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Abstract

This paper proposes a method to linguistically summarise the local periodic components
of a time series: it identifies subparts of the data which are periodic, together with their
periodicity degree and period, and provides a linguistic description thereof. The generated
sentences can be illustrated by the example “Approximately from March to June, the series
is highly periodic with a period of exactly 2 weeks”. The method proposed to identify local
periodic zones relies on the determination of relevant auto-adaptive windows, based on an
analytical expression of the probability distribution of the considered periodicity criterion.
The linguistic description generation, in the protoform approach framework, expresses three
core aspects of the identified periodic intervals, namely their time context or localisation in
time, their periodicity and their period. Intensive experiments performed on both artificial
and real data validate the proposed method.
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1. Introduction

Linguistic summaries offer a compact and user-friendly way of representing large amounts
of data [1, 2, 3]. In the case where the considered data are time series, the linguistic
summarisation task brings specific questions due to their temporal nature. Furthermore,
the properties of such series are often changing over time, which implies that the knowledge
extracted from a series at a certain time may be wrong at the next one, and hence needs to
be contextualised.

Among the various information conveyed in a time series, periodicity is an important
one, frequently used in fields as diverse as astronomy [4], physics [5], energy production [6],
speech analysis [7], zoology [8] or biology [9]. Moreover, the question of local periodicity
occurs in many applicative contexts [10, 11, 12, 13].

This paper proposes a method allowing to simultaneously address the two issues of
contextualisation and periodicity: it aims at identifying local periodicity, defined as the
occurrence in the time series of periodic patterns located in a specific temporal zone.
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The method proposed in this paper is called Local Detection of Periodic Events (LDPE).
It detects and characterises the periodic zones in terms of periodicity and period, locates
them in time and renders this local periodic information into human readable sentences. It
is based on the Detection of Periodic Events (DPE) method [14], and brings two important
improvements: an auto-adaptive window, based on a probability distribution allowing to au-
tomatically adapt a periodicity computation window to the data, and a set of new linguistic
rendering features to generate sentences such as “Approximately from March to June, the
series is highly periodic with a period of exactly 2 weeks”.

In Section 2, existing works related to both the issues of linguistic summarisation and
periodicity detection are presented. The DPE method is detailed in Section 3. The different
steps of periodicity contextualisation of LDPE, defined as a generalisation of DPE, are
presented in Section 4. Section 5 is dedicated to the linguistic rendering issue raised by such
local periodic events and presents formulations to enrich existing models and, in particular,
to add new time localisation features. The experiments both on artificial and real data
and the obtained results that validate our approach are presented in Section 6. Finally, a
conclusion to this work and future works are given in Section 7.

2. Related works

The question of detecting periodic parts of a times series lies at the crossroad of several
domains, namely linguistic data summarisation and periodicity detection. Some of the ex-
isting works in each of these two domains are successively presented in the next subsections.

2.1. Linguistic summarisation

Two sides of linguistic summarisation are presented in this subsection: first, the general
summaries and second, the temporal ones.

General summaries. Linguistic summaries aim at building compact representations of datasets,
in the form of natural language sentences describing their main characteristics. Two prin-
cipal approaches exist to this aim [15, 16], one using fuzzy protoforms and one based on
natural language generation (NLG).

Fuzzy Linguistic Summaries (FLS), introduced in the seminal papers [1, 2, 17], are
built on “protoforms” whose basic form is defined as “QX are A” where Q is a quantifier
(e.g. “most” or “around 10”), A a linguistic modality associated with one of the attributes
(e.g. “young” for the attribute “age”) and X the data to summarise. Numerous criteria to
evaluate the relevance of a candidate protoform instantiation have been proposed. The first
and maybe most important one is the truth degree, proposed in the seminal paper [1]: it
measures the extent to which the data coincides with the considered summary, based on the
Σ-count of the dataset according to the chosen fuzzy modality.

Other criteria include the degree of focus [18], which measures the support of a given
attribute in the database, and the degree of appropriateness [19] which quantifies the extent
to which a summary is “surprising”. Compound measures combine several criteria such
as fulfilment, relevance, length, coverage, specificity, compatibility and non ambiguity of a
summary [20] or its coverage, brevity, specificity and accuracy [21].
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In the NLG framework, several approaches have been developed as well, more focused on
sentences generation than on data extraction. Indeed, such systems, as EasyText performing
polls analysis [22], are based on a user-defined set of rules used against a database to generate
the result sentences. Since the method proposed in this paper is more oriented toward data
analysis, NLG techniques are not further investigated.

Temporal summaries. FLS coping with the temporal dimension of time series have also
been considered, as for instance specific protoforms expressing duration or time localisation
of specific events: they can e.g. be based on fuzzy temporal protoform grammar [23] or on
a specific hierarchical time scale [24].

Additionally, the extraction of temporal features from time series, such as trends, in
order to summarise them later using standard FLS, has also been proposed [25]. Another
kind of extracted temporal feature such as the exceptional character of an event in time
compared to a reference value is detected and included in a FLS in [26].

The DPE method [14] and its variants [27] focus on the issue of periodicity, not taken
into account in the previous approaches. They propose linguistic summaries expressing
this periodicity as well as the period of a time series, in a human friendly way. The DPE
method, on which the approach proposed in this paper relies, is presented in further details
in Section 3.

2.2. Period detection

Period detection is a well-known problem in signal processing and numerous methods
have been proposed to address it. They can be classified into four categories, depending on
the series representation, namely distinguishing time, frequency, time-frequency and sym-
bolic representations.

Time representation. The time representation is the most straightforward one: it consid-
ers the signal in its original form, i.e. as the successive values xi associated with their
timestamps, ti, i.e. {(ti, xi), i ∈ [1, n]}, where n denotes the total length of the series.

The most common approach for periodicity detection in time domain is autocorrela-
tion [28], which yields good results mostly with sine and stationary signals. Another ap-
proach relies on the analysis of zero-crossing of the data [29]. However, it has been proved
very sensitive to noise [30].

Other approaches with time representation have been proposed [6]. Among them, the
evaluation of the signal as a sine wave based on 3 consecutive points [31] or the direct
computation of the frequency based on the second derivative of the signal [32] are proposed.
They nonetheless are also sensitive to noise and designed to work in specific contexts.

A quasi-periodic detection method based on a Fuzzy Finite State Machine is proposed
in [33]. Due to the specific configuration of the state machine in order to model the human
gait studied in the paper, this solution is rather specialised, whereas the scheme proposed
in this paper aims at being as general as possible.
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Frequency representation. Another way to study the signal is to represent it against its
constituent frequencies. This is most commonly achieved with the Fourier transform which
allows to convert a signal into a periodogram, yielding the power associated to each frequency
in the original signal and allowing to identify the main frequency as the most powerful
one [34].

However, in the realm of discrete signals used in the digital context, the power values
are associated to some frequencies only and the main frequency is usually not among them.
Several methods circumventing this limitation have been proposed in order to estimate the
real frequency [35, 36, 37, 38] by combining and weighting the most powerful frequency with
the ones in its neighbourhood.

Nonetheless, these approximations rely on the supposed stationarity of the signal, i.e.
the fact that each data point is instantiated from the same random variable throughout
the measurement process, thus excluding data with evolving or different periods at different
times.

Moreover, since the Fourier transform is a decomposition of the original signal on trigono-
metric basis functions, it is efficient only with signals made of sines. Otherwise, the decom-
position yields bad results, as the Gibbs effect shows.

The Cepstrum analysis [7], based on the Fourier transform, suffers from the same biases.

Time frequency representation. Instead of studying the data either in the time or in the
frequency domain, and in order to overcome some of the limitations associated with these
approaches, the time-frequency representation has been proposed. Its main idea is to perform
a frequency decomposition over small parts of the data in time and to associate the obtained
results with the time interval of the analysed data.

The first proposed time frequency representation is the Short Fourier Transform [39, 40],
whose principle is to compute the Fourier transforms of the convolution of the signal with
a window moving from the beginning to the end of the data and smaller than the data.
However, this transform locally suffers from the same problems as the Fourier one over the
analysed parts of the signal. Moreover, a specific window must be chosen, mainly in terms
of shape and size.

