, from doing a test to receiving its results, the only downfall being the processing time, which can 
be easily improved by acquiring or designing an optimized server for the required calculations. Optimizing this 
delay is one of the requirements of being able to develop a large-scale application. A number of improvements 
can also be added to the application, such as a results window that interprets the analyzed data and the creation 
of experimenter accounts that would make it possible to change specific aspects of the application. The influence 
of the interpolated sampling frequency is also still yet to be evaluated. Interpreting the resulting data for neural 
pathology will be the final significant step in this work. 
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Abstract. We present a model of the spinal cord in controlling one degree-of-freedom arm movements. The 
model includes both neural and musculoskeletal functions in an integrated framework. The model has been 
implemented by an artificial neural network coupled with a computational model of muscle publicly 
available. The experimental results show that the model is able to regulate the position of the arm and to 
mediate reflex actions by integrating commands from CNS and signals from proprioceptors. 

 
1. Introduction  
How voluntary movements of the arm are controlled by the brain is still an open question despite many studies 
on human movements have been conducted to give an answer to it. In recent years, the scientific community has 
realized that combining knowledge from behavioural studies, neurophysiological investigations and neural 
modelling is the right track to understand which processes occur within the central nervous system (CNS) and 
which is the role of the local circuitries in the spinal cord during the execution of a voluntary movement 
(Alstermark B. et al., 2007). 
 The neural structures involved in the control of movement can be roughly separated in four 
interconnected subsystems: the spinal cord system, the cerebral cortex and brainstem system, the cerebellum and 
the basal ganglia. Computational models of those systems, as for example (Contreras-Vidal et al.,1997; 
Stefanovic et. al., 2014),  are important because they allow to overcome the technical difficulties in monitoring 
the activity and the interactions of those system during normal tasks, so that physiological studies in human 
subjects are performed in controlled conditions, i.e. with the subject executes a reduced set of movements. 
Moreover, they allow to investigate pathways whose activities cannot be explored by other means. 

In this study we present a neurocomputational model of the spinal cord and the way the CNS activates 
such a circuitry for controlling arm’s movements.   
 
2. The Spinal cord model 
The spinal cord subsystem includes the alpha motor neurons, which innervate the skeletal muscle fibers with 
their axons, and interneurons that are the main targets of the projections coming from the upper centers and the 
major source of the alpha motor neurons. Moreover, the spinal cord hosts the gamma motor neurons, which 
innervate intrafusal fibers for keeping the muscle spindle sensitive to stretch. 
 The spinal cord receives motor commands from the brain motor areas and sensory afferents from spindles 
and tendon organs. As in part described by (Shadmehr et al., 2005), we hypothesized that, for each muscle, there 
are five  supraspinal signals sent to the spinal cord: Driving Signal (DS), Length Control Signal (LCS), Force 
Control Signal (FCS), Gamma Static, Gamma Dynamic.  
 The DS is the motor command used by the central system for selecting the muscle to be activated and for 
modulating force and velocity of the system. 
 The LCS is a descending input carrying information about the desired value of length for a given muscle 
and it is compared with the output of the II afferent fibers related to the homonymous muscle. When the output 
of the II afferent fibers is greater than LCS an excitatory synaptic input is sent to the alpha motoneuron and the 
innervated muscle is shortened.  
 The FCS is a descending input that sets the maximum allowable force that can be generated by the muscle 
and it is compared with the output of the Ib afferent related to the homonymous muscle. When the signal coming 
from the Golgi Tendon Organs is greater than FCS an inhibitory synaptic input is sent to the alpha motoneuron 
and the activation of the innervated muscle is reduced.  
 Gamma Static is used by the supraspinal system for modulating the output of primary and secondary 
afferent fibers, while Gamma Dynamic is used for modulating the output of the primary afferent fibers. 
 The spinal networks of the prime-mover muscle and of its synergist and antagonist muscles are 
interconnected in order to locally regulate the operating point of the system. The interconnections have been 
partially derived from physiological and anatomical studies (Pierrot-Deseilligny and Burke, 2005) and are 
reported in Figure 1. In this study, a simple model has been adopted for each neuron, in particular the axonal 
output is equal to: 
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where xi is the i-th synaptic input, and wi is the related weight that could be positive or negative depending on 
whether the input was excitatory or inhibitory,  a is the gain and b is the bias. Given the network in Figure 1, we 
need to compute 64 parameters in order to define the transfer function of each neuron. To simplify the problem, 
we hypothesized that each parameter assumes the same value for all the neurons belonging to the same class (i.e. 
Ib neurons, Ia neurons, etc..), so that the number of unknown parameters dropped to 21. We used a Hill 
Climber/Steepest Descent algorithm for finding the set of parameters that satisfy the following requirements: 
x a relation between the Driving signal  and the axonal output of the alpha motoneuron as linear as possible; 
x if the signal from the Ib afferent fiber is smaller than the FCS the axonal output of the Ib inhibitory 

interneurons must be almost 0, otherwise it must increase with a slope equal to 1/(1-FCS). 
 

Figure 1. Spinal circuitry. Connections ending with a fill dot are inhibitory 

  
 
2.1 The musculoskeletal model 
The musculoskeletal model used in this study is a one degree-of-freedom arm whose motion is restricted to the 
extension/flexion of the elbow. In fact, the shoulder and the wrist joints are grounded while the elbow joint is 
modelled as a hinge-like joint. The skeleton is made up of four bones: humerus, ulna, radius and hand. The 
physical parameters used for the bones are reported in Table 1. 
 

Table 1 Bones physical parameters 
 Mass Length 

Humerus 350 g 28 cm 
Ulna 200 g 22 cm 

Radius 200 g 23 cm 
Hand 500 g - 

 
 The musculoskeletal model includes three muscles: Biceps Short, Brachialis and Triceps Long. We chose 
to use Virtual Muscle (Cheng et al., 2000; Song et al., 2008) as muscle model, which combines the advantages of 
phenomenological (Hill-type) and mechanistic (Huxley-type) models. In particular, Virtual Muscle groups a set 
of phenomenological models, each of which describes the processes involved in muscle contraction. It is needed 
to specify a set of parameters for each muscle model: the properties of individual fiber type are reported in 
(Cheng et al., 2000) whereas the morphometric parameters are reported in Table 2.  
 

Table 2 Muscles physical parameters. In the last column S means Slow and F means Fast 
 Opt. Fascicle Len. Opt. Tendon Len. Max. Musculotendon Len Mass Fibers Type 

Biceps 14.75 cm 7.4 cm 32 cm 350 g 40% S., 60% F. 
Brachialis 10 cm 3 cm 18 cm 300 g 60% S., 40% F. 

Triceps 19.9 cm 9.9 cm 36 cm 500 g 60% S., 40% F. 
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Force and metabolic energy consumption are estimated by the model in response to neural excitation, muscle 
length and velocity (Tsianos et al., 2012). Virtual Muscle is equipped with realistic models of spindles 
(Mileusnic et al., 2006) and Golgi tendon organs (Mileusnic et al., 2006b) that respond, respectively, to muscle 
stretch and fusimotor control and to muscle tension. The spindle provides information about the rate of muscle 
length change and muscle length through Ia (primary) afferent fibers, and information about the muscle length 
through II (secondary) afferent fibers. Golgi tendon organs provide information about the force produced by the 
muscle during his contraction through Ib afferent. 
 Eventually, a cylindrical wrapping object is used to model the bony surfaces over which the triceps 
muscle wrap. It ensures the right calculation and application of the muscle forces produced by the muscle on the 
skeletal system. The arm model has been developed in the MSMS simulator (Khachani et al., 2008) and it is 
depicted in Figure 2.a, while Figure 2.b illustrates the connections between the supraspinal systems, the spinal 
cord, the muscles, the proprioceptors and the environment. 

 
Figure 2. : (a) The arm model. Muscles are represented in red, the wrapping object is in blue. (b) The 

spinal circuitry block diagram 
 

         
(a)         (b) 

 
3. Experimental results 
As validation, we arranged three experiments to verify if the arm movement was appropriate when an external 
force or a load was applied and if the spinal cord model was able to control the musculoskeletal model for 
reaching a desired position. 

The first experiment verified if, without variations of the motor commands sent by CNS, the spinal 
circuitry was able to keep the position of the arm when the impulsive external force depicted in Figure 3.a was 
applied. A similar experiment was carried out on deafferentiated monkeys  to evaluate the role of spinal cord in 
the execution of a movement (Shadmehr et al., 2005). As shown in Figure 3.b, at the beginning the elbow was 
moved from the initial  position  θ=5°  to  the  desired  position  θD=100° and then, after some seconds, the impulsive 
force was applied. The elbow angle showed an overshoot of 17.2° and an undershoot of 7.8° but after a recovery 
time equal to 4.8 seconds the desired angle was reached again. The same experiment was performed for different 
desired positions and the spinal circuitry was always able to keep the position after a mean recovery time equal 
to 1.19 seconds, a mean overshoot of 4.2° and a mean undershoot of 3.7°.  By varying the values of Gamma 
Dynamic signals it was possible to regulate the response of the system (unpublished results). 
 The aim of the second experiment was to verify if the protective mechanism of the Golgi reflex was 
implemented by the presented spinal circuitry and if it could be modulated by varying FCS. The arm was placed 
at  the  position  θ=100° and then the FCS value of each muscle and the external weight loaded on the hand were 
modified. In particular, each muscle received the same FCS that was varied from 0 to 1 with a step size of 0.1 
while the weight was varied from 0 Kg to 10 Kg with a step size of 0.5 Kg. Given a value for FCS and for the 
weight, we evaluated if the arm kept the initial position or not. In Figure 3.c a displacement map is reported and 
the displacement was set to 0 if the arm kept the initial position, it was set to 1 otherwise. It resulted that the 
bigger was the weight the bigger had to be FCS for keeping the position of the arm. It follows that FCS can be 
used to regulate the threshold of the Golgi reflex. 
 Eventually, the aim of the third experiment was to verify if it was possible to control the arm in order to 
reach a desired position in a suitable time. We chose to model each driving signal with a square burst for which 
three parameters had to be specified: the duration t, the amplitude A and the steady state value E. The last two 
parameters range between 0 and 1 and both modulate the firing frequency of a motor unit. For the sake of 
simplicity, we hypothesized that each burst had amplitude A equal to 1, the bursts sent to the agonist muscles had 
the same duration tAGONISTS, the steady state value was equal to EAGONISTS for biceps and brachialis and it was 
equal to 0 for the triceps because its effect can be taken into account, in first approximation, with the effect of the 
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gravity. Therefore, the problem was reduced to find the parameters EAGONISTS, tAGONISTS, tANTAGONIST for each 
direction. For example, the desired position θD=140° was reached setting EAGONISTS=0.40, tAGONISTS=0.40 seconds, 
tANTAGONIST=0.10 seconds, as shown in Figure 3.d.  
 

Figure 3. (a) External force applied to the arm (b) Position of the arm before and after the external force 
(c) Effect of the Golgi Reflex when the arm lifts a load up (d) Response of the arm for reaching 140 deg. 

 
 

4. Conclusions 
We have presented a model of human spinal cord that was able to regulate the position of a 1-DOF arm by 
integrating commands from CNS and signals from proprioceptors. The experimental results confirmed that the 
presented spinal cord circuitry is able to mediate the same reflex actions showed by the human. Furthermore, the 
CNS is able to control the arm position by modulating the duration and the amplitude of the driving signals sent 
to spinal cord circuitry. Nevertheless, as shown in Figure 3.d, a desired arm position is reached in a time that is 
slower than the time spent by a human to perform the same movement. The slowness of the system is due to the 
simple scheme adopted to modulate the three driving signals, and therefore, in the future, we will investigate the 
behaviour of the system when a different time evolution for the five control signals is adopted. Eventually, the 
realism of the simulated system will be evaluated with other experiments, as for example by verifying that 
simulated movements show a velocity profile that fits the real one. 
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Abstract. This paper presents the early work, done in the context of the IntuiScript project, on handwriting 
quality analysis. This IntuiScript project aims at developing a digital workbook to help with teaching children 
how to handwrite. To do so, we must be able to analyse their handwriting, to evaluate if the letters are 
correctly written, and to detail what aspects of the child symbols – letters, numbers, and geometric forms - do 
not correspond to the teacher models. We use an online fuzzy model to easily build target models, and to 
automatically evaluate the adequacy of children letters to these reference models, with respect to different 
aspects: symbol shape, drawing direction and stroke order for example. 

 
1. Introduction 
This paper presents the early work, done in the context of the IntuiScript project (http://intuiscript.com/), on 
handwriting quality analysis. As opposed to symbol recognition, where one wants to assign a label to unknown 
characters, we want here to analyse how a known character fits its label model, in term of shape, direction, stroke 
order, speed, fluidity, etc. 
 This IntuiScript project aims at offering an advanced digital writing learning experience at school by 
using tablet and tactile digital devices (with finger touch and stylus). The objective is to develop a digital 
workbook for teaching literacy to children between 3 and 7 years old. We especially focus on teaching how to 
properly form and write cursive letters (Falk et al, 2011). The main advantage that the IntuiScript project brings 
is ideally improving current educational practices by providing digital learning tools that can be modelled by the 
teacher and customized according to each student learning progress. The project is backed up by an educational 
team representing the whole region of Brittany (5 million population), and 1,000 primary school students from 
Brittany will participate in the project experimentation. Figure 1 shows a first application to create writing 
exercises and analyse drawn symbols.  

(a)    (b)    (c) 
Figure 1: Illustration of the concept of writing quality automatic evaluation.  

 
 The problem we tackle here is to quantitatively evaluate a cursive symbol with respect to a reference 
model (Kulesh et al, 2001; Li-Tsang et al, 2013). In order to be able to teach children how to write, we must be 
able to analyse their handwriting, to evaluate if the letters are correctly written, and to detail what aspects of the 
child letters do not correspond to the teacher models. This problem is completely different from the classical task 
of character recognition, where the challenge is to determine to which class data samples belongs. In our case, 
we already know data labels, because children were asked to draw a specific letter, but we want to evaluate how 
close is this drawn letter to the reference model, and for which aspects it does not.  
 Our objective is to be able to analyse and evaluate handwritten symbols, with regards to reference 
models, and for multiple aspects. A correctly handwritten gesture is characterised by several aspects: first its 
shape, but also its drawing direction and order, its speed and its fluidity for instance. For each these aspects of 
the analysis, we use a specific feature set, specially designed to capture the desired aspect. In this paper, we 
present three different feature sets define a priori to analyse three aspects: the shape, the order and the direction. 
With those feature sets, we use an analysis system we built from an evolving fuzzy classifier. It allows to easily 
define reference models from few data samples to customize the writing exercises to the children. Then, the 
analysis system can be used to evaluate drawn gestures, regarding a specific feature set, and finally give a 
confidence score, regarding the specific aspect of the feature set. 
 This paper is organized as follows. Next Section briefly presents the Fuzzy Inference System we use to 
recognize and analyse cursive letters. Section 3 details the features and the confidence measure we use to 
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evaluate writing quality with respect to the teacher models. Section 4 shows qualitative examples and 
experimental results. Finally, Section 5 concludes this paper and presents future work. 
 
2. Evolving Fuzzy Inference System 
 
In this section, we present the architecture of the evolving Fuzzy Inference System named Evolve (Almaksour 
and Anquetil,  2011) that we use to analyse children handwriting. This system is derivable to obtain different 
specific analysis, with respect to various criteria, as we will detail in Section 3. 
 The system we use to analyse handwriting is an evolving Fuzzy Inference System, which was originally 
designed for online characters recognition. It can start learning from few data and then learns incrementally in 
real time from the run-time data flow, to adapt its model and support class adding during its use. We take 
advantage of these characteristics to design our handwriting analysis system. The fact that very few data are 
required to initialise the system, two or three samples per class, allows the teacher to easily define personalized 
exercises for each pupil. In the same way, new exercises with new classes, new letters/numbers/symbols, can 
easily be added at run-time. The evolving nature of the system allows to incrementally learn the specific model 
of the child handwriting as it improves. It enables to observe children progresses, by watching their models 
becoming closer to the teacher reference model. 

Figure 2:  The fuzzy analysis system displayed as a neural network. 
 

 A fuzzy inference system is a set a fuzzy if-then rules. Rule premises are membership to clusters of the 
feature space. Those clusters (C(i)) model the data distribution, each cluster represents the prototype of a symbol 
class (yi). The premises can easily be used to evaluate the adequacy of a symbol to existing class models. Rule 
conclusions are linear functions (θi

(j)) of the input (x) that give membership degrees to all classes (y1, ..., yc). 
Those linear functions allow to improve the discriminative power of the system by increasing the precision of the 
class fuzzy boundaries between the prototypes. The conclusions can also be used to evaluate the difference 
between a symbol and existing classes. 
 
3. Confidence Measure and Feature Sets 
In order to compare a letter sample to the reference model, a common approach is to use the recognition 
confidence as a quality measure (Gao et al, 2011). To be more precise, we use here a compound measure that 
fuses information from two inner measures: an absolute and a relative confidence measure. The absolute 
confidence measure evaluates the similarity between a data sample and system corresponding model, and allow 
to measure data resemblance to expected symbol. 

 
absolute_confidence(x(k)) = 1/(1+mahalanobis_distance(x(k), C(k)))   (1) 

 
 The relative confidence measure enables to assess system confusion between the different models, and 
can be used to evaluate data difference to other symbols.  

 
relative_confidence(x(k)) = (y(k) – max(y(p), p<>k)) / max(y(p), p<>k)                                      (2) 

 
 Both aspects are complementary in the analysis of handwriting, characters have to as close as possible 
to the reference model, and as different as possible to other models of different symbols. We fuse both measures 
to take advantage of both aspects in our analysis. 
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 This work is based on the Heterogeneous Baseline Feature Set HBF49 (Delaye and Anquetil, 2013), 
which is a unified feature representation for universal online symbol recognition. This feature set aims at being 
the most general and multi-purpose possible, it is able to describe any kind of symbol, either single stroke or 
multi-stroke. In particular, some of its features are sensitive to orientation and stroke order, which is very 
interesting for handwriting quality analysis. HBF49 is an excellent baseline to analyse cursive symbols from a 
general point of view, it gives a synthetic score representing the general quality. 
 In order to be able to evaluate handwritten symbols with regards to different aspects, we selected a 
priori some specific features from HBF49 to allow a precise analysis of some particular aspects of the 
handwritten symbols. A first specific feature set (FS 1), that contains symbol length, bounding box angle and 
zoning features, was designed to evaluate symbol shapes. A second (FS 2), containing extremities coordinates, 
the initial angle and the first to last point vector, was designed to asses symbol stroke drawing order. Finally, a 
last feature set (FS 3) was designed, with the down stroke proportion, the average direction and the absolute and 
relative orientation histograms, to estimate symbol drawing direction. Table 1 summarized feature sets 
composition, using HBF49 feature numbering. 
 

Feature Set Features 
HBF49 F1 to F49 

FS 1 (shape) F15, F16, F17, F32 to F40 
FS 2 (order) F1 to F7 

FS 3 (direction) F13, F24 to F31 
 

Table 1:  HBF49 features used in the specific feature sets. 
 
4. Experimentation 
This Section presents the first experimental results that we obtained with our method, and our three specific 
features sets, to analyse handwritten symbols. 

 
Figure 3:  Global analysis score (using HBF49 only). 

 
 Figure 3 shows a screenshot of our demo application, for the IntuiScript project, that provide a global 
analysis score using the HBF49. One can see on the first and third lines that the global score decreases as the 
letters deteriorates. The second line shows a red feedback when symbols are not recognized as the one that was 
asked. 

 
Figure 4:  Confidence values for FS 1 (shape) for some 'A' samples. 

 
 Figure 4 presents the evolution of the shape sensitive score obtained with the first specific feature set. 
The obtained quality measure is shape sensitive, but indifferent to drawing direction or stroke drawing order for 
example. As a result, the computed score only depends on the symbol shape, and increases as the shape improves  
and moves closer to the teacher model. This evolution shows the effectiveness of our shape oriented measure to 
rank poorly drawn symbols. 

53% 
 

58% 66% 79% 96% 

Symbol recognition: drawn symbol is 
recognized as requested symbol, or at 
least as a n attempt, and it evaluated. 

Symbol error: drawn symbol isn't 
recognized as requested symbol. 

Symbol evaluation: drawn symbol 
adequacy to reference model is 
evaluated and score is displayed 
as a gauge. 

Teacher model 

Learner repetition 

73



Figure 5:  Confidence of each feature set for the four datasets.  
 
 Finally, Figure 5 is a plot of the different evaluation scores obtained with the three specific feature sets and 
HBF49, for four different datasets. First dataset contains badly shaped data samples. The second dataset contains 
goodly shaped symbols, but with wrong drawing orders. The third dataset contains data samples that were drawn in 
wrong directions. Finally, the fourth data set comprises various symbols with at the same time a wrong shape, 
incorrect drawing order and drawing directions.  
 
 As a result, the averaged evaluation score obtained with the first feature set, sensitive to shape, is low on the 
first and last datasets, but quite high on the second and third. Similarly, the drawing order oriented feature set yield 
poor scores on the second and last datasets, but better scores on the first and third. Finally, the feature set evaluating 
the drawing direction gives lower scores on the two last datasets than on the two first. This experiment highlights the 
specificity of each feature set on the corresponding datasets, and demonstrates the effectiveness of our method to 
evaluate handwritten symbols quality regarding different criteria. 
 
5. Conclusion 
This paper has presented a new method to evaluate handwritten symbols, letters as well as numbers or any 
geometric form, with the help of online fuzzy models. Those reference models can easily be customized by the 
teacher to adapt to the child difficulties. 
 Our method takes advantage of our fuzzy inference system generative and discriminative capacities to 
evaluate handwritten symbols, with respect to the used feature set. We have presented here three specific feature 
sets to analyse symbol shape, drawing order and direction. Additionally, various other feature sets can be 
designed to analyse cursive writing with other criteria using our method.  
 Future work will focus on designing several other features and feature set to widen the quality analysis 
we are able to perform. In particular, we plan to investigate automatic feature selection algorithm to fasten and 
improve feature set design. 
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Abstract. Handwriting difficulties represent a common cause of underachievement in children education and 
low self-esteem in daily life. The analysis of handwriting could be an important tool for the evaluation of a 
teaching method in order to assess its efficacy in preventing dysgraphia. We performed a comparative 
analysis of the traditional handwriting method and the alternative Terzi's approach in pupils at the end of 
primary school, when cursive skills should have been achieved.  
Qualitative and kinematic parameters were considered: the first ones were calculated as a visual analysis of 
written texts (by using check-lists and scales regarding qualitative, postural and pen grasp aspects), while the 
latter ones were automatically extracted through digitizing tablet acquisitions. Results showed significant 
differences concerning handwriting quality and dynamic movement in pupils handwriting depending on the 
teaching method applied. 

 
1. Introduction 
A large number of school-aged children have difficulties with handwriting. Dysgraphia is one of these: it 
consists in a learning disability that often involves a written illegible product. Problems like this can affect not 
only their self-esteem, but also their school performance and everyday life in the future. (Losse & al., 1991; 
Skinner & al., 2001; Cummins & al., 2005). 

The increase in worldwide percentage of children with writing difficulties may be caused by: increasing 
use of modern technologies (Sülzenbrück & al., 2011); lacking cursive instruction for elementary school students 
(Hanover Research, 2012); inappropriate teaching methods and failure to detect  child’s  difficulties  (Martins  &  
al., 2013). In order to evaluate teaching methods and identify handwriting problems like dysgraphia, the 
approach usually performed includes two different analysis. The first one is related to digitally recorded writing 
samples, using characteristic parameters that measure the specific kinematic features (Accardo & al., 2014); the 
second one is a visual analysis of the written product for a qualitative evaluation of handwriting goodness 
(Genna et al., 2015). 

In this paper, involved teaching handwriting methods are the traditional ones and the Terzi’s approach 
(Terzi, 1995). Ida Terzi was a primary school teacher at the institute of blind people in Reggio Emilia, Italy, in 
the first half of the 1900s. She proposed a space-time method which aim was to  develop  students’  perception  of  
the body moving in space. Information from personal (body perception), peri-personal (objects manipulation) 
and extra-personal (environment) spaces are mixed up in order to facilitate perceptual consistency and transition 
from unconscious to conscious use of the body in motion. In Terzi’s approach blindfolded pupils experience on 
the wall the graphic symbol with large movements of the arm and hand by their teacher aid; then they 
independently reproduce the motor representation on the wall and at a later stage on large sheets with brush and 
colour, shifting from a vertical plane to a horizontal one. At last, letters are reproduced, with decreasing size, in 
elliptical patterns, in squares of 0.5 cm and finally in ruled paper of their specific classes. Instead, in the 
traditional handwriting programs, instructions about letters formation take place as a group activity rather than as 
an individualized one. Teacher requires children to observe from blackboard or books the shape of letters, to 
remember them, and to transfer on their copybook what their visual memory stored. 

The aim of this work is to compare the traditional way to teach writing with the experimental space-time 
method of Ida Terzi during the last year of primary school, when cursive skills should have been achieved. 
 
2. Materials and methods 

Participants. The present study provides the enrollment of 20 pupils (7 male and 13 female) for each 
classroom  and  therefore   for  each  teaching  handwriting  method:  the  “Don  Milani”  primary  school  of  Cernusco  
sul  Naviglio,  that  follows  the  Ida  Terzi’s  method  (experimental group labelled with CE) and the primary school 
of Pioltello, that instead uses the traditional teaching method (control group, labeled with PI). The analysed 
acquisitions were made at the end of the 5th grade, the last year of cursive handwriting classes. All subjects were 
Italian mother-tongue, right-handed, with no handwriting problems or organic pathologies, and belonging to the 
same area with medium socioeconomic status. 

Tests. Kinematic and qualitative handwriting evaluations were mainly based on two tests that require 

75



adequate linguistic competences and cursive writing skill. These tests consist in writing in accurate (A test) and 
in fast (F test) mode the following Italian sentence: In pochi giorni il bruco diventò una bellissima farfalla che 
svolazzava sui prati in cerca di margherite e qualche quadrifoglio (meaning   “In a few days the caterpillar 
became a beautiful butterfly fluttering on the lawns in search of some daisies and clover”).  This  sentence was 
constructed with the aim of containing all the letters of the Italian alphabet and several phonological rules. 

Processing and statistical analysis. In order to evaluate differences between the two teaching methods, 
qualitative and kinematic parameters were separately processed for each test. 

Hand-motor performance quantification was undertaken with special regard to the basic writing elements: 
strokes and components assessment (Van Galen, 1998). A proprietary MATLAB program (Genna & al., 2011) 
was used to perform this analysis. Strokes were identified as segments between points of minimal curvilinear 
velocity, as suggested by the bell-shaped velocity profile theory (Djioua, 2009). Components were identified as 
the written tracts between two consecutive pen lifts. 

In order to provide information on the level of automation and fluency achieved by a child, a series of 
kinematic and static parameters were calculated and analysed for each test (Rosenblum, 2006): duration, length, 
mean and peak of curvilinear, horizontal and vertical velocity evaluated for the whole written track, components 
and strokes; pen lift duration; number of components, strokes and letters per second and per unit space. 

About qualitative analysis, a manual approach was used (Genna & al., 2015): an evaluation scale based 
on a new neuromotor model of handwriting production. In order to define the TQSs (total quality scores), the 
ratio between the number of errors made and the maximum number of the possible ones for each parameter was 
evaluated. In addition, this normalized scores was weighed through the AHP method to guarantee an objective 
evaluation of handwriting goodness. 

For both qualitative and kinematic parameters, the significance of difference between PI and CE group 
score was evaluated by means of the Wilcoxon test for independent samples. In order to identify the most 
significant parameters, in terms of difference between groups, stepwise regression with forward selection was 
used in both A and F tests. 
 
3. Results and discussion 
Results were obtained from kinematic and qualitative analysis: the writing process is "stressed out" to evaluate 
the speed of handwriting and the quality of the graphics performance. 

Kinematic analysis. Starting from the digitally recorded writing samples of each student, kinematic and 
static parameters, relative to the whole written track and its components and strokes, were estimated. The first 
step has been the evaluation of the statistically significant differences (p-values<0.05) between results of two 
groups arising from the application of the Wilcoxon test for independent samples. 
 
Table 1. Mean±1SD of most significant full track parameters calculated in both A and F test for CE and PI groups. 
 

 A test F test 
Track Parameters CE PI p-value CE PI p-value 
Whole duration (s) 97±16 128±28.3 < 0,0001 74.4±11.5 76±9.4 n.s. 
Whole length (mm) 1262.8±223.2 1451.8±205.4 < 0,02 1365.3±269.3 1505.9±239.6 n.s. 
Curvilinear vel (mm/s) 18.6±4.7 21±6.7 n.s. 25±5.2 32.9±6.2 < 0,0002 
Horizontal vel (mm/s) 8.9±2.3 10.9±3.8 n.s. 12.4±2.5 17.8±4.1 < 0,0001 
Vertical vel (mm/s) 13.9±3.9 14.8±4.7 n.s. 18.1±4.3 22.3±4.4 < 0,004 
Whole pen lift durn. (s) 28±9.1 55±17 < 0,0001 19.2±6 30±8.5 < 0,0002 
#Components 57.4±17.3 103.8±21.7 < 0,0001 55.7±17.6 97.1±20 < 0,0001 
#Strokes 431.2±41.7 485.7±85.8 n.s. 381.4±43.1 365.8±40 n.s. 
#Components/#Letters 0.5±0.2 1±0.2 < 0.0001 0.5±0.2 0.9±0.2 < 0.0001 
#Strokes/#letters 4±0.3 4.5±0.8 n.s. 3.6±0.4 3.4±0.3 n.s. 
#Letters/cm 0.89±0.15 0.76±0.1 < 0,01 0.81±0.15 0.73±0.12 n.s. 
#Letters 108.8±3.4 107.8±0.5 n.s. 107.1±4.2 106.7±3.2 n.s. 

 
In fast modality, the two groups use the same time to write the sentence. The control group (PI) is 

significantly faster with the pen on the paper than CE group but spend more time during pen lift.  
In accurate modality, the experimental group (CE) ends the test in less time than PI. The control group 

finds greater difficulty in accurate writing indeed they spend significantly more time during pen lift respect CE 
group and respect itself in the fast modality. 

A greater pen lift duration is related to a bigger number of components and, as the number of letters is the 
same between groups, it entails a higher level of fragmentation in letters execution (#Component/#Letters) for 
the control class. Components are the written tracts between two consecutive pen lifts, therefore the minimum 
number expected is equal to the number of words plus the number of “i”, “t”, “z”, “ò”, that is, those characters 
which need a pen lift for their completion (in our sentence the minimum #Components is 40). 
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Kinematic analysis shows that PI students need more time to organize the graphomotor task (greater pen 
lift) and struggling more to tie together the letters smoothly (using one component per letter). CE students spend 
less time during pen lift because they have successfully automated the graphomotor process and the ligation 
process between letters (on average, one component every two letters). 

By means stepwise regression was possible to detect the most significant parameters for both tests: 
number of components and strokes for A test and mean length, mean vertical velocity and mean horizontal 
ascendant velocity of components for F test. 

Qualitative analysis. A similar analysis was performed on the 16 qualitative parameters in terms of TQS 
(Genna & al., 2015). Table 2 represents the most statistically significant parameters in which the two schools 
was compared. The p-values indicate significance of the difference between samples in terms of error rate. 
 

