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Abstract Accurate flash flood prediction depends heavily on rainfall data quality and knowledge of catchment
behaviour. A methodology based on global sensitivity analysis and hydrological similarity is proposed to analyse
flash storm-flood events with a mechanistic model. The behaviour of medium-sized catchments is identified in
terms of rainfall–runoff conservation. On the basis of this shared behaviour, rainfall products with questionable
quantitative precipitation estimation (QPE) are excluded. This facilitates selection of rainfall inputs for calibra-
tion, whereas it can be difficult to choose between two rainfall products by direct comparison. A substantial
database of 43 flood events on 11 catchment areas was studied. Nash-Sutcliffe efficiencies for this dataset are
around 0.9 in calibration and 0.7 in validation for flash flood simulation in 250-km2 catchments with selected
QPE. The resulting calibration framework and qualification of possible losses for different bedrock types are also
interesting bases for flash flood prediction at ungauged locations.

Key words flash floods; global sensitivity analysis; catchment behaviour; QPE; hydrological model calibration; regionalization;
bedrock loss

Caractérisation de comportements de bassins versants et sélection de pluies pour la calibration de
modèles hydrologiques dans le cas de crues éclair : bassins de l’est des Pyrénées
Résumé La précision des prévisions de crues éclair dépend largement de la qualité des données de pluie et de la
connaissance du comportement des bassins versants. Une méthodologie basée sur de l’analyse de sensibilité
globale et des similarités hydrologiques est proposée afin d’analyser des évènements de crues éclair à l’aide d’un
modèle pluie débit mécaniste. Le comportement de bassins versants de taille moyenne est identifié en termes de
conservation du volume d’eau entre la pluie et le débit. A partir d’un comportement hydrologique, les produits de
pluie présentant des estimations quantitatives de précipitation (EQP) douteuses sont exclus. Ainsi, la sélection de
données de pluie pour la calage est facilitée alors qu’il peut être difficile de choisir un produit de pluie plutôt
qu’un autre par une comparaison directe. Une base de données conséquente et composée de 43 évènements de
crues sur 11 bassins versants a été étudiée. Les performances (Nash) sont de l’ordre de 0,9 en calage et de 0,7 en
validation pour des crues éclair survenues sur des bassins de 250 km2 et modélisées à l’aide d’EQP sélectionnées.
La méthode de caage et l’identification de pertes potentielles vers le socle rocheux sont des bases intéressantes
pour la prévision de crues éclair sur des bassins non jaugés.

Mots clefs crue éclair ; analyse de sensibilité globale ; comportement hydrologique de bassin versant ; EQP ; calage de modèle
hydrologique ; régionalisation ; perte vers le socle rocheux

1 INTRODUCTION: PROBLEM

FRAMEWORK

Like the storms that cause them, flash floods are very

variable and nonlinear phenomena in time and space,

with the result that understanding and anticipating

flash flood genesis is far from straightforward.

Flash floods are generally triggered by intense and

localized storms, and water depth in the drainage

network can reach peak levels in a few minutes or a

few hours (Georgakakos 1992). Monitoring flash



floods is particularly difficult (Borga et al. 2008), as

conventional measurement networks monitoring rain-

fall and river discharges cannot sample effectively

due to problems of scale (Creutin and Borga 2003).

That is why hydrological forecasts focus increasingly

on remote sensing techniques, such as radar

(Krajewski and Smith 2002), high-resolution hydro-

meteorological prediction models (Seity et al. 2011,

Vincendon et al. 2010, 2011), knowledge of climatic

antecedents of a catchment or region and initializa-

tion of event models (Tramblay et al. 2010, Roux

et al. 2011). Taking into account the uncertainty due

to the model structure itself or to spatio–temporal

rainfall is recognized as important in hydrological

modelling (Kirstetter et al. 2010, Delrieu et al.

2014). As highlighted by Looper and Vieux (2012),

flood prediction accuracy is linked to the quality of

rainfall estimates and forecasts. The robustness of

rainfall–runoff models might be increased and

knowledge of uncertainty might be improved by the

availability, the anteriority and the quality of hydro-

meteorological time series, and, in several cases, by

their space–time resolution.

Estimated precipitation can be considered as one

of the most important inputs required for hydrologi-

cal prediction. Rainfall distribution and amount deter-

mine surface hydrological processes and therefore

catchment response dynamics. An adequate charac-

terization of rainfall input is fundamental for success

in rainfall–runoff modelling: no model, however well

founded in physical theory or empirically justified by

past performance, can produce accurate runoff pre-

dictions forced by inaccurate rainfall data (e.g. Beven

2002, Moulin et al. 2009).

Although radar-based weather coverage has

increased considerably over the last two decades

enabling high-resolution spatial and temporal mea-

surements of rainfall, quantitative precipitation esti-

mation (QPE) still presents difficulties due to the

limitations of radar measurements. Radar QPE there-

fore still currently relies strongly on gauge

measurements.

An important question is how many raingauges

are needed to get a correct QPE and to model error,

or what radar-to-gauge ratio is required? In the case

of catchment hydrology the underlying question is:

does the proportion of the rainfall measured by the

raingauge network explain most of the hydrological

response, and with what accuracy? Indeed the sig-

nificance of in situ measurements can be directly

affected by catchment rainfall space–time dynamics

(Viglione et al. 2010, Zoccatelli et al. 2011). For

instance, the speed and direction of movement of

rain cells seem to exert a strong control on the hydro-

logical response of an arid catchment (Yakir and

Morin 2011).

However, rainfall estimation errors, like other

sources of uncertainty, can be mainly compensated

by hydrological model parameter values often deter-

mined through a calibration process. Bárdossy and

Das (2008) show that the semi-distributed HBV

model using different rainfall measurement networks

needs to be recalibrated. Specifically they state that

calibration of the model with relatively sparse rainfall

data leads to good performance with dense precipita-

tion measurement, while the model calibrated on

dense precipitation information fails on sparse data.

There are several studies of Mediterranean flash

floods at the regional scale in the literature. Ayral

et al. (2007), with the ALTHAIR model, and Le Lay

and Saulnier (2007), with the event-based

TOPMODEL approach, tested different levels of

sophistication in the regionalization of inputs and

model parameters. Ayral et al. (2007) obtained a

systematic overestimate of peak discharge and a

satisfactory simulation of the time of the peak when

the model was used with spatially homogeneous

parameters. Le Lay and Saulnier (2007) show that

the efficiency of the model significantly increases

when the spatial variability of rainfall is taken into

account. Nevertheless, for some catchments the per-

formance failures remain unexplained. Tramblay

et al. (2011) used soil moisture initialization with

SIM data (SAFRAN-ISBA-MODCOU; Habets

et al. 2008) and show the benefit of using spatial

radar to measure rainfall on the Gardon d’Anduze

catchment (545 km2) in the Cévennes region, France,

particularly for the largest flood events. Versini

(2012) shows that in the Gard region, France, the

predictive power of a road submersion system in

cases of flash floods is affected by rainfall uncer-

tainty which drastically drops for lead times exceed-

ing two hours. The effects of uncertainty in the

rainfall forecast are highlighted by a recent study in

the Besos River basin, Catalonia, Spain (Quintero

et al. 2012). However, little information can be

found in the literature about the calibration of flash

flood models and the problem of rainfall uncertainty.

The problem of rainfall uncertainty is particu-

larly crucial when attempting to develop flash flood

regionalization methodologies, especially on fast-

responding catchments involving several difficult

problems, such as structural, parametric or data

uncertainties. Regionalization of model parameters



to ungauged catchments is generally performed on

the basis of knowledge acquired from modelling on

gauged catchments (Merz and Blöschl 2004,

Wagener et al. 2004, Blöschl 2005). Different

approaches may give considerably different results,

particularly if unusual conditions prevail, e.g. regard-

ing soil, geology, or climatology (Weingartner et al.