A more sophisticated approach relies on wavelets [41, 42] where the basis functions are
not trigonometric as in the Fourier transform but specific ones called wavelets which are
stretched and translated in order to study the signal at different times and on different
scales. Even though the wavelet approach does not need a window to be defined, it still
requires a wavelet to be chosen.

More recently, the Hilbert-Huang Transform has been proposed [43]. It is based on
the Empirical Mode Decomposition, which is an algorithm allowing the decomposition of
the signal into functions, as in the Fourier or the Wavelet transform. However, it does
not clearly outperforms previous approaches as wavelets [44] and is still empirical [45] but
suggests interesting developments as shown by its numerous applications [46, 47].

Hybrid approaches using several of the techniques listed above have been developed
for period estimation. In [48], a Fourier transform is used to extract the most powerful
frequencies, which are then validated or discarded with an autocorrelation analysis. However,
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the method suffers from the same limitations as the techniques it is based on.
In [49] a wavelet decomposition followed by a SVM-based classification technique is used

in order to keep base wavelet components, reject noisy ones and estimate the signal period,
yielding however a complex method.

Symbolic representation. Symbolic representations are obtained form the transformation of
the initial time series into a limited number of symbols. Several of these methods also
perform a dimensionality reduction, as Piecewise Component Analysis [50] and its Adaptive
version APCA [51] or using Chebyshev polynomials [52].

Symbolic representations allow to use specific tools e.g. from the association rules do-
main, as the extraction of cyclic association rules satisfied on a fixed periodic basis [53], or
methods based on frequent pattern discovery [54, 55, 56]. However, these methods either
need to be run with a given candidate period or seek specific patterns, which is not relevant
in the context of determining arbitrary periodicity in a time series without an a priori model.

To overcome the issue of given candidate periods as input of the method, a Fourier
transform can be used beforehand [57]. However, this approach conveys similar problems as
the ones using the Fourier transform mentioned above.

Another approach computing periodicity based on events given as a symbolic time series
is proposed in [58]. It uses a χ2 test on the inter-event distance and returns a periodic
behaviour if these distances are not significantly different. Nevertheless, it needs several
thresholds to be set up previously, as well as an indexing of “interesting” and “non interest-
ing” zones.

The Detection of Periodic Events (DPE) [14], described in the next section, also uses a
symbolic representation: it decomposes the series as the alternation of high and low value
groups. It has the advantages of not requiring any parameter as well as being oriented
toward linguistic rendering from its very definition. Moreover, several optimisations have
been proposed so as to enable its fast computation [59].

However, the DPE method only applies to time series considered as a whole. In this
paper, we propose to contextualise it to cases where only subsets of the series are periodic.

3. DPE: Detection of Periodic Events

The aim of the DPE method is to provide linguistic summaries of time series focused on
their periodicity, as illustrated in Section 5. It follows the principle according to which it
considers a time series as periodic if it alternates, in a regular manner, groups of respectively
high and low values, where regularity is defined in terms of the group sizes [14]. Its main
computational steps are recalled in the following paragraphs.

DPE takes as input a temporal dataset, denoted X, containing normalised values xi: X =
{xi, i = 1...n} such that ∀i, xi ∈ [0, 1] and the two bounds are attained, i.e. ∃l s.t. xl = 0
and ∃m s.t. xm = 1. It returns a periodicity degree π, a period p and a descriptive sentence
instantiating the protoform “Prec every p units, the values are high”. The periodicity
degree π is a quality measure in [0, 1] conveying the extent to which the dataset is periodic,
1 meaning perfect periodicity. The period p is the estimated period. Prec is a precision
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Figure 1: Group clustering based on erosion scores. The horizontal axis represents time, the solid dark line
the considered time series X, the red short dashes line the erosion score and the green long dashes line the
erosion score of X. The vertical orange lines are group separators, the horizontal thick orange ones indicate
consecutive points belonging to the same groups whose numbers are indicated above the graphic for high
ones, and below for low ones.

adverb like “exactly”, “approximately” or “roughly”, and unit is a time unit like “hour”,
“week” or “second”.

The DPE method consists of 3 modules: the first one builds a symbolic representation of
the time series based on data clustering to identify groups of consecutive high and low values.
The second one processes these groups to compute a periodicity degree and a candidate
period. The last one performs the linguistic rendering. The first two modules are detailed
in the next subsections, the linguistic one in Section 5.

3.1. High and low values clustering

The DPE method first proposes to identify high and low value groups based on the
extraction of the time series “skeleton”, obtained with mathematical morphology tools [60].
It more precisely exploits repeated erosions: denoting x0

i = xi, the value obtained after
one erosion is defined as x1

i = min (xi−1, xi, xi+1), and the result of k successive erosions is
xki = min (xi−k, . . . , xi+k). They are exploited to define the erosion score esi:

esi =
1

maxj esj

zi∑
k=0

xki (1)

where zi = arg mink x
k
i = 0. Since ∃l s.t. xl = 0, the existence of zi is guaranteed.

As detailed in [14], the erosion score allows to identify high value groups and to remove
isolated low values. Complement erosion scores, denoted esi, are similarly computed from
the complement of the data, i.e. from xi = 1− xi for all i = 1..n.

Groups of high values are then automatically defined as sets of consecutive values for
which esi ≥ esi with a maximality constraint, and groups of low values conversely. Fig. 1
illustrates the group clustering based on erosion score.

Thus, after the erosion scores computation, the time series is decomposed into high and
low value groups, stored in a sorted list G = (Gk)k=1...g.
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To each group is associated a size sj and a type τ ∈ {H,L} for High or Low. τj denotes
the type of the group Gj, G

τ
j denotes the jthgroup of type τ and sτj its size. Moreover, gτ

denotes the number of groups of type τ . Similarly, n denotes the total number of points in
X, and nτ the number of points of type τ , where the type of a point is defined as the type
of the group it is assigned to. Obviously, g = gH + gL and since each data point belongs to
a group H or L, n = nH + nL and

∑
j sj = n.

It must be noted that the erosion score can be computed quickly (1 million point dataset
in 1.5 second) and incrementally [59].

3.2. Periodicity computing

Based on the previously mentioned principle, the periodicity degree measures the reg-
ularity of group sizes of both H and L types. As formally detailed below, the candidate
period is defined as the sum of the average sizes of H and L groups.

Periodicity degree computation. To measure group size regularity, DPE exploits the coeffi-
cient of variation defined as the quotient of a size deviation measure and the size average.
The deviation measure used here is the mean absolute deviation, more robust to noise than
the more usual standard deviation [61].

More formally, for any type of group τ ∈ {H,L}, the average µτ , the mean absolute
deviation dτ , the coefficient of variation CV τ and the regularity ρτ are defined as:

µτ =
1

gτ

gτ∑
j=1

sτj =
nτ

gτ
dτ =

1

gτ

gτ∑
j=1

∣∣sτj − µτ ∣∣ CV τ =
dτ

µτ
(2)

ρτ = 1−min (CV τ , 1) (3)

The min in the expression of ρτ ensures that the result is in [0, 1] (see [14] for more details).
The regularity is computed for both H and L groups.

The periodicity degree π is then computed as the regularity average across high and low
value groups:

π =
ρH + ρL

2
(4)

Candidate period computation. The candidate period is computed from the average sizes.
Indeed, for a perfectly regular phenomenon, the period is defined as the time elapsed between
two occurrences of an event, so the period is approximated here as the sum of the average
sizes of H and L groups:

p = µH + µL (5)

It can be underlined that this candidate period is relevant only if the periodicity degree
π is high enough.

The final linguistic part of the DPE method is not detailed here since a superseding one
is proposed and described in Section 5.
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Figure 2: Schematic view of LDPE, that encompasses DPE

4. LDPE: Local Detection of Periodic Events

The Local Detection of Periodic Events method, LDPE, is a generalisation of DPE that
contextualises π, p and the linguistic expression for each part of the dataset it identifies as
locally periodic: if the dataset is periodic or non periodic as a whole, it returns a single zone
and then yields a result equivalent to DPE otherwise it determines these quantities for each
zone independantly. Its global architecture is graphically represented on Fig. 2 together with
its relation to DPE.