Table 2. Mean±1SD of most significant qualitative parameters (TQSs) calculated in both A and F tests for each 
sample. a: posture area; b: handgrip area; c: sheet graphic space area; d: row graphic space area; e: 

graphomotor patterns area 
 

 A test F test 

 CE PI p-value CE PI p-value 
Total error score 0.076±0.016 0.116±0.023 < 0.0001 0.082±0.02 0.354±0.086 < 0.0001 
a.1. Inefficient posture 0.004±0.006 0.009±0.005 < 0.003 0.004±0.006 0.009±0.005 < 0.003 
b.2. Inefficient handgrip 0.015±0.011 0.027±0.013 < 0.005 0.015±0.011 0.027±0.013 < 0.005 
c.1. Variability of the left alignment 0.001±0.003 0.001±0.004 n.s. 0.001±0.004 0.013±0.007 < 0.0001 
d.1. Irregular word spacing 0.008±0.009 0.015±0.011 < 0.03 0.007±0.008 0±0 < 0.0001 
d.2. Letter collisions 0.001±0.002 0.001±0.001 n.s. 0.002±0.002 0.021±0.015 < 0.0001 
d.3. Max variation of letter size 0.022±0.007 0.028±0.008 < 0.02 0.023±0.009 0.001±0.001 < 0.0001 
d.4. Wrong letter size 0.005±0.002 0.006±0.003 n.s. 0.004±0.002 0.11±0.043 < 0.0001 
e.1. Wrong graphomotor pattern  0.008±0.006 0.013±0.007 < 0.02 0.01±0.008 0±0 < 0.0001 
e.2. Dysmetria in letters execution   0.003±0.003 0.007±0.005 < 0.007 0.004±0.004 0.014±0.008 < 0.0001 
e.3. Self-corrections of grapheme written  0±0.001 0±0 < 0.003 0±0.001 0.121±0.041 < 0.0001 

 
Total error score of PI group is higher (then worst) than CE group for both accurate and fast modalities of 

execution in the handwriting context. Comparing the two tests, the experimental group obtained almost the same 
total quality score; unlike the control group has a slightly greater number of errors switching from accurate 
modality to the fast one. It is useful to observe the single sub-areas, and then their relative sub-criteria, to better 
understand the specific differences between the two groups. 

About peripersonal space, CE group keeps a better posture and handgrip than PI group.  
In accurate modality, other significant differences between CE and PI group are present in the row 

graphic space and graphomotor patterns areas. Indeed, CE group keeps a more regular word spacing, a better 
letter size uniformity, more correct graphomotor patterns and less dysmetria in letters execution. Besides that, 
switching to F test, more significant differences are detected. Increasing handwriting speed, PI group makes 
more errors unlike CE group. 

 
A test 

 

F test 

 
 

Figure 1. Loading PCA plot obtained in A and F tests using first all qualitative parameters and then those 
selected by the stepwise regression. Circle: Terzi’s Method subjects (CE); Triangle: Control Group (PI). 
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After comparing the two schools for each qualitative parameter, principal component analysis (PCA) has 
been carried out, considering first all qualitative parameters and then only a part of them, selected by stepwise 
regression. Loading PCA plot (Figure 1) shows the weights for variables calculated for both groups and in 
relation to the first two PCA components. 

Principal Component Analysis (PCA) in A test, conducted using first all parameters for each qualitative 
criterion and then only those selected by stepwise regression (inefficient posture and handgrip, irregular word 
spacing, wrong graphomotor pattern), shows that the first two components have an associated explained 
variance of 33.3% in the first case and 62.2% in the second case. PCA for F test, computed on all parameters and 
on selected parameters through stepwise regression (letter collisions, fluctuations on the line, maximum variation 
of letter size, wrong letter size, wrong graphomotor pattern, self-corrections), shows an explained variance of 
the first two PCA components of 54.4% and 80%. For both A and F test, using PCA on selected parameters, 
groups are more distinguishable. 
 
4. Conclusion 

Results confirm the hypothesis of a better qualitative performance from pupils who use the Terzi’s  
method. Comparing the two tests, the experimental group maintains almost the same quality; unlike the control 
group has a slightly greater number of errors switching from accurate modality to the fast one. In the evolutional 
development of the calligraphy, CE students have achieved a balance between accuracy and speed performances. 
PI students, from a kinematic point of view, spend more time with pen off the paper to organize the correct 
graphomotor pattern. In addition, PI students have a less fluent handwriting. PI student make a pen lift every 
letter, registering a greater number of components.  

Since  early  years  of  school,  Terzi’s  method  makes  a more readable and accurate writing and this result 
could surely support prevention from dysgraphia, although at the expense of movement fluency. The automation 
of accurate movements is facilitated paying special attention to improve handgrip of the writing tools used. 

In the other hand, the tools deployed for the kinematic and qualitative analysis of handwriting are a good 
way to quantitatively evaluate graphomotor performance and can be also used in teaching methods evaluation. 
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Abstract. This paper deals with the study of the kinematic dimension of scribbling activities executed by 
kindergarten children aged from 3 to 6 years old from three grades. For this purpose, three sigma-lognormal 
features, six classical ones and one hybrid feature related to visuo-motor skills are extracted from scribbles realized 
using five different Type Grib. The statistical analysis of these data illustrates that sigma-lognormal modeling can 
satisfactorily reconstruct kindergarten children’s scribbles. Moreover, this preliminary study confirms that there 
are significant differences between grades with respect to six of the features we studied, regardless of the nature 
of the scribbling movement made by children. These features are related to rapidity, fluidity and precision of linear 
and curvilinear movements used for scribbling tasks. 
 
1. Introduction 
Scribbling is a spontaneous graphical ability manifested by children in early childhood. According to Lurcat 
(1988), children acquire this pre-writing ability when they are about 18 months old. Families do not systematically 
encourage this first manifestation of interest for graphical expression on all accessible surfaces. It is also not 
systematically given attention in kindergarten, where programming must focus on preparing children to learn 
handwriting.  

In French and Kriol respectively, words like gribouillage and makakri, used to refer to children’s scribbles, 
have an inherent negative connotation. Moreover, they reveal adults’ judgments regarding scribbles, which are 
essentially related to the esthetics and meaning of the trace which is produced on the surface chosen by the young 
scribbler. The motor dimension of scribbling is neglected.  
 However, we hypothesize that scribbling process can provide relevant and useful information on the 
development of young children’s early abilities to control their graphical movements and on the progress of their 
hand-eye coordination skills. For a first verification of this hypothesis, we carried out a four-month longitudinal 
experiment in a kindergarten school, entitled “Y a t’il un copilote à bord ?” (“Is there a co-pilot on board?”). 

This paper studies the kinematic dimension of various categories of scribbling movements which were 
recorded during the study. Its purpose is to determine if such dimensions can help distinguish between the levels 
of movement control achieved by kindergarten children according to their grade, regardless of the Type Grib. In 
section 2, we provide information on the participants, the tasks and the experimental conditions. In section 3, we 
details the feature extraction process. In section 4, the preliminary results of the statistical analysis of six classical 
kinematic features and four sigma-lognormal features are discussed. These results are related to 2 questions: Can 
sigma-lognormal modeling satisfactorily reconstruct children’s scribbles? Do the values taken by some classical 
or sigma-lognormal features depend on kindergarten grade, or do they depend on the scribbling strategies? 
 
2. Participants, tasks and conditions of realization 
Sixty children took part in this experiment, from three kindergarten grades called ‘Petite Section’ (PS), ‘Moyenne 
Section’ (MS) and ‘Grande Section’ (GS). Table 1 shows their distribution by gender and grade. PS pupils were 
3-4 years old. They had 6 months of graphomotor preparation lessons (during classroom), while MS ones were 4-
5 years old with 18 months of preparation. GS pupils were 5-6 years old with 30 months of preparation lessons. 
 

Table 1. Distribution of participants according to gender (F, M) and grade (PS, MS, GS). 
 GS MS PS Total 
F  12 (20%) 9 (15%) 8 (13%) 29 (48%) 
M 17 (28%) 4 (7%) 10 (17%) 31 (52%) 
Total 29 (48%) 13 (22%) 18 (30%) 60 (100%) 

 
Each child was brought from their classroom to the experiment room by the accompanying experimenter. The 
child was asked to execute five scribbles according various Type Grib: S1, S2, S3, S4 and S5. The first one was 
spontaneous (S1) without any constraint on the type of movement. The second scribble (S2) was to produce only 
linear strokes all over the sheet of paper. The third (S3) was the same as S2, but the pupil was asked to draw as 
fast as he could. Next, for the S4 and S5 tasks, the children were asked to use only curved movements to draw 
their scribbles all over the sheet of paper and S5 had to be realized faster than S4.  
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For each of these productions, the pupil was asked to begin their scribble when they heard a randomized 
audio signal. They were asked to produce 20 seconds of scribbling trying to keep the pen down for the entire 
period. During the online acquisition of the child’s scribbling movements, the experimenter took a seat in front of 
a computer and the child sat in front of a digitizing tablet according to the configuration shown in Figure 1. The 
experimenter verified that the child was correctly seated and that they felt comfortable writing on the tablet.  
 

 
Figure 1. Workstation used at the kindergarten for the experiment session 

 
To ensure that the task had been properly understood, the experimenter showed the requested movement with his 
fingertip systematically before each child had to execute a new Type Grib. The numbers of scribbles, which were 
recorded for each condition, are provided in Table 2. 
 

Table 2. Numbers of scribbles recorded by grade and gender for each condition: S1, S2, S3, S4 and S5. 
Type Grib GS MS PS All grades 

F M F M F M  

S1 12 16 9 4 8 10 59 
S2 11 15 6 3 6 9 50 
S3 11 17 9 3 7 9 56 
S4 12 17 8 4 7 10 58 
S5 11 17 8 4 8 9 57 

All  types 57 82 40 18 36 47 280 
 

3. Feature extraction from scribbles 
In the present study, we focus on two sets of features that can be called the classical dynamic set and the sigma-
lognormal set. The extraction process is illustrated in Figure 2. First, for each scribble, the raw data are digitized 
by the Wacom Intuos tablet with a sampling rate of 200 Hz. The pressure p(t) and the two-dimensional position 
(x(t), y(t)) of the pen tip are recorded using DekatTras software for 10 seconds from the fifth second of scribbling. 
Next, on the basis of these raw data, six classical features are computed.  

Figure 2 provides also the names of the classical features in bold fonts and those of the sigma-lognormal 
in Italics. The six classical features correspond respectively to (1) the length of the trajectory of the pen tip on the 
surface of the tablet, (2) the surface scribbled by the child, (3) the value of the pen-up duration, (4) the number of 
velocity peaks, (5, 6) the values of the maximal and minimal pressure on the pen tip. These features have already 
shown their usefulness in characterizing the degree of visuo-motor maturation (Rosemblum et al. 2003, Chartrel 
and Vinter 2010). 

Then, the preprocessing software is used to convert the raw date file into HWS format. The ScriptStudio 
software uses these inputs to estimate three sigma-lognormal features. As illustrated in Figure 3, ScriptStudio 
conducts sigma-lognormal modeling which describes the velocity of planar movements (e.g. handwritten 
trajectories) as a vector summation of neuromuscular components that have a weighted and time-shifted lognormal 
velocity profile and a circle-arc trajectory. The mathematical definition of this model has been described and 
explained numerous times. Interested readers can refer to the relevant technical publications for mathematical 
details (Plamondon and Djioua 2006, O’Reilly and Plamondon 2009).  
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Figure 2. Feature extraction process. Bold type indicates classical features, Italic font indicates sigma-

lognormal features and Roman type indicates hybrid feature. 
 
Our analyses used features extracted from this segmentation process: the signal-to-noise ratio of the 

reconstruction process (O’Reilly and Plamondon 2009), the number of basic lognormal strokes used for modeling 
(nbLog), and the ratio of these two variables (SNR/nbLog). This last variable reflects the writer’s ability to make 
regular movements. It is a good global indicator of the graphomotor performance of a given writer. Altogether, 
these variables are considered to index the lognormality of the produced movements, a concept similar to 
movement smoothness (Plamondon et al 2013).  

Lastly, we have introduced a new feature which is built from a classical one and a sigma-lognormal one. It 
is the SNR ratio divided by the length of the trajectory produced by the inking pen tip on the sheet of paper.  

 
 

 
Figure 3. Example of a child’ scribble (in blue) and its Sigma-Lognormal reconstruction (in black). 

 
4. Statistical analysis of the features 
ANOVA tests, Kruskal-Wallis tests and PCA analyses were carried out on the dataset consisting of 10 features in 
order to respond to the questions considered in the introduction section. Results are presented in the followings. 
 
4.1 Reconstructing children’ scribbles using Sigma-lognormal modeling  
To answer the first question (Can sigma-lognormal modeling satisfactorily reconstruct children’s scribbles?), we 
calculated the SNR histogram for all the scribbles (Figure 4). This distribution corresponds to SNR values before 
correction of the speed values at the beginning and the end of the truncated 10-second signal. 85% of the scribbles 
have an SNR greater than 15db and 58% of them have an SNR greater than 18db. The 15dB value has often been 
judged as sufficient to analyze elderly adults with declining handwriting (Plamondon et al. 2013, Woch et al 2011) 
and young children’s productions of pattern movements (Duval et al. 2013). On this basis, we used the same 
threshold here to produce our statistical study of the behaviours of the sigma-lognormal features in conjunction 
with the classical ones.  
 
4.2 Grade and on Type Grib impact features 
The non-parametric and parametric statistical tests used to study the effects of the two factors, Grade and Type 
Grib, with respect to the 10 classical and sigma-lognormal features, reveal a significant effect for most of those 
features. Besides, systematically, when an effect of Type Grib is significant, grade has a significant effect too.  
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Figure 4. SNR distribution. 

 
 

Table 3. Significance of features (x = significant effect, NS = non-significant effect) 

 
 
5. Conclusion and perspectives  
In this paper, we first showed that sigma-lognormal modeling can provide satisfactory reconstructions of scribbles 
produced by young children in kindergarten. This observation constitutes a preliminary result that may help us 
design studies of the kinematic stability of various Type Grib taking into account a similar sigma-lognormal 
approach (Pirlo et al. 2013). Moreover, for six features related to fundamental dynamic abilities such as rapidity, 
fluidity and precision of fine movements, our analysis shows that there are significant differences between grades 
and that there are also significant differences from one scribbling strategy to the next. Future research includes 
analysis of how gender impacts all these abilities. 

Scribbling ability is not yet used in kindergarten as an objective way to assess children’s graphomotor skills 
for teaching purposes. The preliminary results of our study “Y a t’il un copilote à bord?” may inspire further 
studies about the potential relevance of graphomotor training for very young children. One of the main points of 
interest relative to graphomotor training tasks is that it is not necessary for a child to have a well-developed socio-
linguistic background to be able to scribble. Moreover, it is a familiar activity that can be carried out by children 
starting in the first grade of kindergarten regardless of the child’s language and linguistic background.  

With this in mind, we launched a three-year longitudinal experiment in January 2015 in an experimental 
preschool structure called “Lakou TiFilawo: le bon Départ” (“the good start”). 
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Abstract—The Sigma-Lognormal model of the Kinematic
Theory of rapid human movements allows us to represent on-
line signatures with an analytical neuromuscular model. It has
been successfully used in the past to generate synthetic signatures
in order to improve the performance of an automatic verification
system. In this paper, we attempt for the first time to build a
verification system based on the model parameters themselves.
For describing individual lognormal strokes, we propose eighteen
features which capture cognitive psychomotor characteristics
of the signer. They are matched by means of dynamic time
warping to derive a dissimilarity measure for signature verifi-
cation. Promising initial results are reported for an experimental
evaluation on the SUSIG visual sub-corpus, which contains some
of the most skilled forgeries currently available for research.

Keywords—on-line signature verification; Kinematic Theory of
rapid human movements; Sigma-Lognormal model

I. INTRODUCTION

Signatures are widely used biometrics for personal authen-
tication. In contrast to off-line images of signatures, modern
digitizers such as tablet computers and smartphones capture
on-line signatures, that is the trajectory of the pen tip over
time possibly enriched with additional information such as the
pressure of the pen [1]. The time dimension allows an analysis
of movement patterns in addition to static images, which
usually leads to a much higher performance for automatic
signature verification [2].

Many models have been proposed to analyze human move-
ment patterns in general and handwriting in particular, includ-
ing coupled oscillator models [3], minimum jerk models [4],
and models relying on neural networks [5] to name just a few.

Among them, the Kinematic Theory of rapid human
movements is a unique framework based on the lognormal
law [6], [7]. It includes a family of analytical models for
representing movements based on neuromuscular strokes with
lognormal velocity [8]. The Delta-Lognormal model represents
single rapid movements by means of two strokes in opposite
direction. Similarly, the Omega-Lognormal model represents
oscillatory movements with an alternating sequence of opposed
strokes. Finally, the Sigma-Lognormal model has been pro-
posed to represent complex movements like signatures using
a vectorial sum of lognormal strokes [9].

Robust algorithms have been developed for estimating
the lognormal parameters from observed trajectories [10],
[11]. They achieve an excellent reconstruction quality of the
observed movement provided that the movement is skilled and
unimpaired. On the other hand, it has been shown recently that

aging, for example, leads to a deviation from lognormality in
handwriting movements when the control of the fine motricity
begins to decline and on the other hand, as children improve
in learning handwriting, their movements tend toward lognor-
mality [12].

Apart from its powerful potential in biomedical and neu-
roscience applications, one of the most successful applications
of the Kinematic Theory has been the synthetic generation
of handwriting based on the analytical model, for example
gestures [13], signatures [14], [15], and also unconstrained
handwriting [16]. The synthetic specimens could be used as
learning samples to improve an automatic recognition system.
This is particularly interesting for signature verification, where
only few reference signatures are available per user.

In this paper, we go a step further and aim to build a
signature verification system based on cognitive psychomo-
tor characteristics captured by the model itself. Such char-
acteristics have been linked recently with brain stroke risk
factors [17], which highlights the promising potential of the
model in the context of biometric verification. We propose a
new dissimilarity measure between two signatures based on
their Sigma-Lognormal representation. Eighteen features are
suggested for describing an individual stroke and the stroke
sequences are matched by means of dynamic time warping.
Initial results are reported for the highly skilled forgeries of
the SUSIG visual sub-corpus [18].

The remainder of this paper is organized as follows. The
data set and the model parameter extraction are discussed in
Section II. Afterwards in Section III, the proposed dissimilarity
measure for signature verification is introduced. Finally, exper-
imental results are reported in Section IV and conclusions are
drawn in Section V.

II. MODEL EXTRACTION

A. Data Set

On-line signatures from the SUSIG visual sub-corpus [18]
are considered in this paper. It includes signatures from 94
users captured with Interlink Electronics’s ePad-ink tablet. This
tablet has a pressure-sensitive LCD screen which shows the
signer what he or she is writing.

For every user, highly skilled forgeries were created based
on animations of the signature to imitate. The animations were
shown on the LCD screen so that the forger could trace over the
genuine signature in several attempts. This acquisition protocol
has allowed to generate some of the most skilled forgeries
currently available for research.
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B. Sigma-Lognormal Model

The Sigma-Lognormal model (ΣΛ) [9] represents on-line
signatures s = (s1, . . . , sN ) as a sequence of strokes. Each
stroke si has lognormal speed

|v⃗i(t)| =
Di√

2πσi(t− t0i)
exp

(

−
(ln(t− t0i)− µi)2

2σ2
i

)

(1)

with respect to the initialization time t0i , the input com-
mand Di which corresponds with the covered distance when
executed in isolation, and the two parameters µi and σi

related to the logtime delay and the logresponse time of the
neuromuscular system responding to the command.

The angular position of the movement along a pivot direc-
tion is expressed with respect to the start angle θsi and the end
angle θei . In total, each stroke is represented by six parameters

si = (Di, t0i , µi,σi, θsi , θei) (2)

which allow a reconstruction of the observed velocity by means
of vectorial summation:

v⃗r(t) =
n
∑

i=1

v⃗i(t) (3)

The quality of the reconstruction is measured as a signal-to
noise ratio taking into account the observed velocity v⃗o(t) and
the reconstructed velocity v⃗r(t)

SNR = 10 log

(
∫ te
ts

|v⃗o(τ)|2dτ
∫ te
ts

|v⃗o(τ)− v⃗r(τ)|2dτ

)

(4)

where ts is the start time and te is the end time of the pen tip
trajectory.

C. Parameter Extraction

Recently, a robust algorithm for the extraction of the
Sigma-Lognormal model from the observed pen tip trajectory
has been introduced in [11]. It iteratively adds lognormal
strokes to the model in order to maximize the SNR.

Each pen-down component is analyzed separately as sug-
gested in [16]. The pen tip is stopped artificially at the begin-
ning and at the end of each component to ensure zero velocity
for an improved extraction of the first and the last stroke.
Furthermore, signal preprocessing includes an interpolation
with cubic splines, resampling at 200Hz, and low pass filtering
with a Chebyshev filter to remove high-frequency components
introduced by the digitizer.

Afterwards, one stroke after the other is extracted from
the preprocessed observed velocity v⃗o(t) in three steps. First,
si is localized in the speed profile |v⃗o(t)| based on local
minima and maxima. Secondly, the stroke parameters si =
(Di, t0i , µi,σi, θsi , θei) are estimated based on the analytical
Robust XZERO solution [11] as well as non-linear least
squares curve fitting. Thirdly, si is added to the result and
v⃗i(t) is subtracted from v⃗o(t). The three steps are repeated
until the SNR cannot be further improved.

A reconstruction example is illustrated in Figure 1. Indi-
vidual strokes are shown in the trace as well as in the velocity
profile. Virtual target points are marked with a circle. They

Fig. 1. Reconstructed trace and velocity profile of an on-line signature.

would have been reached if the strokes were executed in isola-
tion rather than computing the vectorial sum in Equation 3. The
reconstructed velocity profile is very accurate with an average
SNR of 18.5dB for the three pen-down components.

III. SIGNATURE VERIFICATION

For automatic signature verification, we represent the ques-
tioned signature q = (q1, . . . , qN ) and the reference signatures
r = (r1, . . . , rM ) ∈ R with a sequence of strokes based on the
Sigma-Lognormal model. Then, we compute a dissimilarity
d̂R(q) between the questioned signature q and the set of
reference signatures R, which is compared with a threshold
in order to accept or reject the questioned signature.

In the following, features for describing an individual
stroke are presented in Section III-A and the dissimilarity
measure d̂R(q) is derived in Section III-B based on dynamic
time warping.

A. Stroke Features

Eighteen features are proposed to characterize a stroke
si = (Di, t0i , µi,σi, θsi , θei). The first seven features corre-
spond directly with model parameters

– f1 = Di

– f2 = µi

– f3 = σi

– f4 = sin(θsi)
– f5 = cos(θsi )
– f6 = sin(θei)
– f7 = cos(θei )

considering Cartesian coordinates (sin(α), cos(α)) for angular
parameters. For the initialization time t0i , we compute a
feature in comparison with the preceding stroke si−1

– f8 = ∆t0 = t0i − t0i−1
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Fig. 3. Stroke alignment using dynamic time warping.

t0 t1 t2 t3 t4 t5

δt24

δt13

Fig. 2. Characteristic times of a lognormal stroke.

The remaining features are calculated with respect to five
characteristic times t1i , . . . , t5i of a lognormal stroke [11].
They are illustrated in the velocity profile in Figure 2. The
times t2i , t3i , and t4i are the zeroes of the first and sec-
ond derivative of the lognormal Equation 1 and correspond
respectively to the mode t3i = t0i + exp(µi − σ2

i ) and the
inflection points of the lognormal stroke. The other times
t1i = t0i + exp(µi − 3σi) and t5i = t0i + exp(µi + 3σi) are
chosen such that the interval [t1i , t5i ] contains 99.97% of the
area under the lognormal curve. Based on these characteristic
times, the remaining ten features are defined as

– f9 = v2 = |v⃗i(t2i)|
– f10 = v3 = |v⃗i(t3i)|
– f11 = v4 = |v⃗i(t4i)|
– f12 = δt05 = t5i − t0i
– f13 = δt15 = t5i − t1i
– f14 = δt13 = t3i − t1i
– f15 = δt35 = t5i − t3i
– f16 = δt24 = t4i − t2i
– f17 = ∆t1 = t1i − t1i−1

– f18 = ∆t3 = t3i − t3i−1

They capture detailed timing characteristics of the neuromus-
cular Sigma-Lognormal model.

B. Dissimilarity Measure

In order to compute a distance d(q, r) between the ques-
tioned signature q = (q1, . . . , qN ) and a reference signature
r = (r1, . . . , rM ) ∈ R with a different number of strokes, we
consider the dynamic time warping distance (DTW) [19]

d(q, r) = min
p

|p|
∑

i=1

|fk(qpi,1
)− fk(rpi,2

)| (5)

with respect to one of the features fk, k ∈ 1, . . . , 18, and the
time warping path p, which is illustrated in Figure 3.

Based on the DTW distance d(q, r), the minimum distance

dR(q) = min
r∈R

d(q, r) (6)

to the set of reference signatures R is computed. Finally, this
value is normalized

d̂R(q) =
dR(q)

µd
(7)

with the mean score µd = 1
|R|

∑|R|
i=1 dR\ri(ri) computed over

all reference signatures to make it comparable across different
users in the database.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of a preliminary
evaluation of the proposed method for skilled forgery detection
on the SUSIG visual sub-corpus (see Section II-A).

A. Setup

All available genuine signatures and skilled forgeries are
used in the trial. For each of the 94 users, the first 5 signatures
are used as references and the remaining 15 for evaluation. In
total, we consider 94 · 5 = 470 reference signatures, 94 · 15 =
1, 410 genuine signatures, and 94 · 10 = 940 skilled forgeries.

The performance is evaluated in terms of equal error rate
(EER), that is the point in the receiver operating character-
istic (ROC) where the false acceptance rate equals the false
rejection rate.

B. Model Quality

The extraction algorithm (see Section II-C) for the Sigma-
Lognormal model achieves an SNR of 19.87± 2.40dB for the
SUSIG visual sub-corpus. This is a good reconstruction quality
when compared with 15dB which is generally considered
as sufficient for human movement analysis [10]. 96.77% of
all signatures were reconstructed with an SNR above this
threshold.

C. Verification Results

Table I lists the EER results for the best seven out of
eighteen investigated features. The main observation is that
the best performing features on this data set are those related
to timing differences, both within the same stroke and between
two consecutive strokes. The overall best performance is
achieved with the feature ∆t3, that is the difference between
the mode of two consecutive strokes.
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Rank Feature EER
1. ∆t3 5.11%
2. ∆t1 5.43%
3. δt24 8.94%
4. δt13 8.94%
5. δt05 13.83%
6. δt15 14.47%
7. ∆t0 15.11%

TABLE I. EER RESULTS FOR THE SUSIG VISUAL SUB-CORPUS.

Furthermore, it is interesting to notice that features with
respect to the four characteristic times t1, t2, t3, and t4 lead
to a significantly better performance than features related to the
initialization time t0 and the end time t5. These two parameters
are particularly difficult to estimate with our current model
extraction algorithm when several strokes overlap in time [20].

When compared with the state of the art, the EER of 5.11%
obtained with the proposed method is in the ballpark of the
best results reported for this difficult verification task. In [21],
Sae-Bae and Memon report an EER of 6.08% with a recent
histogram-based system. By fine-tuning the system to the data
set, an EER of 4.37% is achieved. In [22], Yanikoglu and
Kholmatov propose a verification based on Fourier descriptors
and report an EER of 6.20%. When combined with a second
DTW-based verification system, an EER of 3.03% is obtained.

V. CONCLUSIONS

In this paper, we have introduced one of the first pattern
recognition systems which is directly based on the Sigma-
Lognormal model. Instead of using the model to generate
synthetic movements, cognitive psychomotor characteristics of
the signer are derived from the model itself and are integrated
into a signature verification system.

A preliminary evaluation on the SUSIG visual sub-corpus
has demonstrated that the proposed method is able to achieve
state-of-the-art results for skilled forgery detection. Difficult
forgeries are taken into account that were created by tracing
animated genuine signatures on an LCD screen.

In order to build a complete system that includes the pro-
posed Sigma-Lognormal verifier, future work includes a more
comprehensive experimental evaluation, the combination of
complementary features, and also the combination of comple-
mentary verification systems. The Sigma-Lognormal verifier
is expected to have a particular advantage for detecting highly
skilled forgeries when compared with other approaches. Even
if the trace signals and the velocity signals are very similar,
the model might be able to distinguish nuanced differences in
the fine motor control.
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Abstract. Signatures are one of the most accessible and prevailed ways of authenticating documents.
Over the last many years, a large number of signature verification systems have been reported. A
common assumption in nearly all of these system is that the signatures are available readily extracted
from documents. In this paper we provide a detailed literature survey on the subject and argue
that pre-extracted signatures are not always available especially in forensic cases. Furthermore, we
present a novel system of automatically extracting signatures from documents with the help of
hyper-spectral imaging. Initial experiments reveal that the proposed idea possess great potential to
form a baseline signature extraction system above whom any signature verification system can be
adjuncted for signature verification.

1. Introduction
Today automatic systems facilitate us in almost every field of life. This utility varies from simple vending
and ATM machines to sophisticated systems for automatically processing images and videos (Malik et al.
(2013)). As the technology grew over the last few years, various systems for automatically extracting
di↵erent types of information from paper document images are reported. Automatic sorting of postal
mails, optical character recognition, automatic extraction of names, addresses, numbers, dates from doc-
ument images, etc., are to name a few. Once extracted, each piece of information can be used for various
purposes including authentication of documents.
Signatures are a widely prevailed modality used for authentication in di↵erent sectors from banking and fi-
nancial institutions to forensic departments around the world. Over the last four decades a large number of
o✏ine (using only spatial information, e.g., scanned signature images) and online (using both spatial and
temporal/dynamic information of signatures) signature verification systems have been reported. In almost
all of these systems a common assumption is that the signatures will be always available in a form where
these systems can be applied directly. Accordingly, such signature verification systems are trained (during
development) and tested (during evaluation) on signatures that are already extracted from documents
(usually manual extraction is performed– before or after taking the image of signatures/documents).
Moreover, publicly available signature datasets also contain only pre-extracted signatures(Ahmed et al.
(2012)). We, however, note that in the real world scenario, e.g., in bank checks, wills, pay slips, invoices,
and contracts, etc., signatures are available along with other diverse information, such as background
text, tables, stamps, and logos, etc.
Considering this, the state-of-the-art signature identification and verification systems cannot be used,
as is, in realistic scenarios. In this paper we focus on the challenges which must be handled in order
to develop fully automatic document analysis system capable of first extracting important information,
such as signatures, from documents and then performing operations like identification and/or verification.
Furthermore, we present our novel idea of automatically extracting signatures from documents with the
help of hyper-spectral imaging (HSI). For our experiments, we have developed a novel HSI document
dataset containing non-overlapping as well as overlapping signatures with background text, tables, stamps,
and sometimes logos. The experiments prove our idea of using HSI for automatic signature extraction
from documents very succcessful and we report the results of the same in this paper.