2003). For this reason, it is particularly important to

understand catchment response through a sensitivity

analysis of model parameters. Sensitivity analysis

that assesses the impact of model parameters on the

output is indeed a convenient tool for investigating

model behaviour and particularly the importance of

certain choices of parameterization within the model.

It is possible to explore high-dimensional parameter

space and some studies show the usefulness of sensi-

tivity analysis for hydrological model improvement

(Andréassian et al. 2001, Oudin et al. 2006, Tang

et al. 2007, Pushpalatha et al. 2011), or to better

understand model behaviour with respect to inputs

such as precipitation (Xu et al. 2006, Meselhe et al.

2009).

Hydrological models are characterized by com-

plex response surfaces due to the mathematical for-

mulation used to describe the rainfall–runoff

phenomenon. It can therefore be difficult to deter-

mine optimal parameter combinations given multiple

convergence zones, anisotropic curving, or singular

points responsible for discontinuities of derivatives

(Johnston and Pilgrim 1976, Duan et al. 1992). This

poses the problem of local extrema for both calibra-

tion and sensitivity analysis. In this context, global

sensitivity analysis methods, unlike local ones, have

been proposed for examining multiple locations in

the physically possible parameter space. Regional

sensitivity analysis (RSA) was originally developed

by Hornberger and Spear (1981) and later called

generalized sensitivity analysis (GSA) by Freer

et al. (1996) in the context of environmental model-

ling to reduce the number of model parameters. This

approach is particularly important with the current

shift towards distributed hydrological models. In the

case of flash flood event modelling, it is indeed

interesting to perform an analysis of the sensitivity

of model outputs to parameter variations over large

ranges. The GSA method is a global approach. It

tackles the question of sensitivity by sampling the

space of uncertain model inputs (parametric uncer-

tainty is usually considered) in order to enable the

conditioning of model predictions on available obser-

vations using a likelihood measure (Beven and

Binley 1992).

Understanding the sources of uncertainty is cur-

rently a central question in hydrology. This can be

achieved by various methods, of which formal

Bayesian methods (Kuczera and Parent 1998) and

the generalized likelihood uncertainty estimation

(GLUE) method (Beven and Binley 1992) are the

most popular, along with recursive application of

GSA for dynamic identifiability analysis (Wagener

et al. 2003) or Bayesian total error analysis

(Kavetski et al. 2006) for comprehensive calibration

and uncertainty estimation. They have been widely

discussed with respect to their philosophy and the

mathematical rigour on which they rely (Gupta et al.

2003, Beven 2006, Mantovan and Todini 2006,

Todini 2007, Beven et al. 2008, Yang et al. 2008,

Vrugt et al. 2009, Jin et al. 2010, Yang 2011). These

contributions show that results of the GLUE method

are notably influenced by threshold values on the

cost function and parameter variation ranges (Yang

et al. 2008, Yang 2011). In addition, Li et al. (2010)

performed a comprehensive evaluation of the para-

meters and total uncertainty estimated by GLUE and

a formal Bayesian approach to quantify the conse-

quences of (a) threshold values or the acceptable

sample rate (ASR), and (b) the number of sample

simulations on the results of GLUE.

Moreover, the need to define limits of accept-

ability before model runs when applying the GLUE

methodology is highlighted in Beven (2006). For

example, limits of acceptability for discharge are

defined using an estimated rating curve error at five

sites within the Skalka catchment in the Czech

Republic, and then relaxed to allow a strong realiza-

tion effect in predicted flood frequencies (Blazkova

and Beven 2009).

In this study we focus on the quality of the

rainfall estimate for rainfall–runoff modelling and

the selection of calibration events for the regionaliza-

tion of flash flood models. Indeed for regionalization,

a rainfall–runoff model may need to be calibrated on

gauged catchments. This raises the questions: How

do we select the calibration/validation events? Should

all possible events be used? What about the intrinsic

quality of the mean areal precipitation for each event

and its impact on the estimated values of the para-

meters? For the catchments of interest in the

Mediterranean region, several rainfall products are

often available and for most events it is difficult to

choose between them using direct comparison of the

different rainfall products. This study proposes a

methodology using sensitivity analysis of the

MARINE rainfall–runoff model, dedicated to flash



flood analysis and forecasting in the Mediterranean

region (Roux et al. 2011). Based on the results of this

sensitivity analysis, water conservation controls and

simulated runoff coefficients are explored. In particu-

lar, cumulative distribution functions of the para-

meters often show mean catchment behaviours,

which help to select flash flood events for model

calibration. This enables rainfall products with ques-

tionable QPE to be excluded. The aim is to prepare

the calibration of catchment parameter sets and

reduce the significant uncertainty introduced by rain-

fall QPE data in the case of flash flood modelling.

The chosen catchments possess contrasting physio-

graphic properties, thus helping to provide a holistic

understanding of hydrological controls (Gaál et al.

2012).

The present paper is organized as follows.

Section 2 is a presentation of the study zone and

the catalogue of catchments and events considered,

with some characteristics of soils and geology for

comparative general sensitivity analysis. Section 3

briefly presents the MARINE model and its hypoth-

esis. Section 4 investigates the influence of different

radar or interpolated rainfall products measured with

raingauges on model calibration and sensitivities,

particularly for soil volume. Section 5 presents catch-

ment parameter sets calculated with a multiple event

calibration method, with, for each event selected, the

best rainfall products by comparing their respective

sensitivities. Finally, Section 6 presents a discussion

on modelling performance and the resulting under-

standing of hydrological processes, regarded as a first

essential step towards prediction of flash floods in

ungauged catchments.

2 STUDY ZONE AND CATCHMENT

PROPERTIES

The proximity of the Mediterranean Sea and the steep

surrounding topography can promote low level

uplifting in an unstable atmosphere, as for example

in the Alps and Pyrenees (Davolio et al. 2009, Tarolli

et al. 2012). The region of interest is thus fairly

frequently affected by intense rainfall, and represents

an interesting area for regional studies of flash floods,

considering the number of small to medium-sized

responding catchments. The dataset for this study is

composed of 11 catchments in the foothills of the

eastern Pyrenees with areas ranging from 36 to

776 km2 (Fig. 1), representing a significant number

of flood events (43) ranging from moderate flood to

strong flash flood. The events selected are the stron-

gest flood responses recorded during the period

1980–2011 for the catchments of interest. In order

Fig. 1 (Left) Main rivers and mountains of France. (Right) Study zone: Pyrenean foothills and Montagne Noire catch-
ments, showing Opoul radar station, 50-km and 80-km range markers, operational raingauge network, and main cities.



to study all the strongest flood responses we selected

those with specific peak flow over 0.2 m3 s-1 km-2 for

the selected catchments.

2.1 Flood-generating rainfall measurements

The selected catchments are located near the Opoul

meteorological radar station (Fig. 1). The dense

French raingauge and radar network coverage offers

interesting possibilities for capturing the variability of

flood-triggering storms (Fig. 1). In this paper we use

an operational hourly raingauge network for flood

monitoring purposes and data provided by the regio-

nal flood forecast service for the Languedoc

Roussillon zone, the Service de Prévision des Crues

Méditerranée Ouest (SPCMO). We have at least three

operational raingauges for the smallest catchments

and seven for the largest (Têt) with records going

back decades. The average density is two raingauges

per 100 km2, with at least one per 100 km2 for the

catchments of interest (Fig. 1).

