A. Ammar, E. Cueto, and F. Chinesta, Nonincremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains, International Journal for Numerical Methods in Engineering, vol.37, issue.4, pp.887-904, 2013.
DOI : 10.1002/nme.4413

URL : https://hal.archives-ouvertes.fr/hal-01007117

A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, vol.139, issue.3, pp.153-176, 2006.
DOI : 10.1016/j.jnnfm.2006.07.007

URL : https://hal.archives-ouvertes.fr/hal-01004909

C. Augusto, O. Nascimento, R. Giudici, and R. Guardani, Neural network based approach for optimization of industrial chemical processes, Comput. Chem. Eng, vol.24, pp.2303-2314, 2000.

C. Getino, B. G. Sumpter, and D. W. Noid, Theory and applications of neural computing in chemical science, Annu. Rev. Phys. Chem, vol.45, p.439, 1994.

S. Carter, S. J. Culik, and J. M. Bowman, Vibrational self-consistent field method for many-mode systems: A new approach and application to the vibrations of CO adsorbed on Cu(100), The Journal of Chemical Physics, vol.107, issue.24, p.10458, 1997.
DOI : 10.1063/1.474210

S. Carter and N. C. Handy, On the representation of potential energy surfaces of polyatomic molecules in normal coordinates, Chemical Physics Letters, vol.352, issue.1-2, pp.1-7, 2002.
DOI : 10.1016/S0009-2614(01)01381-1

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, and E. Cueto, PGD-Based Computational Vademecum for Efficient Design, Optimization and Control, Archives of Computational Methods in Engineering, vol.51, issue.1, pp.31-59, 2013.
DOI : 10.1007/s11831-013-9080-x

URL : https://hal.archives-ouvertes.fr/hal-01007175

R. Chowdhury, B. N. Rao, and A. M. Prasad, High dimensional model representation for piece-wise continuous function approximation, Communications in Numerical Methods in Engineering, vol.26, issue.1-4, pp.1587-1609, 2008.
DOI : 10.1002/cnm.1053

A. Clément, C. Soize, and J. Yvonnet, Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogenous microstructures analysis, Int. J. Numer. Meth. Eng, issue.8, pp.91799-824, 2012.

A. Clément, C. Soize, and J. Yvonnet, Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials, Computer Methods in Applied Mechanics and Engineering, vol.254, pp.61-82, 2013.
DOI : 10.1016/j.cma.2012.10.016

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, vol.27, issue.4, pp.303-314, 1989.
DOI : 10.1007/BF02551274

R. Dawes, D. L. Thompson, A. F. Wagner, and M. Minkoff, Interpolating moving least-squares methods for fitting potential energy surfaces: A strategy for efficient automatic data point placement in high dimensions, The Journal of Chemical Physics, vol.128, issue.8, p.128084107, 2008.
DOI : 10.1063/1.2831790

F. Fritzen and T. Boehlke, Reduced basis homogenization of viscoelastic composites, Composites Science and Technology, vol.76, pp.84-91, 2013.
DOI : 10.1016/j.compscitech.2012.12.012

R. K. Goodrich and K. E. Gustafson, Weighted trigonometric approximation and inner???Outer functions on higher dimensional Euclidean spaces, Journal of Approximation Theory, vol.31, issue.4, pp.362-382, 1981.
DOI : 10.1016/0021-9045(81)90103-9

URL : http://doi.org/10.1016/0021-9045(81)90103-9

R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, vol.71, issue.8, pp.1905-1915, 1971.
DOI : 10.1029/JB076i008p01905

C. Heyberger, P. Boucard, and D. Néron, Multiparametric analysis within the proper generalized decomposition framework, Computational Mechanics, vol.191, issue.25???26, pp.277-289, 2012.
DOI : 10.1007/s00466-011-0646-x

R. Hill, Elastic properties of reinforced solids: Some theoretical principles, Journal of the Mechanics and Physics of Solids, vol.11, issue.5, pp.357-372, 1963.
DOI : 10.1016/0022-5096(63)90036-X