2. State-of-the-Art Information Extarction Systems
Extraction of signatures from document images has not been considered by many researchers. However,
segmentation/separation of handwritten text from printed text using neural networks, Hidden Markov
Models (HMM), Trained Fisher classifier, and Markov Random Fields have been reported (Guo and
Ma (2001); Imade, Tatsuta and Wada (1993); Kuhnke, Simoncini and Kovacs-V (1995); Zheng, Li and
Doermann (2004); Chanda, Franke and Pal (2010)). Specific methods for extraction of signatures from
bank checks based on filiformity criteria and prior knowledge of Cartesian coordinate space have also
been reported (Djeziri, Nouboud and Plamondon (1998); Madasu et al. (2003); Sankari, Benazir and
Bremananth (2010)). Many documents other than bank checks also contain signatures. A public dataset,
namely Tobacco-800, consisting of complex document images containing patch level information for 900
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(a) (b) (c) (d)

Figure 1. (a), (b), (c) Signatures at di↵erent positions in document images, (d) Signature overlapping with text

signatures along with other information is available (Zhu et al. (2007)). Zhu et al. (2007); Mandal, Roy and
Pal (2011); Ahmed et al. (2012) have reported methods based on saliency map, conditional random fields,
and SURF, respectively, for segmenting signatures from complete documents from subsets of Tobacco-800
dataset. These approaches segment signatures on patch level (in the form of block containing signatures
and background), but fail in the cases where machine printed text touches signatures (Mandal, Roy and
Pal (2011); Ahmed et al. (2012)). Some commercial systems capable of finding one or two signatures in
bank checks and IRD snippets and later apply signature verification are available, e.g., SignatureXpert-2 1

by Parascript.
To the best of authors’ knowledge, no method of automatic signature extraction from document images
using HSI is reported in the literature. Therefore, we provide an overview of the existing automatic
methods available for general hyper-spectral document image analysis. Shiel, Rehbein and Keating (2009);
Aalderink et al. (2009) applied to perform quality text recovery, segmentation, and dating of historical
documents from the 16th and 19th centuries based on the distribution of di↵erent types of ink and
identification of corrosion. D. Goltz et al. Goltz et al. (2010) used HSI for assessing of stains, in terms of
number of pixels, on the surface of historical documents. HSI is also applied for automatic forgery detection
in documents based on di↵erent inks, particularly, red, blue, and black gel inks and in combination with
the Fourier transform spectroscopy (Khan, Shafait and Mian (2013); Morales et al. (2014); Silva et al.
(2014); Reed et al. (2014); Brauns and Dyer (2006)).

3. Hyper-spectral Imaging for Automatic Signature Extraction
We have developed a dataset containing patches from 100 document images, scanned using hyper-spectral
camera with a very high spectral resolution of 2.1 nm. In addition to a high spectral resolution, this camera
covers the complete visible region and infrared region (upto 900 nm). The image scanned using this hyper-
spectral camera has 240 bands. The acquired data contain non overlapping, partially overlapping and
completely overlapping signatures with stamps, machine printed text, tables, and logos. Bounding boxes
(rectangular boxes containing signatures and overlapping objects if any within the bounds of signatures)
are provided as ground truth in every case.
We propose the idea of applying part-based keypoint detection method (e.g., SURF) in conjunction with
hyper-spectral imaging for automatic signature extraction from document images. As we scanned the
documents using a hyper-spectral camera having 240 bands, each pixel has 240 values. Our analysis
reveals that printers’ inks have significant responses on almost all of the 240 band. While the pens’ inks
have significant response on some layers but little or no response on the others (di↵erent pens had di↵erent
responses, but all of them disppeared on some layers of HSI). This can be seen in Figure 2 (a) where
spectral responses of background, printed text, and signature pixel are shown. This observations serves
as a building block for our methodology. Based on this observation, we first find the band where all the
content of a document (including signature) has significant response, and then the band where signature
has minimal or preferably no response. To find these bands we apply the SURF keypoint detector and
count the total number of keypoints on each band, this enables us find the band with maximum number
of keypoints (the band that contains the signature plus nearly all the background) and the band with the
minimum number of keypoints (the band that contains potentially only signature). Once we get the two
bands, we perform noise removal and morphological operations and finally subtract the band without
signatures from the one with the signatures, thereby leaving us with the signatures.
Figure 2 (b) shows an example of what we actually get by applying our approach. This is infact the
actual result we got on one of the documents. Note that the said approach is fully automatic and does
not require human intervention at any step. Once signatures are extracted, any signature verification
system can be applied or even a forensic expert can perform comparison experiments later on.
Our experiments on a set of 100 HSI scanned documents achieved the results given in Table 1. The
following standard measures are used to report the system performance.
• Precision: the measure which represents that out of the total retrieved signature bounding boxes (an
overlap of more than 50% marks a true positive), how many actually contain signatures.

1 http://www.parascript.com/recognition-products/forms-processing/signaturexpert-2
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(a) (b)

Figure 2. (a) Spectral Response: Background, Printed, and Signature pixels. (b) Signature Segmentation: Methodology.

• Recall: the measure which represents if the system has retrieved all the signatures from a document.

Table 1. Signature Segmentation results

Metric Value%

Precision 100

Recall 73

4. Open Issues and Ongoing Research
We have presented the state-of-the-art of automatic information extraction methods (particularly, for
signatures) from document images. Most of the today’s automatic signature verification systems can
not be applied directly for document authentication in the real world scenarios. This is because in such
scenarios signatures are mostly available on documents, e.g., bank checks, forms, and wills, etc., with
other information like, background text, lines, and logos. We argue that to perform verification in the
real world especially forensic cases, first segmentation of signatures is required. Further, signatures can
be found at di↵erent locations in di↵erent documents (as shown in Figure 1). Therefore, a layout free
extraction of signatures is needed (as proposed in the above section). Such systems would find signatures
without using priori information about the layout of the document under examination and/or probable
location of signatures.
In order to have good segmentation systems that are integrable with signature verification system so that
to be e↵ectively usable in real world, it is a must to first have some benchmark datasets. These datasets
would then be used to evaluate newly proposed and existing signature segmentation system in terms
of their precision and recall as well as performance and quality of extraction. As mentioned earlier, we
are already working on development of such a dataset and so far have developed a dataset of 100 HSI
scanned documents. Currently this data has patch level information about where signatures are located,
we plan to provide signature stroke information and that would be usable for testing complete signature
segmentation and verification frameworks for analysis of documents containing signatures.
An improvement in the current signature verification systems can be to enable them distinguish genuine
and forged signatures even in the presence of some noise in signature, e.g., touching characters or missing
part of signatures (as appeared in the proposed technique). Figure 1 (d) shows a very common scenario
where most of the existing signature systems will misclassify these signatures as forgery, as they assume
that questioned signatures contain no information other than signatures.
Finally, the use of local features has already shown promising results in signature verification where
verification is performed on the basis of parts of signatures rather than considering the complete structure
of signature (Liwicki and Malik (2011)). It is assumed, in general, that the systems with local features
have potential to perform well in presence of noise due to segmentation or background and therefore
should be integrable with signature segmentation systems.
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Abstract. This paper presents an experimental investigation on stability and complexity of dynamic signatures. A 
technique based on multiple matching strategies using Dynamic Time Warping is considered to derive both stability 
and complexity information from dynamic signatures. The experimental results, carried out on signatures of the SUSIG 
database, highlight some interesting characteristics on handwritten signatures. 
 
 

1. Introduction 
 
Although research community performed many efforts in the field of automatic signature verification, the concrete 
applicability of a signature verification system in daily-life applications is still difficult. The main reason is that 
handwritten signature is the product of a very complex generation process that depends on the psychophysical state of the 
signer and the conditions under which the signature apposition process occurs (Plamondon and Guerfali, 1998; Djioua and 
Plamondon, 2009). 
In order to understand better the complex phenomena underlying the signing process several studies have been devoted 
more recently to the analysis of the signing process, and particularly on variability and complexity of dynamic signatures. 
This research can provide useful insights not only for the development of more effective systems for automatic signature 
verification but also for supporting the use of handwritten signatures for other applications like those devoted to analysis 
of health conditions and diagnosis of neurodegenerative diseases (Plamondon et al., 2014).  
In the literature, approaches for the analysis of stability in handwritten signatures can be grouped into three categories: 
model-based, feature-based  and data-based. When model-based approaches are considered, signature are first described 
by a model and successively, model parameter are evaluated to extract information of signature characteristics. One of 
the main model-based approach uses a Hidden Markov Model (HMM) for computing a stability measure to group and 
characterize dynamic signatures in classes that can be assigned to signature variability and complexity (Garcia-Salicetti et 
al., 2008). This measure has been used to determine whether a signature does or does not contain enough information to 
be successfully processed by a verification system (Houmani et al., 2009).  When feature-based approaches are considered, 
signature stability is estimated by the analysis of a specific set of characteristics. One  feature-based technique for 
estimating local stability in static signatures first segmented the signature images using an equimass approach. 
Successively, a multiple-matching strategy was applied in which feature vectors extracted from corresponding regions of 
genuine specimens were matched through cosine similarity (Pirlo and Impedovo, 2013a). When considering dynamic 
signatures, a comparative study using a distance-based consistency model on features demonstrated that pen position, 
velocity and inclination have the highest consistency. In addition, other results have demonstrated that position is a 
stronger characteristic than pressure and pen inclination when personal entropy is considered (Lei and Govindaraju, 2005). 
Data-based approaches use raw data to perform the analysis of signature stability. When static signatures are considered, 
the stability of each region of a signature can be estimated by a multiple pattern-matching strategy (Impedovo et al., 
2009). The basic idea is to match corresponding regions of genuine signatures in order to estimate the extent to which 
they are locally different. A preliminary step is used to determine the best alignment of the corresponding regions of 
signatures in order to diminish any differences among them. Another approach considers that, given a genuine signature, 
any other genuine specimen can be considered as the result of a deformation process that can be analyzed with an optical 
flow. Therefore, the analysis of the optical flow obtained by matching the genuine signatures with other genuine 
specimens can provide information about the local stability in the signature image useful for signature verification (Pirlo 
and Impedovo, 2013b). When dynamic signatures are considered, the stability regions of signatures can be defined as the 
longest similar sequences of strokes between a pair of genuine signatures (Parziale et al., 2013). This definition is based 
on the assumption that signing is the automated execution of a well-learned motor task and, therefore, repeated executions 
should ideally produce similar specimens. However, variations in signing conditions can lead to signatures that differ 
only locally due to short sequences of strokes that exhibit different shapes. Another approach estimates a local stability 
function of dynamic signatures by using Dynamic Time Warping (DTW) to match a genuine signature with other 
authentic specimens (Impedovo et al., 2012). In this method, each matching is used to identify what are called Direct 
Matching Points (DMPs), i.e., unambiguously matched points of the genuine signature. Thus, a DMP can indicate the 
presence of a small stable region of the signature since no significant distortion can be detected locally. Furthermore, the 
local stability value associated with a point of a signature is determined as the average number of times it is a DMP when 
the signature is matched against other genuine signatures.  
Signature complexity has been a field of specific research since it is generally argued that the complexity of a signature 
can be critical to the reliability of the examination process (Huber and Headrick, 1999). Notwithstanding no common 
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meaning of handwriting complexity was defined yet. In general, in signature analysis, signature complexity can be thought 
to be an estimator of the difficulty for its imitation. Signature complexity can be obtained as the result of the difficulty in 
perceiving, preparing and executing each stroke of the signature itself (Brault and Plamondon, 1993). A complexity 
theory, which is based on the theoretical relationship between the complexity of features of the handwriting process and 
the number of concatenated strokes, was also considered for complexity estimation. According to this theory signature 
complexity can be estimated by analyzing variables that indirectly relate to the number of concatenated strokes, like for 
instance the number of turning points, the number of feathering points, and the number of intersections and retraces 
(Found and Rogers, 1995).  
In this paper the approach based on Dynamic Time Warping that uses a genuine-to-genuine matching strategy for the 
analysis signature stability, is also considered in a genuine-to-forgery matching strategy for estimating signature 
complexity. Successively, stability/complexity information is used to extract general information from signers of the 
SUSIG database.  
 
 
2. A General Approach for Stability/Complexity Analysis 
 
Let  

S = {S1, S2,…, Sn,…,    SN }                                                                           (1) 
 
be a set of N genuine signatures. In this paper, each signature Sn is considered as a sequence of elements Sn  = (z1

n, z2
n,…,  

zi
n,…,  zI

n), where each element zi
n is a 4-tuple zi

n
 = (xi

n, yi
n, ti

n, pi
n), with: - xi

n and yi
n : coordinates of the pen on the writing 

plane;  -  ti
n  : timestamp; -  pi

n : pressure.  
After data acquisition, the first stage is preprocessing, that consisted of value normalization and length normalization. 
Value normalization was performed for each signature according to the linear normalization algorithm so that each value 
was reported in the range [0,1]. Similarly, signature length normalization was performed using the linear interpolation 
algorithm that made the length of all signatures equal to M (in our case M=256). Successively, four function features 
were extracted in the feature extraction step:  
 
1) Displacement (s) 

x            i=1,2,....,M-1 
x     

2) Velocity (v) 

x    ,       i=1,2,....,M-1 

x     
3) Acceleration (a) 

x    ,       i=1,2,....,M-1   

x   
4) Pressure (p). In this case no conversion is necessary with respect to the acquired data in the pressure domain. 
 
Therefore, this procedure allowed the conversion of the signature representation domains from the space of the 4-tuples 
(x,y,t,p) to the space of the 4-tuples (s,v,a,p). 

 
3. Estimating Stability/Complexity of Dynamic Signatures 
For the analysis of stability of dynamic signatures we assume that each signature Sn of the set (1) was a genuine signature 
and was represented by a sequence of elements 

  
  Sn  = (z1

n, z2
n,…,  zi

n,…,  zI
n)                                                                       (2) 

 
where each element zi

n is a 3-tuple (vi
n, ai

n, pi
n), with: -  vi

n : velocity; -  ai
n  : acceleration;  -  pi

n : pressure. 
Now, let Sr, St be two signatures of the set (1), a warping function between Sr and St was any sequence of couples of 
indexes identifying points of Sr and St to be joined (Impedovo et al., 2012):  

 
W(Sr , St) = c1,c2,…,cK,                                                                        (3) 

 
where ck=(ik,jk)  (k,ik,jk integers, 1dkdK , 1dikdMi, 1djkdMj). Now, if we consider a distance measure d(ck)=d(zikr, zjkt) 
between points of  Sr and St, we can associate to W(Sr , St) the dissimilarity measure  

¦
 

 
K
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The elastic matching procedure detected the warping function W*(Sr , St) = c*1,c*2,…,c*K* which satisfied the 
monotonicity (i1≤  i2≤...≤  iK-1≤  iK and j1≤  j 2≤...  ≤  j K-1≤  j K), continuity (ik-ik-1≤1  and  jk-jk-1≤1,  for  k=2,3,...,K)  and  boundary  
(c1=(1,1), cK=(M,M)) conditions, and for which it was found to be: 

)tS,rW(S
tr

)tS
,r(S*W DminD

)S,W(S
 .                                                               (5) 

From W*(Sr, St) we identified the Direct Matching Points (DMP) of Sr with respect to St. A DMP of a signature Sr with 
respect to St was a point which had a one-to-one coupling with a point of St. In other words, let zp

r be a point of Sr coupled 
with zq

t of St; zp
r is the DMP of Sr with respect to St if: 

(a) � M1,.., p ,  pzp ,  yields:  r
pz  is not coupled with t

qz ;  

(b) � M1,.., q ,  qzq ,  yields: t
qz  is not coupled with .z r

p  
A DMP indicates the existence of a region of the r-th signature which is roughly similar to the corresponding region of 
the t-th signature (in the domain d specified by the distance used for the elastic matching procedure). Therefore, for each 
point of Sr, a score was introduced according to its type of coupling with respect to the points of St (Huang and Yan, 
2003): 

Scoret(zp
d,r) = 1    if zp

d,r is a DMP,  0 otherwise                                           (6) 
 
The local stability function of Sr was defined as (Huang and Yan, 2003):  
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In our study, we compute the stability function by considering the signature S1 of the set (1) for reference. Therefore the 
stability function in the d domain for the set (1) is assumed to be  

Istab(zp
d,1)=I(zp

d,1).                                                                        (8) 
Following the same approach, if we assume that S1 is genuine and St,  t=2,3,…,n,  are  forgeries, we can compute using eq. 
(5) the complexity function:  

Icompl(zp
d,1)=I(zp

d,1).                                                                      (9) 
In fact, the score of eq. (4) in this case identifies the existence of a small region of the r-th signature that is quite easy to 
imitate for a forger. Thus, in this approach, complexity of a signature can be considered as a measure of difficulty to forge 
the signature. 
 
 
4. Experimental Results 
 
In this paper, handwritten signatures of the SUSIG “Visual  subcorpus”  database were used to perform stability/complexity 
analysis (Kholmatov and Yanikoglu, 2009). Precisely, in this work, 11 genuine signatures (the signature S1 and 10 genuine 
signatures  S2, S3,…,S11 for computing stability) and 10 forgeries (10 counterfeit signatures  S2, S3,…,S11 for computing 
complexity) of each one of the 100 signers enrolled in the database were considered. Figure 1 shows the stability of a 
signer indicated by different colors: greenÆlow stability regions; yellowÆmedium stability regions; redÆhigh stability 
regions. 

 

 
Figure 1.  Levels of stability/complexity . 

 
Successively, regional analysis of handwritten signatures was performed. Each signature was divided into three parts of 
equal length: initial, medium and final. Stability and complexity of each part were computed. Figure 2 shows the average 
value of stability and complexity for each part of the signature. The result shows that, in general, there is a direct 
correlation between stability and complexity in each region of the signature. In addition, initial and central parts of 
signatures are generally the most stable and complex. 
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Figure 2.  Stability/complexity in dynamic signatures: a regional analysis. 

 
 
5. Conclusion 
 
This paper presents a stability/complexity analysis of dynamic signatures using a multiple matching strategy. The 
approach allows to understand better the processes underlying signature apposition and also can provide useful insights 
for the design of more rational and effective signature verification techniques. Based on this approach, some directions 
for further investigation can be addressed. In particular, this research offers new insights for the recognition of relevant 
parts of handwriting, with specific characteristics in terms of stability/complexity, that can be used effectively for the 
development of the handwriting-based biometrics systems.  
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Abstract.  Handwritten signatures are considered one of the most useful biometric traits for personal 
verification. In the networked society, in which a multitude of different devices can be used for signature 
acquisition, specific research is still needed to determine the extent to which features of an input signature 
depend on the characteristics of the signature apposition process.  
In this paper an experimental investigation was carried out on constrained signatures, which were acquired 
using writing boxes having different area and shape, and the different behaviour of dynamic features with 
respect to the writing boxes are discussed. 
 

 
1. Introduction   
 
Handwritten signature is one of the most common biometric traits for personal authentication. A signature is a 
rapid movement that is defined, learned and practiced over the youth years to   become   a   person’s   peculiar  
identifying pattern. It originates from a complex process that involves the human brain to process information to 
perform with the human writing system (based on hand, arm, etc.), using writing acquisition equipment (pen, 
pencil, paper, etc.). Therefore, it is not surprising that - in recent years - many efforts have been devoted to 
automatic signature verification, attracting researchers from different fields. More precisely, so far research efforts 
have been mainly devoted to determine effective features and comparison strategies for signature verification 
(Impedovo and Pirlo, 2008).  
Concerning features, both functions and parameters were considered in the literature. When function-features are 
used, the signature is characterized by a time-function, whose values constitute the feature set. Among others, 
widely used functions features are position, velocity, acceleration and pressure. When parameter-features are used, 
a signature is characterized as a vector of parameters, each one representative of the value of a feature. Among 
others, widely considered parameters are total signature time duration, pen-down time ratio, number of pen-lifts, 
direction- and curvature-based features.  
When comparison strategies are considered, both distance-based and model-based approaches have been widely 
investigated in the literature. Concerning distance-based verification techniques, Mahalanobis and Euclidean 
distances have been used for signature comparison as well as Dynamic Time Warping (DTW) and string matching 
strategies. When model-based techniques are considered, Hidden Markov Models (HMM) have found to be well-
suited for signature modelling since they are highly adaptable to personal variability and lead to results that are – 
in general - superior to other signature modelling techniques (Plamondon et al. 2014). 
Notwithstanding several relevant results have been achieved so far, many aspects still remains to be investigated, 
in order to make signature verification feasible in a multitude of daily operations. Among the others, one of the 
most relevant open aspects concerns the relation between the constraints during the signature apposition process 
and the characteristics of the input signature. In fact, signers can use different devices (tablet, smartphone, PDA, 
etc.) to input their signatures and hence the verification system must be aware of the differences in the input 
signatures due to the acquisition conditions (Simsons, 2011). 
In this paper we perform an experimental investigation on signatures acquired under constrained conditions. More 
precisely, the relations between some dynamic features of the input signature and size and shape of the writing 
area are analysed. The experimental results demonstrate that, in general, velocity is highly dependent on the writing 
area, whereas acceleration is low dependent on the writing area.  
The organization of the paper is the following. Section 2 presents the experimental setup. Section 3 reports the 
experimental results. Section 4 addresses the conclusion of the paper and some considerations for future work. 
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2. Experimental Setup 
 
The experimental setup was realized using a Wacom Intuos3 tablet and an Intuos3 Grip Pen. The Intuos3 Grip Pen 
is a cordless, battery-free and pressure-sensitive freehand writing device [5]. Macros on the Wacom Intuos3 tablet 
ensure that the area of signature was positioned in the centre of the tablet in order to maximize comfort and 
sensitivity of the user. Five conditions were considered to represent some common area and shape constraints in 
signature apposition:  

a) 4.6cm x 0.77cm rectangular box (to analyse the effect of constriction in small boxes);  
b) 7.0cm x 1.5cm rectangular box (space-like signatures of the identity card and bank checks);  
c) 14cm x 2cm rectangular box 
d) 12cm x 7cm rectangular box (to see the biggest change of signature;  
e) 12cm guideline (that is present for signature apposition on several administrative forms)  

 
Figure 1 shows the five types of constraints that were considered for signature apposition in this paper. During the 
enrolment stage, 15 signers have been involved in data acquisition. For each type of constraint, six signatures were 
captured from each signer. Therefore, each signer collected a total number of 6x5=30 genuine signatures. During 
testing the signer sat down and wrote comfortably, with a sheet of paper placed on the tablet to increase comfort 
and truthfulness. 

 

 
Figure. 1a: rectangular box (4.6cm x 0.77cm) 

 
Figure. 1b: rectangular box (7.0cm x 1.50cm) 

 
Figure. 1c: rectangular box (14.0cm x 1.50cm) 

 
Figure. 1d: rectangular box (12.0cm x 7.0cm) 

 
 

Figure. 1e: guideline  (12.0cm) 
 
 
Before the acquisition process, each participant filled an anonymous questionnaire concerning personal 
information: age, sex, education level, writing mode (right or left hand). The results, reported in Table 1, showed 
the homogeneity of participants, with a slight predominance of males, mostly included in the group of 20-40 years 
old subjects. Almost all of the subjects were right handed.  
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Table 1. Database: Characteristics of the Signers 

 
 

Characteristic 
 

 
Feature 

 
Percentage 

Sex Male 
Female 

60% 
40% 

 
Age 

16 – 20 years old 
20 – 40 years old 

More than 40 years old 

26% 
60% 
14% 

 
Education Level 

5 years (elementary school level) 
8 years education 

13 years education 
More than 16 years (University Level) 

6% 
20% 
40% 
34% 

Writing Mode Right - Hand 
Left - Hand 

94% 
6% 

 
 
3. Experimental Results 
 
For the analysis of the experimental data, the MovAlyzeR suite was used. The suite contains ScriptAlyzeR™  that 
can transform a tablet, a mouse or a pen in a high quality system for the measurement of hand-based writing 
movements. Using MovAlyzeR the experiment was divided in three sub-phases: "Groups", with reference to the 
number of the test, "Subject", that concerns the identification number (ID) of each one of the fifteen participants, 
and "Constraints", that concerns the identification code (IC) of each one of the five writing constraints (see Figure 
1). 
 
The data collected through MovAlyzerR were analysed in order to determine statistical differences in the following 
dynamic features:   

- Velocity in the vertical direction (Vy) 
- Velocity in the horizontal direction (Vx) 
- Accelaration in the vertical direction (Ay) 
- Acceleration in the horizontal direction (Ax) 
- Pressure in the vertical direction (Py) 
- Pressure in the horizontal direction (Px). 

 
For each signer the analysis of variance among the five groups of constrained signatures was performed. For the 
purpose the ANOVA test was considered (Gelman, 2005). ANOVA starts from the assumption that for G groups 
of data, it is possible to decompose the variance into two components: the variance inside the groups and the 
variance between groups. From these values, calculated as the sums of the standard deviations between the groups 
and within a single group, we can get a test variable for comparison with the value of a variable Fisher “F”, taking 
into account the degrees of freedom, according to the significance level α to evaluate the results. 
Table 2 reports, for each signer and each dynamic feature, the results of the ANOVA test (with α = 0.05 in our 
tests), where: “D”  – Dependent;;  “ND”  – Not Dependent. Velocity seems to be the feature that mostly depends on 
the size/shape constraints of the writing area. All users have changed the writing velocity to adapt the signing 
process to the writing space. In general we observed low velocity in small boxes and high velocity in large boxes. 
The analysis of pressure and acceleration, instead, demonstrate no general behaviour of signers. For these two 
characteristics, it seems the behaviour of signers not to change significantly due to constraint of the writing area.  
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Table 2. Dependence of Dynamic Features from Constraints in Signature Acquisition 
 

User Vy Vx Ay Ax Py Px 
1 D D ND ND ND ND 
2 D D ND D ND D 
3 D D ND D ND D 
4 D ND ND ND D D 
5 D D ND ND ND ND 
6 D D ND ND D ND 
7 D D ND ND ND ND 
8 D D ND ND D ND 
9 D D ND D ND ND 
10 D D ND D ND ND 
11 D D ND ND ND D 
12 D D ND D ND ND 
13 D ND ND ND D D 
14 D D ND ND ND ND 
15 D D ND ND ND D 

 
 
4. Conclusion and Future Work 
 
This paper presents an experimental investigation on the effects of the characteristics of the writing area on the 
dynamic features of online signatures. For the purpose five different signature acquisition areas were considered 
(which differ in terms of area and shape) for signature acquisition and the ANOVA test were applied to verify to 
what extent dynamic features of a signature are depends on the writing area. The experimental results demonstrate 
that velocity seems to be very dependent on the writing area whereas acceleration and pressure behaviour depends 
on the specific signer. 
Although this study is not sufficient to derive general assumption on the characteristics of constrained online 
signatures, it poses new interesting problems to the scientific community both for improving the knowledge on 
human behaviour in signing and for improving future systems for automatic signature verification. Among the 
others, an interesting aspect for assuring interoperability of signature verification systems could be the possibility 
to develop new (signer-dependent or signer-not dependent) techniques for dynamic features normalization for 
constrained signature.  
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Abstract. This paper examines the historical signatures of 18th century composer, J. S. Bach, to evaluate the 
effects of vision impairment on handwritten signatures. It is questioned whether Bach penned certain 
signatures as it is historically documented that he was virtually blind in the years just prior to his death in 
1750. Applying information collected from published forensic studies about the effects of vision impairment 
on handwriting, handwriting indices of vision impairment are compared to Bach's signatures in the late 1740s. 

 
1. Introduction  
Forensic handwriting examination techniques have been previously utilized in the examination of music 
calligraphy associated with J. S. Bach (1685-1750) manuscripts.  Notably, Jarvis (2007) postulated that the 
music calligraphy on some manuscripts historically associated with J. S. Bach were written by his wife, Anna 
Magdalena Bach. In furthering research concerning the authorship of Bach manuscripts and specifically 
signatures on manuscripts and letters, forensic handwriting examination techniques were applied in the analysis 
of purported J. S. Bach signatures written late in his life when he was suffering from severe eye strain and eye 
surgeries which eventually contributed to his death in 1750. This paper presents the results of an examination of 
J. S. Bach’s signatures during the decade in his life associated with severe eye strain and eye surgeries. The 
observations of Bach’s signatures from the 1740s are compared to information associated with visual impairment 
and its manifestation in handwriting as published in forensic literature. 
 

2. Literature Review: Bach’s Vision 
Historically, it is believed by many scholars that the source of Bach’s eyesight problems can be traced back to 
the period when in 1695 he went, at age ten, to live with his brother Johann Christoph Bach, following the death 
of his parents (EWB, 2015). During this period it is generally accepted that he was in the habit of copying 
manuscripts out by moonlight, thereby causing severe eye strain, that was then to be with him for the remainder 
of his life (NNDB, 2014; Gramophone, 2015). Evidence for this comes from his portrait “where Bach appears to 
squint, and the way his facial muscles are aligned has led analysts to believe that he suffered from 
shortsightedness [myopia]….Yet, according to his son [Carl Philipp Emanuel’s Obituary of his father (David et 
al., 1999)], his eyesight was always weak; and according to his first biographer, Forkel (1802), he had a ‘very 
painful disorder in the eyes’” (Ho, 2010).  

It would seem that Bach had “naturally bad vision” and that “this was further weakened by a lot of studying, 
sometimes even all night long, especially during his youth” (Zegers, 2005, p. 1428). From his symptoms Zegers 
also suggests that he was myopic, although only moderately. He thinks that his possible level of refractive error 
was about -2.00 D; if it had been greater he would not have been able to play the organ in church. Zegers states 
that even recognising people’s faces in the street would have been difficult with Bach’s level of myopia, unless 
he wore his spectacles. 

Refractive error is defined as “a defect in the ability of the lens of the eye to focus an image accurately, as 
occurs in nearsightedness [myopia] and farsightedness [hyperopia]” (Mosby’s Medical Dictionary, 2009). 
Refractive error is important as, if it is left uncorrected, can cause avoidable visual impairment. There is some 
evidence to suggest that children who do a great deal of close work may either become myopic or make a pre-
existing condition worse although a recent review notes that evidence for this is equivocal (Foster & Jiang, 
2014). The review commented that greater time spent outdoors might be associated with reduced myopia.   

It seems that Bach had a strong physical constitution throughout his life. However, he appears to be 
physically obese in the Hausmann portrait of 1748 and that “[a] striking feature is the narrowed eyelids. A closer 
look seems to give the impression of dermatochalasis [“sagging of the eyelid skin and underlying muscle that 
occurs commonly during the aging process” (dictionary.reference.com/medical)]; this has no serious clinical 
implications except that it can sometimes restrict the superior visual field” (Zegers, 2005, p. 1428). According to 
Bach’s contemporaries his vision deteriorated as he aged. As his myopia was only mild, Zegers has concluded 
that the most likely cause of his visual difficulty was cataract. A cataract is defined as: “The development of an 
opacity within the lens. As we age, there is a disturbance in the structure of the lens and accumulation of 
pigment. The clarity of the normal lens is maintained through a precise structural arrangement of fibres and 
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balance of chemical constituents. This change to the microstructure results in opacification, which consequently 
alters the penetration and refraction of light...Clouding of the lens will cause a degree of scattering of light rather 
than focusing it to a point on the retina. The more opaque it becomes, the greater the scatter and the worse the 
vision. The majority of cataracts are age related” (Nash, 2013, p. 555). 

