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A Fourier based numerical method for computing the dynamic permeability of

periodic porous media
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ABSTRACT

A Fast Fourier Transform  FFT) based method for computing the dynamic permeability of periodic porous
media is presented. The flow is described by the linearized Navier-Stokes equations in the presence of
an oscillatory pressure gradient across the domain. The method of resolution uses an iterative scheme
and exact expressions for the dynamic Green's tensor in Fourier space. The accuracy of the approach is
assessed through comparisons with an exact solution, in the case of the flow in a cylindrical tube, and
with available numerical data provided in the literature for the case of a flow through regular arrays of

spheres or ellipsoids.
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1. Introduction

The permeability of porous media is of prime importance
in diverse areas of chemical and petroleum industries, civil
engineering, etc. Numerous research works were effected for
computing the permeability from exact or approximate images
of the microstructure. For example, Sangani and Acrivos [1,2],
and Wang [3) use expansions along eigenfunctions. However,
these studies generally reduce their analysis to some simple
geometrical configurations such as the flow through regular
arrays of cylinders or spheres. For more complex microstructures,
standard numerical methods, such as Finite Element, have been
used for computing the permeability of porous media, such as
for instance Borne et al. [4], Barrere et al. [5], Cioranescu et al.
[6], Alcocer et al. [7], and Alcocer and Singh [8], Sawicki [9]. The
determination of the permeability of porous media in the presence
of oscillatory flow is also of great importance in many practical
problems in industry and civil engineering, more specifically for
characterizing the acoustic properties of porous media. From a
theoretical point of view, the formulation of the boundary value
problem to be solved for obtaining the dynamic permeability has
been provided by using double-scale asymptotic analysis (see for
instance Levy [10], Auriault et al. [11), Burridge and Keller [12],
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and Johnson et al. [13]). Obtaining numerical solutions of this BVP
and therefore numerical values of dynamic permeability has later
been the subject of studies, among which are Zhou and Sheng [14],
Chapman and Higdon [ 15], Smeulders et al. [16], Perrot et al. [17],
and Malinouskaya et al. [18]. In these approaches the authors
employ semi-analytic developments or the Finite Element method.

Recently, Monchiet et al. [19] derived a Fast Fourier Transform
numerical method for computing the static permeability from
exact images of the microstructure. The method, first introduced
by Moulinec et al. [20] for linear elastic composites, is adapted for
handling problems with complex microstructures and especially
digital images obtained, for example, by microtomography. Such
methods are very attractive, because they are very fast, due to
the use of Fast Fourier Transforms and memory-saving, using only
a few variables by the discretization point instead of “stiffness
matrices” containing numerous coupling terms which are used
for example in the case of Finite-Element Methods. In addition,
these solutions are differentiable at any order, in the same way
as spectral methods (see for example [21]), all derivatives being
easily obtained by using the properties of Fourier Transforms. It
is worthwhile to mention that this new method can be used for
computing the properties of (non-periodic) random media. Indeed,
as shown by Kanit et al. [22], the periodicity conditions on the
variables of the problem, which are implicit when using Fourier
transforms, have been recognized as having a better convergence
rate when dealing with the stochastic mean of the solutions of
problems related to different samples constructed from random
properties.

In this paper, we propose to extend this FFT approach, allowing
the computing of the dynamic permeability of porous media.



The paper is organized as follows. In Section 2 we present the
equations of the dynamic flow through a rigid periodic porous
medium. In the scope of the formulation of a FFT based iterative
scheme, we rewrite the problem into an equivalent one which
uses a fourth order compliance tensor and we introduce the drag
forces. In Section 3, the numerical approach for computing the
solution of the equivalent composite problem is described. We first
derive the Lippmann-Schwinger equation which is the basis of
the FFT method. An iterative scheme, based on Neumann series
expansion, is then formulated for the resolution of this integral
equation. In the last section of the paper, we propose a validation
of the approach through comparisons with existing closed-form
solutions and available numerical data coming from the literature.
In order to show the capacity of the method, we provide new
results in the case of the dynamic flow through a regular array of
ellipsoids.