M. B. Kasiri, H. Aleboyeh, and A. Aleboyeh, Modeling and Optimization of Heterogeneous Photo-Fenton Process with Response Surface Methodology and Artificial Neural Networks, Environmental Science & Technology, vol.42, issue.21, pp.7970-7975, 2008.
DOI : 10.1021/es801372q

V. Kouznetsova, M. G. Geers, and W. A. Brekelmans, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, International Journal for Numerical Methods in Engineering, vol.42, issue.8, pp.1235-1260, 2002.
DOI : 10.1002/nme.541

V. G. Kouznetsova, M. G. Geers, and W. A. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.48-51, pp.5525-5550, 2004.
DOI : 10.1016/j.cma.2003.12.073

L. Magnier and F. Haghighat, Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network, Building and Environment, vol.45, issue.3, pp.739-746, 2010.
DOI : 10.1016/j.buildenv.2009.08.016

M. Malshe, A. Pukrittayakamee, L. M. Hagan, S. Sukkapatnam, and R. Komanduri, Accurate prediction of higher-level electronic structure energies for large databases using neural networks, Hartree???Fock energies, and small subsets of the database, The Journal of Chemical Physics, vol.131, issue.12, p.124127, 2009.
DOI : 10.1063/1.3231686

S. Manzhos and T. Carrington, A random-sampling high dimensional model representation neural network for building potential energy surfaces, The Journal of Chemical Physics, vol.125, issue.8, p.84109, 2006.
DOI : 10.1063/1.2336223

S. Manzhos and T. Carrington, Using neural networks to represent potential surfaces as sums of products, The Journal of Chemical Physics, vol.125, issue.19, 2006.
DOI : 10.1063/1.2387950

S. Manzhos and T. Carrington, Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions, The Journal of Chemical Physics, vol.127, issue.1, p.14103, 2007.
DOI : 10.1063/1.2746846

S. Manzhos and T. Carrington, Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface, The Journal of Chemical Physics, vol.129, issue.22, p.224104, 2008.
DOI : 10.1063/1.3021471

S. Manzhos and K. Yamashita, A model for the dissociative adsorption of N2O on Cu(100) using a continuous potential energy surface, Surface Science, vol.604, issue.5-6, pp.554-560, 2010.
DOI : 10.1016/j.susc.2009.12.025

S. Manzhos, K. Yamashita, and T. Carrington, Fitting sparse multidimensional data with low-dimensional terms, Computer Physics Communications, vol.180, issue.10, pp.2002-2012, 2009.
DOI : 10.1016/j.cpc.2009.05.022

J. Michel, H. Moulinec, and P. Suquet, Effective properties of composite materials with periodic microstructure: a computational approach, Computer Methods in Applied Mechanics and Engineering, vol.172, issue.1-4, pp.109-143, 1999.
DOI : 10.1016/S0045-7825(98)00227-8

J. Michel and P. Suquet, Nonuniform transformation field analysis, International Journal of Solids and Structures, vol.40, issue.25, pp.6937-6955, 2003.
DOI : 10.1016/S0020-7683(03)00346-9

URL : https://hal.archives-ouvertes.fr/hal-00088331

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.131-156, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

E. Monteiro, J. Yvonnet, and Q. He, Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction, Computational Materials Science, vol.42, issue.4, pp.704-712, 2008.
DOI : 10.1016/j.commatsci.2007.11.001

URL : https://hal.archives-ouvertes.fr/hal-00692239

M. Mosby and K. Matous, Hierarchically parallel coupled finite strain multiscale solver for modeling heterogeneous layers, International Journal for Numerical Methods in Engineering, vol.85, issue.2, 2014.
DOI : 10.1002/nme.4755

M. Papadrakakis and N. D. Lagaros, Reliability-based structural optimization using neural networks and Monte Carlo simulation, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.32, pp.3491-3507, 2002.
DOI : 10.1016/S0045-7825(02)00287-6

M. Papadrakakis, N. D. Lagaros, and Y. Tsompanakis, Structural optimization using evolution strategies and neural networks, Computer Methods in Applied Mechanics and Engineering, vol.156, issue.1-4, pp.309-333, 1998.
DOI : 10.1016/S0045-7825(97)00215-6

P. Ponte-castañeda, On the overall properties of nonlinearly viscous composites, Proc. R. Soc. Lond. A, pp.217-244, 1988.