The symptoms of age related cataract include: visual difficulty in dim light, needing more light to see things 
clearly, difficulty in reading small and fine print, alteration in colour perception and everything may have a 
yellow or brown tinge, spectacles become less effective, patients may see halos around bright lights and some 
experience double vision (NHS, 2015). Living in 18th century Germany, Bach would have worked by candle-
light and, particularly during the autumn and winter months, he would have also experienced naturally lower 
levels of light. This would have had a greater impact on his vision as he aged, i.e. the developing cataract would 
have caused increasing difficulties seeing the lines on manuscript paper and writing on them accurately. 

Up until about 1750, the only treatment for cataracts was an operation called couching (Blodi, 1996). This 
was a surgical procedure to displace the crystalline lens inside the eye which had become opacified, for varying 
reasons. The lens was usually pushed into the back of the eye and a person’s vision was normally restored. This 
method of cataract treatment did not remove the lens from the eye, as with modern-day cataract extraction, but 
simply moved it into a place where it did not interfere with light hitting the retina, thereby allowing some 
restoration of vision. Couching itself was normally performed without anaesthetic and, according to Zegers 
(2005, p. 1429), in the 18th century patients were seated in an upright chair and held tightly by an assistant while 
the procedure was being performed. 

Bach’s treatment was performed by the travelling English eye surgeon, John Taylor (1703-1772). Although 
he had received training at St. Thomas’ Hospital in London, he was “an oculist of note and notoriety” (Wade, 
2008, p. 969). This was because he wrote detailed books about the eye whilst simultaneously causing a great deal 
of distress to his patients where his extremely expensive couching operations caused pain and also failed (Wade, 
2008; Zegers, 2005). Indeed, he travelled throughout Europe performing these operations and instructed the 
patients that they were not to remove their bandages for a minimum of five days, by which time he had moved 
on to “the next town to operate on new victims” (Zegers, p. 1429). Zegers also reports that Taylor was right-
handed and as such preferred to operate on the left eye, whether the patient needed it or not. His habit of 
covering the eye with bandages was also criticized because it increased the risk of post-operative infection. 
According to Tarkkanen (2013), “The Mayor of Leipzig had been asked for measures in case Bach would 
become unable to take care of his duties. After persuasion of his friends, Bach had both eyes operated by a 
travelling British eye ‘surgeon’ John Taylor” (p. 191). 

Bach’s first operation took place in Leipzig in March 1750. It was likely to have been Taylor’s standard 
procedure to remove the cataract by couching. About one week later, Bach needed further surgery on that eye 
because the couching was followed by “anterior displacement of the lens, pupillary block and glaucoma” 
(Zegers, 2005, p. 1429). It must be remembered that this surgery took place in the pre-antiseptic era and many 
post-operative complications could have occurred as a result. Taylor decided to treat Bach with “bloodletting, 
laxatives and eye-drops of blood from slaughtered pigeons, pulverized sugar, or baked salt” (Zegers, p. 1429).  

The newspaper Vossische Zeitung (1750, No. 4) stated that Bach’s vision improved after the first operation; 
this would give some credence to the hypothesis that the cataract was successfully displaced. However, Taylor 
had significant influence with the newspapers of the time, because of the money he spent advertising his arrival 
in the towns that he visited, hence Zegers (2005) feels that this information is unreliable. He further dismisses 
Forkel’s assertion that his eyes were painful before his surgery on the basis that his biography was written over a 
half a century after Bach’s death and neither myopia nor cataract, on their own, are painful conditions. 
According to Tarkkanen (2013), Bach was extremely ill after the second procedure, suffering severe pain in his 
eyes and body; he was unable to play the organ and, indeed, was bedridden. It was at this point that Taylor 
“moved on and disappeared from Leipzig” (p. 192). 

If Taylor operated on Bach’s left eye first, as was his normal practice, and Bach had very little sight in his 
right eye, then if the first operation failed and on the second occasion he operated on the right, it is possible that 
“Taylor’s interventions are compatible with most of the post-operative complications” (Zegers, 2005, p. 1430) 
described by his biographers. Hence Bach was left with very little sight and possibly died, according to 
Tarkkanen (2013), from “secondary phacoanaphylactic endophthalmitis” the following July (p. 191). 

 

3. Forensic Literature Review 
In the forensic handwriting examination literature, several features have been reported as characteristic of 
handwriting distortion caused by visual impairment.  Features of handwriting written by those who are blind or 
visually-impaired reported by Beacom (1967) include: handprinting of the signature, poor alignment, preference 
for uppercase letters, square-shaped “r” forms, problems writing certain letters (e.g., j, b, d, k, h, f as the retraced 
movement of these letters creates difficulty for blind writers), difficulties with the letters “t” and “i” due to the 
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cross and dot formations in those letters, problems forming connectives between letters, lack of uniformity in 
size, illegibility, and incomplete signatures. 

Lindblom (1983) reports that handwriting features associated with visual impairment include tremor, pen 
scratches, misalignment of words/letters, writing across or through other material, squared letters, overlapping of 
letters, ink errors, problems in writing certain letters, infrequent pen lifts, absence of “t” bars and “i” dots, 
inconsistent spacing, stunted letter designs, and flattened letter bases (due to use of visual aids). 

In a forensic case study, Masson (1988) found that the handwriting was difficult to decipher because 
handwritten letters and words were written on top of another.  Some of the primary effects of handwriting 
distortion included lack of baseline alignment, overwriting, entanglement, inconsistency in word and letter 
spacing, and erratic proportional relationships.   

Komal et al. (1999) performed a statistical analysis of the writings of over 60 individuals who were blind 
and visually-impaired.  The results showed that the writers exhibited overlapping/intermingling letters, 
unusual/distorted letter forms, ink failures (because the subjects could not see that the pen was not working), 
problems with certain letters (S, A, G, P, H, K), tremor, preference for capital letters, line quality problems, 
alignment, and inconsistent size.   
 

4. Analysis 
Three signatures dated in the late 1740s, which are attributed to J. S. Bach (Kobayashi, 1989; Pierpont Morgan 
Library, 1970) are the subject of question in this study as they are written during a time period when his vision is 
reported to have significantly deteriorated (reproduced in Figures 1, 2, and 3).   
 

 
 

 

 
 

Table 1 summarizes the handwriting features associated with visual impairment from the four studies 
previously cited and discussed (Beacom (1967); Lindblom (1983); Masson (1988); and Komal et al. (1999)). In 
comparing the typical features of handwriting executed by those who are blind or have visual impairment to the 
Bach signatures in Figures 1, 2, and 3, there is limited support for the theory that someone who is blind (or 
severely visually impaired) wrote the Bach signatures in the 1740s. As reported in Table 1, some indices of 
visual impairment are observed in Figure 2, but the illegibility observed at the end of the signature could be 
caused by poor copy quality.   

Examples of signatures attributed to J. S. Bach prior to the 1740s were included in the analysis (Kobayashi, 
1989). It was observed that there were some notable variations amongst Bach signatures, which is partially 
evidenced by the three signatures used for comparison to represent pre 1740s signatures (Figures 4, 5, 6). Little 
evidence of handwriting indices of visual impairment were observed in the pre 1740s signatures (see Table 1). A 
comparison of the 1740s signatures to the pre 1740s signatures shows a high degree of similarity between 
Figures 1 through 3 (post 1740) and Figure 5 (pre 1740). No signs of deterioration were evident in the 1740s 
signatures although they were more simplistic in style than Figures 5 and 6 (notably the uppercase B).   

 
 

 
 

 
 
5. Discussion 

Beacom (1967) reported that there can be a wide range of variation in handwriting performance by those 
who are blind. There can also be a difference between those who were blind at the time they learned to write in 
comparison to those who experienced severe visual impairment or blindness after they learned to write. J. S. 
Bach learned to write before he became severely visually impaired indicating that writing, such as his signature, 
would have been an overly-programmed skill in his motor memory. It was noted by Komal et al. (1999) that 
some subjects with partial visual impairment had “normal alignment, writing slant, writing pressure, line quality 
and connections” (p. 48).  It was reported that J. S. Bach, as a youth, had strained vision and may have copied 
manuscripts with limited light (Zegers, 2005). He may have adopted visual strategies under such conditions and 
became accustomed to writing with dim light. There was no evidence among the signatures that Bach used 
signature aids or guides to assist with alignment of the signatures. It is not certain the level of severity of Bach’s 
visual impairment. However, if his vision was so poor that it required difficult and painful surgery, it is 

Figure 1. 1747 Figure 2. 1748 Figure 3. 1748 

Figure 4. 1727/32 Figure 5. 1727/32 Figure 6. 1736 
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reasonable to expect that his vision was impaired enough to affect his handwriting, especially since he was a 
composer and relied upon writing music as a primary source of income.   

There is little to no evidence of visual impairment indices among the questioned Bach signatures from the 
late 1740s. The signatures were compared to earlier signatures and they were similar to at least one Bach 
signature from approximately 1730 (Figure 4). The lack of visual impairment indices in J. S. Bach’s 1740s 
signatures lends some support to the theory postulated by Jarvis (2007) that more than one writer may have 
signed Bach’s signatures and that another person may have signed on his behalf in the late 1740s.   
 
Table 1 

Handwriting Feature Frequency in Bach signatures (late 1740s) Frequency in Bach signatures (pre 1740s) 
Overwriting [2] [3] None detected None detected 
Alignment [1] [2] [3] [4] No internal alignment problems No internal alignment problems 
Entanglement, overlapping [2] [3] [4] None detected None detected 
Inconsistent spacing [1] [2] [3] Some compressed spacing in Figure 3 Some compressed spacing in Figure 6 
Erratic proportions [3] [4] None detected None detected 
Handprinting [1] Fig. 3 has few disconnected, printed forms None detected 
Uppercase letters [1] [4] No unusual uppercase letters No unusual uppercase letters 
Square-shaped letters [1] [2]  None detected None 
Difficulty writing letter forms [1][2][3] None detected None detected 
Problems forming connectives 
between letters [1] 

Some printed forms in Figure 3 None detected 

Illegibility [1] Figure 2 difficult to decipher at the end 
(probably due to poor quality copy) 

None detected 

Incomplete signatures [1] Fully formed signature written with first 
and middle initials (typical of time period).  
Missing period after uppercase S (Fig. 2). 

Fully formed signature written with first 
and middle initials (typical of time period) 

Tremor [2] [4] None detected None detected 
Pen scratches [2] Possible scratches in Fig. 2 but may be 

due to poor quality copy 
None detected 

Ink errors/failures [2] [3] None detected (possible in Fig. 2) None detected 
Infrequent pen lifts [2] Consistent pen lifts Consistent pen lifts 
Stunted letter designs [2] None detected None detected 
Flattened letter bases [2] None detected None detected 
Distorted letter forms [3] None detected None detected 
Line quality problems [4] None detected None detected 
[1] Beacom (1967); [2] Lindblom (1983), [3] Masson (1988), and [4] Komal et al. (1999) 
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Abstract.� ,GHQWLI\LQJ� WKH� ZULWHU� RI� D� GRFXPHQW� HVWDEOLVKHV� LWV� DXWKHQWLFLW\� RU� DXWKRUVKLS� DQG� KDV� VHYHUDO�
DSSOLFDWLRQV��QRWDEO\�LQ�IRUHQVLF�DQG�KLVWRULFDO�GRFXPHQW�DQDO\VLV��3UHYLRXV�UHVHDUFK�KDV�VKRZQ�WKH�SRWHQWLDO�
RI� ,QWHUHVW�3RLQWV� �,3��IRU�ZULWHU� LGHQWLILFDWLRQ��EXW�H[LVWLQJ�PHWKRGV�UHTXLUH�VHJPHQWDWLRQ�RU� WUDLQLQJ��7KLV�
SDSHU� HYDOXDWHV� WKH� SHUIRUPDQFH� RI� LQWXLWLYH� IHDWXUHV� FRPSXWHG� GLUHFWO\� IURP� ,3� SURSHUWLHV� UDWKHU� WKDQ�
H[WUDFWLQJ� GHVFULSWRUV� DW� WKHLU� ORFDWLRQV�� DOORZLQJ� IRU� D� WUDLQLQJ�IUHH� DSSURDFK�� 6HFRQGO\�� ZH� VKRZ� WKDW�
DGDSWLQJ�GHWHFWRUV�WR�WKH�VSHFLILF�WDVN�RI�ZULWHU�LGHQWLILFDWLRQ�LV�QRW�RQO\�YLWDO�IRU�SHUIRUPDQFH�EXW�DOVR�DOORZV�
IRU� VHJPHQWDWLRQ�IUHH� DSSURDFKHV�� ([SHULPHQWV� RQ�ZLGHO\�XVHG� GDWDVHWV� VKRZ� WKH� SRWHQWLDO� RI� WKH�PHWKRG�
DSSOLHG�VHOI�FRQWDLQHG�DQG�ZKHQ�FRPELQHG�ZLWK�H[LVWLQJ�PHWKRGV��/LPLWDWLRQV�RI�RXU�PHWKRG� UHODWH� WR� WKH�
DPRXQW�RI�GDWD�QHHGHG�LQ�RUGHU�WR�REWDLQ�UHOLDEOH�PRGHOV��
�

1. Introduction 
$SSOLFDWLRQV� RI� :ULWHU� ,GHQWLILFDWLRQ� �:,�� DUH� PDQLIROG�� ,Q� KDQGZULWLQJ� UHFRJQLWLRQ� ZULWHU�GHSHQGHQW� PRGHOV�
WDLORUHG�WR�WKH�SHUVRQDO�ZULWLQJ�VW\OH�DOORZ�IRU�LPSURYHG�SHUIRUPDQFH��.QRZLQJ�D�KLVWRULFDO�PDQXVFULSW¶V�VFULEH��LWV�
KLVWRU\��RULJLQ��DQG�DXWKHQWLFLW\�FDQ�EH�GHWHUPLQHG��,Q�IRUHQVLF�LQYHVWLJDWLRQV�FRQFHUQLQJ�IUDXG��KRPLFLGH��VXLFLGH��
RU�WKH�H[HFXWLRQ�RI�D�ODVW�ZLOO��HVWDEOLVKLQJ�WKH�JHQXLQHQHVV�RI�D�GRFXPHQW�LV�D�WDVN�WKDW�RIWHQ�DULVHV��

&XUUHQW�UHVHDUFK�LQ�:,�IRFXVHV�RQ�WZR�SUREOHPV��LPSURYLQJ�LGHQWLILFDWLRQ�SHUIRUPDQFH�HVSHFLDOO\�RQ�ODUJH�
GDWDVHWV��/RXORXGLV�HW�DO����������RQ�WKH�RQH�KDQG��DQG�H[SODLQDELOLW\�RI�V\VWHP�UHVXOWV��L�H���UHQGHULQJ�WKH�GHFLVLRQ�
PDNLQJ�FRPSUHKHQVLEOH�WR�D�KXPDQ��1LHOV�	�9XXUSLMO���������RQ�WKH�RWKHU�KDQG��'UDZEDFNV�RI�H[LVWLQJ�PHWKRGV�
DUH� WKH� QHHG� IRU� ELQDUL]DWLRQ� RU� VHJPHQWDWLRQ�� RSHQ� SUREOHPV� WKHPVHOYHV� �3UDWLNDNLV� HW� DO��� ������� ,3�EDVHG�
PHWKRGV�RIIHU�WKH�SRWHQWLDO�RI�FLUFXPYHQWLQJ�WKH�DIRUHPHQWLRQHG�GUDZEDFNV��6XFK�PHWKRGV�GHWHFW�VDOLHQW�SRLQWV�LQ�
KDQGZULWLQJ�LQ�RUGHU�WR�FRPSXWH�D�GHVFULSWRU�DW�WKHLU�ORFDWLRQV��8VLQJ�D�VR�FDOOHG�FRGHERRN�RI�FOXVWHUHG�GHVFULSWRUV�
IURP� DQ� LQGHSHQGHQW� WUDLQLQJ� VHW�� D� SUREDELOLW\� GLVWULEXWLRQ� RI� GHVFULSWRUV� LV� FRPSXWHG� WR� FKDUDFWHUL]H� D� ZULWHU��
/LWHUDWXUH�IRFXVHG�RQ�XVLQJ�YDULRXV�FRGHERRN�FOXVWHULQJ�PHWKRGV��)LHO�	�6DEODWQLJ���������RU�GHYHORSLQJ�GLIIHUHQW�
GHVFULSWRUV�DQG�FRPELQDWLRQV��-DLQ�	�'RHUPDQQ���������$�UHFHQW�DSSURDFK�FRPELQHV�D�FRGHERRN�RI�,3�GHVFULSWRUV�
DQG�D�KLVWRJUDP�RI�VFDOHV�DQG�RULHQWDWLRQV�FRPSXWHG�IURP�,3��:X�HW�DO����������)RU�FRPSUHKHQVLYH�UHYLHZV�RI�:,�
PHWKRGV�UHODWH�WR��0��$ZDLGD��������6FKRPDNHU��������6UHHUDM�	�,GLFXOD���������

,Q�H[LVWLQJ�ZRUN�JUHDW�IRFXV�KDV�EHHQ�ODLG�RQ�WKH�GHYHORSPHQW�RI�KLJKO\�SHUIRUPDQW�GHVFULSWRUV��KRZHYHU��
SDUDPHWHUV�DQG�SURSHUWLHV�RI�,3�GHWHFWRUV�WKHPVHOYHV�KDYH�QRW�EHHQ�UHJDUGHG��7KLV�OHDGV�WR�SRWHQWLDOO\�ORVLQJ�RXW�RQ�
GLVFULPLQDQW� IHDWXUHV�GXH� WR�ERWK�� ,3�QRW� GHWHFWHG� DQG�GLVUHJDUGLQJ� LQIRUPDWLRQ� HQFRGHG� LQ� ,3� WKHPVHOYHV��7KLV�
SDSHU�DGGUHVVHV�WKHVH�WZR�SRLQWV��:H�GLUHFWO\�FRPSXWH�IHDWXUHV�RI�,3�SURSHUWLHV�UDWKHU�WKDQ�H[WUDFWLQJ�GHVFULSWRUV�
DQG�EXLOGLQJ�D�FRGHERRN��SURSRVLQJ�D�PHWKRG�WKDW�FDQ�EH�DSSOLHG�RXW�RI�WKH�ER[��DQG�RPLWWLQJ�D�WUDLQLQJ�SKDVH��2XU�
PHWKRG�LV�LQWXLWLYH�WR�XQGHUVWDQG�IRU�D�KXPDQ�H[SHUW�RQ�WKH�RQH�KDQG��DQG�IDVW�WR�FRPSXWH�DQG�SHUIRUPDQW�RQ�WKH�
RWKHU��:H�HPSKDVL]H�WKH�LPSRUWDQFH�RI�DGDSWLQJ�DQ�,3�GHWHFWRU�WR�WKH�UHTXLUHPHQWV�RI�:,�VKRZLQJ�WKDW�LW�OHDGV�WR�
LPSURYHG�UHVXOWV�DQG�PRUHRYHU�FDQ�UHQGHU�VHJPHQWDWLRQ�DQG�ELQDUL]DWLRQ�VXSHUIOXRXV��

7KH� UHPDLQGHU� RI� WKLV� SDSHU� LV� VWUXFWXUHG� DV� IROORZV�� 6HFWLRQ� �� DQDO\]HV� WKH� IHDWXUHV�� IROORZHG� E\� D�
GHVFULSWLRQ�RI�WKH�IHDWXUH�FRPSXWDWLRQ�LQ�6HFWLRQ����5HVXOWV�DFKLHYHG�DQG�D�FRPSDULVRQ�WR�H[LVWLQJ�ZRUN�DUH�JLYHQ�
LQ�6HFWLRQ����IROORZHG�E\�D�FRQFOXVLRQ�DQG�RXWORRN�LQWR�IXWXUH�ZRUN��

�
2. The Scale - Dominant Orientation Histogram (SDO) 
,3�DUH�GHILQHG�DV�ORFDWLRQV�LQ�DQ�LPDJH�ZLWK�D�WZR�GLPHQVLRQDO�VLJQDO�FKDQJH��7X\WHODDUV�	�0LNRODMF]\N���������
L�H��� WKH\� DUH� ORFDWHG� DW� LPDJH� VWUXFWXUHV� VXFK� DV� FRUQHUV�� MXQFWLRQV�� FLUFOHV�� RU� GRWV��:H� XVH� DQ� ,3¶V� GRPLQDQW�
RULHQWDWLRQ�� ZKLFK� GHVFULEHV� WKH� SUHYDLOLQJ� GLUHFWLRQ� RI� JUDGLHQWV� LQ� LWV� QHLJKERUKRRG�� WRJHWKHU� ZLWK� LWV� VSDWLDO�
H[WHQW��VFDOH��WR�FRPSXWH�D��'�KLVWRJUDP��$Q�LOOXVWUDWLRQ�RI�,3�DQG�WKHLU�VFDOHV�LV�VKRZQ�LQ�)LJXUH����WKH�LPDJH�LV�
FURSSHG�IRU�LOOXVWUDWLYH�SXUSRVHV���ZH�H[WUDFW�,3�IURP�HQWLUH�SDJHV���:KLOH�RWKHU�,3�GHWHFWRUV�FDQ�EH�HPSOR\HG��DV�D�
SURRI�RI�FRQFHSW�ZH�FKRVH�WKH�ZLGHO\�XVHG�'LIIHUHQFH�RI�*DXVVLDQ��'R*��GHWHFWRU��/RZH����������
2ULHQWDWLRQ� DQG� VFDOH� EHLQJ� SURSHUWLHV� LQWXLWLYHO\� XQGHUVWRRG�� RXU� IHDWXUH� DOORZV� IRU� WUDQVODWLRQ� RI� WKH� UHVXOWV�
FRPSUHKHQVLEOH�WR�KXPDQ�H[SHUWV�LQ�GRFXPHQW�H[DPLQDWLRQ��$�FRQFHLYDEOH�YLVXDOL]DWLRQ�WKDW�FDQ�EH�XVHG�DV�visual 
fingerprint�RI�D�KDQGZULWLQJ�VDPSOH�LV�VKRZQ�LQ�)LJXUH����DQG�WKH�LQIRUPDWLRQ�HQFRGHG�LQ�WKH�IHDWXUHV�LV�VXPPDUL]HG�
LQ� WKH�IROORZLQJ��7KH�VODQW�LV�HQFRGHG�DV�SHDNV�DFURVV�VFDOHV�LQ� WKH�KLVWRJUDP��+RZHYHU��QRWH� WKDW� WKH�GRPLQDQW�
RULHQWDWLRQ�FDSWXUHV�VHYHUDO�SURSHUWLHV�RI�WKH�VFULSW��WKXV��WKH�SHDNV�PLJKW�EH�GHYLDWHG�IURP�WKH�RYHUDOO�VODQW��)LJXUH�
�� G��� )XUWKHUPRUH�� WKH� GLVWULEXWLRQ� RI� VWURNH� RULHQWDWLRQV� DORQJ� ZLWK� WKHLU� VFDOHV� DOORZV� IRU� GHGXFLQJ� FKDUDFWHU�
VKDSHV��H�J��URXQGQHVV��HVSHFLDOO\�RI�ORRSV�DQG�KROHV��DQG�XQLIRUPLW\�RI�WKH�KDQGZULWLQJ��L�H���KRZ�SDUDOOHO�WKH�VWURNHV�
DUH�� RU� FRQVLVWHQW� WKH� KDQGZULWLQJ� LV�� :KLOH� URXQG� FKDUDFWHUV� SURGXFH� D� KLJKHU� YDULDQFH� LQ� VWURNH� RULHQWDWLRQV�
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�
�)LJXUH� �� D��� HORQJDWHG� QDUURZ� FKDUDFWHUV� ZLWK� DQJXODU� VKDSHV� LQGXFH� FOHDU� SHDNV� LQ� WKH� RULHQWDWLRQ� KLVWRJUDP�
�)LJXUH���E��G���)XUWKHUPRUH��FRPSDFW�FRQGHQVHG�ZULWLQJ�KDV�VPDOOHU�VWUXFWXUHV�FRPSDUHG�WR�ORRVH�RU�XQFRQGHQVHG�
ZULWLQJ�� WKXV�SURGXFLQJ� D�KLJKHU� UHODWLYH�QXPEHU�RI� VPDOO� ,3��&RQWLQXRXV�ZULWLQJ�ZLWK� ORQJ� VWURNHV�JHQHUDWHV� D�
VLJQDWXUH�RI�VPDOO�,3V�GLIIHUHQW�WR�RQH�RI�LQWHUPLWWHQW�ZULWLQJ�SURGXFHG�E\��H�J���OLWWOH�SUHVVXUH�SXW�RQ�WKH�SHQ��

6FDOHV�RI�,3V�DUH�QRW�GLVFULPLQDQW�HQRXJK�E\�WKHPVHOYHV�EXW�SURYLGH�VXEVLGLDU\�FXH�ZKHQ�FRPELQHG�ZLWK�
RWKHU� SURSHUWLHV�� 6PDOO�VFDOH� ,3� FRYHU� WKH� ZLGWK� RI� D� VWURNH�� DOORZLQJ� IRU� LQIHUHQFH� RI� LQIRUPDWLRQ� DERXW�� H�J���
VWURNH�ZLGWKV�LQFOXGLQJ�WKHLU�YDULDQFH��/DUJH�VFDOHV�UHSUHVHQW�ELJ�ORRSV�RI�FKDUDFWHUV��RU�VSDFHV�EHWZHHQ�DVFHQGHUV��
GHVFHQGHUV��FKDUDFWHUV��ZRUGV��RU�OLQHV���

$� IRUPDO� WUDQVODWLRQ�RI� WKH� KLVWRJUDP� LQWR� D� YHUEDO� GHVFULSWLRQ� DV�ZHOO� DV� DQ� LQWHUDFWLYH� YLVXDOL]DWLRQ� DQ�
H[SHUW�FDQ�XVH�WR�H[SORUH�DVSHFWV�RI�WKH�YLVXDO�ILQJHUSULQW�GHVFULEHG�DUH�EH\RQG�WKH�VFRSH�RI�WKLV�SDSHU���

�:X� HW� DO��� ������ DOVR� SURSRVH� D� VFDOH� DQG� RULHQWDWLRQ� KLVWRJUDP�� \HW� WKHLU� PHWKRG� UHTXLUHV� SULRU� ZRUG�
VHJPHQWDWLRQ��6LQFH�VHJPHQWDWLRQ�RI�WH[W�OLQHV�DQG�ZRUGV�LV�DQ�RSHQ�UHVHDUFK�WRSLF��6WDPDWRSRXORV�HW�DO���������
DQG�SRWHQWLDOO\�LQWURGXFHV�HUURUV�LQ�IXUWKHU�SURFHVVLQJ��ZH�RPLW�LW�LQ�RXU�DSSURDFK��

�
3. Feature extraction�
$V�IHDWXUH�ZH�FRPSXWH� WKH�QRUPDOL]HG�SUREDELOLW\�GHQVLW\� IXQFWLRQ�RI�D��'�KLVWRJUDP�VL]H�X × Y��ZLWK�X�DQG�Y�
EHLQJ�WKH�WRWDO�QXPEHU�RI�TXDQWL]HG�VFDOHV�DQG�GRPLQDQW�RULHQWDWLRQV��UHVSHFWLYHO\��4XDQWL]DWLRQ�LQKHUHQWO\�KDV�DQ�
HIIHFW� RQ� WKH� LQIRUPDWLRQ� FDSWXUHG� �EHWZHHQ�ZULWHU� YDULDELOLW\�� DQG� WKH� LQYDULDQFH� LQFRUSRUDWHG� �ZLWKLQ�ZULWHU�
YDULDELOLW\���8VLQJ�'R*��ZH�GHFRPSRVH�DQ�LPDJH�LQWR�D�VFDOH�VSDFH��RI�X = M × N��ZLWK�M�RFWDYHV�DQG�N�VXE�
OHYHOV��,3�DUH�WKHQ�LGHQWLILHG�DV�ORFDO�H[WUHPD�RI�WKH�VFDOH�VSDFH��L�H���D�SL[HO�LV�VHOHFWHG�DV�,3�LI�LW�LV�WKH�PLQLPXP�RU�
PD[LPXP� FRPSDUHG� WR� LWV� HLJKW� QHLJKERUV� DW� WKH� VDPH� VFDOH� DQG� QLQH� FRUUHVSRQGLQJ� QHLJKERUV� LQ� WKH� DGMDFHQW�
VFDOHV��DQG�LWV�PDJQLWXGH�H[FHHGV�WKH�WKUHVKROG��7݄ݐ�KH�VFDOH�s୧�RI�,3�݅�LV�LQ�WKH�UDQJH�1 ൑ s୧ ൑ M × N × Ȫ × ݉୧,�
ZKHUH ߪ�LV�WKH�VWDQGDUG�GHYLDWLRQ�RI�WKH�*DXVVLDQ�NHUQHO�IRU�FUHDWLQJ�WKH�VFDOH�VSDFH��DQG�݉୧�LV�WKH�PDJQLWXGH�RI�
WKH�H[WUHPD��,W�LV�TXDQWL]HG�XVLQJ�VWHS�VL]HȪ��ZKLFK�JURXSV�,3�DFFRUGLQJ�WR�WKHLU�ORFDWLRQ�LQ�WKH�VFDOH�VSDFH��7KH�
GRPLQDQW�RULHQWDWLRQ�LV�TXDQWL]HG�IURP�[0°, 360°]�ZLWK�DQJOH�VWHS�Ș���

7KH�EHVW�SDUDPHWHU�FRPELQDWLRQ�IRU�WKH�'R*�GHWHFWRU�ZDV�GHWHUPLQHG�RQ�WKH�ICDAR2011 cropped dataset�
�/RXORXGLV�HW�DO���������DV�[ܯ = 3,ܰ = ߪ,6 = 1.3, ݄ݐ = 5, ݎ = 0]�ZLWK݄ݐ��EHLQJ�WKH�GHWHFWRU�VHQVLWLYLW\��DQGݎ��WKH�
HGJH�WKUHVKROG��ZKHUH�0�PHDQV�WKDW�,3�ORFDWHG�DW�HGJHV�DUH�QRW�VXSSUHVVHG��:LWK�DQ�DQJOH�VWHS�Ș = 30�ZH�FUHDWH�D�
IHDWXUH�YHFWRU�RI�VL]H�����ZKLFK�ZH�WUXQFDWH�WR�WKH�ILUVW�����HOHPHQWV��VPDOOHVW�VFDOHV��EDVHG�RQ�H[SHULPHQWV��1RWH�
WKDW�FKDQJLQJ�WKH�VL]H�RI�WKH�VFDOH�VSDFH�X�DQG�WUXQFDWLQJ�DUH�QRW�WKH�VDPH�RSHUDWLRQ�VLQFH�WKH�DFWXDO�VFDOH�RI�DQ�,3�
DGGLWLRQDOO\�GHSHQGV�RQ�WKH�VWUHQJWK�RI�H[WUHPD�WKH�,3�LV�ORFDWHG�DW��
�
4. Evaluation 
Performance Evaluation.�:H�FRQGXFWHG�RXU�H[SHULPHQWDO�VWXG\�RQ�IXOO�SDJHV�RI� WKH�GDWDVHWV� OLVWHG� LQ�7DEOH����
7KH� HYDOXDWLRQ� GHVLJQ� IROORZV� WKH� ICDAR2011 competition� HYDOXDWLRQ� SURFHGXUH�� H[FHSW� WKDW� RQO\� WKH� 723���
LGHQWLILFDWLRQ�FULWHULRQ�LV�UHSRUWHG�� L�H��� WKH�GRFXPHQW�UDQNHG�ILUVW�KDV� WR�EH�E\� WKH�VDPH�ZULWHU�DV� WKH�TXHU\��:H�
HPSOR\�D�QDwYH�QHDUHVW�QHLJKERU�DSSURDFK�LQ�D�OHDYH�RQH�RXW�PDQQHU�IRU�LGHQWLILFDWLRQ��DQG�WKH�߯ଶ�GLVWDQFH�PHWULF�
DV�GLVVLPLODULW\�PHDVXUH�EHWZHHQ�WZR�GRFXPHQWV��6LJQLILFDQFH�LV�WHVWHG�XVLQJ�D�߯ଶ�7HVW��S��������

�
Figure 1 Cropped example of a text line with the detected IP and their dominant orientations denoted as circles, where the 
size indicates the scale, and the line originating from the center the dominant orientation. Several orientations indicate 
multiple IP with different dominant orientations at the same location.  