2. Principle of the method
2.1. The Stokes flow

We consider a periodic porous medium saturated by a
homogeneous Newtonian viscous fluid with the dynamic viscosity
tis. The periodic medium can be represented by a parallepipedic
(rectangular for 2D problems) unit cell and three vectors (2 vectors
for 2D problems) of spatial invariance. We define by Vy the volume
of the fluid, by V; the volume of the rigid skeleton and by V = V; U
V; the total volume of the unit cell. The surface of contact between
the fluid and the solid is denoted by dV;. The fluid is submitted to
an oscillatory macroscopic pressure gradient, of the form VP(t) =
Gexpliwt), where i = ~—T1; t is the time and @ is the radial
frequency. The local velocity of the fluid is governed by the
linearized Navier-Stokes equations:

K Av(x) + Vp(x) = —iprop) Vx e Vg

div(x) =0 YxeV -
vix)=0 VxeaV

v(x) periodic, p(x) — G.x periodic.

In the above relations, v(x) and p(x) are respectively the local
velocity field and pressure. The flow of the fluid is generated
by a prescribed macroscopic pressure gradient, denoted by G.
Consequently, the amplitude of the local pressure is decomposed
as follows: p(x) = p*(x) + G.x in which p*(x) is periodic. As
shown in the framework of the homogenization theory applied
to porous media by Ene and Sanchez-Palencia [23], Auriault
and Sanchez-Palencia [24] (see also [25]), Levy [10], Sanchez-
Palencia [26], Auriault, Boutin and Geindreau [11], and Burridge
and Keller [12), the macroscopic behavior is described by a
generalized or “dynamic” Darcy’s law:

1
V={xy=-—KwG (2)
Ty

where V is the macroscopic velocity field and K (@) is a complex
permeability tensor whose components depend on @ and on the
size and geometry of the unit cell. It is possible to define the non-
dimensional permeability by K*(w) = K{w®)/S where S has the
dimension of a surface (typically the area of the unit cell for two
dimensional problems). The problem defined by Egs. (1) presentsa
similitude with the problem of a periodic linear viscous composite
with rigid inclusions:

1
6@ = 5 (Vo + Viux) VYxeV
E(x) =8 :0(x) WxeV
div(e(x)) +fx) = —ipropix) VxeV 3)
a(x).n antiperiodic
u(x) periodic.

In the above equations, &(x) = z‘g(g) represents the local strain
rate while V, is the symmetric gradient operator, #(x) is the local
stress. Both &(x) and o'(x) are periodic and theirvolumic mean over
the unit cell is null: (&(x))y =0 and (e(x))y = 0. The FFT based
method is employed for solving the equations of the equivalent
linear viscous composite. Since this Fourier based method uses a
description of the unit cell by a finite number of points taken along
aregular grid, a continuation by continuity of the localfields within
the rigid inclusions is required. In (3) the following expression for
the fourth order tensor 5(x) is then considered:

_ ; PRI _ [AI V! = VI

Sx) = P @K with: pu(x) = I oo WaeV, (4)
where K =1—J with J = —;I @I where I is the fourth order
identity tensor while I is the second order identity tensor. Note
thatin Eqgs. (3), the local stress contains a deviatoric and a spherical
part. However, due to the property K : I = 0, the incompressibility
(tr(&) = 0) is recovered within the fluid. On the other hand, since
the dynamic viscosity tends to infinity in the solid phase, the
strain rate is null, which is consistent with the condition of non-
deformability of the skeleton. The flow is generated by a given
“macroscopic’ gradient of pressure. For studying the periodic part,
considered as the fluctuation of the flow at the microscopic scale,
this macroscopic gradient of pressure can be interpreted as a
given body force through the fluid phase, which must be extended
toward the solid phase for solving the problem within the two
phase cell:

G VxeV
£®=[? vtk )

In the above expression, the body force is undetermined within the
solid phase (in V; ). Body forces in V; are however required in order
to equilibrate the traction acting on the surface of the solid. This
point is discussed in the next section.