H. Rabitz and O. F. Alis, General foundations of high-dimensional model representations, Journal of Mathematical Chemistry, vol.25, issue.2/3, pp.197-233, 1999.
DOI : 10.1023/A:1019188517934

J. Renard and M. F. Marmonier, Etude de l'initiation de l'endommagement dans la matrice d'un matériau composite par une méthode d'homogénéisation, Aerospace Science and Technology, vol.9, pp.36-51, 1987.

S. Roussette, J. C. Michel, and P. Suquet, Nonuniform transformation field analysis of elastic???viscoplastic composites, Composites Science and Technology, vol.69, issue.1, pp.22-27, 2009.
DOI : 10.1016/j.compscitech.2007.10.032

URL : https://hal.archives-ouvertes.fr/hal-00499000

F. Scarselli and A. C. Tsoi, Universal Approximation Using Feedforward Neural Networks: A Survey of Some Existing Methods, and Some New Results, Neural Networks, vol.11, issue.1, pp.15-37, 1998.
DOI : 10.1016/S0893-6080(97)00097-X

I. M. Sobol, Sensitivity analysis for non-linear mathematical models, Math. Model. Comput. Int. J. Numer. Meth. Engng, vol.1, issue.00, pp.407-4141, 2011.

I. Temizer and P. Wriggers, An adaptive method for homogenization in orthotropic nonlinear elasticity, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.35-36, pp.35-363409, 2007.
DOI : 10.1016/j.cma.2007.03.017

I. Temizer and T. I. Zohdi, A numerical method for homogenization in non-linear elasticity, Computational Mechanics, vol.190, issue.6, pp.281-298, 2007.
DOI : 10.1007/s00466-006-0097-y

K. Terada and N. Kikuchi, A class of general algorithms for multi-scale analyses of heterogeneous media, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.40-41, pp.5427-5464, 2001.
DOI : 10.1016/S0045-7825(01)00179-7

A. B. Tran, J. Yvonnet, Q. He, C. Toulemonde, and J. Sanahuja, A simple computational homogenization method for structures made of linear heterogeneous viscoelastic materials, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45-46, pp.45-462956, 2011.
DOI : 10.1016/j.cma.2011.06.012

URL : https://hal.archives-ouvertes.fr/hal-00725389

L. Xia and P. Breitkopf, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Computer Methods in Applied Mechanics and Engineering, vol.286, pp.147-167, 2015.
DOI : 10.1016/j.cma.2014.12.018

D. S. Yu, Approximation by neural networks with sigmoidal functions, Acta Mathematica Sinica, English Series, vol.47, issue.10, pp.2013-2026, 2013.
DOI : 10.1007/s10114-013-1730-2

J. Yvonnet, D. Gonzalez, and Q. He, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.33-36, pp.2723-2737, 2009.
DOI : 10.1016/j.cma.2009.03.017

URL : https://hal.archives-ouvertes.fr/hal-00692234

J. Yvonnet and Q. He, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, Journal of Computational Physics, vol.223, issue.1, pp.341-368, 2007.
DOI : 10.1016/j.jcp.2006.09.019

URL : https://hal.archives-ouvertes.fr/hal-00693621

J. Yvonnet, E. Monteiro, and Q. He, COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES, International Journal for Multiscale Computational Engineering, vol.11, issue.3, pp.201-225, 2013.
DOI : 10.1615/IntJMultCompEng.2013005374

URL : https://hal.archives-ouvertes.fr/hal-00820417