 
Figure 2 Samples (cropped for legibility) and their features as polar histogram. Angular coordinates denote quantized 
orientations, radial coordinates denote proportional frequency, and scales are denoted by color-coded markers. For legibility 
the 4 smallest scales only are shown and markers are connected. Round uniform writing causes high (a), long slanted 
strokes are reflected in two opposing distinct peaks (c), and angular writing one distinct peak (b, d). 
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Table 1 Overview of the datasets used 
Dataset # writers # pages # lines Language 
,$0���0DUWL�	�%XQNH��������� ���� �� ����� (QJOLVK�
,&'$5������/RXORXGLV�HW�DO��������� ���� �� �� (QJOLVK��*UHHN�
,&'$5�����IXOO��/RXORXGLV�HW�DO��������� ��� �� ������ (QJOLVK��)UHQFK��*HUPDQ��*UHHN�
,&'$5�����FURSSHG�� ��� �� �� (QJOLVK��)UHQFK��*HUPDQ��*UHHN�

�
Table 2 Comparison of state-of-the-art methods (a, b) and our proposals (c-e) on the test datasets. 

Method IAM ICDAR2013 ICDAR2011 full ICDAR2011 cropped 
�D� ��:X�HW�DO��������� ����� ����� ����� �����
�E� ��-DLQ�	�'RHUPDQQ�������� ����� 1�$� 1�$� 1�$�
�F� �6'2�(�7�� ����� ����� ����� �����
�G� �'HVFULSWRU��)LHO�	�6DEODWQLJ�������� ����� ����� ����� �����
�H� �6'2�(�7�	�'HVFULSWRU� ����� ����� ����� �����

�
Table 3 Evaluation of IP detector parameters on the IAM dataset. SDO is our proposal, with postfix “-E” for IP on edges 

permitted and “-NS” for IP on background suppressed. F is the full feature vector (size 216), T the vector truncated to 108. 
Method Settings Result�
��� � �:X�HW�DO���������'RFXPHQWV� 6FDOH�2ULHQWDWLRQ�+LVWRJUDP�RQ�IXOO�SDJHV�[ܯ = 6,ܰ = 3]� �����
��� � �:X�HW�DO���������:RUGV� 6FDOH�2ULHQWDWLRQ�+LVWRJUDP�RQ�VHJPHQWHG�ZRUGV�[ܯ = 6,ܰ = 3]� �����
��� � 2XU�LPSOHPHQWDWLRQ�RI������� ܯ] = 6,ܰ = 3, r = 0.1]�� �����

� �  F T 
��� � 6'2� ܯ] = 3,ܰ = 6, ݎ = 0.1]�� ����� �����
��� � 6'2�(� ܯ] = 3,ܰ = 6, ݎ = 0]� ����� 81.9 
��� � 6'2�(�16� ܯ] = 3,ܰ = 6, ݎ = 0]��QR�EDFNJURXQG�,3� ����� �����
��� � 6'2�16� ܯ] = 3,ܰ = 6, ݎ = 0.1]��QR�EDFNJURXQG�,3�� ����� �����
��� � 6'2��:RUGV�� �� ����� �

�
5HVXOWV� DUH� VXPPDUL]HG� LQ�7DEOH����2XU�PHWKRG� �F�� DFKLHYHV� FRPSHWLWLYH� VFRUHV�RQ� WKH� ,&'$5����� IXOO�

GDWDVHW��7KH�SHUIRUPDQFH�GHFOLQHV�ZKHQ�KDYLQJ�FRQVLGHUDEO\�OHVV�GDWD��,&'$5�����FURSSHG�RQO\�FRQWDLQV�WZR�WH[W�
OLQHV�SHU�SDJH��1RWH�WKDW�WKH�SHUIRUPDQFH�GLIIHUHQFH�EHWZHHQ��D��DQG��F��RQ�WKH�,&'$5�����VHWV�LV�LQVLJQLILFDQW��,Q�
RUGHU� WR� DVVHVV�SRWHQWLDO� JDLQV�RI� IHDWXUH� FRPELQDWLRQ��ZH� DGGLWLRQDOO\� FRPELQHG�RXU�PHWKRG�ZLWK� D�GHVFULSWRU�
FRGHERRN�EDVHG�DSSURDFK� �G���ZKLFK� LV�RXU�RZQ� LPSOHPHQWDWLRQ�RI� �)LHO�	�6DEODWQLJ����������7KH�FRGHERRN� LV�
FRPSXWHG�RQ� DQ� LQGHSHQGHQW� GDWDVHW��2Q� ODUJHU� GDWDVHWV� VXFK� DV� IAM� DQG� ICDAR2013�� IHDWXUH� FRPELQDWLRQ� �H��
VLJQLILFDQWO\�ERRVWV�WKH�SHUIRUPDQFH��VKRZLQJ�WKDW�RXU�IHDWXUH�FDSWXUHV�FRPSOHPHQWDU\�LQIRUPDWLRQ���

�
Parameter Evaluation.�,Q�WKH�IROORZLQJ�ZH�VKRZ�WKDW�DSSURSULDWH�SDUDPHWHUV�IRU�,3�GHWHFWRUV�DUH�FULWLFDO�IRU�WKH�
RYHUDOO�SHUIRUPDQFH�RI�DQ�,3�EDVHG�PHWKRG��,3�RULJLQDWH�IURP�REMHFW�GHWHFWLRQ�DQG�UHFRJQLWLRQ��ZKHUH�D�KRPRJUDSK\�
�PDSSLQJ�EHWZHHQ�WZR�SURMHFWLRQV�RI�DQ�REMHFW�� LV�FRPSXWHG�WKDW�UHTXLUHV�VWDEOH�DQG�UHSHDWDEOH�,3��+RZHYHU�� WKH�
WDVN�RI�ZULWHU�LGHQWLILFDWLRQ�LV�RI�GLIIHUHQW�QDWXUH��ZH�QHHG�WR�GHVFULEH�WKH�VWURNHV�SUHVHQW���DQG�XQUHIOHFWHG�DGRSWLQJ�
RI�VWDQGDUG�SDUDPHWHUV�VXLWDEOH�IRU�RQH�WDVN�LV�OLNHO\�WR�EHLQJ�LOO�VXLWHG�IRU�DQRWKHU��

)RU�WKH�HYDOXDWLRQ�RI�WKH�'R*�GHWHFWRU¶V�SDUDPHWHUV�ZH�XVHG�WKH�,$0�GDWDVHW�IRU�LWV�VL]H�DQG�YDULDELOLW\�LQ�
ZULWLQJ�VW\OHV�DQG�DPRXQWV�RI�GDWD�SHU�SDJH�������OLQHV���7KH�723���LGHQWLILFDWLRQ�UHVXOWV�DUH�VKRZQ�LQ�7DEOH�����
:LWK� WKH� VHWWLQJV� UHSRUWHG� LQ� �:X� HW� DO��� ������ DV� EDVHOLQH� �����ZH� WHVWHG� RXU� IHDWXUH�ZLWK� IROORZLQJ� DOWHUDWLRQV��
LPSURYHG�VHOHFWLRQ�RI�VFDOH�VSDFH�SDUDPHWHUV�[M, N]������SHUPLWWLQJ�,3�ORFDWHG�RQ�HGJHV�[r]�(5)��DQG�H[FOXGLQJ�,3�RQ�
WKH�EDFNJURXQG������L�H���WKRVH�,3�FRUUHVSRQGLQJ�WR�PLQLPD�LQ�WKH�VFDOH�VSDFH��DV�PHDQV�WR�DYRLG�VHJPHQWDWLRQ��DQG�
WKHLU�FRPELQDWLRQ������)LUVW�DQG�IRUHPRVW��XVLQJ�WKH�EHVW�FRPELQDWLRQ�DQG�RSWLPL]LQJ�WKH�IHDWXUH�YHFWRU����7��ZH�FDQ�
IRUHJR�VHJPHQWDWLRQ�ZLWK�VLJQLILFDQW�LQFUHDVH�LQ�SHUIRUPDQFH�ZLWK�UHVSHFW�WR������)XUWKHUPRUH��FRPSDULQJ���DQG����
ZH�VHH�WKDW�,3�ORFDWHG�RQ�ZKLWH�VSDFH�GR�HQFRGH�YDOXDEOH�LQIRUPDWLRQ��:H�ZDQW�WR�VWUHVV�WKDW�,3�ORFDWHG�RQ�HGJHV�
FDSWXUH� VXSSOHPHQWDU\� LQIRUPDWLRQ� DV� WKH\� GHVFULEH� SURPLQHQW� VWURNHV� RWKHUZLVH� QRW� GHWHFWHG�� VHH� �� DQG� ��� DQG�
SDUWLFXODUO\���DQG����)RU�FRPSDULVRQ��ZH�VKRZ�WKH�UHVXOW�RI�WKH�EDVLF�6'2�����RQ�WKH�VHJPHQWHG�WH[W�OLQH�LPDJHV�RI�
WKH�,$0�GDWDVHW�����)LJXUH���LOOXVWUDWHV�WKH�HIIHFW�RI�WKH�SDUDPHWHU�FRPELQDWLRQV�HYDOXDWHG��

��7KH�GDWDVHW�KDV�EHHQ�PRGLILHG�WR�FRQWDLQ�WZR�VDPSOHV�SHU�ZULWHU�DFFRUGLQJ�WR�WKH�SURFHGXUH�GHVFULEHG�LQ��:X�HW�DO����������
3 /DFNLQJ�LQIRUPDWLRQ�DERXW�WKH�RULJLQDO�SDSHU¶V�SDUDPHWHUV��ZH�XVH�WKH�SDUDPHWHU�FRPELQDWLRQ�GHWHUPLQHG�LQ�6HFWLRQ��� 
4 1RWH�WKDW�WKH�SHUIRUPDQFH�UHSRUWHG�RQ�WKH�IAM�dataset��������E\�WKH�DXWKRUV�LV�QRW�GLUHFWO\�FRPSDUDEOH�WR�WKH�OLWHUDWXUH�VLQFH�
WKH\�XVHG�RQO\� D� VXEVHW�RI�GRFXPHQWV� IRU� HYDOXDWLRQ��ZULWHUV�ZLWK�RQO\�RQH�VDPSOH� DUH�QRW�HYDOXDWHG��DQG��� WR���� UHIHUHQFH�
VDPSOHV�DUH�NHSW�IRU�LGHQWLILFDWLRQ��ZKLOH�IRU�HDFK�ZULWHU�ZH�NHHS�RQO\�RQH�UHIHUHQFH�VDPSOH�LQ�RXU�HYDOXDWLRQ��,W�LV�LQKHUHQW�WKDW�
IHZHU�ZULWHUV�DQG�PRUH�UHIHUHQFH�VDPSOHV�UHVXOW�LQ�EHWWHU�SHUIRUPDQFH��7R�DVVHVV�ZKHWKHU�RXU�LPSOHPHQWDWLRQ��G��LV�FRPSDUDEOH�
WR�WKH�RULJLQDO��ZH�HYDOXDWHG�LW�DFFRUGLQJ�WR�WKH�VWUDWHJ\�H[SODLQHG��DFKLHYLQJ�D�VOLJKWO\�EHWWHU�LGHQWLILFDWLRQ�UDWH�RI������ 
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5. Conclusion 
7KH�ZULWHU�LGHQWLILFDWLRQ�PHWKRG�SUHVHQWHG�LQ�WKLV�SDSHU�PDNHV�XVH�RI�RYHUORRNHG�SURSHUWLHV�RI�,3�DV�IHDWXUH��UDWKHU�
WKDQ�HPSOR\LQJ�D�FRGHERRN�RI�GHVFULSWRUV�DV�LQ�H[LVWLQJ�PHWKRGV��2XU�PHWKRG�LV�VHJPHQWDWLRQ�IUHH�DQG�GRHV�QRW�
UHTXLUH� WUDLQLQJ�� DV� ZH� FRPSXWH� WKH� IHDWXUH� GLUHFWO\� DV� D� �'� KLVWRJUDP� RI� LQWHUHVW� SRLQWV¶� VFDOHV� DQG� GRPLQDQW�
RULHQWDWLRQV��$Q�DGGLWLRQDO�FRQWULEXWLRQ�WDUJHWV� WKH�QHHG�RI�FDUHIXO�DGDSWLRQ�RI�PHWKRGV�RULJLQDWLQJ�IURP�DQRWKHU�
ILHOG��:H�VKRZHG�WKDW�DGDSWLQJ�WKH�GHWHFWRU�WR�WKH�WDVN�RI�ZULWHU�LGHQWLILFDWLRQ��RQ�WKH�RQH�KDQG��ERRVWV�SHUIRUPDQFH�
VLQFH�,3�FDSWXULQJ�DGGLWLRQDO�LQIRUPDWLRQ�DERXW�D�ZULWHU�DUH�GHWHFWHG��DQG�IDFLOLWDWHV�D�VHJPHQWDWLRQ�IUHH�DSSURDFK��
RQ�WKH�RWKHU��

2SSRVLQJ�WKH�LQIHUHQFH�RI��:X�HW�DO����������ZKR�VWDWH�WKDW�ZRUG�VHJPHQWDWLRQ�LV�HVVHQWLDO�±�IRU�,3�LQ�LQWHU�
ZRUG� DQG� LQWHU�OLQH� VSDFH�EHLQJ� LQVWDEOH�±�ZH� FRQFOXGH� WKDW� VSDFHV� HQFRGH� YDOXDEOH� DGGLWLRQDO� LQIRUPDWLRQ� DQG�
ERRVW�SHUIRUPDQFH��UHQGHULQJ�VHJPHQWDWLRQ�XQQHFHVVDU\��2XU�IHDWXUH�RXWSHUIRUPV�WKHLU�SURSRVLWLRQ�E\�D�VLJQLILFDQW�
PDUJLQ��)XUWKHUPRUH��ZH�VKRZHG� WKDW�XVLQJ�,3�GHWHFWHG�RQ� WKH� IRUHJURXQG�RQO\��DUH�DQRWKHU�DOWHUQDWLYH� WR�ZRUG�
VHJPHQWDWLRQ�ZLWK�WKH�OLPLWDWLRQ�RI�ORVLQJ�VRPH�SHUIRUPDQFH�ZLWK�UHVSHFW�WR�D�PHWKRG�LQFOXGLQJ�LQWHU�VSDFH�,3���

2QH�OLPLWDWLRQ�RI�WKH�IHDWXUHV�SURSRVHG�LV�WKH�DPRXQW�RI�GDWD�QHHGHG�WR�FUHDWH�D�UHOLDEOH�PRGHO�RI�D�ZULWHU��
KRZHYHU�� FRPELQHG�ZLWK� D� GHVFULSWRU�EDVHG�PHWKRG� SHUIRUPDQFH� FDQ� EH� ERRVWHG�ZLWK� UHVSHFW� WR� ERWK� IHDWXUHV��
HVSHFLDOO\�IRU�ODUJH�GDWDVHWV��:H�SURSRVH�WR�LQFRUSRUDWH�RXU�IHDWXUHV�LQWR�IXWXUH�,3�EDVHG�PHWKRGV�IRU�LWV�VLPSOLFLW\��
FDSDELOLW\�WR�FDSWXUH�FRPSOHPHQWDU\�LQIRUPDWLRQ��JRRG�SHUIRUPDQFH��DQG�PLQRU�H[SHQVH�WR�FRPSXWH��

�
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Figure 3 Visual examples of the effect of the parameter combinations chosen. Wu et al. is shown in the top-left corner. The 
best-performing parameter combination (SDO-E) is shown in the third column (refer to Table 3 for the exact parameters).  
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Abstract. Advances in technology and scientific development in forensic handwriting examination (FHE) 
require a review in response to the challenges published in the NAS Report. This survey summarizes the 
advances made in theoretical and methodological approaches to handwriting examination including a review 
of research on the proficiency of FHEs. Technology has impacted FHE including analysis of e-signatures and 
use of technology for signature and handwriting authentication. A review of legal cases in the U.S. confirms 
how research and technological advances have met legal challenges and impacted decisions in the courtroom. 

 
1. Introduction  
In 2009, the NAS Report challenged the forensic sciences in several areas including forensic handwriting 
examination (FHE). Specifically, the NAS Report stated that the “scientific basis for handwriting comparisons 
needs to be strengthened…there has been only limited research to quantify the reliability and replicability of the 
practices used by trained document examiners” (p. 5-30). In the report there was discussion about the variability 
of handwriting. To determine if those challenges have been addressed by recent research, a literature review of 
FHE research for the time period 2009-2014 was conducted using Google Scholar, journal databases, and 
specific journals pertaining to forensic science. Publication information was extracted and organized according 
to subject themes that are relevant to FHE. A comprehensive review of the state of the art in FHE over the past 
10 years will be published separately. This paper is a condensed survey of FHE research in response to the NAS 
Report and a review of U.S. legal decisions related to FHE challenges. 
 

2. Handwriting Examination: Theory, Proficiency, and Methods 
1. Theory. Definition of a complexity theory for handwriting began in 1996 with publications of the work of 

Drs. Bryan Found and Doug Rogers, then at LaTrobe University in Australia. There has been work on this topic 
since 2009 by Alewijnse et al. (2011) and Pepe et al. (2012). Continued refinement of the complexity theory 
supports scientific methodology in the evaluation and comparison of handwriting. 

2. Proficiency. Several studies discuss the expertise of FHEs and proficiency testing, all related to the 
identification of handwriting authorship. Proficiency in evaluating disguised and simulated signatures and/or 
handwriting was researched by Bird et al. (2010, 2011, 2012) and Al-Musa et al. (2010). Guest et al. (2011) 
studied the inferences made by FHEs regarding handwriting dynamics as indicators of accuracy. The nature of 
FHEs authorship opinions was evaluated over a five year period of blind validation trials (Found & Rogers, 
2008). Dewhurst et al. (2014) looked at the effects of motivation on the behavior of lay subjects when 
participating in handwriting trials. Holmes et al. (2011) discussed the use of online proficiency testing, as 
compared to more traditional methods of testing. The research in this area continues to inform us as to the 
proficiency of FHEs and helps to target problematic areas that can be corrected by training and testing.    

3. Handwriting Features and Variability. There is a considerable body of recent research on handwriting 
features and variability which increases the information we have concerning inter-writer and intra-writer 
variability and handwriting individuality lending support for the scientific basis of handwriting comparison. 

Research was found on handwriting features of special populations representing languages, special groups, 
etc. (Durina, 2009; Haddad et al., 2009; Turnbull et al., 2010; Al-Musa & Platt, 2011; Savoie, 2011; Al-
Hadhrami et.al., 2014). Factors influencing handwriting included studies on writing position and conditions 
(Equey et al., 2007; Sciacca et al., 2011).  A study on handedness, age, and gender was carried out by Hayes et 
al. (2009).  Simsons et al. (2011) studied the effects of spatially constraining signatures. Studies associated with 
simulation and disguise were carried out in order to understand processes and obtain handwriting feature 
predictors (Al-Musa et al., 2013; Al-Musa & Platt, 2011; Cadola et al., 2013; Bird et al., 2013; Mohammed et 
al., 2014; Caligiuri et al., 2012). Specific features were researched including evaluation of letter shapes (Marquis 
et al., 2011) and inferring speed from writing (Will, 2012). The handwriting variability associated with electronic 
signatures and the dynamic features that can be examined from them was reviewed by Flynn (2012) and 
Nicolaides (2012). A methodology for electronic signature examination was developed by Harralson (2013).   

The influence of health on handwriting production is another handwriting variable that has received 
considerable research attention. Cognitive impairment, dementia, mental and developmental disorders and their 
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effects on handwriting were researched by Balistrino et al. (2012), Caligiuri et al. (2014), Prunty et al. (2014), 
and Schwid & Teulings (2013). Kinematic studies examined handwriting features associated with healthy adults, 
movement disorders, and forgery (Harralson et al., 2008; Caligiuri & Mohammed, 2012; Caligiuri et al., 2014). 
Sadreddin (2013) reviewed the impact of DBS on daily motor activities, including handwriting.  

4. Replicability and Reliability. In quantifying the replicability and reliability of handwriting, there has been 
research into the application of likelihood ratios in handwriting examination. Specifically, Marquis et al. (2011) 
applied multivariate likelihood ratios to evaluation of the shape of handwritten characters and studied the Bayes 
factor of assessment of handwriting features. Davis et al. (2011) studied subsampling to estimate the strength of 
handwriting evidence. Application of likelihood ratios for handwriting evidence was studied by Marquis et al. 
(2011), Hepler et al. (2012), and Taroni et al. (2012; 2014). In critiquing the reliability of FHEs in the 
application of methods, Reinoud et al. (2013) discussed procedural changes needed to counter bias among FHEs 
and Found & Ganas (2013) studied the management of domain irrelevant context information in FHE casework. 

 

3. Handwriting Examination Technology  
Extensive published research exists on developments in signature verification which supports research into the 
replicability and reliability of handwriting. A survey of computer methods in FDE was previously explored by 
Srihari & Leedham (2003). Automated handwriting examination systems such as FISH and WANDA (Franke et 
al., 2004) and CEDAR-FOX (Srihari et al., 2005, 2007; Owen, 2013) rely on handwriting databases, enable 
automated examination features, and produce statistical analyses. FISH and WANDA were designed to help 
automate the handwriting examination process and increase efficiency through the computerized ability to scan, 
digitize, measure, store, and compare handwriting samples. Automatic feature extraction is based on the premise 
that it is the combination of unique characteristics that establishes handwriting identification; one feature alone is 
not sufficient to establish identification. The FBI, through the coordinated efforts of scientists and computer 
engineers, developed the Forensic Language-Independent Automated System for Handwriting Identification 
(FLASH-ID) (Sciometrics, LLC, 2014). Although not meant to replace FHEs, computerized methods of analysis 
aid in establishing statistical support for forensic opinions.  

Research using computational methods to quantify the individuality of handwriting has been explored more 
recently by Saunders et al. (2011).  The role of automation in handwriting examination was discussed and 
illustrated through a case study by Srihari & Singer (2014) in a way that synthesizes the role of the human expert 
with the computational ability that automation provides in offering statistical analysis.  Essentially, automating 
some of the work carried out by human examiners offers efficiency in case load especially when there is a large 
volume of documents requiring analysis. Automation also operationalizes the process providing efficiency, 
reliability, and standardization in forensics. Other studies involving automation included Liwicki (2012), Parodi 
et al. (2014), Parziale et al. (2014), and Putz-Leszczynska (2012, 2014) who studied various aspects of online 
verification. Malik et al. (2014) compared the signature verification performance of humans versus machines.  

Experimental eye-tracking is a technologically novel way to learn about FHE cognition. An eye-tracking 
study found that FHEs spend more time examining model signatures than forged signatures, and that genuine 
signatures with a higher degree of complexity also had longer observation times than signatures with low 
complexity (Pepe et al., 2012). These studies may have future relevance in developing technology that can be 
linked to the computer in evaluating handwriting, especially in programming software that evaluates handwriting 
similar to the way a human examiner evaluates handwriting. 

 
4. Legal Review 
Recent court decisions continue to interpret the Daubert requirement of reliability in assessing new scientific and 
technological developments. Standardized methods developed by independent laboratories continue to confer 
legitimacy when used to develop new technologies (City of Pomona, 2014). Thus, the traditional “battle of the 
experts” is an element given to the weight of evidence by a jury, and should not be excluded pre-trial by the 
judicial officer.  The existence of scholastic disagreement is an appropriate courtroom debate, and was the reason 
why opponent’s argument of a relatively small a reference database in Pomona was insufficient objection for the 
Court to question technological reliability solely based unknowns in the potential rate of error. Pre-trial 
challenges to expert testimony are overcome when the testimony is shown to be reliable and helpful to the jury, 
not “whether the expert is right or wrong” (City of Pomona, p. 13). 

Where technology is “novel and untested,” case law has affirmed the exclusion of evidence (Tyson, 2009). 
The exception appears to be government investigative software, as courts are hesitant to permit public disclosure 
(Chiardio, 1st Cir. 2012). FBI investigative innovations were excused from peer review (Chiardio, p. 278). 
Similarly, selective application of some, but not all, potential factors into a structured analysis amounts to a 
“disagreement over, not an absence of, controlling standards [and] is not a basis to exclude expert testimony” 
(Pomona; see also Tampa Bay, 11th Cir., 2013). The District of Columbia Court of Appeals has similarly 
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reasoned that “scientists significant either in number or experience must publicly oppose a new technique or 
method as unreliable before the technique or method does not pass muster under Frye” (Pettus, 2012).   

The Herrera opinion, penned by the learned Judge Posner, provides that handwriting expert evidence 
“doesn’t have to be infallible to be probative” (Herrera, 7th Cir., 2013).  Also from the Seventh Circuit: “Law 
must apply itself to the life of a society driven more and more by technology and technology improvements” 
(Lapsley, 2012).  The courts have previously recognized that “experience is the predominant, if not sole, basis 
for a great deal of reliable expert testimony” (Jones, 6th Cir., 1997; see also 2000 Advisory Comment to Fed. R. 
Evid. 702). The use of cutting edge tools in conjunction with an expert’s independent confirmation of system 
accuracy is therefore generally admissible evidence to support the expert’s testimony and ultimate professional 
opinion. 
 

5. Conclusion 
A review of the research published over the past few years clearly shows that there has been a response to the 
challenges presented in the NAS Report. Prior research established that FHEs are more skilled than laypersons. 
However, recent research is instructing us as to the limitations that FHEs demonstrate concerning problematic 
areas and where further training and testing is required. Published research shows that FHEs are addressing 
concerns regarding handwriting variability, reliability, and replicability. Methods have been refined that 
incorporate advancing technology and research. A legal challenge to use of handwriting evidence in the 
courtroom, based on criticism from the NAS Report, was successfully defended (Pettus, 2012). While continued 
research work is necessary in all forensic disciplines, especially in the face of technological advances, published 
research since 2009 clearly shows that the scientific basis for handwriting comparison is being addressed through 
research, application of advanced technology, improved methods, and in the successful rebuttal of legal 
challenges.     
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Objective: To describe handwriting and executive control features and their inter relationships among children 
with developmental dysgraphia, in comparison to controls. Method: Participants included 64 children, aged 10-
12 years, 32 with dysgraphia based on the Handwriting Proficiency Screening Questionnaire (HPSQ) and 32 
matched controls. Children copied a paragraph on paper affixed to a digitizer that supplied handwriting process 
objective measures (Computerized Penmanship Evaluation Tool–ComPET). Their written product was evaluated 
by the Hebrew Handwriting Evaluation-HHE. Parents completed the Behavior Rating Inventory of Executive 
Function (BRIEF) questionnaire about their child's executive control abilities. Results: Significant group 
differences were found for handwriting performance measures (HHE and ComPET) and executive control 
domains (BRIEF). Children with dysgraphia required significantly more performance time, wrote longer letters, 
erased significantly more and produced less organized written product than controls,. 43% of the variability of 
number of erasures was explained by working memory and abilities to organize materials (BRIEF). Based on 
one discriminate function including handwriting performance and executive control measures, 98.4% were 
correctly classified into groups. Conclusion: Results strongly recommend consideration of executive control 
domains to obtain better insight into handwriting deficit characteristics among children with dysgraphia, to 
improve their identification, evaluation and the intervention process. 

 
1. Introduction 
Handwriting still serves as the most immediate form of graphic communication, despite the expanding use of 
technology (Feder & Majnemer, 2007). Skilled handwriting is essential for school-aged children allowing them to 
write within reasonable time and to create a readable product through which thoughts and ideas can be 
communicated (Rosenblum, Weiss, & Parush, 2003). It is a complex activity that entails an intricate blend of 
cognitive, kinesthetic, and perceptual–motor components (Feder & Majnemer, 2007). Handwriting composes 30% 
to 60% of an average school day, yet 10% to 32% of school-aged children struggle with the performance 
(Karlsdottir & Stefansson, 2002; McHale & Cermak, 1992; Smits-Engelsman, Van Galen, & Portier, 1994). 
Children unsuccessful in   developing   proficient   handwriting   are   defined   ‘‘poor   hand-writers’’   or ‘‘dysgraphic’’  
(Marr & Cermak, 2001). Dysgraphia is coded in the DSM-5 as "Specific Learning Disorder with impairment in 
written expression" (APA, 2013). Better insight of the underlying mechanism of handwriting deficiency may lead 
to improved theoretical knowledge and development of appropriate evaluation and intervention methods. 
 In recent years, extensive research has explored the relationship between executive function (EF) and 
learning and behavior (e.g., McCloskey, Perkins, & Van Divner, 2008). EF is an umbrella term that encompasses 
high level cognitive functions such as setting and managing goals, planning, inhibition and dealing with diverse 
elements, shifting among cognitive sets, organization, working memory and metacognition (Barkley, 2005; 
Ylvisaker & Feeney, 2002). McCloskey et al. (2008) claimed that difficulties in text formation, poor text 
production, speed and automaticity can result from disuse, ineffective or inconsistent use of EF. Yet, literature 
focusing on the relationships between handwriting performance and EF is scarce (Rosenblum, Aloni, & Josman, 
2010). Thus, this study aimed to obtain better insight of the handwriting performance features among children aged 
10-12 with dysgraphia, their executive control abilities and the relationship between these domains. The research 
hypotheses were: 1. Children with dysgraphia aged 10-12 will differ from typical peers in their handwriting 
performance characteristics as measured by the Computerized Penmanship Evaluation Tool and by the Hebrew 
Handwriting Evaluation. 2. Significant group differences will be found for their executive control. 3. Executive 
control will predict the variation of handwriting performance measures. 4. Specific handwriting measures/scores 
and EF will best discriminate between school-age children with and without dysgraphia. 
 