Note that the description of the body forces acting within the
solid phase is inherent with the use of a FFT based algorithm.
Indeed, when the Finite Element Method (FEM), for example, is
employed for solving the Stokes equations, only the fluid phase
is meshed. The surface 4V is considered as the domain boundary
on which the Dirichlet condition, v =0, is applied. The FFT
based method uses the discrete Fourier transform and therefore
a regular meshing on the periodic cell. The points of that grid are
located within the fluid or the solid phase and a continuation by
continuity of the mechanical fields within the solid phase is then
effected. Particularly, this require a continuation by continuity of
the mechanical fields but also the introduction of body forces
within the solid phase. Note also that the solid/fluid interface is not
modeled with the FFT algorithm ( again, due to the consideration of
a regular meshing) and the condition of adherence is not explicitly
implemented. In fact, the adherence conditions are implicitly
verified by considering body forces in the solid phase which must
be chosen adequately in order to fix the solid.

2.2. Body forces within the solid and elementary problems for the
determination of the permeability tensor

In this subsection we present the method for computing the
body forces acting within the solid phase aswell as the elementary
problems to be solved for obtaining the components of the
permeability tensors. As explained before, the forces acting within
the solid phase must be identified, so that the problem of the
equivalent composite (3) will be well-posed.

In (3), the strain rate field &(x) is null within the solid phase. The
velocity field coming by integration of the strain rate field is then
defined up to an added rigid displacement of each unconnected



solid. We assume that the unit cell contains M distinct solids
centered atx = X' fori = 1..M.For many situations, the skeleton
of the porous medium is a connected solid. However, it is very
useful to provide validations for plane flow which lead obviously
to studying a solid phase constituted of non-connected solids. It is
the same for 3D computations related to non-connected spherical
particles distributed along periodic networks, which are used
either for validation of some numerical solutions or for providing
estimations of permeability through suspensions.

Let us consider such an assembly of unconnected solids. The
volumes of the solids are denoted by Vg fori = 1..M and the total
volume of the solid phase is denoted by V; = V;; UV U -+ UV,
The velocity field coming by integration within the inclusion i, has
the following general form:

E(’_‘) = !(I) +Q“' A (i_&m) (6)

where V and 2 are respectively the translational and angular
velocities of the inclusion i. The values of V" and 21" are evaluated
by computing the translational and angular velocity fields for a
point taken within the solid i. If one considers that the assembly
of these solids acts as a porous medium, it is necessary to consider
thatthese inclusions are fixed. In order to fix these inclusions, body
forces, interpreted as forces and couples, are introduced. Within a
solid located at x = X, the expression of f (x) is then taken as:

L@):E(IJ_'_QI)A(!_&(OL @)

Since the stress field is periodic, the equilibrium of the unit cell
reduces to (L()_t))v = —iwpyV which also reads:

LM
$G+ Y duF" = —iwpV 8)
1

where ¢ = V;/V is the porosity and ¢y = Vy /V.

Due to the linearity of the equations of the problem, its solution
linearly depends on the loading parameter G and on the dragforces
F™ and C" for i = 1..M (seeFig. 1). Particularly, by integrating the
strain rate field &(x), the velocity field reads:

SM
v =V+AQC+ Y [L@E” + M. "] ©
=1
where V is the macroscopic velocity field, and the localization
tensors A(x), L, (x), M,(x) are periodic and have a zero volume
average: {A(x)}y = (L, (x)})y = (M;(x))y = 0.The angularvelocity
w(x) = %rotg(g) reads:

s=M

©®) =BG+ Y [PFT +Qx).C"] (10)
sl

where the localization tensors B(x), Ps(x), Qs(x) are periodic and

have a zero volume average: (B(x)}y = (Psx))y = (Q(x))y = 0.