Radar rainfall measurements are available since

2002 with the radar located at Opoul. This radar

station belongs to ARAMIS, the operational radar

network of Meteo France, which has developed

good expertise and algorithms for rainfall estimation

from radar reflectivity (Tabary 2007, Tabary et al.

2007). Twenty years of radar hydrology have led to

the creation of several radar products with combina-

tions of radar and/or raingauge data for QPE adjust-

ments. In this study we use:

(a) Raingauges interpolated with the Thiessen

method (RG_Interp), dt = 1 h.

(b) Radar rainfalls recalibrated on raingauges

(Tabary 2007, Tabary et al. 2007):

– Rainfalls recalibrated by flood forecasters

after flood events, available for the west

French Mediterranean (SPCMO) and in the

Cévennes-Vivarais region from the Service

de Prévision des Crues du Grand Delta

(SPCGD) (RA_Calibr), dt = 5 min and

dx = 1 km;

– A new Meteo France rainfall re-analysis pro-

duct available for the whole of Metropolitan

France before 2010 (RA_ReanH), dt = 1 h

and dx = 1 km; and

– PANTHERE rainfalls produced by Meteo

France for the whole of Metropolitan

France since 2005 (RA_ReanP), dt = 5 min

and dx = 1 km.

The RA_ReanP product is considered only after

2010 when RA_ReanH is not available, as the re-

adjustment algorithm and data used might differ

between those products. The smallest time resolu-

tion of some rainfall products does not exceed 1 h,

which is lower than the concentration time of the

catchments considered, where the average is about

7 h. Moreover, the results given below might not be

strongly affected since they are generally integrated

over the duration of an event. The average rainfall

duration is 30 h for this dataset, including a few

hours with high rainfall intensities. We do not give a

detailed description of the development of rainfall

products because our purpose is to study them

through hydrological modelling over an entire

hydrological region and to take advantage of all

the available products.

To describe rainfall products we use first- and

second-order moments Δ1, Δ2 integrated over storm

duration (Zoccatelli et al. 2011), where Δ1 describes

the distance of the centroid of catchment rainfall with

respect to the catchment centroid (average value of

the flow distance): a value close to one reflects either

a spatially homogeneous rainfall event or rainfall

concentrated on the catchment centroid, a value less

than one reflects rainfall near the basin outlet, and

values greater than one indicate a rainfall distribution

closer to the catchment headwaters; and Δ2 describes

the dispersion of rainfall, with a value close to one

reflecting uniform rainfall, while values of less than

one mean that rainfall has a unimodal trend along the

flow distance.

For our dataset, the rainfall products can give

different QPE (Fig. 2). Radar range and topography

are factors that condition the quality of radar QPE

especially for mountainous catchments, as well as

the raingauge data used for radar QPE readjust-

ment. From a direct comparison of the different

rainfall products for most events, it is difficult to

select one rainfall product rather than another. For

instance, raingauges might not have seen a signifi-

cant part of a rainfall field, or masking can directly

affect radar QPE. The impact on hydrological

simulations can be considerable, for example

because of large differences in spatial and temporal

distributions of different rainfall products. Rainfall

moments integrated over storm duration are

reported in Fig. 2 and show the differences of

cumulated rainfall, but also the spatial and tem-

poral variability of the different rainfall products

available for a given event.



2.2 Physiographic characteristics

The region of interest is located in southwestern

France on the Mediterranean coast. The characteris-

tics of the 11 catchments selected for this study are

presented in Table 1. Topography is described with

a 25 m resolution digital elevation model (DEM)

available from the National Geographic Institute

(BD TOPO® © IGN, Paris, 2008). Some of these

catchments are tributaries of the River Aude that

drains an area of high hills (Corbières) and flows

through a narrow valley. Downstream from the city

of Carcassonne, the morphology of the valley

becomes a broad alluvial valley bordered by the

Montagne Noire massif to the north (north and

northeast of Carcassonne) and the Corbières hills

to the south.

We consider catchments with a sharply marked

topography consisting of narrow valleys and steep

hill slopes (Fig. 1). Physiographic factors may affect

flash flood occurrence in specific catchments by a

combination of two main mechanisms: orographic

effects that augment precipitation, and topographic

effects promoting rapid concentration of stream

flow (Costa 1987, O’Connor and Costa 2004).

From the Orbieu to the Tech, all the catchments

present a strong topographic gradient with an eleva-

tion ratio (the height difference divided by the max-

imum flow path length) ranging between 0.022 and

0.086 (Table 1).

The properties of the superficial layers of the soil

such as texture and thickness (Table 1) are extracted

from the Languedoc Roussillon soil database

Fig. 2 Characteristics of rainfall fields for the different rainfall products for each catchment-flood considered: (a) cumulated
rainfall (mm); (b) first-order moment Δ1 integrated over storm duration; (c) second-order moment Δ2 integrated over storm
duration.



(referred to as BDSol-LR) provided by the INRA1

(Robbez-Masson et al. 2002) (IGCS2 programme,

BDSol-LR version 2006).This database gives infor-

mation on pedological landscapes, which are known

as cartographic soil units, at a resolution of 1/250 000

(Manus et al. 2009). The importance of soil thickness

and hydraulic properties on hydrological processes

such as soil saturation, and the determination of

what constitutes excess rainfall, is highlighted in the

case of flash floods (Braud et al. 2010, Roux et al.

2011). Moreover, the geology of this region is quite

complex and bedrock faults or karstic formations can

play a role in water conservation or karst outflows

triggered by a flood (Nou et al. 2011).

Land cover is very varied in this study area, with

moderate slopes occupied by vineyards in the valleys

of the River Aude and its tributaries, while the upper

slopes are covered by garrigue and scrub. Forest is

encountered in the central part of the Montagne Noire

and the Pyrenees foothills. Land use maps are

derived from remote sensing data (2000 Corine

Land Cover: Service de l’Observation et des

Statistiques). The substrate of the Aude watershed is

mainly composed of silt and sand, developed from

limestone and clay-limestone rocks (Fig. 3 and

Table 2). Locally, the limestone bedrock is highly

karstified, especially in the Montagne Noire (Gaume

et al. 2004, Nou et al. 2011). The spatially contrast-

ing bedrock composition can be divided into four

groups of catchments with similar bedrocks, most

of which are close geographically (Garambois et al.

2014).

3 DESCRIPTION OF THE MODEL

The modelling approach chosen for the catchment set

is the distributed model MARINE for flash flood

forecasting (Roux et al. 2011) with subsurface flow

modelling. It takes advantage of distributed forcing

and soil spatial properties. The predominant factor

considered to give rise to stream discharge is repre-

sented by the topography i.e. slope and downhill

directions. The model runs on a regular grid of

squared cells, 200 × 200 m. This mesh is more

refined than any of those available for rainfall field

description, whose cells usually cover 1 km2.

MARINE runs with an adaptive time step (a few

seconds to 1 minute) using the Courant-Friedrichs-

Lewy (CFL) condition to reduce calculation time.

The model is structured in three main modules

(Fig. 4), the first two representing vertical and lateral

soil saturation dynamics. The first module separates

the precipitation into surface runoff and infiltration

using the Green and Ampt model. The second mod-

ule represents subsurface downhill flow with an

approximation of Darcy’s law. The third represents

the overland flow (over hillslopes and in the drainage

network): the transfer function component conveys

the excess rainfall to the catchment outlet using the

kinematic wave approximation. Both infiltration

excess and saturation excess are represented in

MARINE. Model parameters are calculated from

soil surveys and remote sensing data. Soil thickness

and texture maps are derived from the Rawls and

Brakensiek definition of soil classes (Rawls and

Table 1 Catchment characteristics; elevation ratio is the max-min elevation divided by the longest flow path. Soil
thicknesses are extracted from the BDSol-LR. Concentration time is calculated with the Bransby Williams formula
(equation (3)).