2. Methods 
Participants: 64 children aged 10-12 years old; 32 were defined by their teacher as having dysgraphia based on the 
Handwriting Proficiency Screening Questionnaire (HPSQ) (Rosenblum, 2008) , and 32 were age and gender 
matched controls with typical development (TD). Children with known neurotic/emotional disorders, autistic 
disorders, physical disabilities, or neurological diseases were excluded from the study. All subjects were native 
Hebrew speakers and writers (for at least 4 years), who attended school, and reported no hearing or vision 
problems. There were no significant differences between the groups for gender (24 boys, 8 girls in each group) nor 
for age (Dysgraphia: M=11.16±7.00 Controls: M=11.25±6.5). 
Instruments:  
1. Handwriting Proficiency Screening Questionnaire (Rosenblum, 2008): The HPSQ is a ten-item reliable and valid 
questionnaire developed to identify school-aged   children   with   handwriting   difficulties   based   on   their   teacher’s  
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observation. Cutoff scores were determined for handwriting deficiency as up to 14 and up to 8 for typical writing 
ability (See Rosenblum, 2008 for a detailed description).  
2. Handwriting product evaluation-The Hebrew Handwriting Evaluation (HHE) (Erez & Parush, 1999) and 
Computerized Penmanship Evaluation Tool (ComPET, previously referred to as POET) (Rosenblum, Parush, & 
Weiss, 2003): Children copied a paragraph onto a sheet of paper affixed to a Wacom Intous  II x-y digitizing tablet 
(404 X 306 X 10 mm), while using a wireless electronic pen with a pressure-sensitive tip (Model GP-110). This 
constitutes part of the ComPET system that enables receipt of exact time of task performance in seconds, the mean 
pressure applied towards the writing surface in non-scaled units from 0-1024 and mean stokes height which reflects 
the letter's height in millimeters.  
The HHE is a valid and reliable tool used in this study to collect children written product data. The HHE outcome 
measures include: Global legibility (the overall clarity) scored on a 4-point Likert scale, from most legible [1] to 
least legible [4]. The analytic measurement of legibility used in the HHE examined three variables: a. Number of 
letters erased and/or written over. b. Number of unrecognizable letters due to the quality of letter closure, rounding 
of letters, or letter reversals. c. Spatial arrangement of the written text including vertical alignment of letters on the 
line, the spacing of words and letters and letter size. The spatial arrangement score ranges from 6 (best 
performance) to 24 (worst performance).  
3. Behavioral Rating Inventory of Executive Function (BRIEF) (Gioia, Isquith & Guy, 2000): A parent report 
reliable and valid questionnaire used to assess EF in 5-18 year-olds. 84 statements are divided into the Behavioral 
Regular Index (BRI) including three sub-domains (inhibition, shifting and emotional control), and the 
Metacognition Index (MI), incorporating five sub-domains (initiation, working memory, planning/organization, 
organization of materials, and monitoring). Parents rate the frequency of the behavior described in each statement 
from '1'- low to '3'- high. The BRI and MI scores are combined to an overall Global Executive Composite (GEC). A 
GEC of 50 represents the average standard score. A standard score of 65 and above indicates a deficit. (Gioia et al, 
2000). 
Procedure: After obtaining ethical approvals and signed consent from parents, children suspected for dysgraphia 
were identified by their teacher using the HPSQ scale. For each child in the dysgraphic group, a matched control 
child without dysgraphia was chosen and both the child parents signed their consent. Children then performed the 
paragraph copying task on the digitizer. Their written product was evaluated by an Occupational therapist at school 
who was blinded to their HPSQ scores. Parents completed the BRIEF questionnaire about their child. 
3. Results  
Differences between groups in Handwriting Proficiency Screening Questionnaire (HPSQ) scores  
As expected, due to HPSQ based selection of children with dysgraphia, significant between group differences were 
found for the HPSQ mean final score (TD: 1.03 ± 1.79 ; dysgraphic: 21.21 ± 2.90 t (62) = 33.58 p<.0001).  
1. Differences between groups’ handwriting performance measures (product HHE and process, ComPET) 
The two measures, handwriting and fluency, reflect performance time, as measured by the HHE, measured by the 
number of letters written in the first minute, and the total performance time (ComPET), indicating significant group 
differences with a considerable gap between the groups (see Table 1). Results of the Mann Whitney U-test on the 
other four HHE outcome measures yielded significant differences for all HHE products' outcome measures. No 
significant group differences were found for the pressure applied to the writing surface. 
Table 1: Comparison between Groups' Handwriting performance measures, HHE and ComPET  (*p<.05    ***p≤.000 
        

HHE  Children with TD 
(n=32) 
M ± SD 

Children with Dysgraphia 
(n=32) 
M ± SD 

t/u 

 U 
Global Legibility 1.40 (.61) 2.43 (.62) 150.00*** 
No. of Letters Erased or over-
written  

.78 (1.00) 3.37 (1.68) 85.00*** 

Unrecognizable Letters 4.50 (4.10) 9.87 (6.32) 231.50*** 
Spatial Arrangement 7.84 (2.03) 11.28 (2.09) 111.00*** 
ComPET  
Total performance time (s') 162.13 (29.38) 219.97 (48.00) t(62)=5.81*** 
Pressure  (0-1024) 693.55 (131.52) 656.90 (137.78) t(62)=-1.01  NS 
Mean strokes height (m'm) 3.19 (.64) 3.63 (.94) t(62)=2.16 * 

2. Differences between groups in executive control (BRIEF scores)  
The MANOVA analyses testing for group differences (TD versus dysgraphic) across the eight BRIEF sub-domains 
yielded significant differences between the groups (F (8,55) =26.28 ; p<.0001  K=.79). Data were subjected to a 
series of one-way MANOVAs to examine in which of the domains group differences would be found. Results 
indicated significant differences between the groups in each of the eight executive control subdomains with high 
eta2 values.  
Table 2: Comparison of the Behavioral Rating Inventory of Executive Function (BRIEF) scores between groups. 
(***p<.001) 
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BRIEF Children with TD 
(n=32) 
M ± SD 

Children with Dysgraphia 
(n=32) 
M ± SD 

F(1,62 ) η2 

Inhibition 45.53 (5.97) 49.65 (9.75) 13.49*** .18 
Shift 50.09 (8.14) 66.34 (10.36) 48.63*** .44 
Emotional control 45.40 (7.21) 56.03 (10.26 22.95*** .27 
Initiative 43.81 (6.73) 59.78 (8.77) 66.63*** .52 
Working memory 43.06 (5.00) 62.25 (6.34) 180.45*** .74 
Planning/organization 42.84 (5.11) 62.84 (8.25) 142.25*** .69 
Organization of materials 44.90 (6.16) 57.31 (7.77) 50.06*** .44 
Monitoring 41.25 (6.32) 59.18 (7.27) 110.79*** .64 
Behavioral Regulation Index (BRI) 46.15 (6.35) 59.15 (9.72) 6.33***  
Metacognition Index (MI) 42.09 (5.18) 62.06 (6.84) 13.15***  
BRIEF final score 42.81 (5.50 62.06 (7.24) 11.96***  

 
3. Predictability of handwriting performance measures by executive control (BRIEF) in the dysgraphic group 
Three stepwise regression analyses were performed in the dysgraphic group. In each regression, the BRIEF eight 
subdomains or it's two scores (BRI or MI) were included as predictors of handwriting performance measures. The 
results presented in table 3, indicate that 'working memory' accounted for 33% while 'organization of materials' 
added 10% of the variance to prediction of number of letters erased or written over  (F (2, 39) = 11.17,  β=   .58, 
p<.001). All in all, the two executive control subdomains accounted for 43% of the variance of the number of letters 
erased or written over among children with dysgraphia. Interestingly, emotional control accounted for 20% of the 
variance of the mean pressure (F (1, 30) = 7.94,  β=  .45, p<.001) while 30% the variance of strokes mean height 
was predicted by monitoring, initiation and organization of materials (F (2, 29) = 6.25,  β=  .43, p<.001). 
Table 3: Predicting number of letters erased or written over by BRIEF subdomains among children with dysgraphia 
(*p<.05    ***p<.001) 

4. Group discrimination based on handwriting performance (HHE and ComPET) and EF control (BRIEF) 
The BRIEF eight sub-domains, and the continuous handwriting performance measures were included in the 
discriminate analysis (see Table 4). One discriminate function was found for group classification of all participants 
(Wilks' Lambda=.14, p<.0001). Working memory made the greatest contribution to group membership (.697), 
while the planning/organization was .618 and monitoring, .546. Based on this function, 98.4% of the participants 
overall, 100% of the dysgraphic and 96.9% of the controls were correctly classified. A Kappa value of .969 
(p<.0001) was calculated, demonstrating that group classification did not occur by chance. 
Table 4: Discriminant analysis structure matrix predictors' loading values 

4. Discussion 
Results indicated that children defined by their teachers as having dysgraphia based on the HPSQ indeed showed 
significantly inferior writing abilities related to performance time, letter height, global legibility, written product 
organization, had significantly more letters erased/overwritten and unrecognizable letters compared to controls. 
These results support previous findings of school children aged 8-9 with dysgraphia (Rosenblum et al., 2003; 
Rosenblum, Dvorkin, & Weiss, 2006) and highlight that older children with difficulties writing with controlled 
smooth and flowing movements also have more erasures and less efficient writing speed (Smit-Engelsman, Van 
Galen, & Portier, 1994). It is important to note that while children need to invest energy in orthographic motor 
processing, such as organization of letter height/forms as well as their location on the page, they are unavailable to 
think about and plan the writing content (Graham, Struck, Santoro, & Berninger, 2006). This it may also be linked 
with fatigue and frustration (Engel-Yeger, Nagauker-Yanuv, & Rosenblum, 2009). 
 While focusing on possible underlying mechanisms of deficient performance, the results indicated that the 
dysgraphic children's BRIEF scores were significantly higher than those of controls, yet did not achieve a score of 
65 which indicates an EF deficit (Gioia et al., 2000). Furthermore, some of the executive control domains predicted 
a considerable percentage of the variance of handwriting performance measures. Previous studies stressed the 

Model 2 Model 1  
β SE B B β SE B B Variable 
.73*** .03 .15 .58*** .03 .12 Working memory 
-.35* .02 -.057    Organization of materials  
  43   33 R2  (Adj.rsq) 

  5.07*   15.11*** F change in R2 

 Loading 
value 

 Loading value 

Working memory (BRIEF)  .697 Shift (BRIEF) .362 
Plan/organize (BRIEF) .618 Total performance time (ComPET)  .301 
Monitoring (BRIEF) .546 Emotional control (BRIEF) .248 
Initiation (BRIEF) .423 Inhibition (BRIEF) .191 
Letters erased or written over (HHE) .388 Mean stroke's height (ComPET) .112 
Organization of materials (BRIEF) .367 Mean pressure (ComPET) -.056 
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importance of working memory and other executive control domains related to the written content such as language 
production, formulation of ideas and linguistic expression (e.g., Kellogg, Olive, & Piolat, 2007; St Clair-Thompson, 
& Gathercole, 2006), while Volman and colleagues indicated deficient cognitive planning ability among children 
with handwriting difficulties (Volman, van Schendel, & Jongmans, 2006). However, to our knowledge, the 
relations between executive control domains and writing production have not yet been studied. Results of the 
regression and the discriminant analysis highlight the importance of executive functions such as working memory, 
planning/organization, organization of materials, monitoring and initiation to handwriting performance abilities. 
Dysgraphia is a learning disability subtype classified under the umbrella of hidden disabilities (Josman & 
Rosenblum, 2011) found in high comorbidity with Developmental Coordination Disorders (DCD) and Attention 
Deficit Hyperactive Disorders (ADHD). Thus, it is not trivial to find and detect these children's deficient 
performance. The current study highlights the benefits of the HPSQ for identifying these children while the results 
of their executive control scores and their relationships with handwriting performance provide theoretical 
contribution as well as practical clinical implications. Further studies are required to discover what brain 
mechanism is behind developmental dysgraphia, and what the relevance is of the frontal lobes in connection with 
executive control to the writing disability. Practically, there is a need to emphasize on strategies to improve 
working memory, planning and organization related to letters and forms, as well as organization on paper. Such 
strategies may lead to an improvement in handwriting performance and consequently improve academic success 
and self-efficacy, but may also influence success in other life tasks and domains as activities of daily function work, 
leisure and social participation (Toglia & Berg, 2013). 
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Abstract. An investigation of the eye and hand movement during the task of signature simulation was conducted. 
Three   subjects’   eye  movements and hand movements were recorded using an eye-tracker and a digitizing tablet 
while they simulated signatures. The study revealed that eye gaze most frequently shifted within less than 17 msec 
of a pen velocity minimum. It is thought that the cognitive processes overseeing this movement control and the 
limitations of the visuomotor buffer could play an important role in the behaviour of simulating signatures and 
signature simulation quality. 

 
1. Introduction  

The relationship between eye and hand movements during the task of signature simulation has not been 
thoroughly investigated previously, particularly with respect to movement initiation and termination. Previous 
research on line copying has found that the eyes tend to move within 33 msec of the pen reaching a velocity 
minimum (Pepe & Sita, 2014). It has been proposed that the eyes may be receiving feed-forward information 
about the upcoming movement (Ketcham et al., 2006; Reina & Schwartz, 2003), or that there is a reciprocal 
exchange of information between the sensorimotor systems (Vercher, Gauthier, Cole, & Blouin, 1997). Although 
it has been proposed that this close eye-hand relationship may help improve the spatial accuracy of signature 
simulations (Pepe & Sita, 2014), the question of whether this relationship is evident during the task of signature 
simulation has never been investigated. 

Previous studies have also found that the eyes frequently lead the hand in motor tasks (see Gielen, 
Dijkstra, Roozen, & Welton, 2009; Inhoff, Briihl, Bohemier, & Wang 1992; Truitt, Clifton, Pollatsek, & Rayner, 
1997). The eyes are thought to lead manipulative action by around half a second and move on to the next object 
about half a second before the action is completed (Land, 2006). The presumed role of this half second buffer is 
to hold information for a brief time period, allowing a match between episodic input and continuous motor 
output (Land & Furneaux, 1997). This buffer would therefore allow simulators to check, or guide their written 
output  and  to  look  back  to  the  exemplar  signature  in  a  ‘just-in-time’  manner (see Ballard, Hayhoe & Pelz, 1995) 
to transform the next part of the exemplar signature into a motor program before the visual information in 
memory had faded, therefore allowing the motor action to proceed (Ballard et al., 1995; Hayhoe, Bensinger, & 
Ballard, 1998; Land, 2006).  

It is therefore of interest to explore the timing of eye and hand movements to help determine behavioural 
processes underlying signature simulations. 
2. Methods 

A total of three subjects were tested. Subjects sat on a kneel chair at a table with an attached PTZ-1230 
12x12 Wacom Intuos 3 digitising tablet (FFT low-pass 12 Hz filter capturing at 200 Hz with a sampling 
accuracy   0.25  mm   in   the   x   and   y   direction)   and   inking   pen   for   recording   subjects’   raw   and   digital   pen   data.  
Movalyzer version 6.1 was used to capture digitising tablet data. A Tobii X-120 eye-tracker was attached and 
centered under the table facing upwards at an angle of 68° captured eye movements of subjects. The sampling 
rate of the eye-tracker was 100 Hz with a spatial accuracy of ± 0.5°. An external Basler scA640-120gc digital 
camera recorded the scene at 100 frames per second and allowed for viewing of simultaneous eye-gaze position 
and pen position. 

The scene camera had a resolution capture of 658 x 492 pixels and was positioned directly above the 
center of the writing area. A blank, white screen was placed perpendicular to the table and positioned behind the 
digitising tablet to enhance luminosity to increase the reliability of the eye-tracking sampling. A head rest was 
used  to  keep  subjects’  head  positions  stable  throughout  testing  to  maximize  eye-tracking spatial accuracy. Gaze 
data was recorded in Tobii studio version 2.0.2 and analysed in Tobii studio version 3.0.3. 

Once seated, subjects were adjusted to a comfortable  sitting  height.  The  eyes’  viewing  distance  from  the  
eye-tracker ranged between 54 cm and 62 cm depending on subject height. At 57.3 cm, 1° of visual angle 
equated to 1 cm on the page. Following the eye-tracker calibration in which subjects were required to look at 5 
fixed calibration points on a blank page, subjects were required to have a practice attempt at copying the word 
‘practice’.  This  was  to  ensure  a  comfortable  writing  position  and  to  make  sure  that  the  eye-tracker was tracking 
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properly. Following this practice attempt, subjects were instructed to produce simulations of two different 
exemplar signatures.  

Simulations were produced at least 5° below the exemplar, removing the ability of subjects to acquire 
visual information using parafoveal vision. An example of a completed signature simulation trial from the view 
of the scene camera is shown below in Figure 1.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1. A completed simulation trial. 

 
Subjects were instructed to simulate the exemplar to the best of their ability. Subjects were informed that 

they would begin each trial following a verbal cue and were required to move their pen away from the pad 
following completion of their simulation to indicate the end of the trial. Prior to commencing, and following 
their simulation attempts, subjects were required to look at a reference point. 

Two different exemplar signatures were simulated three times consecutively by each subject. The order of 
presentation of the exemplars was counterbalanced between subjects, eliminating any bias effects due to fatigue 
or familiarity. 

Gaze data was collected from first initial pen-down movement to completion of the final pen-down 
movement. The time differential between gaze shifts and velocity minima, as well as pen and eye lead times 
were extracted by viewing each frame captured by the video camera during the simulation trials. 

Pen strokes produced during the simulation attempts were defined by peak velocity profiles in Movalzyer. 
These are represented by the lines between the circles in Figure 1.2. The circles represent the locations of pen 
velocity minima. 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1.2. An image of a simulation trial showing the locations of velocity minima of the pen. 
 

Gaze shifts that occurred when the pen was in-air were excluded from the analysis. In addition, when the 
pen was stationary, the only fixations included in the analysis were the fixations just prior to initial pen 
movement, or immediately after the pen movement had ceased. This was to control for excessive numbers of 
gaze shifts being made during moments the pen was stationary. 
3. Results 
The relationship between the observed gaze shifts and strokes are shown in Table 1.1. Lead-time referred to 
either i) the time that the eye led to pen (before the pen caught up to the position, or relative position of the eye), 
or ii) the pen led the eye (before the eye caught up to the position of the pen).  
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Table 1.1.  
Summary of the eye and pen data for each subject during signature simulations 

Subject 

 

Average 
number of 

pen 
strokes 

produced  

Average 
stroke 

duration 
(msec) 

Average 
number of 
gaze-shifts 

made 
during 

pen-down 
movement 

Average 
time gaze 

shift 
occurred 

from a pen 
velocity 
minima 
(msec) 

Approximate 
average eye 
lead-time in 
front of pen 
(in strokes) 
on exemplar 

Estimated 
eye lead- 

time 
(msec) on 
exemplar 

 

Estimated 
lead-time 
(msec) on 

copy 

 

Average 
number of 

strokes 
per gaze 

shift 

 
eye pen 

1 13.0 191 7.00 39.6 2.18 419 n/a n/a 1.86 

2 45.3 240 24.7 44.1 1.82 445 n/a n/a 1.83 

3 35.2 212 8.50 41.8 n/a n/a 418 604 4.10 

 
There appeared to be a close temporal relationship between gaze shifts and pen velocity minima. The data 

revealed that this was not simply due to low average stroke durations. Gaze tended to shift most frequently 
within less than 17 msec of a pen velocity minimum. Figure 1.3 below shows a summary of the amount of time 
that elapsed between gaze shifts and pen velocity minima for the simulation trials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3. Average time elapsed between a gaze shift and a velocity minimum. 

 
4. Discussion 

The  subjects’  gaze  frequently  shifted  around  moments  of  pen  velocity  minima.  This is evidence of a close 
temporal relationship between the eye and hand movements in relation to movement initiation and termination. 
Previous studies have reported similar relationships in tracing and drawing and other graphical tasks (Gielen, 
Dijkstra, Roozen, & Welton, 2009; Gowen & Miall, 2006; Ketcham et al., 2006; Reina & Schwartz, 2003). 
De’Seperati  and  Viviani  (1997)  suggest  that  there  may  be  some  general  principles  of  operation common to the 
distinct modules responsible for setting up the motor output to the hand and the eye. It is possible that the timing 
of these movements serve to optimize the recurring cognitive processes involved in the task. From a quality of 
output point of view, this eye-hand behaviour makes sense. It seems logical to make gaze shifts at moments 
when the pen is moving slowest, as this allows adequate time for visual processing of the next stroke from the 
original image, or checking and/or guiding spatial output of the written trace. One presumed problem with 
making gaze shifts mid-stroke when the pen is moving quickly is that cognitive suppression (Irwin & Carlson-
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Radvansky, 1996) and the time taken to visually process newly fixated area (see Rayner, 1998) may affect the 
accuracy of output by affecting the module responsible for setting up the motor output to the eye and hand.  

There appeared to be occasional moments the eye would overshoot the position of the pen by close to half 
a second. Equally as often, the eye would lag behind the pen before making a saccade to catch back up to the 
pen’s  tip.  Fixations  following  the  pen  on  the  line  recently  drawn  may  be  part  of  a  visual  feedback  mechanism  
controlling ongoing alignment of the pen with the pen trace and fixations made ahead of the pen are presumably 
used as a point of reference necessary to guide future pen movement (Tchalenko, 2007). The presence of these 
two eye behaviours suggests vision is able to adopt both a feedback and a feed-forward role during signature 
simulations. 

The eye was observed to lead the pen by up to half a second when comparing pen position on the copy 
and eye position on the exemplar. This is likely to be necessary to transform visual information held in working 
memory into a motor program (Fleischer, 1986; Miall, Gowen, & Tchalenko, 2009). If information is held in a 
memory buffer for the time between a gaze shift and completion of the current motor act, the results would 
indicate that the memory buffer during this task is close to half a second long. This means that the simulator may 
only  have  half  a  second  to  fixate  downward,  guide  the  pen’s  movement  and  fixate  back  up  to  the  exemplar  in  
time to load the next stroke so that pen movement does not cease and line quality can be maintained. It is 
therefore suggested that the temporal limitation of the memory buffer is, in part, responsible for the commonly 
observed trade-off between the spatial quality and line quality during signature simulations. 

Future studies should attempt to  validate  the  current  study’s  findings  using  a  greater  number  of  subjects  
and attempt to determine how the temporal limitations of the visuomotor buffer can affect signature simulation 
quality and experts judgments about authenticity. 
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Abstract. Research on the effects of stress on motor performance has produced inconsistent findings. The 
neuromotor noise perspective attempts to explain these divergent results by suggesting that stress has activating 
properties on the motor-system that may result in decreased reaction times; however, the increased activation due 
to higher amounts of stress does also increase noise in the motor-system that needs to be filtered out resulting in 
possible increases of processing times. One area in stress research that has received little attention is the effects of 
stress on motor learning. The purpose of this study is to investigate the effects of stress on motor learning and how 
the neuromotor noise perspective may explain the results. 60 individuals practiced a graphical aiming task with 
either no stress (control), physical stress (PS), or cognitive stress (CS). Following practice, participants performed 
a retention test without the additional stressors and a transfer task in which the task was performed in a reverse 
order. Results suggest that CS was more detrimental to motor performance than PS or control (p<.05). CS also 
performed poorer during retention (p<.05) but not transfer (p>.05). This suggests that even though cognitive stress 
hinders performance, motor-learning may still take place. Results also suggest that cognitive stress is more 
detrimental to human motor performance than physical stress. 
 

1. Introduction 
Stress has been found to have both positive and negative effects on human motor performance (Szalma & Hancock, 
2011; Keuss, van der Zee, & van der Bree, 1990). One perspective that has attempted to explain these divergent 
effects is the neuromotor noise perspective (Van Gemmert & Van Galen, 1997). The motor system is inherently 
noisy and noise in the system is responsible for variability during movement execution (De Jong & Van Galen, 
1997). The neuromotor noise perspective suggests that physical stress (i. e., auditory noise) and cognitive stress (i. e., 
performing multiple tasks simultaneously) have both an activating effect on the motor system. The increase in 
activation due to these stressors in turn increases the amount of neuromotor noise in the motor and information 
processing system. To adapt to the increase in noise, the system must filter out the noise and does so in one of two 
ways; the system filters out noise by increasing the cognitive processing time before executing a movement, or by 
exploiting the mechanical properties of the limbs (i. e., increased limb stiffness).  

An increase in noise in the system has been shown to be beneficial for performance on simple motor tasks but 
detrimental to performance on more complex motor tasks. Physical stress has been shown to enhance response time 
by increasing activation but cognitive stress hinders response time. Both types of stressor have been found to 
increase limb stiffness which results in an increase in pen pressure on graphical tasks. It has also been suggested that 
the human system is more resistant to physical stressors than it is to cognitive stressors (Van Gemmert & Van Galen, 
1997). 

The purpose of the present study was to investigate the effects of these two types of stressors on motor 
performance and learning. Very little research has investigated the effects of stress on motor learning. It is possible 
that the increase in neuromotor noise during practice increases cognitive effort to filter out the noise which may 
facilitate motor learning. It is also possible that the presentation of an additional stressor will become part of the 
memory representation of the skill. This would lead to degraded performance of the task when the skill is performed 
in the absence of stress. 
 
2. Methodology 
Sixty young-adults practiced a graphical aiming task that required them to maneuver a non-inking pen electronic pen 
(WACOM ZP-130) on a digitizing tablet from a start point to a target while maneuvering around two rectangular 
barriers (Figure 1). The goal of the graphical aiming task was to complete it in exactly 2000ms. All trials were 
performed with a WACOM Intuos3 12×19 digitizing (48.26cm × 30.48cm) that was connected to a PC (Dell XPS 
720) with a 46.99cm × 29.21cm monitor (Figure 1). A custom program created with MovAlyzeR 
(NeuroscriptSoftware, Inc.) presented the task and recorded the movement data. The X and Y position of the pen tip 
was recorded at a sampling rate of 200 Hz and a spatial resolution of 0.0005cm. 
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Figure 1. (A) The graphical aiming task that individuals performed during retention and transfer. (B) Diagram depicting 
equipment and participant placement during the experiment. 

 
 Acquisition consisted of 60 trials (12 Blocks of 5) in which individuals received feedback on their movement 
time randomly on 30% of the trials. During acquisition, 20 participants performed the graphical aiming task 
(Control), 20 performed the task while 80dBs of continuous white noise was presented (Physical Stress), and 20 
performed the task while simultaneously counting backwards by threes from a random number presented on the 
computer screen (Cognitive Stress). After acquisition, participants took a five minute break and then performed a 
retention test (2 Blocks of 5). All groups performed the same retention test that consisted of the same graphical 
aiming task used in acquisition without the presentation of feedback on movement time. One minute following 
retention, participants performed transfer test (2 Blocks of 5) in which they performed the graphical aiming task in 
the reverse order from acquisition. 
 The dependent variables of interest were Absolute Error (AE) which measured the magnitude of the deviation 
from the goal movement time, Constant Error (CE) measured bias in movement times, and Variable Error (VE) 
measured   consistency   of   the   participants’  movement   time   around   their  mean   error scores. We also measured the 
participants’  Reaction Time (RT) which was measured as the time from the start signal to 5% of the individuals’  
peak velocity on the trial. Furthermore, Pen Pressure (PP), the amount of axial pressure on the pen tip, was measured 
and Normalized Jerk (NJ), the rate of change in acceleration normalized for time and distance, was calculated. 
 During acquisition, each dependent variable was analyzed with separate 3 (group) × 12 (block) ANOVAs with 
repeated measures applied to the factor blocks. Retention and transfer were both analyzed by applying separate 3 
(group) × 2 (blocks in retention of transfer) repeated measures ANOVAs for each dependent variable. Tukey post-
hoc tests were performed when group or the interaction with group proved to be significant. 
 
3. Results 
For acquisition, the ANOVAs revealed a significant main effect for block for AE, CE, and VE showing that all 
groups improved from the beginning to the end of acquisition (p < .001). The Cognitive Stress group demonstrated 
higher AE, CE, and VE scores (p < .001) (Figure 2). ANOVAs also revealed a main effect for block for PP and NJ (p 
< .001) but not for RT (p > .05). Cognitive Stress had significantly greater NJ, increased PP, and longer RTs that 
Physical Stress and Control (p < .05). No significant differences between Physical Stress and Control were observed 
(p > .05) (Figure 3). 
 The ANOVAs during retention revealed that groups improved from the beginning to the end of retention 
(retention block 1 to retention block 2) for AE, CE, VE (p<.05). It was also observed that PP, and NJ improved from 
the first block of retention to the second block (p<.05) but not for RT (p > .05) (Figure 2 & 3). The Cognitive Stress 
group demonstrated greater AE, CE, and VE that Physical Stress and Control (p < .01) but did not have greater NJ, 
PP, or increased RTs (p > .05). There were no significant differences between Control and Physical Stress observed 
during retention (p>.05). During transfer testing, ANOVAs revealed that groups decreased CE and VE from the first 
to the last block (p<.05) but not for AE (p>.05). Groups also decreased PP and NJ from the first block of transfer to 
the last (p < .001) but not for RT (p>.05). No significant effects of group were observed during transfer for any 
dependent variable (p > .05) (Figures 2 & 3). 
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Figure 2. The mean scores with standard error bars are depicted for each block of acquisition, retention, and transfer. 
Box A shows the Absolute Error scores (amount of time away from the goal movement time of 2000ms). Box B shows 
the  Constant  Error  scores  (directional  bias)  and  Box  C  shows  the  Variable  Error  scores  (performers’  consistency). 