The translational and angular velocities defined in Eq. (6) are then

computed by:

Sl
VO = =X")=V+A G+ [LaE” + M C?]
S | (11)
S
27 =wx=X") =BG+ [PsF?+Q:C7)
Sl
with:
A, =Ax=X""). B =Ax=X""
Ls=Li(x=X""), My =Mx=X"") (12)
P =Piix=X""), Qs =Qix=X"").
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Fg 1. Schematic illustrating the drag force,

The solids being fixed, the translational and angular velocities
given by (11) must be zero. It leads to:

S M
VHAGC+) [LsF? +MsCP] =0 forr=1.M
— (13)
B.G+Y [PoE® +Qs "] =0 for:ir=1.M.

Seml

The above equations together with Eq. (8)lead to a linear system of
dimension 6M + 3 for the unknowns: V. F? and C'"" fori = 1..M.
The determination of all coefficients which enter into that linear
system, namely the components of Ar, Br, Lrs, Mys, Prs and Qys,
requires the computation of the localization tensors which enter
into(9)and(10). This is effected by solving a total number of 6M +3
elementary problems associated to each component of G, F” and
€. In the next section we propose a FFT based computational
method for the resolution of these elementary problems. It must
be emphasized that the method previously described allows us to
effect the computation of the dynamic permeability in any case.
However, in the simplest cases, symmetry properties allow us to
reduce drastically the number of computations (this is the case for
the examples considered in Section 4).

3. The FFT based iterative scheme

In this section we provide an algorithm for computing the
localization tensors which appear within the definition of the
translational and angular velocity fields v(x) and w(x), given by
relations (9) and (10) respectively. The method is inspired by the
original FFT based approach initially proposed by Moulinec and
Suquet [20] and its dual formulation [27 28]. The iterative scheme
developed in [20] for linear elastic composites is strain based and
uses the rigidity tensor. It has been earlier shown that this method
diverges in the case of rigid inclusion (see for instance [29,30])
since the rigidity tends to infinity in the inclusion. A stress based
formulation [27 28] is more suitable for handling the problem
of composites with rigid inclusions since it uses the compliance
tensor which has zero components in the rigid phase. In the present
sectionwe then propose a stress based iterative scheme which uses
the dynamic Green operator to take into account the inertia terms.
We also mention that the proposed algorithm for porous media
differs from the one used for composites by the first term of the
series which depends on the body forcesf (x).

In the following section, we first establish the Lippmann-
Schwinger integral equation for the problem of dynamic flow
which is the basis of the proposed iterative scheme.



3.1. The integral equation for the strain rate

In this section we propose to derive the Lippmann-Schwinger
integral equation for the dynamic flow, which is, in fact, the basis
of the formulation of the FFT based iterative scheme. The first step
for the derivation of this integral equation consists in introducing
into relations (3) a reference medium of viscosity pp and the
eigenstrain 5(x) = (5(x) — 8% : o(x) with 8° = 1/(2149)X. In the
Fourier space, the system of Egs. (3) becomes:

(&) = (&) ®e
8(E) =81 0() + () (14)
i0(§).6 + (&) = —ippwn(§).

In the above equations, big), 0"(5). 6(5).}_'(&_‘) represent the
Fourier transforms of the quantities v(x), #(x), ¢(x), f(x). When
§(E) is given, the resolution of (14) becomes straightforward.
Indeed, from the first two relations in (14), one can eliminate the
strain rate &(£); it gives:

o(§) =pE) + 2uai0(§) & § — 1) ] (15)

where it is recalled that p(§) is the pressure, p(§) = tr(a(§))/3.
Introducing this equation into the last one in (14) and taking into
account the incompressibility, 2(5).5 = 0, we obtain:

— polEP(1 — 6)u(E) +ip(§)E = —f(£) + 2ipgn(§) & (16)

in which the non-dimensional parameter ¥ = Ap,w/(uolelz) has
been introduced. Using again the incompressibility condition, it is
possible to derive, from the above equation, the expressions of both
velocity field and pressure:

p(g)—mzfuzuon(s) K
1
WE) = — Kkt
Y= CEra-n L an
- —i[n(n.s —Em(©) k)]
ERA -l == =7=

where the following notations have been used:

—E®E  kt=1-k (18)

IEIZ

Introducing now the expressions (17 Jinto relation ( 15), we find for
the stress field:

o(§) = 9§, k) — A%(E, %) 1 n(§) (19)

in which the second order tensor @E.x) is given by:

(&) = —[foes-ro ]+ —tf £ Qo)

IEIZH

when § # 0 but eE, ) = OforE
A° (E x) is a fourth order tensor defined by:

0.In expression (19),

A°(§. K) = Zuo[k* @K+ + K TR

'S — _
Bk + k@k*)] 21)
when & # Oand A%, w) = Ofor & = 0. The tensor A°(§.x‘)
is the dynamic Green operator for the stress. When ¥ = 0, one
recovers the expression of the static Green tensor for the stress and
for an incompressible medium: 2 [k" QKL+ k-’-Qk*] (see for

instance [30] which uses the same notations as the ones used in
the present paper). In (21), the following notation has been used
(for any couple of second order tensors @ and b):

_ 1
(ﬂgb)w — —(dgbﬂ +ﬂubﬁ). (22)

The details about the calculation of (&, &) and A% . k) can be
found in the Appendix A. The integral equation is then obtained by
replacing, in (19), the expression of the eigenstrain as a function of
the stress field:

e© =00 - A0 [5© r0@) - 0©)] @)

or, equivalently:

0w = pie 6) — A% 0+ [B0) - ) 1 ow)] (24)

In relations (23) and (24), the symbol “x" denotes the convolution
product.

3.2. The algorithm

Following Moulinec and Suquet [20] and later Bhattacharya
and Suquet [27], and Bonnet [28] for the stress based formulation,
the solution of the integral equation (23) or equivalently (24)
is expanded along Neumann series. Each term of that series is
obtained by means of the following recurrence relation:

a’*'(g)=¢(5.k‘)—A°(§.k‘)*[(S(5)—S°) :a’(g)] (25)
which is initiated by:

o"(§) = pix. k). (26)
The exact Fourier transform is thereafter replaced by the discrete
Fourier transform. The discrete wave vectors, £, are taken from
n=-Nton=N-1,and by x, we denote the position of the
nodes of the regular grid in real space. The compliance 8(x, ) is then
computed at each node of that grid from the exact images of the
microstructures. The algorithm is summarized below:

o'(x) = F (")
&(x,) =8(x,) 10"(x,)
#(E) = F(E )
convergence test (27)
o™t(E) = 9, x)
—A%E LK) ["'(E..)‘so:"(i..’]-

In(27), # and ' denote the Fourier Transform and its inverse for
which the FFT algorithm is employed. The following convergence
test is used:

1
le'E,) — e E Dl

28
fe @ @

In (28), || @ || denotes the Frobenius norm and the value e = 1073
is used in the present work.

At convergence of the iterative scheme, one can compute
the velocity associated to the strain rate field t‘(ﬁn). Using the
incompressibility condition (g(s )€, = 0), one has:

|Elzs‘(E) & for§£0 29)

for§ =0.

vE) = -
vE) =0



The rotational velocityg(i) is:

1
g(§)=3§/\g(§) for§ #£0
g(i):o fors:O.

(30)

The inverse Fourier transform is thereafter used for computing the
translational and angular velocities v(x) and @(x) and then the
localization tensor in expressions (9) and (10). In the next section,
we propose to validate the FFT based approach by comparisonwith
existing results coming from the literature. Moreover new results
are also provided in the case of a regular network of ellipsoidal
inclusions.