Catchment Area
(km2)

Concentration
time (h) (Bransby
Williams)

Height
difference
(m)

Maximum
flow path
length (km)

Elevation
ratio

Mean soil
depths (m)
(BD-sol-LR)

Catchment soil
volume (m3)
(BD-sol-LR)

Raingauge density
(raingauges per
100 km2)

Ballaury 36 2.3 890 10.4 0.086 0.21 3.59E+06 5.6
Salz 144 3.6 995 17.2 0.058 0.31 4.19E+07 1.4
Réart 145 5.8 780 28.8 0.027 0.41 5.76E+07 3.4
Lauquet 173 6.4 795 29.1 0.027 0.36 6.41E+07 1.2
Agly 216 6.4 1640 33.5 0.049 0.25 5.31E+07 1.0
Cesse 231 5.7 970 36.1 0.027 0.28 6.62E+07 1.3
Tech 250 4.4 2730 34.5 0.079 0.16 5.33E+07 2.4
Orbiel 253 5.5 1200 34.8 0.034 0.36 8.89E+07 1.2
Orbieu 263 5.8 840 37.6 0.022 0.38 9.93E+07 1.1
Verdouble 299 5.5 915 37 0.025 0.33 1.03E+08 1.7
Têt 776 7.9 2540 47.3 0.054 0.19 1.50E+08 1.3

1The French National Institute of Agronomical Research.
2IGCS: Inventaire, Gestion et Conservation des Sols -voir http://gissol.orleans.inra.fr/.



Brakensiek 1985). Soil saturation at the beginning

of each event is estimated with SAFRAN-ISBA-

MODCOU (SIM), a continuous hydrometeorologi-

cal model (Habets et al. 2008). Evapotranspiration is

not represented since the purpose of the model was

to simulate individual flood events during which

such a process is negligible. Bedrock is not taken

into account in the governing equations of the

MARINE model since deep percolation is still a

poorly understood phenomenon and there are few

measurements available with which to constrain a

model. But geological maps are useful for analysing

the results of flood simulation, especially for com-

parative hydrology on several physically contrasted

catchments. For a complete description of the

MARINE model the reader can refer to Roux

et al. (2011).

In order to avoid model over-parameterization,

the number of parameters to estimate via calibration

was kept as low as possible. Spatial patterns of sev-

eral parameters were derived from soil surveys and a

unique correction coefficient was then applied to

each parameter map. This approach was chosen for

three parameters, namely the distributed saturated

Fig. 3 (a) Soil depth map (source: BD-sols Languedoc Roussillon, INRA), (b) simplified geological formations
(red = metamorphic, blue = plutonic, yellow = sedimentary, purple = volcanic, grey = no data) and faults (source: BD
Million-Géol, BRGM).

Table 2 Main components of catchment bedrock, referring to Fig. 3, right.

Catchments Geology

Tech, Têt - Granite and/or Primary era formations (mainly schist but locally highly karstified limestone)
Verdouble, Agly,
Ballaury

- Granite and/or Primary era formations, (top right Verdouble and bottom left Agly on the map)
- Mesozoic mainly cretaceous formations (limestone, marl)

Salz, Lauquet,
Orbieu

- Primary era formations
- Mesozoic, mainly cretaceous formations,
- Tertiary era detritic formations (sand, molasses, conglomerate)
- Quaternary alluvia

Cesse, Orbiel, Réart - Granite and/or Primary era formations (mainly schist but locally highly karstified limestone)
- Tertiary era detritic formations (sand, molasses,conglomerate)



hydraulic conductivity K, the lateral transmissivity T0
and soil thickness Z. The calibration procedure con-

sists of estimating three coefficients of correction,

one for saturated hydraulic conductivity, named CK,

a second for lateral subsurface flow transmissivity,

CKSS, and the third for soil thickness, CZ. The

Strickler roughness of the main channel KD1 and

the Strickler roughness of the overbank of the drai-

nage network KD2 are also calibrated. The choice of

these parameters follows observations made during a

calibration process in the Mediterranean region

(Roux et al. 2011). Concerning the subsurface lateral

transmissivity KSS, the spatial variability is taken

from the vertical hydraulic conductivity map, and

the correction coefficient ranges from 100 to 10 000

as horizontal flows are considered faster than vertical

ones (see Maidment 1992). Calibration parameters

and variation range are reported in Table 3. In prac-

tice, initial ranges of parameter values for Monte

Carlo sampling are chosen with the intention of

exploring a large range of model behaviours.

Uniform parameter distributions within their range

of variation are mainly used in the absence of prior

information.

4 EVENT MODEL SENSITIVITY ANALYSIS

4.1 Objective of the sensitivity analysis

The aim of this section is to analyse the main char-

acteristics of MARINE model response via a compar-

ison based on the entire dataset for each flood event

and for each catchment. The sensitivity analysis of

the MARINE model to the five parameters presented

Fig. 4 MARINE model structure, parameters and variables. Green and Ampt infiltration equation: i: infiltration rate (m s-1);
I: cumulative infiltration (mm); K: saturated hydraulic conductivity (m s-1); ψ: soil suction at wetting front (m); θs and θi:
saturated and initial water contents, respectively (m3 m-3). Subsurface flow: T0: local transmissivity of fully saturated soil
(m2 s-1); θs and θ: saturated and local water contents, respectively (m3 m-3); m: transmissivity decay parameter (-); β: local
slope angle (rad). Kinematic wave: h: water depth (m); t: time (s); u: overland flow velocity (m s-1); x: space variable (m); r:
rainfall rate (m s-1); i: infiltration rate (m s-1); S: bed slope (m m-1); and n: Manning roughness coefficient (m-1/3 s).

Table 3 Parameter description and variation range for Monte Carlo analysis.

Description Min Max

Ck Correction coefficient of the hydraulic conductivity (-) 0.1 10
CZ Correction coefficient of the soil thickness (-) 0.1 10
CKSSs Correction coefficient of the soil lateral transmissivity (-) 100 10000
KD1 Strickler roughness coefficient of main channel (m1/3 s-1) 1 40
KD2 Strickler roughness coefficient of the overbank (m1/3 s-1) 1 30



above is performed for various hydrological

responses within a catchment, and across various

physiographic conditions within our catchment data-

set. The whole parameter space defined in Table 3 is

explored for different physical behaviours. Moreover,

different rainfall products are used for several flood

events. For each of them, water conservation controls

and simulated runoff coefficients are explored using

the sensitivity analysis results and particularly the

cumulative distribution function of the parameter

CZ, which is the main control on water balance. As

previously mentioned, the aim of the sensitivity ana-

lysis is to prepare for the calibration of catchment

parameter sets and reduce the significant uncertainty

introduced by rainfall QPE data in flash flood

modelling.

The global sensitivity analysis method with cost

function considering features characterizing the flood

peaks is presented. The impacts of the cost function

and the threshold choice on the uncertainty interval

and best simulations are shown. Monte Carlo simula-

tions with several rainfall products are presented,

with a discussion on water balance modelling.

Catchment sensitivity averaged over flood events is

then calculated. The most sensitive parameter of the

MARINE model on average, CZ, is studied through

its posterior distribution functions (pdfs) for each

catchment and flood. With respect to this parameter,

mean catchment behaviour can be found, enabling

comparison and selection of QPE for a flood given

the identified catchment behaviour.