Therefore LDPE allows to extract knowledge from data whose properties are changing
over time. In a sense, it is to DPE as Short-Time Fourier Transform is to Fourier Transform,
i.e. a transposition of a method on parts rather than on the whole data.

To do so, LDPE relies on the preliminary identification of high and low value groups, as
DPE, e.g. performed by the method described in Section 3.1. It then computes periodicity
degrees, not on the whole dataset as DPE, but locally, on temporal windows associated to
each group, yielding the so-called periodicity fronts. The windows are automatically defined,
in an adaptive process. They then lead to the identification of the periodic zones. Finally,
the linguistic sentences are generated. These steps are successively detailed below.

4.1. Periodicity front

LDPE considers as input the decomposition of the time series in high and low value
groups detailed in Section 3.1. As in DPE, the periodicity is computed based on these
groups. However, it is computed for different group subsets in LDPE , whereas all groups
are used in DPE. Therefore, several periodicities are computed in LDPE, one for each subset,
while only one is returned in DPE.

Hence, the periodicity πj associated with the jth group is computed with the subset of
groups identified as relevant for the jth group. Formally, given a sorted group list G =
(Gk)k=1...g and denoting j− and j+ group indices such that 1 ≤ j− ≤ j ≤ j+ ≤ g:

πj = π
(
G, j−, j+

)
(6)

where π(G, j−, j+) is the periodicity computed using the same method as the one described
in subsection 3.2 but taking into account only the groups of indices j− to j+. This section
proposes an auto-adaptive method to define the values of these indices j− and j+ .When
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no ambiguity arises, it is denoted π(j−, j+). Using this notation, in the case of DPE, the
unique periodicity computed can be written π = π(G, 1, g).

Technically, π(j−, j+) is computed using the expressions in Eq. (2) where the bounds
are adapted such that the sums are computed from the first group of type τ whose index is
greater than or equal to j− to the last group of type τ whose index is lesser than or equal
to j+ and gτ is adapted accordingly.

We call periodicity front the sequence of all local periodicity degrees πj for j = 1...g.
So as for πj to be a relevant estimation of the local periodicity for group j, the determi-

nation of j− and j+ faces a dual constraint: on the one hand, they must be close enough
to j so as to represent the periodicity locally in the neighbourhood of j, and on the other
hand they must be far enough from j to be significant. Indeed, bounds too close to j may
yield a high periodicity “by chance”, exemplified by the trivial case where j+ − j− ≤ 2
where only one group of each type is taken into account, trivially yielding 1 as a periodicity
computation result.

We propose to apply a methodology based on significance tests to determine whether, for
given values j− and j+, the value πj is obtained by chance or is significant at level α, where
α is a user-set parameter in [0, 1]. It leads to the definition of an auto-adaptive window
around j.

4.1.1. Probability distribution of the group size deviation

To determine whether a given πj is obtained by chance, we compute the probability that
πj equals the obtained periodicity value on the groups whose indices range from j− to j+. If
this probability is greater than a significance level α, then we can assume that πj is obtained
by chance so the bounds j− and j+ are rejected as not significant and another test is run
using a larger interval.

For any group j, and its associated neighbourhood defined as
⋃j+

l=j− Gl, we denote gτj ,
nτj , µ

τ
j and dτj the local values of, respectively, the number of groups, number of points,

size average and deviation of this neighbourhood, for each type τ , high or low: they are

computed as indicated in Eq. (2), applied to the neighbourhood
⋃j+

l=j− Gl instead of G.
The probability that πj is obtained by chance depends on the way the points are dis-

tributed in the groups of the considered neighbourhood. Furthermore, this distribution is
linked to dH and dL only, since µH and µL are fixed for a given neighbourhood, for which
the number of points and groups do not vary. Hence, due to Eq. (2) to (4), the probability
that πj is obtained by chance for a given neighbourhood only depends on dHj and dLj .

Furthermore, dτj depends on nτj and gτj only. So the probability that πj equals a given
value can be computed as a combination of the probability that the group size deviations
dHj and dLj are equal to some value δτ , i.e. P

(
dτ = δτ |nτj , gτj

)
for τ = {H,L}.

Hence, we propose a statistical test with significance α based on the null hypothesis
Hτ

0 (j) = the deviation δ computed for groups of type τ whose indices range from j− to j+ is
obtained by chance. Finally, we propose to accept the bounds j− and j+ only if HH

0 (j) and
HL

0 (j) are rejected, i.e. if P
(
dHj = δH |nHj , gHj

)
≤ α and P

(
dLj = δL|nLj , gLj

)
≤ α.

We establish that the probability that a random assignment of n points in g groups yields
an average deviation of the group sizes equal δ is given by:
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P (d = δ|n, g) =


0 if n < g or g < 1 or g2δ /∈ N∑

l∈Λ Ñ (n, g, l, δ)

N (n, g, 1,+∞)
otherwise

(7)

where the functions N and Ñ are detailed together with the proof in Appendix A.
It must be underlined that this distribution is not an approximation, but an exact count

of the favourable cases, divided by the total number of possible assignments of n points in
g groups.

4.1.2. Auto-adaptive bounds for local periodicity computation

Based on the previous statistical test, we propose to determine the bounds j− and j+

starting as close as possible to j, and pushing them away from j while the value is obtained
by chance, i.e. while Hτ

0 (j) is not rejected for both H and L groups.
Given this procedure, we propose three estimates of the local periodicity πj defining the

left, centre and right periodicity fronts, respectively denoted πLj, πCj and πRj: the left one
captures the periodicity from j to its left, i.e. with j− decreasing and j+ = j, the central
one captures the periodicity around j, i.e. with j− decreasing and j+ increasing, and the
right one captures the periodicity from j to its right, i.e. with j− = j and j+ increasing.
Formally, denoting H0 (α, j) “HL

0 (j) and HH
0 (j) are both rejected at significance level α”:

πLj = arg min
k>0

{π (j − k, j) s.t. H0 (α, j)} (8)

πCj = arg min
k>0

{π (j − bk/2c , j + dk/2e) s.t. Hα
0 (α, j)} (9)

πRj = arg min
k>0

{π (j, j + k) s.t. Hα
0 (α, j)} (10)

The series made of consecutive left, centre and right periodicity values for j = 1...g
respectively define the left, centre and right periodicity fronts. It must be noted that the
computational complexity of this method is low since successive values of πj for increasing k
values are easily computed incrementally, and that the probability computations for the three
periodicity fronts are often equal from one front to another, and hence can be accelerated
using a simple cache.

Fig. 3 shows the periodicity fronts computed on an example dataset with a significance
level α = 1%. They allow to capture important points further used in the periodic zone
identification. Indeed, it can be observed that each one is high in the central periodic part
of the data, and low otherwise. The left front is high until the end of the periodic zone, the
right front is high from its beginning, and the centre one is high over most of the periodic
zone except at its ends: it can be observed that a drop in the right or left front respectively
indicates the beginning or the end of a periodic zone, while the centre front “balances” the
results from the two other ones.

Fig. 4 illustrates a periodicity front computed using the same data but without the
auto-adaptive window: here, the windows used to compute the local periodicity degrees are
constantly defined as the smallest windows yielding a non trivial periodicity, i.e. including
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Figure 3: Periodicity fronts using auto-adaptive windows obtained with α = 1%, for the time series repre-
sented in light grey.
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Figure 4: Periodicity fronts obtained with non adaptive windows such that j+ − j− = 4, for the time series
represented in light grey.

at least two H or L groups, hence verifying j+ − j− = 4, or more precisely and using
the same notations as in Eq. (8) to (10), πLj = π(j − 4, j), πCj = π(j − 2, j + 2) and
πRj = π(j, j + 2). It can be observed on Fig. 4 that these small constant windows lead
to periodicity front values that are high in non periodic zones, as shown on the left and
right ends of the figure where periodicity fronts take values up to 0.8 for highly non periodic
data. In comparison with Fig. 3, it illustrates an important property of the auto-adaptive
windows: they enlarge the periodicity computation window in the noisy parts of the series,
thus ensuring low periodicity degrees in these parts. Indeed high results obtained by chance
over a too narrow window are prevented thanks to the statistical testing step.