 

 
Figure 3. The mean scores with standard error bars for acquisition, retention, and transfer. Box A shows the Reaction 

Times. Box B shows Pen Pressure and Box C shows Normalized Jerk. 
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4. Discussion 
During acquisition all groups improved for each dependent variable with the exception of reaction time. The group 
performing with cognitive stress performed worse than the other groups signifying that cognitive stress is more 
detrimental to performance than physical stress. Previous research suggested that physical noise at 80dBs and 95dBs 
had an activating effect on the motor system that decreased processing times which resulted in decreased reaction 
times (Keuss, Van der Zee, & Van den Bree, 1990; Van Gemmert & Van Galen, 1997). However, our results did 
support the findings by Kyriakides and Leventhall (1977) that showed 90dBs of noise had no effect on motor 
performance. One potential explanation for our results is that individuals habituated to the continuous auditory noise. 
It is possible that an intermittent auditory noise or a tone during one aspect of performance may have elicited a 
different result. It is also possible that 80dBs of auditory noise is not sufficient to affect performance either positively 
or negatively in a relative simple timed aiming task as used in the current experiment. 
 Perhaps more interesting are the findings during retention and transfer. The primary objective of this study 
was to examine the effects of stress on motor learning. During retention performance when the stressor was removed 
and the performer only had to execute the primary task of moving to the target in exactly 2000ms, the physical stress 
and control groups were more accurate and consistent with the movement duration goal. Interestingly, reaction time, 
pen pressure, and normalized jerk showed no differences between groups. We believe that this indicates that stress 
negatively affected the acquisition of the motor task; however, when the additional stressor is removed, some 
performance measures are no longer negatively affected. The results from the transfer test showed that no group 
differences were found when the primary task changed in the direction of the graphical aiming task. It has been 
suggested that transfer is a more useful measure to indicate learning as it shows that the skill is adaptable to various 
contexts or task variations (Johnson, 1961). Therefore, if we solely consider the transfer performance pattern of 
findings, stress did not affect motor learning indicating that practicing with or without stress has no negative or 
beneficial effects, i.e., stressors do affect motor performance, but do not affect motor learning.   
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Abstract. 7KLV�DUWLFOH�SURSRVHV�D�QHZ�LQGLFDWRU�IRU�KDQGZULWLQJ�H[DPLQDWLRQ�LQ�WH[W�LQGHSHQGHQW�IUDPHZRUN���
([SHULPHQWV� RI� ZULWHU� LGHQWLILFDWLRQ� DUH� DGGUHVVHG� XVLQJ� RQO\� KDQGZULWWHQ� VKRUW� OLQHV� LQVWHDG� RI� D� ZKROH�
FKDUDFWHU�� $IWHU� SUHSURFHVVLQJ� VXFK� DV� ELQDUL]DWLRQ� DQG� FRQWRXUV� H[WUDFWLRQ�� SURILOHV� RI� FRQWRXUV� RI�
KDQGZULWWHQ� OLQHV� ZHUH� GHFRPSRVHG� ZLWK� ILIWK� VFDOHV� ZDYHOHW� GHFRPSRVLWLRQ�� $V� WKH� UHVXOW�� ZH� REWDLQHG�
LQGLFDWRUV�ZKLFK�VKRZHG�TXDOLWLHV�RI�KDQGZULWWHQ�OLQHV�VXFK�DV�VPRRWK�RU�MDJJ\��7KH�LQGLFDWRUV�ZHUH�DQDO\VHG�
ZLWK� 3ULQFLSOH� &RPSRQHQW� $QDO\VLV� �3&$��� DQG� HLJHQ� YHFWRUV� ZHUH� REWDLQHG�� ,Q� D� SKDVH� RI� ZULWHU�
LGHQWLILFDWLRQ��XVLQJ�.HUQHO�2UWKRJRQDO�0XWXDO�6XEVSDFH�0HWKRG��.2060���VXEVSDFH�ZDV�FDOFXODWHG�E\�WKH�
HLJHQ�YHFWRUV��7KH� UHVXOW�REWDLQHG� WKURXJK� WKH�H[SHULPHQWV�ZDV�QRW�HQRXJK� WR� VDWLVI\�� ,Q� IXWXUH�ZRUNV�� WKH�
SURSRVHG�PHWKRG�ZLOO�EH�DSSOLHG�WR�ZKROH�KDQGZULWWHQ�FKDUDFWHUV���

�
1. Introduction  
7KLV�DUWLFOH�SURSRVHV�D�QHZ�LQGLFDWRU�IRU�KDQGZULWLQJ�H[DPLQDWLRQ�LQ�IRUHQVLF�VFLHQFH��0DLQ�PHWKRG�WR�LGHQWLI\�
LQGLYLGXDOV�E\�KDQGZULWLQJ�LQ�WRGD\�LV�REVHUYLQJ�IHDWXUHV�RI�KDQGZULWLQJ�E\�H\HV�RI�GRFXPHQW�H[DPLQHUV��7KHUH�
DUH� VHYHUDO� SUREOHPV� LQ� WKH� FRQYHQWLRQDO� PHWKRG� EHFDXVH� GLIIHUHQW� IHDWXUHV� DUH� VHOHFWHG� LQ� SURFHVVHV� RI�
LGHQWLILFDWLRQ� E\� HYHQ� LQ� D� VDPH� GRFXPHQW� H[DPLQHU� DQG� E\� DOVR� EHWZHHQ� GLIIHUHQW� WKRVH� H[DPLQHUV�� ,Q� WKDW�
VLWXDWLRQ�� LW� LV�SURSRVHG� WKDW�PHWKRGV� WR�H[WUDFW� IHDWXUHV�XVLQJ�SDWWHUQ�UHFRJQLWLRQ� LQ�FRPSXWHU�VFLHQFH� VXFK�DV�
VWURNHV� GLUHFWLRQV�� RU� VWDUW�� HQG�� FURVV� SRLQWV� RQ� FRRUGLQDWHV� RI� VWURNHV� �)UDQNH�� ������� +RZHYHU�� WKH� DERYH�
VWUXFWXUDO� IHDWXUHV� RI� KDQGZULWLQJ� DUH� YLVLEOH� E\� KXPDQ� QDNHG� H\HV�� $V� WKH� UHVXOW�� LW� LV� HDV\� IRU� GLVJXLVHU� WR�
LPLWDWH� WKH�JHQXLQH�KDQGZULWLQJ�DQG� WR�GLVJXLVH� WKH� IRUJHU\�� ,Q�DGGLWLRQ�� LW� LV�HDV\� IRU�HYHQ�RUGLQDU\�SHRSOH� WR�
FRQWURO�WKHLU�KDQGZULWLQJ�FRQVFLRXVO\�LQ�RUGHU�WR�FKDQJH�WKHLU�KDELW�LQ�KDQGZULWLQJ���

7R�RYHUFRPH�WKH�SUREOHP��ZH�SURSRVHG�D�PHWKRG�WR�XWLOL]H�DOPRVW�LQYLVLEOH�IHDWXUHV�VXFK�DV�GHSWKV�DQG�
ZLGWKV�RI�VWURNHV��,W�KDG�DOUHDG\�UHSRUWHG�LQ�D�SUHYLRXV�DUWLFOH�WKDW�WKHUH�ZDV�VWURQJ�FRUUHODWLRQ�EHWZHHQ�GHSWKV��
ZLGWKV� RI� VWURNHV� DQG� SHQ�WLS� IRUFH� �)XUXNDZD�� ������� &RQVHTXHQWO\�� WKHVH� LQGLFDWRUV� PHDVXUHG� IURP�
KDQGZULWLQJ� UHIOHFWHG� SHQ�WLS� PRYHPHQWV�� ,Q� DGGLWLRQ�� WKHUH� ZHUH� LQGLYLGXDO� GLIIHUHQFHV� DPRQJ� VXEMHFWV�� LQ�
SDUWLFXODU��RI�ZKLFK�ZLGWKV�DQG�GHSWKV�LQ�VWURNHV�RI�KDQGZULWLQJ�DW�HDFK�IRXU�GLUHFWLRQ��,Q�SUHYLRXV�RXU�DUWLFOHV�
�)XUXNDZD���������VKRUW�OLQHV�RI�IRXU�GLUHFWLRQV�ZHUH�WHVWHG�LQ�H[SHULPHQWV��EHFDXVH�WKH�VHW�RI�&KLQHVH�FKDUDFWHUV�
FRQWDLQV�D�ORW�RI�NLQGV�RI�FKDUDFWHUV�ZKLFK�UDQJH�IURP�VLPSOH�VKDSHV�WR�FRPSOLFDWHG�WKRVH�VR�WKDW�ZH�DUH�QRW�DEOH�
WR�REWDLQ� VDPH�NLQGV�RI�KDQGZULWWHQ�FKDUDFWHUV� WR�FRPSDUH�� ,Q� WKLV�GLIILFXOW� VLWXDWLRQ��ZH�XVH� WH[W� LQGHSHQGHQW�
IUDPHZRUN� WR� RYHUFRPH� WKH� GLIILFXOW\� XVLQJ� RQO\� VKRUW� OLQHV� DV� VKRZQ� LQ� )LJXUH� ��� :H� DOVR� XVH� ZDYHOHW�
GHFRPSRVLWLRQ� WR� DFTXLUH� WKH� GHJUHH� RI� TXDOLWLHV� RI� KDQGZULWWHQ� VWURNHV�� ,Q� D� ILHOG� RI� FKDUDFWHU� UHFRJQLWLRQ��
ZDYHOHW�GHFRPSRVLWLRQ�ZDV�ZLGHO\�XVHG�LQ�KDQGZULWLQJ�DQDO\VLV��:HQ�HW�DO���������'HQJ�HW�DO���������DQG�+H�HW�
DO��� ������� $OVR� LQ� D� ILHOG� RI� VLJQDO� DQDO\VLV�� 0DOODW� XVHG� ]HUR�FURVVLQJ� SRLQWV� DV� LQGLFDWRUV� ZKLFK� ZHUH�
LQWHUVHFWLRQV�EHWZHHQ�GHFRPSRVHG�SURILOHV�DQG�]HUR�DORQJ�\�D[LV��0DOODW���������,Q�RXU�SUHYLRXV�ZRUN��ZH�XVHG�
WKH�]HUR�FURVVLQJ��WKH�UHVXOW�RI�WKH�ZRUN�VKRZHG�WKDW�HLJHQ�YDOXHV�RI�HDFK�WKUHH�VFDOH�LQGLFDWHG�LQGLYLGXDOLWLHV�RI�
HDFK� VXEMHFW�� 7KH� GHWDLO� LV� VKRZQ� LQ� WKH� SUHYLRXV� DUWLFOH�� ,Q� WKLV� RXU� SDSHU�� KRZHYHU�� ZH� XVH� WKH� ZKROH�
GHFRPSRVHG�SURILOHV� LQVWHDG�RI� WKH� ]HUR�FURVVLQJ�EHFDXVH� WKH� ]HUR�FURVVLQJ� LV� D� XVHIXO� IHDWXUH�ZKLFK� VKRZV� D�
GHJUHH�RI�D�IOXFWXDWLRQ�ZLWK�D�FRPSDFW�VL]H��DW�WKH�VDPH�WLPH��WKHUH�LV�ORVW�LQIRUPDWLRQ�IURP�D�ZKROH�SURILOH��7R�
XVH� WKH� LQIRUPDWLRQ�� ILIWK� ZKROH� GHFRPSRVHG� SURILOHV� DUH� DQDO\]HG�� ,Q� DGGLWLRQ�� ZH� LPSURYH� D� SURFHVV� RI�
LGHQWLILFDWLRQ�� L�H��� DSSO\LQJ� VXEVSDFH�PHWKRG��7KH� H[SHULPHQW�ZH� FRQGXFW� LV� WR� LGHQWLI\�ZULWHUV� XVLQJ� VHYHUDO�
VXEVSDFH� PHWKRGV� VXFK� DV� .HUQHO� 2UWKRJRQDO�0XWXDO� 6XEVSDFH�0HWKRG� �.2060��� 6XEVSDFH� PHWKRGV� KDYH�
EHHQ�XVHG�LQ�PDQ\�DUHDV�VXFK�DV�IDFH�UHFRJQLWLRQ��6XSHULRU�SRLQWV�ZKLFK�VXEVSDFH�PHWKRG�KDV�VLPSOH�DQG�HDV\�
LPSOHPHQW�IRU�ZLGH�YDULHW\�RI�UHDO�GDWD�LQ�VSLW�RI�GDWD�KDV�PXOWL�FODVVHV���)XNXL�HW�DO���������DQG�2KNDZD�HW�DO���
��������:H�H[SODLQ�GHWDLOV�RI�RXU�H[SHULPHQWDO�PHWKRGV�LQ�WKH�IROORZLQJ�VHFWLRQ��,Q�WKH�VHFWLRQ�RI�H[SHULPHQWDO�
UHVXOWV��ZH�LQGLFDWH�SRWHQWLDO�RI�RXU�SURSRVHG�PHWKRG��)LQDOO\��LQ�WKH�ODVW�VHFWLRQ��ZH�VKRZ�WKH�FRQFOXVLRQ���

�

�
Figure 1. Conceptual diagrams of decomposition of whole characters to strokes.�
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2. Method�
7KLV�DUWLFOH�LPSURYHV�RQ�LGHQWLI\LQJ�ZULWHUV�IURP�ZULWWHQ�VKRUW�OLQHV�ZKLFK�ZHUH�FRPSRVHG�RI�IRXU�GLUHFWLRQV�RI�
VWURNHV�XVLQJ�VXEVSDFH�PHWKRG��)LUVWO\��WHQ�VXEMHFWV��HLJKW�PDOHV�DQG�WZR�IHPDOHV��ZHUH�DVNHG�WR�GUDZ�VKRUW�OLQHV�
RQ�D�VKHHW�RI�SDSHU�ZKLFK�ZDV�SXW�RQ�D�GLJLWL]HU�WDEOHW��7KH�VKRUW�KDQGZULWWHQ�OLQHV�ZHUH�VFDQQHG�E\�D�IODW�EHG�
W\SH�LPDJH�VFDQQHU��&UHR��L4VPDUW���ZLWK�KLJK�UHVROXWLRQ������GSL���$IWHU�ELQDUL]DWLRQ��XVLQJ�2WVX�PHWKRG��2WVX��
������� FRQWRXUV� RI� WKH� VKRUW� OLQHV� ZHUH� H[WUDFWHG� IURP� WKH� ELQDUL]HG� KDQGZULWWHQ� OLQHV� DV� VKRZQ� LQ� )LJXUH� ���
3URILOHV�ZHUH�REWDLQHG�E\�EHLQJ�VXEWUDFWHG�IURP�XSSHU� �ULJKW��FRQWRXUV� WR� ORZHU��OHIW��FRQWRXUV��7KHVH�SURILOHV�
ZHUH� GHWHUPLQHG� WR� WKH� IHDWXUHV�� 7KH� SURILOHV� ZHUH� GHFRPSRVHG� XVLQJ� ILIWK� VFDOHV� RI� ZDYHOHW� GHFRPSRVLWLRQ��
)LQDOO\��ILYH�GHFRPSRVHG�SURILOHV�ZHUH�H[WUDFWHG�IURP�WKH�ZKROH�FRQWRXUV�SURILOH��

)LUVWO\�� WKH�SURILOHV�ZHUH�DQDO\]HG�ZLWK�3&$��3ULQFLSOH�&RPSRQHQW�$QDO\VLV�� LQ�RUGHU�WR�REWDLQ�HLJHQ�
YHFWRUV� DPRQJ� VXEMHFWV�� 6HFRQGO\�� WHVW� RI� LGHQWLI\LQJ�ZULWHUV�� EHWZHHQ� ��� WUDLQLQJ� GDWD� DQG� ��� WULDO� GDWD�ZDV�
\LHOGHG� XVLQJ� VHYHUDO� VXEVSDFH� PHWKRGV� VXFK� DV�0XWXDO� 6XEVSDFH�0HWKRG� �060��� .HUQHO�0XWXDO� 6XEVSDFH�
�.060��� DQG�.HUQHO�2UWKRJRQDO�0XWXDO�6XEVSDFH� �.2060���.HUQHO�PHWKRG� LV� HIIHFWLYH� IRU� UHFRJQLWLRQ�RI�
REMHFWLYHV�ZKHQ�D�GLVWULEXWLRQ�RI�REMHFWLYHV�KDV�QRQOLQHDU�VWUXFWXUHV��

�,Q�WKLV�VHFWLRQ��WKH�VXEVSDFH�PHWKRGV�DUH�EULHIO\�H[SODLQHG��$�FRPPRQ�PDLQ�LGHD�LV�PDNLQJ�VXEVSDFHV�
ZKLFK�UHSUHVHQW�IHDWXUHV�RI�VDPSOHV�LQ�ORZ�GLPHQVLRQV�IURP�OHDUQLQJ�VDPSOHV��,Q�OHDUQLQJ�VWDJHV��DXWRFRUUHODWLRQ�
RI� VDPSOH�GDWD� LV�FDOFXODWHG��$XWRFRUUHODWLRQ�PDWUL[� LV�FRQGXFWHG�E\�HLJHQ�H[WHQVLRQ�VR� WKDW�HLJHQ�YHFWRUV�DUH�
REWDLQHG�� 7KH� VXEVSDFHV� DUH� XVXDOO\� H[SUHVVHG� DV� WKH� HLJHQYHFWRUV�� ,Q� VWDJHV� RI� LGHQWLILFDWLRQ�� VLPLODULWLHV�
EHWZHHQ�REMHFWV�WR�UHFRJQL]H�DQG�OHDUQHG�VDPSOHV�DUH�HVWLPDWHG�WR�EH�FDOFXODWHG�LQQHU�SURGXFWV�EHWZHHQ�YHFWRUV�
RI�REMHFWV�WR�UHFRJQL]H�DQG�HLJHQ�YHFWRUV��6LPLODULWLHV�DUH�GHWHUPLQHG�DQJOHV�EHWZHHQ�LQSXW�YHFWRUV�DQG�VXEVSDFH��
L�H���GLFWLRQDU\�DV�VKRZQ�LQ�)LJXUH����0XWXDO�VXEVSDFH�PHWKRG��060��DOVR�PDNHV�VXEVSDFH�IURP�LQSXW�VDPSOHV�
WR�UHFRJQL]H�DV�VDPH�DV�OHDUQLQJ�VDPSOHV�DV�VKRZQ�LQ�)LJXUH����

�

�
����

�
�GHQRWHV� LQQHU� SURGXFW� EHWZHHQ� LQSXW� YHFWRU�� p DQG� iWK� GHQRWHV� RUWKRJRQDO� EDVH� YHFWRU� LQ�

GLFWLRQDU\�VXEVSDFH�_| p||�GHQRWHV�QRUP�RI�p�YHFWRU���
�

�
����

�
ui�GHQRWHV�iWK�LQSXW�YHFWRU�VXEVSDFH� vi GHQRWHV iWK�GLFWLRQDU\�VXEVSDFH��

2UWKRJRQDO� VXEVSDFH� PHWKRG� �2060�� FRQWDLQV� SURFHGXUHV� WKDW� UHODWLRQVKLS� DPRQJ� GLFWLRQDU\� VXEVSDFHV� LV�
RUWKRJRQDO� WR� LPSURYH� DELOLW\� RI� GLVFULPLQDWLRQ� RI� FODVVHV�� ,Q� XVLQJ� 60��060�� DQG� 2060�� VLPLODULWLHV� DUH�
GHILQHG�WKH�IROORZLQJ�HTXDWLRQ���
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Figure 2. An image used in the experiment and pre-processing. The top column: raw image, the middle  column : 
binary image, and the bottom  column : contour image�
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5HFHQWO\��)XNXL�HW�DO��SURSRVHG�.2060�DV�VKRZQ�LQ�)LJXUH����7KLV�PHWKRG�LV�DEOH�WR�LPSURYH�RQ�FRQYHQWLRQDO�
PHWKRGV�VXFK�DV�060��DQG�2060��7KHVH�FRQYHQWLRQDO�PHWKRGV�XVH�PXOWLSOH�LQSXW�YHFWRUV�WR�LQFUHDVH�DFFXUDF\�
PHDQZKLOH� VLPSOH� VXEVSDFH�PHWKRG� XVHV� RQO\� D� VLQJOH� LQSXW� YHFWRU��$V� LQFUHDVLQJ� QXPEHUV� RI� FODVV� RI� LQSXW�
LPDJHV��KRZHYHU��VLPLODULWLHV�DPRQJ�FODVVHV�DUH�DOVR�LQFUHDVLQJ�VR�WKDW�DFFXUDFLHV�ZHUH�GHFUHDVLQJ��

,Q�RUGHU�WR�RYHUFRPH�WKH�GHIHFWV�RI�2062��WKH�UHODWLRQVKLS�DPRQJ�FODVVHV�LQ�GLFWLRQDU\�VSDFH�LV�RUWKRJRQDO��
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3. Results 
7KH�UHVXOWV�ZH�FRQGXFW�XVLQJ�VHYHUDO�VXEVSDFH�PHWKRGV�
DUH� LQGLFDWHG� LQ� 7DEOH� ��� 7KH� ORZHVW� HTXDO� HUURU� UDWH�
�((5�� ZDV� REWDLQHG� ZKHQ� .2060� RU� .060� ZDV�
XVHG�� L�H��� WKH� ((5� ZDV� ������� 7KH� DFFXUDF\� ZDV� QRW�
HQRXJK�WR�LGHQWLI\�WKH�VXEMHFWV��)LJXUH���VKRZV�)55�DQG�
)$5�RI�WKH�H[SHULPHQW�XVLQJ�.2060��
�
4. Conclusion and Future Works�
:H�FKDOOHQJH�DQ�LGHDO�PHWKRG�ZKLFK�LV�DEOH�WR�FRYHU�DOO�
NLQGV�RI�FKDUDFWHUV�WKDW�DUH�FRPSRVHG�RI�IRXU�GLUHFWLRQV�
VWURNHV��7KH�PHWKRG�ZH�SURSRVH�KDV�SRVVLELOLW\�RI�EHLQJ�
DSSOLHG� WR� QRW� RQO\� VDPH� ODQJXDJHV� V\VWHP� EXW� DOVR�
GLIIHUHQW� ODQJXDJH� V\VWHP�� ,Q� WKLV� ZRUN�� KRZHYHU�� WKH�
UHVXOWV� ZHUH� QRW� VDWLVILHG� IRU� RXU� GRFXPHQW� H[DPLQHUV��
7KH� UHDVRQ� ZK\� RXU� PHWKRG� ZDV� IDLOXUH� ZDV� VHYHUDO�
FDXVHV� VXFK� DV� QRW� EH� FRQVLGHUHG� RUGHUV� RI� ZULWWHQ�
VWURNHV��2QH�FDXVH�ZKLFK�ZH�VKRXOG�SRLQW��LQ�RXU�H[SHULPHQWV��VXEMHFWV�GUHZ�VHTXHQWLDOO\�WKH�RQO\�RQH�GLUHFWLRQ��
IRU� H[DPSOH�� ILUVWO\�� WKH\� GUHZ���� KRUL]RQWDO� VWURNHV�� QH[W�� ��� YHUWLFDO� VWURNHV�� ��� ULJKW�GRZQ� DQG�� ILQDOO\�� ���
OHIW�GRZQ�� ,I� VXEMHFWV� GUHZ� LQ� RUGHU� RI� KRUL]RQWDO�� YHUWLFDO�� ULJKW�GRZQ�� DQG� OHIW�GRZQ� DW� RQH� WLPH� VXFK� DV�
&KLQHVH�FKDUDFWHU�µ ¶���ZH�ZHUH�DEOH�WR�REWDLQ�DQRWKHU�UHVXOWV��$QRWKHU�FDXVH�ZH�SRLQWHG�LV�GLVWULEXWLRQ�RI�GDWD�
ZKLFK� DUH� GHWHFWHG� IURP� KXPDQ� ZULWLQJ� PRYHPHQWV�� $V� VKRZQ� LQ� )LJXUH� ��� ZH� ZHUH� DEOH� WR� SUHGLFW� WKDW�
GLVWULEXWLRQ�RI�KDQGZULWLQJ�ZKLFK�WKH�VXEMHFWV�FRQGXFWHG�FRQWDLQHG�QRQOLQHDU�VWUXFWXUHV�EHFDXVH�WKH�HUURU�UDWHV�
RI�OLQHDU�PHWKRG�VXFK�DV�060�ZHUH�ORZHU�WKDQ�QRQOLQHDU�PHWKRG�VXFK�DV�.2060��&RQVHTXHQWO\��ZH�VKRXOG�
ILQG�PRUH�UREXVW�PHWKRG�WR�FODVVLI\�KDQGZULWLQJ��:H�ZLOO�DSSO\�RXU�SURSRVHG�PHWKRG�WR�QRW�RQO\�IRXU�GLUHFWLRQV�
OLQHV�EXW�DOVR�QRUPDO�FKDUDFWHUV�VXFK�DV�&KLQHVH�FKDUDFWHUV�DQG�(QJOLVK�FKDUDFWHUV��
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Table 1. The result of the experiment 
Method EER 

SM 0.472 
MSM� 0.452 

KMSM 0.440 
KOMSM 0.440 
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Abstract. This paper addresses the problem of word spotting in handwritten documents. The method is 
segmentation-free and follows the query-by-string paradigm. In the paper, we focus on the first step of the 
whole bio-inspired process that is based on two filtering steps, which are a global filtering followed by a more 
local filtering after a change of observation scale. The contribution of this approach is the use and the 
generalization of the Haar-Like-Features for the analysis of the document images, inspired from the famous 
visual perception principle. Different pieces of information are extracted from the whole image before 
drawing a conclusion, after a process of accumulation of votes. The method is evaluated using the IAM 
Handwriting Database. 

 
1. Introduction  
The automatic study of handwritten documents is a difficult task because of the very high variability of 
representation of the information. Indeed, the access to the content of these documents is linked to text 
recognition. The performance of Optical Character Recognition (OCR) engines is still poor, especially for 
handwriting recognition. One way to recognize the information within the document image is to look for some 
characteristic of the different words within it. For example a document may contain some significant words (e.g. 
information, request, and subscription), allowing the classification of the document without deciphering the 
totality of the document words. OCR does not present a complete solution to the problem because of its 
limitations in dealing with handwritings. In fact, OCR techniques cannot be accurately achieved because 
character recognition systems are not well suited for handwritings in an open vocabulary context. For that, word 
spotting is considered as an alternative to traditional OCR for different applications such as indexing and 
retrieval in digitized document collections. In the literature, ancient documents are mainly concerned by these 
word spotting questions, even a few trials on modern writings have been done.  

In the literature, word spotting approaches have been applied to various scripts such as Latin, Arabic, 
Greek, etc. Word spotting approaches have been divided into different categories in multiple ways by document 
analysis researchers. For instance, they can be divided into two main categories based on matching techniques 
which are respectively image based matching techniques and feature based matching techniques (J.L Rothfeder, 
S. Feng, T.M. Rath., 2003). The former includes methods that compute word distances directly on image pixels 
using the correlation for the query matching. On the other side, the latter compute certain features for word 
images and then those features are matched. Another classification can be found in (J. Lladós, M. Rusiñol, A. 
Fornés, D. Fernández and A. Dutta, 2012) where two main approaches of word spotting exist depending on the 
representation of the query. These two types of approaches are based on Query-by-string (QBS) and on Query-
by-example (QBE). The QBS methods (H. Cao and V. Govindaraju., 2007) use character sequences as input. 
They typically require a large amount of training materials since characters are a priori learnt, basically in HMM 
or NN models, and the model for a query is built at runtime from the models of its constituent characters. In 
QBE methods (R. Manmatha, C. Han ,E. M. Riseman, 1996) the input is one or several exemplary images of the 
queried word. This is addressed as an image retrieval problem. Therefore, it does not require any training stage, 
but collecting one or several examples of the queried word. Another popular categorization technique divides the 
methods into either segmentation based methods or segmentation-free methods as in (T. Adamek, N.E. 
O’Connor, A.F. Smeaton, 2007) or in (B. Gatos and I. Pratikakis., 2009). 

Based on the literature, we take into consideration the classification presented by the (J. Lladós, M. 
Rusiñol, A. Fornés, D. Fernández and A. Dutta, 2012) and we integrate it into the classification presented by 
both (T. Adamek, N.E. O’Connor, A.F. Smeaton, 2007) and (B. Gatos and I. Pratikakis., 2009).  

In this paper, the aim is to find some words that are independently chosen from the document content. 
Particularly, if the processed documents do not contain many words, then a query by example is not possible. For 
that, we have chosen to express the query by a sequence of characters that is constructed by a keyboard input. 
This allows using our system in all circumstances, even if the word query is not present in any document images. 
In short documents, knowledge of word style could take too much time to be known, so the search for a word 
becomes a challenging problem. Furthermore, the aim is to avoid a training phase on a database to recognize 
graphemes or other entities in order to implement a word spotting system which is not only dedicated to one type 
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of documents. The genericity of the system requires designing a system that is capable of adaptation and self-
learning. Thus, our method does not rely on a set of characteristics a priori fixed but on a family of features 
among which some will be selected in order to simultaneously fit the search term and the document properties 
wherein the research is performed. 

The remainder of the paper is as following. In section 2, we introduce the family of operators applied in 
our work. Then in section 3, the proposed approach is detailed. Finally, section 4 is dedicated to the experimental 
results achieved with IAM database.  

2. Generalized Haar-like-features  
Looking at a word, it is recognized that human perception first considers to global view of the shape, before 
focusing on detailed parts. This depends on the observation scale. For example, the word “adam” that may be 
modeled by a global appearance looking like the pattern presented in Figure 1(f). 

A word is characterized by intrinsic and exogenous characteristics. For instance, the number of letters, the 
position and presence of ascenders and descenders characterize the shape of each word. Besides, the size (width 
and height) of a character, which plays a major part in the construction of the different patterns, depends on the 
writing style in the documents to be processed. It is estimated by a size optimization using the Haar like feature of 
figure 1(l). 

In a first step, we try to characterize the different patterns that may occur. This pattern characterization step 
is considered as an essential step of our approach because the final results depend on it. According to words in the 
document images, we can model a global view of each word by several patterns appearing simultaneously. Some 
of these patterns are illustrated in Figure 1. For example, Figure 1(g) represents a double ascender presence 
following by lowercase characters. Figure 1(b) can help in finding words similar to “adam”. 

 
Figure 1. A few number of patterns applied in our work. 

This approach is quite similar to Viola & Jones (P. Viola, M. Jones, 2001) approach that starts from a 
family of patterns and uses Adaboost to select some of them. It is more easy to use than Haar wavelet coefficients 
used in different document applications such as document text extraction (S. Audithan, 2009) or script 
identification (P. S. Hiremath, S. Shivashankar, 2008). In our case, the selection of the right patterns has to be 
done according to the word in order to retrieve it and according to the characteristics of the documents. Yet, we 
have generalized the patterns used in the Haar approach to fit the global shape of words written in Latin alphabet. 
The number of patterns and their shapes will define the query word and discriminate it from the other words. 
Furthermore, the more patterns applied, the better results are. 

The patterns can be searched in the document using a convolution product between the image and a kernel 
containing 1, -1 or 0 values. The computation complexity is not too high when integral image is used. The 
operator enabling to detect a pattern P that is applied on the whole image will give a new image IP, where the 
presence of the pattern is characterized by a high grey level. The filter can be applied in a blind way on the whole 
document and will automatically select the text lines where the answer to the operator will be high. At a lower 
level, similar patterns may be used to distinguish between an ‘o’ and a ‘c’, making evident the concavities. 

This tool is the core of the approach we are proposing. 

3. Proposed Approach  
To process documents that present (i) a wide variability of style, (ii) ancient or modern with fragmented characters 
due to the non-homogeneity of the ink, (iii) crossing of lines, (iv) variability in writing style and (v) an above 
overlap of components such as components belonging to several lines of the text because of the presence of 
ascenders and descenders, we propose to consider the following major constraints: 

• No layout segmentation: the query is directly compared to the whole document image components as 
it is very difficult to perform an accurate line, word or even character segmentation. 

• No binarisation is required, which permits to avoid losing data in the pre-processing of document 
images. 

Our approach globally looks at document images without any use of a word segmentation step, which is 
often assumed in current methods of Word Spotting. We introduce in our proposed approach two major phases: 

• In the first one, at document level, in a global way, the search space is reduced to Zone of Interests 
(ZOI's) which are considered to contain Candidate Words (CW’s). 
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• In the second one, a refining step enables to retain only the very similar CW’s to the query. 
The implementation of these two major phases relies on the same process, which can be considered as a 

filtering step applied sequentially at two different scales. These two bio-inspired steps (simulating the famous 
focusing perception principle) are based on the application of the Haar-like-features defined in previous section. 
3.1 Document level 
At document level, some zones of interest are selected; they are defined as the accumulation of specific patterns, 
in a limited and relative space. Each pattern, then each filter can be considered as a Viewpoint. The presence of 
these patterns is detected in the image IP associated with the corresponding operator. The presence of the pattern 
is linked to a binarisation of IP , where I is the original image in grey level. In fact as several patterns are 
associated with a word, several IP images are available. The patterns associated with a word are in a limited area 
but their simultaneous presence is highlighted if the IP images are translated according to the properties of the 
query word. Fusion of the filtered images is achieved by accumulation of the translated images. A binarisation 
process gives some hints at the position of words with same shape as query word. The position and area of 
patterns lead to the definition of the CWs. This Global analysis step represents the major and original step of our 
approach. It helps to limit the number of CW’s and to obtain the CW’s, which are the most similar to the query.  