4.2 Sensitivity analysis method: GSA-GLUE

The generalized sensitivity analysis is performed fol-

lowing the method proposed by Hornberger and

Spear (1981). For each flood event (and each rainfall

product for a given flood) the sensitivity analysis is

performed, based on a 5000-member Monte Carlo

sample obtained with a standard random generator.

The MARINE model is run with these 5000 para-

meter sets. Each set of parameter values is then

assigned a likelihood of being a simulator of the

system, on the basis of the chosen likelihood mea-

sure. All model realizations are weighted and ranked

on this likelihood scale. On the basis of this like-

lihood measure, a classification is applied to the

model output, resulting in a classification of each

model run as behavioural or non-behavioural. The

threshold for differentiating between the two classes

is a chosen value of the likelihood measure. The cost

function and the threshold are determined subjec-

tively, as discussed by Freer et al. (1996).

The separation between the prior and posterior

marginal cumulative distributions is subsequently

used as a sensitivity measure (Hornberger and Spear

1981): for each parameter αk, the distributions rela-

tive to behavioural and non-behavioural simulations

are plotted. A separation between these distributions

indicates that the parameter is important for simulat-

ing the behaviour studied. The contrary is not always

true. Indeed the distributions may show no separation

whereas the parameter αk can be crucial for the simu-

lation because of correlations with other parameters.

It is a necessary but not sufficient condition that

parameters must be sensitive to be identifiable.

Moreover, sample size and sampling variability

should be increased systematically to ensure conver-

gence and robustness of the confidence interval

respectively.

In the GLUE approach, the likelihood weights

associated with the behavioural simulations are

applied to their respective model discharges at each

time step to give a cumulative distribution of dis-

charges at each time step. Uncertainty quantiles can

be calculated from these distributions to represent

model uncertainty (Freer et al. 1996).

4.3 Cost function and threshold value

The highly nonlinear mathematical formulation of

rainfall–runoff transformation produces complex

response surfaces for hydrological models. The first

step of a sensitivity analysis consists of defining a

method that evaluates how well the model conforms

to the observed behaviour. But, there is no consensus

defining a unique criterion to assess model perfor-

mance and different objective functions can lead to

identification of different parameter combinations

(Zin 2002). Besides, we can distinguish methods

that use either a partitioning or complete rainfall–

runoff records, such as multi-objective optimization

(Vrugt et al. 2003). Wagener et al. (2003) propose the

concept of dynamic identification with moving win-

dows and, more recently, Choi and Beven (2007)

proposed working on sub-periods characterized by

similar hydrological behaviour.

This study is focused on a dataset composed of

contrasting catchment flood responses (Garambois

et al. 2014). The advantages of including several

criteria for model performance evaluation, especially

for flood modelling, have been pointed out (Aronica

et al. 1998, 2002, Werner 2004). The cost function,



LNP, introduced by Roux et al. (2011) is used, which,

in addition to the classical normalized least squares

approach, considers features characterizing the flood

peak (discharge value and time to peak) (Lee and

Singh 1998):
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where QP
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where Nobs is the number of observation data, and Qs

and Qo are respectively the simulated and the

observed runoff. The time of concentration of the

catchment is ‘defined using the Bransby formula:

T c
o ¼

21:3L

A0:1S0:2
(3)

where L is the channel length (m), A is the watershed

area (m2) and S is the slope of the linear profile.

Discharge data are available at 1-h intervals before

2005 and at 5-min intervals thereafter.

Compared to the Nash criterion (equation (2))

the LNP cost function grants more importance to peak

flow value and timing, which is particularly appro-

priate for the MARINE model, as it focuses more on

flash flood peak flow modelling than on baseflow or

recession. It is shown to be the correct compromise

for exploring a range of catchment flood behaviours,

since it enables simulations to be selected that can be

of great use in flood forecasting. The best simulations

are shown below.

As explained above, for each flood event and

rainfall product, confidence intervals and parameter

posterior distribution functions are calculated with

the GSA-GLUE method. The influence of the thresh-

old is visible in Fig. 5; a higher value gives a nar-

rower uncertainty interval and a smaller number of

behavioural simulations. Moreover, the added value

of LNP, with respect to the classical Nash, is shown

for this major flood event on the Orbieu: relative

error on peak discharge is lower for the best simula-

tions (Fig. 5).

The threshold chosen on LNP for this method

is 0.7 in order to have a sufficient number of

behavioural simulations on contrasting catch-

ments. This choice appears reasonable since it

ensures (on average 500 behavioural simulations

out of 5000 parameter sets) that the number of

behavioural simulations ranges from 300 to nearly

1000 for the best-simulated events. For some

floods the best simulations can result in LNP
greater than 0.95. This threshold is relatively

high for the LNP function in flash floods, as

attested by the narrow uncertainty interval

(Fig. 6). The observations fall within this interval

for most of the flood hydrograph. Moreover the

uncertainty, especially for peak flow, is below

40%, which is similar to the high flow gauging

uncertainty for some catchments and thus the limit

of acceptability as defined by Blazkova and

Beven (2009). We focus on peak dynamics,

according to our cost function, and so it is not

surprising if the confidence interval does not fit

the observed discharges for the early rising limb

or during recession (Fig. 6(a)). It should be

remembered that neither baseflow nor recession

curves are used in the MARINE model.

4.4 Event analysis with several rainfall products

Monte Carlo simulations were performed for each

catchment with different rainfall products for some

events, when available. A colour scale is applied

(Table 4) in order to help visual qualification of

performance for event calibration with the different

rainfall products (Table 5). Dark green is for the

best Monte Carlo simulations for which GSA-

GLUE is possible with respect to the hypothesis

presented before. We can observe that Monte Carlo

simulations give good results for all the catchments

considered. Indeed, for each catchment, the four

rainfall products give at least one flood with the

best mark, i.e. (Nash, LNP) > 0.8 and two above,

(Nash, LNP) > 0.7. All the rainfall products can

therefore be considered suitable for flash flood mod-

elling purposes on these 11 Mediterranean

catchments.

Radar rainfall data seem to improve the possibi-

lity of flood modelling, since many of the floods

simulated with RA_Calibr give satisfactory



performances, with (Nash, LNP) > 0.7. The two that

do not give correct results for RA_Calibr are very

low flow events (6 February 2005 for the Orbieu and

10 April 2002 for the Têt), which seems reasonable,

as MARINE was originally developed to simulate

extreme events. Interpolated raingauges from the

dense measurement network give good results

(Table 5). It should be noted that even a dense cover-

age with five raingauges for the Verdouble catchment

(299 km2) did not provide good modelling results for

the 8 January 1996 and 14 December 1995 events.

The rainfall measurement network may not have seen

Fig. 6 Observed discharge (dots), two best simulations (solid and dashed lines) and confidence interval for: (a) the Orbieu
at Lagrasse (263 km2) 15 November 2005 flood event, performed with RA_Calibr radar rainfall data, LNP threshold = 0.7,
900 behavioural simulations; (b) the Tech at Pas-du-Loup (250 km2), 15 November 2005 flood event, performed with
RG_Interp interpolated rainfall data from five raingauges, LNP threshold = 0.7, 480 behavioural simulations.

Fig. 5 Observed discharge (dots), best simulations (solid and dashed lines) and uncertainty interval (5–95% quantiles) for
the Orbieu at Lagrasse (263 km2), 15 November 2005 flood event performed with RA_Calibr radar rainfall data: (a) Nash
threshold = 0.5; (b) Nash threshold = 0.9; (c) LNP threshold = 0.5; (d) LNP threshold = 0.9.



Table 4 Efficiency intervals and colour correspondence.