4.2. Periodic group classification

Based on the periodicity fronts, each group is classified as P if it belongs to a periodic
zone or as N if it does not. The methods proposed to carry out the classification are based
on different combinations of the periodicity fronts and different reference values, as detailed
in this section.

Reference values. Four reference values, each declined in two variants, are considered for
group classification: either the average of the 3 periodicity fronts across all groups or the
average of their maximum, possibly weighted according to the group sizes. Formally, the
standard and weighted averages for each periodicity front are respectively denoted πk and
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πkw for k = L,C,R and computed as:

πk =
1

g

g∑
j=1

πkj and πkw =
1

n

g∑
j=1

sj × πkj (11)

The standard and weighted averages of the periodicity front maximum are respectively
denoted πM and πMw and computed as:

πM =
1

g

g∑
j=1

max (πLj, πCj, πRj) and πMw =
1

n

g∑
j=1

sj ×max (πLj, πCj, πRj) (12)

The underlying principle of the weighted variant is to try and compensate for the possible
distortion that may appear compared to the time stamps from the original series, since
periodicity is computed at the group level. More precisely, small and numerous groups
covering a given part of the series may have their periodicity overweighted when compared
to the one of less numerous large groups yet covering the same part of the series. Introducing
the group size sj as a multiplicative factor in Eq. (11) and (12) allows to balance this effect.

Since the reference value is computed using an average of the periodicity front, it may
be very low if the whole dataset is non periodic, so non periodic parts of the dataset may
be classified as periodic whereas they are only “less non periodic” than others. In order
to avoid this effect, we propose to use a minimum threshold for periodicity denoted πmin:
denoting πkref the final reference value with k = L,C,R,M and π one of the values given
in Equations (11) or (12):

πMref = max (πmin, πk) (13)

Classification methods. Based on the reference values, we define three classification methods
m1, m2 and m3, based on three different combinations of the periodicity fronts πL, πC, πR.

The first method, denoted m1, considers that if one of the three fronts is high enough,
then the group belongs to a periodic zone. Formally:

m1 (j) =

{
P if max (πLj, πCj, πLj) ≥ πMref

N otherwise
(14)

where P indicates group j belongs to a periodic zone and N it does not.
The second method, denoted m2, is based on a simple voting system, stating that if the

left and centre fronts or the right and centre fronts are greater than their respective average
values, then the group belongs to a periodic zone. Formally:

m2 (j) =

{
P if ((πLj ≥ πLref ) ∧ (πCj ≥ πCref )) ∨ ((πCj ≥ πCref ) ∧ (πRj ≥ πRref ))

N otherwise

(15)

12



0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(A) Data (B) Ground truth

0

0.2

0.4

0.6

0.8

1
2 6 8 10 12 14 16 20 22 24 26 28 

1 5 7 9 11 13 15 19 21 23 25 27 29 
0

0.2

0.4

0.6

0.8

1

1 5 7 9 11 13 15 19 21 23 25 27 29 

2 6 8 10 12 14 16 20 22 24 26 28 

(C) Groups (D) Results from the periodic zone detection

Figure 5: Periodic zone detection indicated with a coloured background for the time series represented as a
purple line. (A) Studied dataset. (B) Ground truth, i.e. expected results, consisting of two periodic zones
separated by a non periodic one, after an initial non periodic one. (C) Identified groups, as described in
Fig. 1. (D) Obtained results: very similar to the ground truth.

The third method is the most optimistic one: it asserts that a group belongs to a periodic
zone if one of the 3 fronts is greater than its average value. Formally m3 is defined as:

m3 (j) =

{
P if (πLj ≥ πLref ) ∨ (πCj ≥ πCref ) ∨ (πRj ≥ πRref )

N otherwise
(16)

These three methods are respectively denoted m1w, m2w and m3w when πkref is computed
using the weighted average instead of the standard one.

It can be noticed that, since the goal of these methods is to extract the approximately
flat parts of the fronts, standard change detection methods [62] could be used. However,
these methods rely on model hypotheses for the data, which are not known and probably
not compatible with periodicity fronts. Moreover a straightforward approach as the one pre-
sented here can be implemented to segment the time series since the auto-adaptive window
and the periodicity front computation provide a robust analysis.

4.3. Clustering of periodic groups

Once each group is classified as belonging or not to a periodic zone, respectively labelled
N or P , the consecutive periodic groups are gathered in periodic zones.

After these periodic zones are determined, a post processing step is proposed in order
both to discard the ones containing less than minSize groups and to merge successive zones
separated by less than minSep groups. When this filtering post processing step is performed,
the method is prefixed with an f , for example fm1 or fm3w.

The output of these two first steps is a list of triplets containing an interval considered
periodic, its periodicity degree π and its period p. Fig. 5 illustrates a case where two zones
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are identified, as expected from visual inspection of the data. In this example, the two
returned triplets are:

Z1 = ([23, 73], 0.83, 11.90)

Z2 = ([93, 140], 0.78, 11.30)

meaning that the first periodic zone Z1 spans from point 23 (beginning of group 7) to point
73 (end of group 15), has a periodicity degree π = 0.83 and an estimated period p = 11.90,
and the second periodic zone Z2 spans from point 93 (beginning of group 21) to point 140
(end of group 29), has a periodicity degree π = 0.78 and an estimated period p = 11.30.

5. Linguistic rendering

The linguistic rendering step aims at giving a linguistic representation of each of the
previous triplets, representing three core aspects of the periodic zones: their time context
or location in time, their periodicity and their period.

5.1. Proposed protoform to express local periodicity information

We propose to linguistically express each periodic zone on the base of a protoform in-
stantiated with the values computed in the previous steps. More specifically, we propose the
following structure for the protoform:

Prec1TimeCtxt︸ ︷︷ ︸
T ime context

the series is Pdty (π)︸ ︷︷ ︸
Periodicity part

[
with a period of Prec2 p̂ units︸ ︷︷ ︸

Period part

]

where Prec1 and Prec2 are precision adverbs, as “exactly”, “approximately”, “roughly”,
TimeCtxt a time contextualisation expression, as “the first quarter of” or “during summer-
time”, Pdty a linguistic periodicity assessment, as for instance “highly periodic”, or simply
“periodic”, π the computed value for the periodicity, p̂ a convenient approximation of com-
puted value for the period p, and unit the unit deemed the most adequate to represent the
period, as “months”, “weeks” or “seconds”.

The period part is included only if the periodicity π is high enough. Indeed, a computed
period is meaningful and relevant to include in the result sentence only if the data is actually
periodic, i.e. if its periodicity degree is high.

The variety of generated sentences can be illustrated by the following examples:

• “The first two months, the series is highly periodic (0.89) with a period of approxi-
mately 1 week”

• “During the first quarter, the series is periodic (0.78) with a periodicity of exactly 1
month”

• “From September to November, the series is not very periodic”
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Figure 6: Linguistic variable for the periodicity degree π

The two following sentences are generated from the example time series illustrated in Fig. 5,
to respectively characterise the two identified periodic zones:

• “Approximately from its first quarter to its half, the series is periodic (0.83) with a
period of approximately 12 points”

• “Approximately from its third quarter to its end, the series is periodic (0.78) with a
period of approximately 11 points”

The rendering of the different parts of the protoform are detailed in the following subsections:
first, the period part, then, the periodicity part and the time context. Lastly, Subsection
5.5 describes the expression of the approximation quality, selecting a precision adverbs both
for period and time context.

5.2. Period measure rendering

The period linguistic expression is part of the DPE method [14]. Its three main steps aim
at representing the period in a way familiar to a human user. To do so, three interconnected
aspects of time formulation are taken into account: the choice of a relevant time unit, the
selection of a good approximation and the enrichment with a precision adverb.

Regarding the time unit, it seems from general observations that speakers prefer using
small numbers and thus adapt the considered unit. For instance, the statement “I meet her
every week” seems preferable to “I meet her every 168 hours”. Moreover, an approximation
is usually used to express time: one would rather say “This happens every 45 minutes” than
“This happens every 44.2 minutes”.