!
3.2 Word level 
The overall filtering presented in previous subsection results in a large number of CW’s that may correspond to 
the global shape of the query. This number is greater than the real number of the occurrences of the query in the 
document. In order to reduce the number of CW’s, we introduce a second phase that is based on a refining 
filtering. Thus, we are going to change the observation scale. We concentrate our work at a lower scale, the word 
scale, rather than the previously used document scale. The candidates have approximately the same size (number 
of characters) as the query. However, we apply other new FW’s on the selected ZOI’s but handled by gradually 
changing the observation scale. This step aims at refining the results and improving the accuracy of the results. 
Finally, we obtain only the query occurrences existing in the processed document images.  

The flowchart of our word spotting approach is highlighted in Figure 2. 
 

 
Figure 2. The flowchart of the proposed approach. 

 

4. Experimental Results 
Our approach has been evaluated on the IAM handwriting database consisting of 1539 pages written by 657 
writers (U. Marti and H. Bunke., 1999) (U. Marti and H. Bunke., 2002).  In our experiments, we have not worked 
on the isolated words but on the document images themselves. So, we work at document level. We randomly 
selected some document images and worked only on the handwritten texts. The performance is measured by using 
Precision and Recall criteria. Precision P is the percentage of the retrieved words that are relevant to users. 
Besides, Recall R is the percentage of the words that are same as the query and are successfully retrieved from the 
IAM Handwriting database.  
 

                                            Re 100TotalSameWords trieved
R

TotalSameWordsExisting
= ×                                                                      (1) 
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The evaluation of our work is based on Quantitative and Qualitative studies. We illustrate the results on 

three scripts written with three different styles extracted from the IAM database and shown in Figure 3. Here, the 
query word is “the”, a rather short, so difficult word to be spotted. We notice that the occurrences of the query 
have various lengths and widths in tested documents.  

From our experiments, our approach is capable of finding all the instances of the queries in the tested 
document images. Thus, in most cases, the recall of our system is 100%. This extraction step looses very few 
positive answers. Furthermore, we notice that our approach detects other CWs for the query word that have almost 
the same shape or begin with letters having the same shape as the query. The precision strongly depends on the 
writing style. In Figure 3(c) the precision is 10% , in figure 3(a) it is about48%, as a whole from 40 pages we have 
21%. These low precisions can be improved by increasing the number of applied patterns.  

 
 

Figure 3. Obtained results of some tested images. 
 
5. Conclusion 
In this paper, we have presented a word spotting method that does not rely on any previous segmentation step. 
This approach can be used in heterogeneous collections containing both handwritten and typewritten documents. 
We proposed new generalized Haar-Like filters and apply them to word modelling and spotting. The presented 
work is applied on the IAM Handwriting Database. In future works, we will focus on proposing a refining 
filtering phase in order to increase the accuracy of our word spotting approach. 
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Abstract. This paper provides a simple algorithm for writer identification of historical letters. The collected 
database is an original historical database, of  100 pages belonging to 25 people selected from a 500 letters 
database. In the article there is presented an article for a cauterization of the letters, because the system doesn’t 
have the templates of the classes and doesn’t know how many classes is in the database.  The obtained result 
shows that automatic identification can help historical experts to segregate the documents, before they would 
analyze the text information. 
 
1. Introduction  
Historical archives are an extensive collections of handwritten documents. A significant portion of these archives 
are being scanned and stored in electronic form in order to facilitate research. Many of the documents are not 
signed or associated with any author, whereas such association could be of benefit for researchers like historians 
or genealogists. 
The aim of this work was to verify the effectiveness of automatic separation/ grouping by author of handwritten 
historical documents. In the literature, one can find a number of items related to verification of identity based on 
text (R. Messerli, H. Bunke)  rather than a signature, but most of them work in controlled conditions - same ink 
color, guides etc . The present study, using the results so far published are a step further and examine whether 
these algorithms can to work on real pieces of writing, created under varying conditions, where the authors were 
in different positions, different places and different times of writing. 
 

      
Figure  1 Examples of letters 
 
In this paper, the research used a collection of approx. 500 letters - secret letters written from the Nazi 
concentration camp at Majdanek . This is one of many collections, which would facilitate an automatic 
segregation analysis and work with others. Some of the letters are quite clear and organized , written on a piece 
of lined paper (Figure 1). Others are more disorganized, where the disorder stems from lack of guides, or 
additional text which should be exempt from the characteristics extraction. 
 

2. Database 
As part of the work, 416 pages of secret messages from Majdanek have been scanned in 600 dpi and 300 dpi. In 
the second step, 25 classes have been selected, with 4 scans representing each scan. Only a part of a database 
was used, because only for this letters the ‘clusering’ by the human expert was done. The rest of the letters were 
postponed for further study as difficulties in identifying the class arose. An extended study would require 
assistance from handwriting experts. Finally the 300 dpi scans were used for study. The calculations were faster 
and 600 dpi did impact the results of the verification in a significant way. 

3. Identification algorithm 
The present algorithm consists of the following steps: 

1. Pre- processing, where a color image is converted to a number of glyphs represented as binary image 
2. Feature extraction, where using morphological operations are used to obtain 32 characteristics for 

each glyph. 
3. Comparison based on clusters similarity distance 
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3.1. Pre-processing 
The result of the preprocessing are glyphs, which are later used for feature extraction. An image in the RGB 
space is converted to a grayscale image. Next, binarization is performed using a dynamic threshold, which is 
determined for each image based on the mean value determined for this picture based on the gray-scale image. 
Next, correction of image orientation is performed.  
For line segmentation, the author has decided to use a signal of the number of black pixels in each row of the 
image - lp as a function of r rows of the image (feature used in signature verification and proposed in [4 ]). 
This function has also been used to correct the orientation. To this end, for each image, a set of two graphs lp 
were calculated : 

x Right hand side of the scan : :   - black area on the scan Figure 5 
x Left of the scan :   - blue area on the scan Figure 5 

0
200

400
600

800
300

350

400

450

500

r

lpa

 

 

0
200

400
600

800
300

350

400

450

500

r

lpa

 

 

 

Figure 2  - black, – blue. 
Each signal was smoothed using moving average over the signal. This algorithm has also been successfully used 
in studies of gait biometrics . This step simplifies the extremes detection in the signal. Equation (1) describes a 
moving average algorithm:  

   (1) 
where: 

2k + 1- the width of the time window 
wi – samples weight 
lp(r) - original data value at time t 
lpa(r) - smoothed data value at time t 

Each lpa signal is converted into an extremes vector (signal). The correction algorithm consists of choosing such 
a rotation angle where distance calculated using Dynamic Time Warping ( DTW) between the signal extrema 
positions for the left and right side will be the lowest : 
 

 (2) 
where D is the dissimilarity calculated using DTW .  

 

 
Figure  3 a) lpa signals for 0 degree b) lpa signals for 4 degree- the optimal correction 
 
The result of this minimization can be seen in Figure 4 - the lowest value of D = 1734 is reached for 4 degree 
rotation. As a result of experiments, a -5 to 5 degrees range was determined. 
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Figure  4 left: before correction, right: after correction 
 
Then, the lp function calculated for the whole image is used for row segmentation using an experimentally set 
threshold (Fig 5). 

  
Figure  5 left: image segmentation into rows, right: rows segmentation into symbols 
 
The rows segmentation into glyphs is realized by plotting the number of pixels, but this time as a function of the 
column number . The threshold, which is the parameter of the method determines whether the glyphs are whole 
words or individual characters/ groups of characters (Figure 5). After testing, the author decided to use the one 
that separates into individual characters – on average 215 symbols per page. 
 
3.2. Feature extraction 
A large number of feature calculation in off-line handwriting and signature verification has been proposed in the 
literature. Some are based on global features such as height or width of the symbol , others on the characteristics 
of texture. Some approaches try recreating the time of the formation of individual pen strokes and thus go to the 
field of signal processing ( S. Chen and S. Srihari, P.S. Deng, H.-Y. Liao, B. Fang, C.H. Leung). 
The aim of the study was to verify whether or not user grouping is possible in real data . For this reason, the 
author chose the features proposed in the paper (J. Fierrez-Aguilar at al.), which was further elaborated by the 
author in (Putz et al.). The proposed approach uses morphological operations. For each glyphs, features are 
determined by the steps of : 

a) Dilation- feature is the number of pixels lit after morphological dilation. Dilation of that element is 
performed five times and each time the number of pixels is recorded. As a result, a single structural 
element is used to designate exactly five features. Thus, as a result of operations using 4 structural 
elements, we get the 20 features. 

b) Erosion - feature is calculated as the number of pixels lit after morphological erosion. One structural 
element is used exactly once per original symbol giving only one feature . Hence, for the 16 structural 
elements we get 16 features. 

In summary, the scan is converted to a set of glyphs, each represented by 36 features. This can be regarded as a 
collection of points in 36 dimensions. 
 
3.3. Comparison  
The comparison measure denotes a similarity between sets of clusters. Each scan, or a collection of points in 36 
dimensions, is subjected to clustering using K-means. A clustering method with a preset number of  clusters was 
selected deliberately, based on the assumption that the number of clusters, or groups of glyphs for handwriting in 
general should be constant. The task here is to compare two sets of clusters - one of which belongs to a scan 
looking for class, the second is a representative of the class to which it is compared. In the paper (M Hayvanovych 
et al.) has proposed a method of comparing symmetric clusters. In the presented solution it was decided to 
propose the asymmetric form of the formula. The reasoning was that in the case being considered, the first set of 
clusters suspected of belonging to a class   is compared to the second set of clusters ( 
class representative)  . The value of dissimilarity between to clusters is determined as the 
sum of distance between centroids of clusters assigned to each of the two sets. In other words, for each cluster 
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from a set of scan verified , the distance is determined in 36 -dimensional space between the centroid 
and centroid  nearest cluster from a set of clusters being compared  class . Finally, the dissimilarity value 
is: 

(3) 
3.4. Results 
The following tests were carried out using two indicators : 

a) EER (Equal Error Rate) – equal error rate of false acceptance and false rejection 
b) ANE (Accepted No Errror) - indicating the effectiveness of the correct assignment element (glyph) to 

the group in the absence of misallocation the group 
Tests were conducted to select the  best parameters. Here I present one that shows the relation of number of 
clusters to identification efficiency. As it is presented here, the best results were obtained for 2 clusters. 

  
 
 
Additionally, plots for different thW are presented – it is visible that the low thW gives the best results – the 
individual letters/ groups of letters. The best results obtained are EER ~ 20 % and ~ 45% of the ANE. Both 
results are very good. In particular, the EER result demonstrates a correct implementation- the result is similar to 
the ones reported in literature for handwritten signature verification are at this level. The ANE 45% success rate 
means that almost half of the scans were assigned properly without committing an error. 
4.  Summary 
An algorithm was proposed, implemented in a computer program used to categorize handwritten documents. 
From the collection of 500 letters, secret messages from the Nazi concentration camp, 100 were selected, 
belonging to 25 people (4 for each person). The proposed algorithm was applied on the scanned letters, leading 
to the transformation of a letter in a set of glyphs, then used one of the many well-known approaches for 
determining the characteristics of the handwriting, features based on morphological transformations. The 
calculated features were used in a comparison algorithm based on the grouping of clusters. The results achieved 
error-free or 50% of the group assignments are a good prelude to broader studies involving forensic experts 
involved in writing, who would do a handmade categorization of the current base, making it possible to use the 
other 400 letters.  
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Figure  6: The EER  and ANE results for different thW and cluster number. 
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Abstract. Signatures provide a convenient and widely accepted method of authentication, however they are 
prone to attack by forgery. This can be mitigated to an extent by analysing both the static and dynamic 
biometric aspects of construction, however the possibly for accurate forgery from a static image of a genuine 
signature still exists. In this study we explore initial forgery accuracy of a range of genuine signatures and 
how accuracy changes as a forger receives feedback from a commercial signature engine in terms of a ‘match 
score’. We also explore the effects of genuine signature complexity on forgery performance alongside the 
image size of the genuine signature to be forged. Our results show that forgers are able improve performance 
over time on simple signatures (including those with less pen travel distance) and that a magnified genuine 
sample enables more accurate forgery for these class of signatures. More complex signatures result in lower 
forged verification scores and irregular patterns of improvement across the five forgeries. Overall verification 
match scores were typically less than 80% for most attempts regardless of signature complexity, thus 
indicating the resilience of dynamic systems to unskilled forgery attempts.  

 
1. Introduction  

Signatures are a widely used form of behavioural biometric authentication. They have the advantage 
over other biometric modalities as being an acceptable and pervasive form of identification, being legally 
admissible in terms of formal authentication and exhibit intentional ceremony in sample donation (Impedovo et 
al., 2008). Most signature samples are written directly on a sheet of paper (or other signing surface) using a pen 
and are checked/verified by human inspection of the completed signature. This static form of assessment may be 
automated in a computer-based analysis using image processing and measurement techniques (Chapran et al. 
2008). Conventional computer-based signature biometric systems use a combination of these static assessments 
and dynamic, or temporal, elements of signature construction. To enable a dynamic analysis requires the 
collection of signatures on a tablet device that samples pen position (and other data) at regular intervals. It has 
been shown that verification performance can be enhanced by combining both static and dynamic features (Jain 
et al, 2002). Signature however does have the disadvantage that samples can be relatively easy to forge, 
particularly in the static form. Very often a forger will be able to access a static image of the signature being 
forged whilst the learning process occurs, providing the ability to study both the shape of the signature and also 
to infer dynamic aspects of the signature construction such as stroke order, pen pressure and speed (Guest et al, 
2009).  

Assessing the forgery creation process using a dynamic method allows us to see how a forger adjusts 
production to achieve more accurate results in terms of a closer match to a genuine signature. In this study we 
assess how forgers modify their forgery behaviour given a static model of a signature and dynamic feedback on 
the forgery score between attempts. By using a number of source signatures of varying complexity it is possible 
to identify a) the dynamic performance at an initial forgery attempt, b) the effect of complexity on the ability to 
form an accurate forgery and c) how dynamic performance changes as feedback is provided. Feedback is only 
given in the form of an accuracy match score, without information such as velocity or pressure profiling, thereby 
replicating a conventional dynamic forgery scenario. Furthermore, by using a magnified genuine static sample as 
a model, we can assess the effect of physical sample size on forgery performance. 
 
2. Methodology 

The initial stage of the investigation involved obtaining a series of genuine source signatures that were 
used as models for forgery. Nine subjects agreed for their signature to be used for this purpose. Each of the nine 
subjects donated six signatures as dynamic enrolments to a commercial dynamic signature verification server 
system (which, for the purposes of this experiment, was treated as a black-box system). An internal checking 
process within the server ensured the stability of the donated signatures in forming an enrolment template. 
Signatures were captured using a back-projected LCD signature tablet (a Wacom STU-300) that provided virtual 
ink to the signing process. Signers were also asked to sign on a sheet of paper using a biro pen to provide a static 
signature in a format replicating a conventional pen-on-paper donation methodology. A second stage involved a 
static signature image from each of the enrolled nine signers providing the source signatures was categorised by 
10 independent assessors as being either simple, medium or complex  on  the  basis  of  ‘difficulty  to  forge’.  These 
10 assessors were separate from the nine providing the model signatures. Categories were assigned by assessing 
the modal category given to each signature. Figure 1 shows the finalised categories of each of the source 
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signatures. The  authors’  note that legibility of text seems to be the primary driver for assigning to the simple 
group, whereas complex signatures tend to be symbolic representations of a name and contain a potentially 
unclear ordering of pen strokes. Assessing the complexity responses there was generally a high agreement 
between assessors resulting in a clear modal response for each signature. 

The third phase of the methodology was to assess the forgery performance of a group of subjects 
(forgers). A total of 15 forgers took part in the experiment. These subjects were not part of the pool of subjects 
that donated source signatures or took part in the signature complexity categorisation.  Each forger undertook the 
following protocol: 
1. Presented with   a   randomly   selected   static   ‘model’   image   (from   the   biro-based collection) of a signature 

from  the  ‘simple’  pool,  the  subject  is  able  to  spend  as  long  as  they  require  studying  the  signature.  The  biro-
based collection was used to replicate the conventional method of finding a signature to forge. 

2. The forger tries to forge the signature using the verification system, signing on the STU-300 device. 
3. The verification system provides a verification score, based on dynamic and static information, of between 

0 (no match) and 100 (maximum matching). The forger used this score to assess their performance and 
encouraged to improve their verification score indicating an enhancement to the forgery. 

4. The forger makes four more attempts, the score feedback being provided for each attempt. 
5. Steps 1-4   are   repeated   for   a   different   randomly   selected   ‘simple’   signature   but   with   the   ‘model’   image  

quadrupled in size, replicating examination under magnified conditions. 
6. Steps 1-5 are repeated for two signatures (one normal sized, one magnified)  from  each  of  the  ‘medium’  and  

‘complex’  groups. 
 

a)        
 

b)        
 

c)        
 

Figure 1: a) Simple 1,2 and 3, b) Medium 1, 2 and 3, and c) Complex 1, 2 and 3 Source Signatures 
 

Results were analysed by assessing the performance of forgers on each of the signatures across multiple 
attempts and model sizes. The analysis focuses on overall performance in terms of verification thresholds, 
improvements over time and the effect of signature complexity on ability to forge. Full ethical approval was 
granted for this study. 
 
3. Results 

Figure 2 show the individual verification score results from the three simple signatures. In each of the 
charts the five sequential attempts of the five forgers (F1-F5) that were randomly selected to forge each signature 
are shown, initially using a standard sized genuine model signature, followed by a magnified model signature. It 
can be seen that, in most cases, a forger was able to improve their performance across the five attempts. Indeed, 
examination of Figure 3, which details the average performance for each attempt on each simple signature, 
shows this improvement. It can also be seen that for two of the signatures (Simple 2 and 3) the large/magnified 
signature produced a higher performance. The only constant factor that seems to determine match score is the 
amount of attempts that the forger produces a signature. It is also important to note that in general most forgeries 
were below a match score of 80%. In imposing such a threshold it is possible to demonstrate the effectiveness of 
the dynamic engine to distinguish between forgeries and genuine signature even on signatures deemed to be 
“simple”  in  complexity.  

Figure 4 shows the results of the medium signature verification scores, whilst Figure 5 indicates the 
average performance across the three signature for the two sizes of model signature (note that there was only 
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four forgery attempts for these signatures). Here it is clear that the best results were obtained when the forger 
was copying from a real sized model signature. It is also possible to note that, compared to the simple signatures, 
the average scores related to medium signatures is relatively flat and thus not directly related to the amount of 
attempts that the forger undertakes. It can also be noted that for Medium Signatures 1 and 3, which have 
relatively lower ink travel length, the ability to obtain a high verification score (and hence successfully verify on 
the system) is enhanced. It is seen that an average score is maintained for all the attempts when dealing with a 
normal size image. However when the forger is viewing a magnified model image, the verification scores are not 
as stable as when copying from a normal size image. The amount of detail that is shown in a magnified image of 
a medium signature may affect the way the forger approaches their copy, leading to poorer results.  
 

    
 

Figure 2: Simple Signature Attempts (Norm=Normal modal size, Lrg=Magnified model size, Att=Attempt) 
 

 
 

Figure 3: Simple Signatures – Average Verification Score per Attempt 
 
 

       
 

Figure 4: Medium Signature Attempts  
 

 
 

Figure 5: Medium Signatures – Average Verification Score per Attempt 
 
Complex signatures are, in theory, the hardest to analyse and forge. By examining Figures 6 and 7 it can 

be seen that each signature has its own level of ability to be forged. Assessing the attempts using Complex 
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Signature 2 it is possible to establish that forgers produce a signature a similar profile to those in the Medium 
group – indeed this signature contained lower ink travel distance and thus is directly comparable to Medium 
Signatures 1 and 3. The average scores also vary considerably across attempts indicating that the forger is trying 
to copy the signature by trial-and-error. Analysing the average scores obtained for Complex Signature 1 the 
results show that the number of attempts for this signature is not too import, since both graphs indicate little 
improvement over the five attempts. It is interesting to see that in this case the size of the model signature does 
not have an effect on performance, as normal and magnified signatures produce interchangeable results. 
Complex Signature 3 is the hardest to assess. It is possible to see an enhancement of verification scores but the 
low values associated with these attempts shows the difficulty associated with forging this signature. 

 

     
 

Figure 6: Complex Signature Attempts 
 

 
 

Figure 7: Complex Signatures – Average Verification Score per Attempt 
 
4. Conclusions 
The main conclusions from this study are: 
x Perceived ease of forgery seems to be related to the readability of the signature. 
x Signatures rated as simple show improvement across the five attempts with forgers being able to produce 

more accurate results using magnified images. 
x Overall verification match scores were typically less than 80% for most attempts regardless of signature 

complexity. 
x Signatures containing less ink were typically easier to dynamically forge. 
x Complex signatures result in lower forged verification scores and irregular patterns of improvement across 

the five forgeries. 
x For more complex signature the size of the source signature does not modify overall performance. 

This study has also pointed to unskilled levels of forgery performance which can be incorporated as thresholds 
within dynamic signature engines. Future work will analyse the dynamics of the changes made by the forgers 
between attempts to identify patterns relating to perceived accuracy enhancements made.  
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Abstract. We present a novel approach towards signature recognition from spatio-temporal data. The data is 
obtained by recording gyroscope and accelerometer measurements from an embedded pen device. The idea of 
Universum learning was previously presented by Vapnik and recently popularized in machine learning 
community. It assumes that the decision boundary of a classifier lies close to data with high uncertainty. The 
quality of the final classifier strongly depends on a way how to choose the Universum data and also on the 
representation of original data. In our paper we use a novel approach of Universum learning to classify signature 
data, also we present our novel idea how to sample the Universum data. At last, we also find more effective 
representation of the signature data itself compared to the baseline method. These three novelties allow us to 
outperform previously published results by 4.89% / 5.58%. 

 
1. Introduction  

Signature is a unique identifier which is used by millions of institutions and agencies to authenticate people. 
Over the ages, it served as one of the main ways to acknowledge a contract or an agreement. Despite modern 
advances in biometrics, signature is a prevailing means of unique identification. Because of this, to classify a 
signature is an essential task for biometrics and other security applications.  

Besides visual information, a signature itself captures also a lot of additional data, which are not captured 
as a final result recorded on a paper or a digital medium. Specifically it is a way how the signature is drawn. Small 
aspects like tilt of the pen, acceleration over segments of the signature or order in which are elements of the 
signature  drawn  could  provide  essential  insight  into  signee’s  identity.  Because  of  this  we rely on these rich data 
and we develop an algorithm, which can identify a user based on these data. Specifically we are talking about 
information captured from accelerometer and gyroscope devices. This approach is even more justifiable if we think 
about mass production and spread of mobile devices with embedded sensors to gather acceleration and orientation 
data, which enable collection of data for signature verification if the signature is made while holding the phone. 

Once we are able to collect rich input data, we can further think also about algorithms for classification and 
how to improve them. Our aim is to use the popular semi-supervised learning methods, which can capture a 
structure hidden in the data and impose additional assumptions on the structure of the data. One of the very recent 
ideas was introduced by Vapnik and is called Universum learning. It relies on Universum examples and forces the 
decision boundary to be close to these examples (see Figure 1). Our approach can benefit from this additional 
assumption  and  basically  gain  “free”  increase  in  performance.  How  “free”  it  really  is,  we  will  discuss  further  in  
the paper. Nevertheless, the improvement in performance is significant enough to be considered a serious 
improvement compared to the last published results on the same dataset (Griechisch, Malk, & Liwicki, 2013). 

 

 
 

Figure 1: Illustration of Universum learning and change of the decision boundary based on Universum 
data (Dhar, 2014) 
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The general overview of works regarding signature classification could be find in (Impedovo & Pirlo, 2008) 

(Weiping, Xiufen, & Kejun, 2004) and (Wu, Jou, & Lee, 1997). Further works which regard specifically 
accelerometer and gyroscope data could be seen as early as (Plamondon & Parizeau, 1988) (Baron & Plamondon, 
1989) or (Rohlik, Mautner, & Matousek, 2001) (Mautner, Rohlik, Matousek, & Kempf, 2002). More recent 
approaches which use spatio-temporal data are (Bashir, Scharfenberg, & Kempf) (Bunke, Csirik, Gingl, & 
Griechisch, 2011) (Shastry, Burchfield, & Venkatesan, 2011) and (Malik, Ahmed, Dengel, & Liwicki, 2012). One 
of the most recently published approaches, which uses Legendre series and SVM is (Griechisch et al., 2013) and 
is also the source of our dataset and our baseline technique. The Universum learning works were originally 
proposed by Vapnik and the theory was further expanded in (Weston, Collobert, & Sinz, 2006) (Sinz, Chapelle, 
Agarwal, & Schölkopf, 2008)  (Cherkassky, Dhar, & Dai, 2011) and (Dhar, 2014). At last  an overview of active 
learning techniques could be found in (Settles, 2010) and QbC is more specifically described in (Seung, Opper, & 
Sompolinsky, 1992) 

This paper is structured as following: Section 2 describes our general methodology, Section 3 presents our 
experiments and achieved results and in Section 4 we conclude and discuss our work and outline future work. 

 
2. Methodology 

Our approach does have a structure of a standard pattern recognition pipeline, that means: feature extraction, 
learning and classification. One additional step which is present is the generation of Universum examples. This 
step comes during before the learning phase and a way how Universum examples are generated is essential for 
performance of Universum learning. 

In a first step, we extract the features from the sequential signature data. Prior works (Griechisch et al., 
2013) (Parodi, Gómez, & Liwicki, 2012) used Legendre series for the approximation. But based on our preliminary 
experiments we have selected Hermite polynomials which do have a form: 

𝑝(𝑥) = 𝑐଴ + 𝑐ଵ𝐻ଵ(𝑥) + ⋯+ 𝑐௡𝐻௡(𝑥);  𝐻௡(𝑥) = 𝑛!෍
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This choice improved the performance of the algorithm by ~0.5-0.7%. Other polynomials which we 

evaluated were Legendre and Chebyshev polynomials. 
Once we extracted the features, we need to generate the Universum examples. The most common approach 

how to generate Universum examples is the random averaging. This method is designed for a binary case but could 
be easily generalized to multi-class case using one-against-all or one-against-one strategy. The random averaging 
selects a sample from the positive and negative class and then averages their respective feature values individually. 
This approach is feasible in cases, the linear transition along the features axes yield similar results to the input 
elements. But this is not always the case with polynomial approximation. A small change in the value of 
polynomial coefficients might result in quite a different example if reconstructed from these coefficients. Because 
of this we decided to use active learning method Query-by-Committee to select the relevant examples for the 
Universum class. 

 
 

Figure 2: Illustration of QbC sampling a) Original data; b) Decision boundary based on original data; 
c) Members of the committee; d) The new decision boundary based on uncertain samples 
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As seen in Figure 2., the QbC samples examples with low confidence and inserts them into the Universum 

set. The QbC algorithm first constructs a collection (Committee) of sub-classifiers created from a fraction of 
original data. Then these sub-classifiers vote on generated Universum examples and examples with a highest 
number of disagreements are selected. After this improvement, the performance of the algorithm improved 
significantly, as you can see in Table 1. 

Once we have obtained the Universum examples, we need to formulate the objective function. As 
mentioned earlier, Universum learning assumes that the decision boundary is close to uncertain examples. This 
gives a criterion which needs to be included in the cost function. In the case of SVM classifier then the cost function 
is: 

1
2
‖𝑤‖ଶଶ + 𝐶෍𝜑ൣ𝑦௜𝑓௪,௕(𝑥௜)൧

ெ

௜ୀଵ

+ 𝐷෍𝜌ൣ𝑓௪,௕(𝑢௝)൧
ே

௝ୀଵ

 

where 𝜑 and 𝜌 are loss functions, 𝑓௪,௕ is the discriminant function with parameters w and b for training 
points {𝑥௜, 𝑦௜} and Universum points {𝑢௝} with free parameters C and D. The Universum was used also in 
combination with Boosting (AdaBoost) algorithm (with hypothesis 𝐹 and L1 regularization where D controls the 
weight) and in that case the cost function is: 

min
௪

1
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Once training is done, during the inference process is standard as for any regular SVM classifier. 
As a part of our future work, we would like to explore the possibility  of  a  “close  miss”  Universum data. 

Especially in cases like signature verification, where forgery is common. We would expect the forged examples 
to be quite close to the decision boundary. If we have a label for forged examples, we would like to have them the 
“forged” label, but at the same time be close to the decision boundary. 
 
3. Experiments and Results 

We have evaluated our method to the baseline method presented in (Griechisch et al., 2013), where we used 
the same evaluation protocol. The  method of (Griechisch et al., 2013) achieves good results on the dataset, 
(composed of 300 signatures from 10 authors) but our technique could outperform it. At the same time we used a 
toy dataset to visualize the influence of Universum learning on a small dataset and as you can see in Figure 3, the 
decision boundary is much more viable and is much less overfitting than in case without Universum examples. 

 

 
Figure 3: a) Examples from the dataset and qualitative results of the Universum learning 

b) [(pink) original classifier (black) classifier with Universum data] 
 

Table 1: Performance of classifiers on Accelerometer and Gyroscope data 
Method  → 
Dataset  ↓ 

baseline USVM USVM + 
Hermite 

USVM + 
QbC 

USVM + 
Hermite + QbC 

AccSig 88.00 90.72 91.25 92.46 92.89 
GyroSig 80.44 83.96 84.61 85.88 86.02 

The qualitative results are presented in Figure 3 and the quantitative results are evaluated in Table 1. In 
both cases, we can see the improvement achieved thanks to Universum learning. Our method was able to improve 

(2) 

(3) 

a) b) 
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by 4.89% / 5.58% the baseline method due to various factors. If we considered each of the improvements 
separately, then the gain was as following: Hermite polynomial approximation: 0.53% / 0.65%, Universum 
Learning 2.72% / 3.46%, QbC sample selection for Universum learning 1.74% / 1.92 %. As we can see the 
combined approach is higher than any of the individual approaches, but the final gain does not add to the sum of 
partial gains, what could be expectable, since some of the gains could actually overlap for different partial methods. 

 
4. Conclusion, Discussion and Future Work 

In this paper, we have presented a novel use of the Universum learning on task of classification of signatures 
from accelerometer and gyroscope data. At the same time, we introduced a novel approach for selection of 
Universum examples which outperforms the random averaging used in previous Universum learning classifiers. 
At last we also presented a novel approach for feature selection based on Hermite polynomials, which improves 
the performance of baseline technique which used the Legendre polynomial approximation. In the end we can 
conclude that our solution was able to outperform the baseline technique by 4.89% / 5.58% and that the 
combination of Universum learning, our new sample selection method, and the new features proves to be an 
efficient combination. 

Also, as we can see, the concept of Universum learning is highly dependent on Universum set. The 
generation of this set still does not fully capture the uncertainty in examples and needs to be tuned and designed 
in task-specific manner. This is a topic which we would like to address in our future work. Especially we would 
like to build a model which can produce unlikely examples before the approximation happens. For this, we need 
to build a meaningful representation of the signatures themselves, such that the final result will be hard to classify 
even by human evaluators. Some of the methods which we would like to explore in this manner are generative 
density models. The authors would like to thank to SSHRC Canada and NSERC Canada for their financial support. 
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