Performance condition for the couple (Nash, LNP) > 0.8 > 0.7 > 0.65 > 0.5 < 0.5

Colour correspondence           

Table 5 Event calibration efficiencies. Not all the cells are filled, as a storm-flood event can concern
several catchments without affecting the whole dataset. Rainfall products selected with the CZ pdf
similarity method for each catchment since 2002 for calibration (✓), products selected but not used for
calibration (%), Ø is for flood events where no rainfall product is chosen.



part of rainfall explaining catchment response for

these two events.

Simulations in yellow or orange (Table 5),

mostly for interpolated raingauges (RG_Interp) or

RA_ReanH, are simulations that do not reproduce

the observed hydrograph correctly. A low value of

LNP often corresponds with simulations with under-

estimated peak flow, but still good temporal

dynamics and simulated peak time. That is to say

for the simulation marked in yellow and orange, the

model water balance is not able to reproduce the

order of magnitude of peak discharge, and conse-

quently the flood water balance.

Most floods and catchments are correctly mod-

elled with MARINE. Although parameter sets are

sampled in relatively wide ranges in order to be

able to reproduce different catchment behaviour for

several events, all 5000 simulations result in signifi-

cant underestimates of peak flow. This addresses the

question of which phenomenon leads to such an error

in water conservation modelling.

In our modelling of rainfall-to-runoff conserva-

tion, the four most important sources of error are

probably:

(a) QPE under- or over-estimates;

(b) High-flow gauging errors;

(c) model structure and parametric compensation

(bedrock loss and evapotranspiration not

simulated);

(d) initial soil moisture estimates.

First, the sources of uncertainty (b)–(d) are con-

stant for a given event, so, when considered with

different rainfall products, comparisons are possi-

ble. We are conscious of problems relating to rat-

ing curve quality and initialization errors, but this

is not the purpose of this study and it may have a

limited impact on the results under our hypothesis.

Indeed, most events are of comparable order of

magnitude for a given catchment, so we can

neglect gauging errors between events. The initia-

lization error inherent in event models is not taken

into account since in the MARINE model soil

saturation is fixed by the root zone moisture, simu-

lated by the continuous water balance model SIM

(Habets et al. 2008) at the beginning of each flood

event. The initial soil moisture for the 43 flood

events dataset is on average 57.7% with a rather

low standard deviation of 6.6%, so from this varia-

tion range its impact on MARINE sensitivity is

considered limited.

4.5 Catchment sensitivity to parameters

Monte Carlo simulations for each catchment are per-

formed under identical mathematical and physical

hypotheses and with the same data types, in order

to be able to compare MARINE results and sensitiv-

ity between events and catchments. Table 6 shows

mean parameter rank for each catchment, obtained by

averaging Kolmogorov-Smirnov test values for all

the events considered for GSA-GLUE analysis per

catchment, with selected rainfalls (Table 7). Mean

parameter rank (and thus model sensitivity to flow

components) varies as a function of the catchment;

CZ, the spatial soil multiplicative constant, is the

most sensitive parameter on average followed by

CK, whereas CKSS, lateral soil transmissivity, is the

least sensitive. No clear tendency appears for KD1

whose sensitivity depends mainly on catchment prop-

erties. No clear trend appears for the overbank rough-

ness KD2 either, whose rank can vary from 1 to 5,

with an average of 3.

On average, MARINE evaluated with the LNP
cost function is mostly sensitive to CZ and CK,

defining catchment storage capacity and infiltrabil-

ity. These two sensitive parameters thus indicate that

MARINE is mainly sensitive to runoff production

dynamics and amounts for flash flood events. The

sensitivity of the channel transfer function, repre-

sented by main channel roughness and floodplain

roughness, is also considerable, whereas subsurface

transfer is less sensitive according to the model.

Low interactions were found between parameters

through covariance analysis with global sensitivity

analysis.

Table 6 Mean catchment parameter ranking according to
Dmax calculated for each parameter and event, Dmax
being the maximum separation between the behavioural
and non-behavioural distributions. Mean parameter rank is
obtained by averaging each parameter rank for all the
catchments.

Catchments CZ CK KD1 KD2 CKSS

Tech 1 2 4 5 3
Têt 1 2 3 5 4
Réart 2 1 4 3 5
Verdouble 3 2 4 1 5
Agly 2 1 4 3 5
Salz 2 1 2 3 5
Lauquet 3 4 1 2 5
Orbieu 3 1 2 4 5
Cesse 1 2 3 5 4
Orbiel 3 4 2 1 5
Ballaury 2 5 3 1 4
Mean rank 2.1 2.3 2.9 3.0 4.5



4.6 Sensitivity to spatial soil depth and water

volume control

In this section we focus on the spatial soil depth multi-

plicative constant, CZ, which, on average, is seen to be

one of the most sensitive parameters of the MARINE

model for the 11 catchments. Indeed, CZ is responsible

for catchment storage capacity and water balance

adjustments: it controls a catchment’s soil volume

and can compensate runoff volume in a non-negligible

but still physical range (CZ ∈ [0.1, 10]). Roux et al.

(2011) previously showed the sensitivity of

MARINE to CZ on the Gardon d’Anduze catch-

ment in the Cévennes; this parameter is found to

explain 80% of model output variance when hydro-

graphs peak on several Mediterranean catchments

(Garambois et al. 2013). Le Lay and Saulnier

(2007) with TOPMODEL, and Braud et al.

(2010) with CVN and MARINE models showed

that soil depth strongly influences the flash flood

response of catchments in the Cévennes. After

applying the MARINE model to 11 Mediterranean

catchments, we present CZ posterior distribution

functions (pdfs) (Figs 7–12). Several events are

plotted on one graph in order to compare the pdf

shapes, each pdf coming from one Monte Carlo

sample. The following interpretations are based

on the results of the sensitivity analysis (posterior

distribution functions Figs 7–12 summarized in the

parameter ranking of Table 6).

According to the Kolmogorov-Smirnov tests

performed above, CZ is the most sensitive parameter

for Tech, Têt and Cesse compared to the eight other

catchments (Table 6). Concerning Tech and Têt, the

shape of the pdfs shows that most of the behavioural

simulations are for CZ values greater than 4, espe-

cially for the Têt (CZ > 5, Fig. 7(b)). Sensitivities are

similar for these two catchments, which are mainly

located on metamorphic terrain.

The Cesse (Fig. 8(a)), Ballaury (Fig. 8(b)), Réart

(Fig. 9(a)), Agly (Fig. 10(b)) and Salz (Fig. 12)

catchments are also very sensitive to CZ, and most

of the behavioural simulations are for CZ values of

between 1 and 4. The physiographic and bedrock

properties are complex for these catchments: Cesse

is highly karstified (Nou et al. 2011) and Réart pre-

sents mixed and complex physiographic properties.

The Verdouble (Fig. 10(a)), Lauquet (Fig. 11(b)) and

Orbieu (Fig. 11(a)) catchments from the Corbières

Hills, and the Orbiel catchment (Fig. 9(b)) from the

Montagne Noire are less sensitive to CZ than the

previous catchments, and overall most of the beha-

vioural simulations are for values of CZ > 1. The

substrates of these basins were mainly developed

from sedimentary bedrock (Table 2) overlain by

loam and silty loam.

Bedrock loss is not represented in the model.

This might be responsible for CZ values greater

than one, as suggested by Castaings et al. (2009)

and Roux et al. (2011). The modeller therefore

needs to increase soil volume and thus storage capa-

city, to produce a correct runoff volume for hydro-

graph formation given a QPE. Bedrock type and

alteration might explain the large differences between

catchment sensitivity and parameterization for CZ.