4. Validations
4.1. The flow in a cylindrical tube

As afirst step of the validation of the FFT based approach, we
compare our results with an existing closed-form solution in the
particular case of the flow through an array of cylindrical tubes of
radius a. The considered periodic porous medium is then defined
by an array of cylinders, aligned along the direction Ox;, and we
denote by 2b the distance between two neighboring cylindrical
tubes. The flow is generated by applying the gradient of pressure
G3. The closed-form expressions for the velocity field as well as
the permeability have been already derived in [31,14,25). The
only non-null component of the permeability tensor is K33 and its
expression is:

2 ]l(\/fl—vﬂ)) 31)

ia
Kyy=—|0 - ————
BT wb? ( Vi Jo(iwa)
Inwhich J,(x) denotes the Bessel function of thefirst kind and order
n. This exact solution is now compared with the numerical one.
For computing the permeability Ky; with the FFT based iterative
scheme we choose a squared unit cell, having the width 2b, and
containing a circular subdomain of radius @ which contains the
fluid of viscosity . Due to the symmetry of the problem, a
constant body force f; = F; is considered within the solid phase.

So, the permeability K(w) is obtained after the resolution of two
elementary problems defined by:

Fi= —ds /s V=0
Fy = —iw /g, Vi=1

where ¢y = wa?/(4b?) is the volume fraction of the fluid and
s =1—¢y is the volume fraction of the solid. In the case of
the first loading, a gradient of pressure G; = 1 is applied within
the fluid phase and the force Fy = —¢y /¢ is applied within the
solid phase to obtain the equilibrium of the cell (according to
Eq. (8)). The velocity field associated with this first loading has a
null volume average over the unit cell. In the case of the second
loading, the velocity field has the mean velocity V; = 1 while the
gradient of pressure Gz = 0 is applied within the fluid. To obtain
the equilibrium of the cell, the body force acting within the solid
phase is chosen as F; = —iw/ . For each elementary problem, the
flow generates a velocity of the solid, denoted V. This velocity
depends on the two parameters Gj, V5 (F, being related to these
parameters due to the equilibrium of the cell):

VS =AG; + BV, (33)

The solution of (1) corresponds to V; which leads to V; = —BG, /A
and then, according to the Darcy law (2), the longitudinal
permeability is Ky3 = ps B/A.

In Fig. 2we show the variations of the real partand of the imag-
inary part of the non-dimensional dynamic permeability Ki;/S

Loadingcase 1: G; = 1,

Loading case 1: G; = 0, (32)

10 . , ,
FFT tased solution
———— Fxact solstion

) Re(K44/S)
10
0!
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10 ) 3 ) L]

10 10 10 10

&3,

Fig. 2 The real part and the imaginary part of the non-dimensional permeability
K33 /S (with S = mwa® ) for the flow through a circular tube of radius a,

Table 1

The real part, Re(K33)/S, and the imaginary part, Im(K33:)/S, of the non-dimensional
permeability Ky, /S (with § = x &) for the flow through an array of circular tubes
of radius . These values are given for a/b = 04,3 = 102 and for diverse values
of the lution,

Resolution Re(K33)/S Error (%) Im(K33)/S(x10¥)  Emor(%)
16 x 16 00100825 0292 268958 0326
32x W2 00100535 0.044 2680094 0006
64 x 64 00100554 0023 26814% 0025
128 x 128 00100552 0021 2681330 0019
256 x 256 00100548 0017 2680881 0002

as functions of the non-dimensional frequency @ = @Sy where
S = 4b? is the area of the unit cell and the radius a of the tube
is obtained from the ratio a/b = 0.4. As already shown in [32,14]
the real partof the dynamic permeability is constantfor lowvalues
of the frequency @ but linearly decreases with w, at large frequen-
cies(in a log-log frame). The full line represents the exact solution
while the discrete points refer to the FFT based numerical data. For
the numerical solution, a grid containing 256 x 256 points has been
considered to obtain a good accuracy of the numerical results.