Therefore, a representation of the period is achieved by first selecting the most convenient
unit among a scale given by the user, then computing an approximation of p, p̂, as the nearest
multiple of 5 or the nearest integer if too far from p. Finally a precision adverb is added,
as detailed in Section 5.5, to express the approximation error, computed as err = |p− p̂| /p
(see [14] for a more detailed justification of this error measure).

5.3. Periodicity degree rendering

The periodicity degree π is a dimensionless value in [0, 1], defining a scale from a “worst”
to a “best” result.

We propose to define a linguistic variable for π ∈ [0, 1] with linguistic labels highly, ∅,
rather, not very and not at all [14]. The empty label represents the “normal” qualifier.
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Indeed, to express the periodicity of a given zone, we can say that it is “highly periodic”,
“rather periodic”, or simply “periodic”, the latter case corresponding to the empty label.
The labels not at all and not very are relevant only if the user chooses to have a linguistic
representation of all parts of the dataset, including the non periodic ones (defined as the
complement of the periodic ones).

These linguistic labels are associated with the modalities shown on Fig. 6 that indicates
the membership functions µM (x) with M = {highly ,∅, rather , not very , not at all}.

The modality to which the periodicity to be expressed π has the highest membership
value is selected, i.e.:

modality (π) = arg max
m∈M

µm (π)

Given the selected modality, the periodicity part is instantiated as “modality peri-
odic (π)”, as for instance “rather periodic (0.51)”.

5.4. Time context rendering

The time context rendering, specific to LDPE, represents the location in time of the
considered zone characterised by its periodicity. It is represented as an interval, i.e., in
LDPE, a couple of values in the set of time stamps from X denoting the first and last
indices of the periodic zone. It can be expressed both in an absolute and a relative way.

Absolute interval rendering. The absolute interval rendering is the location of the considered
zone in the dataset, as for instance “the two first quarters” or “from the second to the fourth
month”.

Using the hierarchical approach of interval rendering described in [63], the user can define
temporal hierarchies as quarters, months and so on. Moreover, single intervals not belonging
to the hierarchy can be defined as well, like Easter holidays or Summertime.

The fit between a considered zone and a candidate interval can for instance be measured
with the Moore distance [64]. The candidate that minimises this distance, interpreted as a
representation error, is selected and returned as the time context.

Alternatively, the candidate selection can exploit knowledge about interval granularity:
when two intervals fit the zone to be characterised, the one with the most precise granularity
level can be selected, as suggested in [63].

Relative interval rendering. Relative interval rendering allows to generate sentences as “the
first two thirds” or “the last tenth”. They can also be based on hierarchical intervals but
do not need to be specified since they are dimensionless and relevant for any dataset. They
are defined with ratios as for instance halves = ([0, 0.5], [0.5 1]), or thirds = ([0, 0.33], [0.33,
0.66], [0.67, 1]) .

Depending on the dataset size, the ratios contained in the relative intervals are converted
into intervals similar to the absolute ones, and the same principles as the ones used in the
absolute interval rendering are used to find relevant intervals and generate the linguistic
expression.
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Figure 7: Linguistic variable “Precision” for the period and the periodicity degree

5.5. Precision adverb rendering

For both period (see Section 5.2) and time context rendering (see Section 5.4), a precision
adverb, part of the DPE method [14], can be included so as to represent the approximation
error made during the linguistic rendering, where the error is respectively measured by the
err function or the Moore distance.

The precision is represented as a linguistic variable depending on a user defined precision
threshold ε specifying the maximal accepted error. During period and time context render-
ing, this value is used in order to choose an acceptable approximation: the approximation
error can not be greater than ε. The linguistic variable Precision, illustrated on Fig. 7, is
thus defined on the universe [0, ε].

Finally, the selected modality is the one to which the approximation error has maximal
membership degree.

6. Experiments

This section presents the experimental study of the proposed LDPE methodology on
artificial data and an illustrative example of results obtained on real data. In order to study
the behaviour of the method in different configurations, all LDPE variants are tested over
different types of generated datasets.

The experimental protocol is first presented, followed by the quality measures used to
compare the methods, the scenarios creating different contexts are then described. The
artificial data generator used to populate the scenarios is then introduced and the obtained
results are commented. The last subsection illustrates the case of a real time series.

6.1. Experimental protocol

12 variants of LDPE are considered and divided in four categories, depending on whether
they use the standard or the weighted average (as described in Section 4.2) and whether
they use the post processing filter or not (see Section 4.3). The basic variants, with standard
average and no filtering, are denoted m1, m2 and m3. The variants using weighted average
are denoted by the addition of the index w, i.e. m1w, m2w and m3w. The use of filtering is
denoted by prefixing the name with f , leading to fm1, fm2 and fm3 in the case of standard
average and to fm1w, fm2w and fm3w in the case of weighted average.

Each method is tested with the 256 combinations of method parameters: α = {1%, 5%,
10%, 15%} for the statistical test (see Eq. (9)), πmin = {0.2, 0.4, 0.6, 0.8}, minimum value
for the average reference value (see Eq. (13)), minSep= {2, 4, 6, 8} and minSize= {2, 4, 6, 8},
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used in the filtering step (see Section 4.3). Note that these two method parameters do not
influence the variants not using filtering.

Each LDPE variant with each set of parameters is run with 6 scenarios, declined over 5
configurations depending on the value of the scenario parameter (as detailed in Section 6.3
below). Moreover, each configuration for each scenario is repeated 20 times.

As a consequence, the total number of generated datasets equals 256 parameters combi-
nations times 6 scenarios times 5 configurations times 20 repetitions, i.e. 153,600 datasets.

6.2. Quality measures

Using artificial datasets is relevant since they allow to define a ground truth, setting
a reference against which the obtained results can be compared. In particular, both the
expected number of periodic zones and their positions in time are available.

First, the error on the number of periodic zones is computed, comparing the ground
truth value, denoted ZT , and the identified one, denoted Z. The zone error measure zE is
defined as their relative difference

zE =

∣∣Z − ZT
∣∣

Z
(17)

zE is thus a positive value that must be minimised.
Second, a point to point comparison between the zones identified by the method and the

ones expected from the ground truth is performed: it evaluates, for each time stamp i, if
the tested LDPE variant correctly assigns the point xi as belonging to a periodic zone or
to a non periodic zone. It thus corresponds to an accuracy measure where the 2 classes are
’belonging to a periodic zone’ or not and equivalently is the proportion of common points
in or out the periodic zones. Denoting n the total number of points in the considered time
series, per the classification function provided as final result by LDPE and perT the ground
truth one, the point classification measure pC can be written:

pC =
1

n
|{xi | per(xi) = perT (xi) }| (18)

where pC ∈ [0, 1] must be maximised.
zE and pC are computed for each LPDE variant, parameter configuration and generated

dataset. They are then aggregated computing their averages and standard deviations at
different levels: first at the configuration level over the 20 repetitions, then at the scenario
level over their 5 configurations, then at the parameter level over the 6 scenarios and finally
at the global level over the 256 parameters combinations.

The evaluation of the linguistic rendering part of LDPE is a difficult task: it cannot be
performed numerically and requires to involve a human assessment, due to its subjective
and semantic nature. From a theoretical point of view, the validity of the proposed ap-
proach comes from the large variety of the possible sentences, induced by the richness of the
considered protoform. The examples of possible sentences, illustrated in Section 5, indicate
a satisfying description of the time series. An experimental validation is ongoing, raising
challenging issues in terms of protocol and interviews with panels of users.
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Figure 8: Example of time series datasets generated by the 5 configurations of S1.They differ by the size of
the alternated non periodic and periodic zones.

6.3. Scenarios

Six scenarios, denoted S1 to S6, are designed in order to represent six typical use cases.
They are defined by the alternation of periodic and non periodic zones with varying periods.
Each of them is declined over 5 configurations, depending on the size of each zone.