4.7 Selection of rainfall QPE with the sensitivity

analysis method and mean catchment

behaviour

For each catchment, most of the flood events

recorded and simulated with Monte Carlo sampling

are eligible for GSA-GLUE (Table 5), (Nash,

LNP > 0.8). In other words, it is possible to find

parameter sets producing good performances for

one or more rainfall inputs. The final objective is to

find correct sets of events/rainfalls for gauged catch-

ment calibration, in order to be able to calibrate the

Table 7 Calibrated catchment parameter sets, Nash cost
function. Global Nash is the cost function for the whole
calibration set, min Ev Nash corresponds to single-event
Nash and max EV Nash to single-event maximum Nash
for each part of the multiple events hydrograph. Simulated
and observed runoff coefficients and efficiencies for vali-
dation events.

Catchment Salz Tech Verdouble

Calibration:
CZ 0.95 4.34 1.3
CK 20 11 15
CKSS 5595 1515 4486
KD1 5 4.83 5
KD2 2.54 3.24 3.99
Global Nash 0.89 0.9 0.88
min Ev Nash 0.61 0.89 0.74
max Ev Nash 0.9 0.91 0.95
Validation:
Event 20/12/2000 15/03/2011 15/03/2011
Observed runoff
coefficient

0.45 0.61 0.55

Simulated runoff
coefficient

0.62 0.42 0.63

Nash 0.61 0.69 0.89
LNP 0.7 0.74 0.87



Fig. 8 Event posterior distribution functions: (a) Cesse at Bize-Minervois, and (b) Ballaury at Banyuls (solid line: beha-
vioural simulations, dash-dot line: non-behavioural simulations).

Fig. 9 Event posterior distribution functions: (a) Réart at Salleilles, and (b) Orbiel at Villedubert (solid line: behavioural
simulations, dash-dot line: non-behavioural simulations).

Fig. 7 Event posterior distribution functions: (a) Tech at Pas du Loup, and (b) Têt at Marquixane (solid line: behavioural
simulations, dash-dot line: non-behavioural simulations).



model. The results of the sensitivity analysis show

that, on each catchment, the different events can

present different shapes of posterior distribution func-

tions for the same parameter, namely CZ. The meth-

odology of event selection starts from the

consideration that events with similar sensitivity to

CZ are likely to present similar averaged behaviours

in terms of rainfall-to-runoff volume conservation.

We therefore take into consideration the rainfall

input leading to the a posteriori CZ pdf closest to

those of other events, i.e. producing comparable

mean behaviour. Strong or extreme events regarding

their peak flow are not used for SA and calibration

but rather kept for validation. The procedure to select

one rainfall product uses event sensitivity analysis

(SA) with radar rainfall records (RA_Calibr) by

default, other rainfall products (radar RA_ReanH,

RA_ReanP or raingauges RG_Interp) are then

Fig. 11 Event posterior distribution functions: (a) Orbieu at Lagrasse, and (b) Lauquet at St Hilaire (solid line: behavioural
simulations, dash-dot line: non-behavioural simulations).

Fig. 12 Event posterior distribution functions, Salz at
Cassaignes (solid line: behavioural simulations, dash-dot
line: non-behavioural simulations).

Fig. 10 Event posterior distribution functions: (a) Verdouble at Tautavel, and (b) Agly at St Paul de Fenouillet, (solid
line: behavioural simulations, dash-dot line: non-behavioural simulations).



considered if: (a) there are not enough behavioural

simulations with RA_Calibr to perform a GSA-

GLUE analysis, and (b) one event presents a very

dissimilar a posteriori CZ pdf with respect to the

other events. Indeed, for a given catchment, large

dissimilarities between events for CZ sensitivity and

unusual CZ values identified can be attributable to

QPE errors under our hypothesis. While keeping

such events for the calibration phase, we examine

the other pdfs obtained from different rainfall types,

if available for an event. However, all the events

considered are not systematically simulated with all

rainfall products, because of availability issues, for

example.

Several rainfall products were selected with this

method, especially in cases where unusual catchment

behaviour were detected, for example:

– On the Tech catchment (Fig. 7(a)), pdfs from

RA_Calibr show different sensitivities and result-

ing CZ values, whereas pdfs from RG_Interp

show similar behaviour for the events of 24

February 2003, 4 April 2003 and 15 November

2005: the RG_Interp rainfall product of these

three events was chosen for calibration.

– On the Têt catchment (Fig. 7(b)), for the events of

15 April 2004, 2 May 2004 and 28 January 2006,

RG_Interp and RA_ReanH products were chosen

as presenting similar behaviour.

Interpolated raingauge data (RG_Interp) can give

good results in terms of Nash and LNP and for pdf

similarity in several cases. This may be attributable to

raingauge density and locations that seem to capture

enough rainfall variability for satisfactory flood mod-

elling. The case of the event of 4 December 2003 on

several catchments particularly highlights the pro-

blem. Different rainfall products were chosen for

this event, according to the location of the considered

catchment. On the Cesse (Fig. 8(a)) and the Agly

(Fig. 10(b)), pdfs from RA_Calibr are consistent

with pdfs of other events on the same catchment.

On the Tech (Fig. 7(a)), RG_Interp gave pdfs with

the greatest similarity to other events, while on the

Salz (Fig. 12), the Lauquet (Fig. 11(b)) and the

Orbiel (Fig. 9(b)), RA_ReanH provided the most

similar pdfs. It seems that depending on the location

of the catchment with respect to the radar, rainfall

variability is not always well captured by the same

rainfall product. As already mentioned, for the Tech

and Têt catchments, raingauges give better results

than radar data, maybe because they are the catch-

ments at the greatest distance from the radar. In

addition, high-relief topography with deep narrow

valleys may disturb radar measurements.

However, pdf similarity does not exclude various

hydrological behaviours for a particular catchment.

For example, both small events and strong events that

certainly activate different flow paths and runoff for-

mation dynamics within a catchment, can present

similar pdfs, as for 15 November 2005 for the

Verdouble (3.3 m3 s-1 km-2) and the Orbieu

(2.65 m3 s-1 km-2) or 2 December 1987 for the

Cesse (2 m3 s-1 km-2). This is true for catchments

that are both sensitive and less sensitive to CZ. As a

result we do not exclude various catchment beha-

viours that can be caused by different rainfall spa-

tio-temporal variability.

The method enabled us to select a rainfall pro-

duct on almost all the catchments (Table 5). However

the selection was particularly difficult on the Orbieu

catchment for which it seems impossible to identify a

mean behaviour (Fig. 11(a)). Altogether, the selection

has been more difficult for the catchments for which

the behavioural simulations were for CZ close to 1

and easier for catchments for which the behavioural

simulations were for greater CZ values.

Different sensitivity and calibrated values of the

CZ coefficient between catchments can indicate differ-

ent rainfall-to-runoff volume conservation relations for

catchments. The pdf analysis is applicable to different

rainfall types such as radar or interpolated raingauge

data, as results can attest. It seems that Opoul radar

rainfall data quality is quite variable in time and space

with QPE errors sometimes significantly affecting

hydrological modelling sensitivity and performance.

5 CALIBRATION OF CATCHMENT

PARAMETER SETS WITH SELECTED

RAINFALL EVENTS

To perform real time predictions and regionalization,

one parameter set per catchment may be required.

The objective of this section is two-fold: to document

the difficult problem of calibration for flash-flood

event models with results performed for three med-

ium-sized catchments, Salz, Tech and Verdouble

(144–299 km2), areas located on contrasting bed-

rocks, and showing the benefit of selecting the right

rainfall dataset. Several events and rainfall data types

were selected with the SA method presented above.