Scenario 1 (S1) is made of 3 zones, one non periodic, one periodic, and one non periodic,
shortly written npn. Its goal is to test the LDPE method in a simple configuration, where
one periodic zone lies in the middle of two non periodic ones. In order to test different cases,
the periodic zone gets larger from one configuration to the next one, thus reducing the
surrounding non periodic zones. More precisely, the non periodic, periodic and non periodic
zones respectively occupy 40%, 20% and 40% in the first configuration, to 10%, 80% and
10% at the fifth one, for a total number of 1,000 points. Thus the zones are respectively 400,
200 and 400 points in the first configuration, 325, 350, 325 in the second one, 250, 500, 250
in the third one, 175, 650, 175 in the fourth one, and 100, 800, 100 in the last one. Fig. 8
illustrates these 5 configurations of S1.

The 5 other scenarios are defined similarly. S2 aims at testing a slightly more complex
case, where a non periodic zone is followed by a periodic one, then by a non periodic one and
lastly by a periodic one, shortly written npnp. S3, summarised as pnpnp, adds a periodic
zone at the beginning of the previous scenario. S4, summarised as pp′npn, tests another
case, where two periodic zones are consecutive, but with different periods. This aims at
testing the efficiency of the periodicity fronts, since they should be able to detect the change
of periodicity. S5, summarised as n, defines a totally non periodic dataset, where sizes do
not change from one step to another, since only one non periodic zone is defined. Finally,
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Figure 9: Example of time series generated for Scenarios 2 to 6

S6, summarised as p, symmetrically tests a totally periodic dataset. Fig. 9 illustrates the
time series generated with Scenarios 2 to 6.

6.4. Artificial data generation

The data generation is based on the engine described in [14], extended to allow to add
consecutive datasets, generated along the same principle one after the other, so as to generate
alternate periodic and non periodic zones.

The datasets are generated as noisy series of periodic shapes, either sines or “wave”, i.e.
sines with flat parts [14]. They are created as a succession of high and low value groups on
which two types of noise are applied: the first one modifies the group size and the second
one the time series values. At the end of the artificial generation, the dataset is normalised
in [0, 1]. All the datasets illustrated on Fig. 8 and 9 are generated according to this method.

6.5. Results

Due to the important number of experiments run, this section presents the most im-
portant results while Appendix B contains the numerical values of zE and pC for all of
them.

From these tables, it can be generally observed that the LDPE method works well for
the task of identifying periodic zones across the different scenarios. More precisely, the best
method, according to the zE and pC criteria, appears to be fm2w, i.e. using the post
processing filter and the weighted average. Indeed, on average for all scenarios, it returns
a 21% error rate in zone identification and 91% correct point classification (see Tables B.3
and B.5 in Appendix B).
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The following subsections comment in more details the influence of the method param-
eters and the comparison of the LDPE variants.

6.5.1. Method parameter influence

For each of the 12 LDP variants, we consider the influence of its parameters, α, πmin and
possibly minSep and minSize. We measure a parameter importance by assigning a score
to each of its considered values, computed as the number of times this value is used in the
parameter combinations that leads to the 30 best results for each variant. This count is
weighted so that if the parameter value is used in the best combination it receives a score
of 30, in the 2nd best a score of 29, and more generally a score of 30− position.

These results are assessed according to the two measures zE and pC, detailed in Tables
B.2 and B.4 and commented below.

Zone identification results. Regarding zone identification, πmin appears to be the most im-
portant parameter, since the largest tested value πmin = 0.8 yields from 70% to 90% of the
30 best results for all the methods, with the notable exception of fm2w, for which 60% of
the 30 best results are achieved with πmin = 0.6.

This is a very strong result since it implies that using the average value of the periodicity
fronts as the reference (see Section 4.2 and Eq. (11) to (16)) is not adequate to identify the
periodic zones. Indeed, since πmin is the minimum for the used reference value, it means
that this value, computed as an average, weighted or not, has to be increased (cf. Eq. (13)),
since the highest value of πmin yields the best results. It also means that using the average
returns many false positive, which have to be filtered out by a threshold. Given this result,
the 3rd quartile for instance may be more appropriate.

Furthermore, the importance of α is very clear in the case of non filtered methods. Indeed,
80% of their 30 best results are obtained using α = 1% or 5%, i.e. the 2 smallest tested
values. This can be interpreted as a relation to the filtering power of the statistical test
performed through the auto-adaptive window determination (see Section 4.1.2). Indeed, the
smaller α, the larger the considered window when computing the periodicity fronts. Since
the window gets larger in noisy area than in periodic ones, the periodicity degree computed
with a larger window in a noisy area will be smaller using smaller α, entailing a compensation
for the absence of filtering thanks to the statistical testing.

Regarding the filtered methods, the influence of α is less clear, since filtering is executed
afterwards using the parameters minSep and minSize. Quite interestingly, these three pa-
rameters values yielding the 30 best results are more or less uniformly distributed across
the different tested values. This is a good point since it means that, when using both the
statistical test and a simple post filtering, the results are more or less equivalent over a range
of used parameters values, so they can be considered robust.

Point classification results. In point classification, πmin is also an important parameter,
having more or less the same influence as in the zone identification, with the exception of
the m2 methods, regardless of the filtering used.

Rather surprisingly, the α parameter does not have the same effect as for zone identifi-
cation. Indeed, the 30 best results for non filtered methods are obtained for α = 5% or 10%

21



Table 1: Best methods for all scenarios and all method parameters

1st 2nd 3rd

zE (µ, σ) fm2w (21%, 11%) fm1w (25%, 13%) fm2 (26%, 7%)

pC (µ, σ) fm2w (91%, 5%) m2w (89%, 4%) fm1 (89%, 5%)

and for α = 5% to 15% for the filtered ones. This can be explained by the fact that the point
measure is very optimistic since randomly affecting the periodic points yields on average a
50% result for pC. So if the strictest α = 1% never yields one of the 30 best results in point
classification, it may be because the filtering is too strict in this case and, even though it
gives good results for zone identification, it does not take into account the points located at
the ends of the zone, hence yielding a bad point classification.

For the filtered methods, the minSize parameter returns the best results with its largest
tested values, since 80% of the 30 best results are obtained with minSize= 6 or 8. On the
contrary, the minSep parameter gives the best results with its smallest tested values, since
80% of the 30 best results are obtained with minSep= 2 or 4.

These two observations seem to imply that some not so small zones and some small gaps
are erroneously identified. This is a classical consequence of the use of a crisp threshold to
distinguish between periodic and non periodic groups. Some more sophisticated methods
for segmentation might be useful to improve the classification [62].

6.5.2. LDPE variant comparison

Table 1 indicates the best three LDPE variants, when ranked according to their results
in terms of the zE and pC criteria, averaged over tested parameters for all scenarios.

General result. For both zE and pC, fm2w, i.e. m2 using filtering and the weighted average,
comes first: it has the smallest number of errors in zone identification and the highest point
classification score, over all parameters and all scenarios. Scores obtained with other methods
are given in Appendix B.

More generally, the m2 variant, regardless of the filtering or kind of used average, seems
to be the most efficient method since it is present four times in one of the 3 first positions
either in zE or pC. However m1 appears to behave well too, since it is present each time
in 2nd and 3rd position. Clearly, the m3 method is not adapted for zone identification, since
it never appears in this ranking. Indeed, as the most optimistic method among the three
defined (see Section 4.3), it may be too optimistic for the zone identification task.

As for the methods parameters, the usage of the post processing filter is discriminant.
Indeed, the filtered method are much more efficient than the non filtered ones, since the 6 best
methods regarding zones identification, and 4 of the best with respect to point classification
use the post processing filter.

Zone results. Regarding the zE results, their standard variation is rather high as their
average error, even for the best method. This is due to the number of zones to be detected
in each scenario, ranging from 1 in S5 and S6 to 5 in S3 and S4. If one extra zone, even
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Figure 10: Two week measures of the quantity of CO2 per hour in the station Châtelet.

small, is detected, then the error rate is increased by 20% with the 5 zone scenarios, and
100% with the 1 zone scenarios. This measure is thus very sensitive to error, hence the large
results and deviation.

Point results. Conversely, the pC results are high and their standard variation are low,
especially given the fact that more than 150,000 experiments run. This is due to the non
severity of the count of points, as mentioned above. In that respect, it complements the
much more severe zE measure.

6.6. Experimentation with real data

In this subsection, an illustrative experiment using real data is presented. The first
paragraph describes the used dataset, and the second one comments the obtained results.

6.6.1. Data presentation

The RATP is the main public transport operator company in Paris, France and monitors
among others the air quality underground. Through its Open Data service [65], it released
hourly measurements carried out during the first quarter of 2012 in different metro stations.

For the test, we use a 12 days sample of the normalised amount of CO2 in the station
Châtelet, illustrated on Fig. 10.

Visual inspection indicates that the data are indeed periodic, with different patterns for
the weekdays and the weekends indicated below the figure.

6.6.2. Results

The dataset is processed with the method fm2w and the parameters minSep = 2, min-
Size = 2, α = 10% and πmin = 0.8, yielding the result shown on Fig. 11. The result is
interesting since the periodicity of weekends is sufficiently different from the one of week-
days for LDPE to create different zones for each. The result is not flawless however since
the first weekday on the left is omitted. Moreover, a small part of the weekend is identified
as weekday.

23



0

0.2

0.4

0.6

0.8

1

Weekend Weekdays Weekend Weekdays

Figure 11: Result of local periodicity detection on the real dataset from Fig. 10

This behaviour is due to a wrong clustering during the first step of DPE (cf. Section 3.1)
rather than a wrong zone identification in LDPE. Some of our ongoing works are precisely
related to enhance this first step.

The returned zones are Z1 = ([60, 141], 0.92, 24.00) and Z2 = ([202, 291], 0.83, 22.90),
given that the period p in third position is expressed in hours.

Therefore, using an acceptable error ε = 5% (see Section 5.5) and relative intervals
dividing the dataset into 2 to 5 parts (see Section 5.4), the linguistic rendering of Z1 is
“Approximately from the fifth to the half, the series is highly periodic (0.92) with a period
of exactly one day”, and the linguistic rendering of Z2 is “Approximately from the second
third to the end, the series is highly periodic (0.83) with a period of approximately 1 day”.

7. Conclusion and future works

This paper presents the LDPE method that allows to detect periodic zones in a time
series, to generate sentences characterising them in terms of periodicity and period and lo-
cating them in time. Generated sentences can for instance be “Approximately from March
to June, the series is highly periodic with a period of exactly 2 weeks”. The proposed LDPE
method allows to determine local periodic zones over model-free time series using robust
parameters since reasonable changes in their values do not affect the good results of the
method. It is based on an auto-adaptive window scheme allowing to compute local period-
icity, guaranteeing their significance and based on a new probability distribution presented
in this paper. More than 150,000 experiments have been run on artificial data as well as an
illustrative example on real data, proving the efficiency of the proposed LDPE method and
yielding very satisfying results.

Ongoing works include the experimental study of variants for the periodicity front seg-
mentation as well as for the erosion score computation, so as to further improve the quality
of the identified intervals and thus the global quality of the generated linguistic summaries.
The relevance of more precise summaries, obtained by running the periodicity detection
method within the identified periodic zones, will also be studied, taking into account the
trade-off between increased computational cost and result quality. At a theoretical level,
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future works will include the study of a formal expression of the probability distribution
of the periodicity degree, for instance the computation of P (πj = $ |πj−1, ..., π1 ) for the
segmentation, or P (πj = $ |n, g ) for the auto-adaptive window.
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[20] F. Dı́az-Hermida, A. Ramos-Soto, A. Bugaŕın, On the role of fuzzy quantified statements in linguistic
summarization of data, in: Proc. of ISDA’11, 2011, pp. 166–171.
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[23] P. Cariñena, A. Bugaŕın, M. Mucientes, S. Barro, A language for expressing fuzzy temporal rules,
Mathware & soft computing 7 (2) (2000) 213–227.
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Appendix A. Determination of P (d = δ|n, g)

Denoting d the random variable measuring the absolute deviation of the sizes of g groups
containing n points, we compute in this section P (d = δ |n, g ), the probability that d equals δ
given n and g. This probability is defined only if n ≥ g and g ≥ 1.

The proof is split in two parts. First, a general expression for d is given allowing its
computation by decomposing the group sizes into two, the ones whose size is smaller than
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the average, and the ones whose size is larger than the average.
Based on this decomposition, the probability is computed as the ratio between the possi-

ble combinations of group sizes yielding a deviation δ divided by the total number of possible
combinations of n points in g groups.

Appendix A.1. Alternate expression for d

In this subsection, an alternate expression is given for d, based on the splitting of the
group sizes around the average.

Since each data point belongs to one and only one group, the average group size µ is:

µ =
1

g

g∑
j=1

sj =
n

g
(A.1)

For convenience in further expressions, we define µ− = bµc and µ+ = dµe.
From the definition of the average deviation d (see Eq. (2)):

d =
1

g

g∑
j=1

|sj − µ|

denoting L the set of group indices whose sizes are smaller or equal to µ and U the set of
group indices whose size are greater than µ, l the cardinality of L and u the cardinality of U ,
it holds that L ∪ U = {1, ..., g} and l + u = g and d can be written:

d =
1

g

(∑
j∈L

(µ− sj) +
∑
j∈U

(sj − µ)

)
=

1

g

(
lµ− uµ+

∑
j∈U

sj −
∑
j∈L

sj

)
(A.2)

Moreover, as the sum of all group sizes equals n,
∑

j∈U sj = n −
∑

j∈L sj, so denoting
θ =

∑
j∈L sj, (A.2) becomes:

d =
1

g

(
lµ− (g − l)µ+ n− θ − θ

)
=

2

g
(lµ− θ) (A.3)

This expression directly yields g2d = 2 (nl − gθ), so g2d ∈ N since n, l and θ are integers.
This yields g2δ /∈ N⇒ P (d = δ|n, g) = 0. In the remainder of the proof, we assume g2δ ∈ N.

Appendix A.2. Combinations yielding d = δ

The second part of the proof is a combinatorial problem aiming at finding the number
of possible point distributions such that the deviation of their group sizes equals δ.

Eq. (A.3) implies that the deviation can be computed knowing only the sizes of groups
whose indices belong to L. So the first step details the number of possible sizes of L sets,
or values of l, for a given δ.

For each possible l, the number of possible point distribution is computed. Counting
this number is a known arithmetic problem related to the number of compositions of θ into
l groups verifying some constraints, as detailed in the second subsection.

The third step combines the two results in order to evaluate the number of distributions
such that the deviation of the group sizes equals δ given the possible l.
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Appendix A.2.1. Set of possible values for l given δ

The number of possible l given δ is determined thanks to the constraints on l and θ.
First of all, 1 ≤ l < g. The special case where l = g only happens when all groups have

µ− elements, or equivalently when µ− = µ, i.e. n mod g = 0.
Moreover, the groups whose indices belong to L are such that ∀j ∈ L, 1 ≤ sj ≤ µ−, so

by definition of θ, l ≤ θ ≤ lµ−. Symmetrically, since u = g − l, ∀j ∈ U, µ+ ≤ sj, yielding
θ ≤ n− uµ+. So θ ≤ min (lµ−, n− uµ+).

Furthermore, θ is an integer by definition, since it is the sum of the integer number of
points in the groups of L. So the possible values for l are such that θ ∈ N.

With these constraints, the set of sizes of the possible L sets is denoted Λ and defined
as:

Λ =
{

1 ≤ l < g s.t. l ≤ θ ≤ min
(
lµ−, n− uµ+

)
∧ θ ∈ N

}
∪ {g if n mod g = 0} (A.4)

Appendix A.2.2. Number of compositions of n points into g groups of size in [a, b]

It can first be noted that the points in a time series are ordered, yielding constraints on
the possible number of g groups built from n points. More precisely, creating g groups from
n ordered points is actually equivalent to selecting g− 1 bars and placing them in the n− 1
gaps between each data points [66] p.38. So the number of ways of grouping n points into
g groups is here equivalent the number of compositions of n into g due to the nature of the
considered data.

General case. The number of compositions of n into g groups such that each group contain
at least a points and at most b points is denoted N (n, g, a, b).