Here, we use an optimization technique over

several calibration flood events considered together.

Calibration is performed using a BFGS minimization

algorithm (Broyden-Fletcher-Goldfarb-Shanno) called



M2QN1 (Lemaréchal and Panier 2000) with a sum of

square error (SSE) cost function. The five sensitive

parameters of the MARINE model are calibrated for

five random starting points in the parameter ranges

(Table 6). This multiple direction optimization algo-

rithm is used both for calibration and real time varia-

tional data assimilation within the MARINE model

(Castaings et al. 2009). The LNP would be suitable

for a multi-objective calibration, but its implementa-

tion requires additional observation data. The aim

here is not to discuss the calibration method, which

often converges on the same parameter combination

from different starting points in the parameter space,

but to illustrate the usefulness of pdf selection for

rainfall analysis.

The calibration leads to satisfactory Global Nash

efficiencies of around 0.9 for complete sets (Table 7),

and peak simulation errors below 30%, which is

reasonable in the case of flash floods (Figs 13–15).

Validations are presented on one event for each

catchment, and (Nash, LNP) efficiencies range from

(0.61, 0.7) for Salz to (0.89, 0.87) for Verdouble

(Table 7). It should be noted that validation efficien-

cies are fairly close to calibration efficiencies.

The example of the 15 March 2011 event on the

Tech illustrates the benefits of this method. Indeed

the CZ pdf of this 15 March 2011 (RA_Calibr) event

on the Tech was not similar to the other pdfs and

suggested that QPE was underestimated, as con-

firmed by validation (Fig. 16) and the runoff coeffi-

cient (Table 7). Single calibration for this event give

CZ values around 2.5. In validation with the cali-

brated parameter set of Table 7, peak flow is under-

estimated by about 40% (Fig. 16, right). Considering

(RG_Interp) rainfalls, the peak flow underestimation

is smaller, at about 15% (Fig. 14).

A larger CZ parametric compensation

(CZ = 4.34) is required for the Tech catchment,

while the two other catchments need CZ ≈ 1

(Table 7). Initial and maximal soil saturations are

comparable for the three catchments and the soil

data (pedology) from the BD-sol give a mean soil

thickness of 0.31 and 0.33 m for the Salz and

Verdouble, respectively, and 0.16 m for the Tech

(Table 1). So catchment storage capacity has to be

increased by a factor of 2 or more for the granite and

primary era altered substrates, as for the Tech or Têt

catchments.

The calibration procedure leads to relatively low

main channel KD1 and overbank KD2 roughness, i.e.

significant friction is necessary to delay the flow.

This might be due to water partition, with a surplus

drained quickly with surface runoff on hillslopes and

in the drainage network. Subsurface lateral transfer

tends to be slower. This indicates that water distribu-

tion between lateral flow components and other

mechanisms, such as exfiltration in the drainage net-

work, and its representation need to be improved.

Measurements at different scales are still necessary

to better constrain these flow dynamics.

Maps of maximum soil moisture deficit are

plotted for Tech and Verdouble validation events

(Fig. 17). Nearly the whole Verdouble catchment is

saturated at 10 h, just before peak time, whereas, for

the Tech, several areas close to the main drain and the

middle of the catchment have a minimum deficit of

27%. Peak flow underestimation on the Tech catch-

ment might be explained by underdevelopment of

contributing areas mainly because of rainfall under-

estimation and location errors (Fig. 14(b)). The pos-

sibility of mapping state variables (Fig. 17) is

interesting to compare, for example, the development

of the extent of contributing areas for typical soil

configurations.

6 CONCLUSION

The 11 catchment headwaters of the eastern Pyrenees

foothills, with areas ranging from 36 to 776 km2, are

interesting study sites for flash-flood generating

mechanisms, given the quantity of static, meteorolo-

gical and hydrometric data available. They present

contrasting physical properties and behaviours that

can be detected with the help of statistics

(Garambois et al. 2011).

Global sensitivity analysis of the MARINE

model is performed on each event for a catchment

given various flood responses. MARINE model for-

mulation was found to be an appropriate tool for

flash-flood modelling with various rainfall data

types, even for small catchments, as the number of

event simulations eligible for GSA-GLUE can attest.

Global mean behaviours are identified for each catch-

ment and differences between catchment sensitivity

and parameterization for the water balance parameter

CZ can be attributed to deep percolation in altered

bedrock, as suggested by other authors (Castaings

et al. 2009, Roux et al. 2011). Indeed, catchments

needing a larger CZ value present substrates that

develop on granite, schist and primary era formations

and that seem to present the highest bedrock storage

as shown by Vannier et al. (2014) with recession

analysis in the Cévennes-Vivarais region. This may

be due to the fact that the soil depth used in



Fig. 15 Verdouble catchment (299 km2): (a) calibration (blue solid line) and observed discharge (red dotted line) over four
different flood events, 11 April 2002 (RA_Calibr), 15 November 2005 (RA_Calibr), 28 January 2006 (RA_Calibr), 10
October 2010 (RA_Calibr); and (b) parameter set validation for 15 March 2011 (RA_ReanP).

Fig. 13 Salz catchment (144 km2): (a) calibration (blue solid line) and observed discharge (red dotted line) over three
different flood events, 4 December 2003 (RA_ReanH), 10 January 2004 (RA_Calibr), 11 October 2010 (RA_Calibr); and
(b) parameter set validation for 23 December 2000 (RG_Interp).

Fig. 14 Tech catchment (250 km2): (a) calibration (blue solid line) and observed discharge (red dotted line) over three
different flood events, 24 February 2003 (RG_Interp), 4 December 2003 (RG_Interp), 15 November 2005 (RG_Interp); and
(b) parameter set validation for 15 March 2011 (RG_Interp).



modelling only takes soil horizons A (surface soil)

and B (subsoil) into account. Horizons C (parent

rock) and R (bedrock) are not taken into account

even though they may be hydrologically active.

Moreover, the sensitivity of the soil thickness

multiplicative constant controlling the water balance

of the MARINE model enables the selection of rain-

fall input with respect to an identified catchment

behaviour. This method was seen to be useful in

this study for rainfall product selection on some

catchments, whereas it can be difficult to choose

between two rainfall products with a direct compar-

ison, as shown in Section 2.1. Among the possible

reasons for the fluctuating quality of the data there

might be the lumpy topography, the readjustment

procedure or the position of the radar, which can

cause wet radome situations or other sources of

attenuation.

The method proposed here is applicable for any

conservative hydrological model with an explicit sto-

rage parameter. Model calibration with the selected

events was performed using the MARINE model.

Multiple event calibration and validation give perfor-

mances ranging from 0.7 to 0.89. For model calibra-

tion, it is useful to understand how to parameterize

soil volume (and thus storage capacity) for several

types of substrates/bedrocks. Moreover, good calibra-

tion and validation efficiencies with a soil similarity

approach are an interesting basis for flash flood pre-

diction at ungauged locations with a distributed

model. Indeed, this calibration process aims at find-

ing a mean physical behaviour through flood water

balance for each catchment which can be interesting

for transferring parameter sets to ungauged catch-

ments with respect to physiographic descriptors of

the catchment for example.

Fig. 16 Tech at Pas du Loup: (a) event posterior distribution function, and (b) calibrated parameter set test (blue solid line)
and observed discharge (red dotted line) for 15 March 2011 (RA_Calibr).

Fig. 17 Maximum soil saturation for the 15 March 2011 event: (a) Verdouble at Tautavel at 10 h, and (b) Tech at Pas du
Loup at 22 h.
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