If bg < n < ag or b < a then N (n, g, a, b) = 0. Moreover, if n = g and a = 1 < b, then
N (n, g, a, b) = 1.

Subtracting a − 1 to the g groups, N (n, g, a, b) can be evaluated as the number of
compositions of n− g (a− 1) points in g groups containing at least 1 and at most b− a+ 1
points. So:

N (n, g, a, b) = N (n− g (a− 1) , g, 1, b− a+ 1) (A.5)

The number of compositions of n into g groups containing at least 1 and at most b
points can be computed as the sum of the number of groups having exactly k groups among
g containing b elements times the number of compositions of n − kb into g − k groups
containing at least 1 and at most b− 1 elements, i.e.:

N (n, g, 1, b) =

bn/bc∑
k=0

(
g

k

)
×N (n− kb, g − k, 1, b− 1) (A.6)

The last argument b−1 in the recursive expression ensures its convergence thanks to the
constraint b < a ⇒ N (n, g, a, b) = 0 shown above. Moreover, the summation stops when
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k = bn/bc since the constraint bg < n⇒ N (n, g, a, b) = 0 implies that there cannot be more
than bn/bc groups containing exactly b elements1.

In the case where no constraint is given for the group sizes, which we denoteN (n, g, 1,+∞),
the number of compositions equals:

N (n, g, 1,+∞) =

(
n− 1

g − 1

)
(A.7)

This comes from the gaps and bars argument given at the beginning of this subsection.

Appendix A.3. Number of compositions given l and δ

For fixed δ, n and g and a given l, the number Ñ of compositions with deviation δ is equal
to the number of ways of making L and U sets with their respective constraints. Since θ can
be computed from Eq. (A.3) as nl/g+ gδ/2, it is the product of the number of compositions
of θ in l groups having at least 1 and at most µ− elements times the number of compositions
of n− θ in u groups having at least µ+ and at most n− θ − (u− 1)µ+ elements, times the
number of ways of choosing l elements among g groups, i.e.:

Ñ (n, g, l, δ) =

(
g

l

)
×N

(
θ, l, 1, µ−

)
×N

(
n− θ − µ−, u, 1, n− θ − uµ+ + 1

)
(A.8)

Appendix A.4. Probability of d = δ given n and g

The probability is finally computed as the ratio between the number of compositions of
n into g groups such that their deviation is δ and the number of all compositions of n in g
groups, i.e.:

P (d = δ |n, g ) =


0 if n < g or g < 1 or g2δ /∈ N∑

l∈Λ Ñ (n, g, l, δ)

N (n, g, 1,+∞)
otherwise

(A.9)

Appendix A.5. Implementation details for the computation of P (d = δ|n, g)

The function dedicated to the computation of P (d = δ|n, g) takes δ, n and g as param-
eters and returns the corresponding probability.

In order to avoid floating point issues when computing 2nl−g2δ mod 2g while determin-
ing Λ, the implemented solution keeps the integer value g2δ in memory and passes it as a pa-
rameter to the function. Indeed, since g is a constant, P (d = δ |n, g ) = P (dg2 = δg2 |n, g ).

Moreover, in the main program, the value g2δ is computed when evaluating the deviation
for the high and low value groups. So the principle here is simply to keep this value instead
of dividing it before multiplying it again in the probability computation function, thus
removing the floating point computation potential errors.

1This proposal comes from a discussion on the Math Stack Exchange web site
(http://math.stackexchange.com/questions/900828/number-of-groups-containing-
at-least-1-and-at-most-k-elements)
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Appendix B. Detailed experimental results

Table B.2: Percentage of occurrences of each value among the 30 best (i.e. minimum) zone determination
error zE across all scenarios, configurations and repetitions, for each method and for each parameter

zE m1 m2 m3 fm1 fm2 fm3

% Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg

Alpha

1% 81% 97% 27% 7% 74% 95% 18% 33% 0% 0% 10% 8%

5% 19% 3% 54% 73% 26% 5% 19% 21% 13% 22% 20% 21%

10% 0% 0% 19% 18% 0% 0% 41% 28% 39% 35% 45% 45%

15% 0% 0% 0% 2% 0% 0% 22% 17% 48% 43% 25% 26%

Pi min

0,2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0,4 0% 0% 0% 0% 0% 0% 3% 5% 0% 13% 0% 0%

0,6 14% 31% 27% 10% 11% 18% 15% 26% 40% 58% 10% 8%

0,8 86% 69% 73% 90% 89% 82% 82% 69% 60% 29% 90% 92%

minSize

2 21% 11% 16% 41% 30% 32%

4 31% 22% 16% 18% 30% 30%

6 25% 30% 39% 20% 23% 21%

8 22% 37% 29% 21% 17% 16%

minSep

2 18% 37% 44% 28% 14% 15%

4 15% 37% 41% 12% 14% 11%

6 48% 26% 13% 23% 41% 42%

8 19% 0% 2% 37% 31% 32%

Table B.3: Average zone determination error zE, for each method for each scenario

zE m1 m2 m3 fm1 fm2 fm3

Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg

S1 354% 206% 206% 137% 406% 325% 46% 23% 33% 23% 66% 48%

S2 140% 105% 89% 83% 177% 155% 17% 13% 18% 18% 24% 22%

S3 97% 98% 71% 72% 107% 96% 20% 20% 25% 25% 21% 21%

S4 49% 46% 26% 25% 65% 62% 33% 33% 33% 33% 32% 33%

S5 69% 69% 54% 54% 69% 69% 49% 46% 28% 28% 49% 49%

S6 86% 151% 108% 0% 39% 0% 3% 16% 19% 0% 0% 0%

µ 133% 113% 92% 62% 144% 118% 28% 25% 26% 21% 32% 29%

σ 113% 58% 62% 48% 137% 113% 18% 13% 7% 11% 23% 19%

Rank 11 9 8 7 12 10 4 2 3 1 6 5
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Table B.4: Percentage of occurrences of each value among the 30 best point classification result pC across
all scenarios, configurations and repetitions, for each method and for each parameter

pC m1 m2 m3 fm1 fm2 fm3

% Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg

Alpha

1% 0% 0% 0% 8% 0% 0% 0% 1% 0% 0% 0% 0%

5% 46% 55% 8% 22% 41% 69% 30% 35% 27% 14% 15% 3%

10% 53% 39% 56% 47% 56% 31% 38% 38% 39% 36% 45% 51%

15% 0% 6% 36% 23% 3% 0% 32% 25% 34% 51% 40% 46%

Pi min

0.2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0.4 0% 0% 0% 8% 0% 0% 0% 0% 14% 4% 0% 0%

0.6 0% 0% 100% 92% 0% 0% 8% 28% 62% 94% 0% 0%

0.8 100% 100% 0% 0% 100% 100% 92% 72% 25% 2% 100% 100%

minSize

2 1% 0% 1% 0% 1% 21%

4 17% 11% 16% 17% 23% 31%

6 30% 32% 36% 47% 25% 24%

8 52% 57% 47% 36% 51% 24%

minSep

2 48% 57% 87% 50% 36% 27%

4 38% 43% 13% 17% 29% 31%

6 15% 0% 0% 15% 28% 30%

8 0% 0% 0% 18% 7% 12%

Table B.5: Average point classification result pC, for each method for each scenario

pC m1 m2 m3 fm1 fm2 fm3

Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg Avg wAvg

S1 89% 94% 92% 93% 82% 87% 92% 96% 94% 94% 86% 90%

S2 91% 93% 90% 90% 85% 86% 93% 94% 91% 90% 88% 88%

S3 86% 85% 83% 82% 81% 81% 88% 86% 84% 83% 83% 82%

S4 94% 94% 90% 90% 90% 90% 94% 94% 89% 89% 91% 91%

S5 80% 84% 91% 91% 76% 76% 86% 90% 95% 95% 81% 81%

S6 78% 63% 59% 90% 86% 96% 80% 55% 53% 97% 92% 100%

µ 86% 86% 84% 89% 83% 86% 89% 86% 84% 91% 87% 89%

σ 6% 12% 13% 4% 5% 7% 5% 16% 16% 5% 4% 7%

Rank 6 9 11 2 12 7 3 8 10 1 5 4
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