For completeness, we investigate the convergence of the FFT
based solution with the resolution (in fact the number of wave
vectors used for performing the Fourier transform and its inverse).
In Table 1, we provide the values of the real part and of the
imaginary part of the non-dimensional permeability as functions
of the resolution. We also give the relative error of the FFT based
solution as compared with the exact solution. Table 2 displays the
same results for the case @ = 10%. It can be observed that, for low
values of the frequency (Table 1), the error induced for the real
part as well as for the complex part is inferior to 0.1% when a grid
16 x 16 is used.

For larger values of the frequency (Table 2), one can observe an
increase of the error (for a given wave number discretization) by
comparison with the values reported in Table 1. This increase is
attributed to the formation of a boundary layer at the vicinity of
the surface of the solid, whose thickness decreases with frequency.
Indeed, the pixels are squared with the width b/128 =~ 0.0078b
(where itis recalled thatbh is the half width of the unit cell). On the
other hand, the thickness of the boundary layer is A = \/E"L_w =
j.—%. Particularly, when @ = 1072 the boundary effects vanishes
since & = 20b while for @ = 10*, the thickness of the boundary
layer is A = 0.02b. The error, which is reported on Table 2, is



Table 2

The real part, Re(Ka3)/S, and the imaginary part,im(Ks3)/S, of the non-dimensional
permeability K43 /S (with § = wa*) for the flow through a circular tube of radius
a. These values are given fora/b = 04,5 = 10* and for diverse values of the
resolution,

Resolution Re(Ky3)/S Emror (%) Im(Ky3)/S Error (%)
16 x 16 00187798 7.049 0490081 1061
32x32 001686513 4832 0483854 0212
64 x 64 00171832 1,587 0484789 0019
128 x 128 00172526 0,595 0484870 0,0005
256 x 256 00174716 0.000 048488 0.,0002
10*
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Fig. 3. Numberofi at conv e of the i scheme as a function

of pg/ iy and for various values of o,

inferior to 10~* when the resolution is 256 x 256. Based on that
observation, for the 3D calculations provided in the next section,
the resolution 256 x 256 x 256 has been considered.

For completeness we now discuss the choice of the modulus
g of the reference medium. In Fig. 3, we represent the number
of iterations at convergence of the iterative scheme as a function
of the ratio po/py and for various values of w. First, the
representation is restricted to the interval ]0, 2] since for other
values of the ratio pio/pis the iterative scheme diverges. In the
range ]0, 2] the numerical results show that the optimal choice
for p1q (leading to the lowest number of iterations at convergence)
is close to pp = 2piy. This value has been chosen for providing
the above numerical results and also those proposed in the next
section. There must also be noted a diminution of the rate of
convergence of the iterative scheme when increasing the values
of . Itimplies that the problem with high values of the frequency
is computationally costly as compared to the static case (@ = 0).

4.2. Flow through regular networks of spheres and ellipsoids

As a second validation we propose to compute the dynamic
permeability in the case of three-dimensional flows through
networks of spheres. The basic cell is cubic, with the width 2b, and
contains a sphere of radius a. Due to the geometry of the unit cell,
the permeability tensor is isotropic and can be put into the form
K (w) = K(w)I where it is recalled that I is the identity tensor.
The computation of K (@) is performed by applying to the unit cell
the component of the gradient of pressure G, and by computing
the only non-null component of the macroscopic velocity field
V. As in the previous case, due to the symmetry of the unit cell,
the body force acting within the solid phase is chosen as fi = F;
and other components f; and f; are taken as zero. The method
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Fig. 4 Magnitude of the di | permeability, |[K|/S, as a function of

the non-dimensional frequency @ in the case of an amay of spheres and for
various values of the volume fraction of the solid phase, ¢, From the top, ¢« =
0.125,0.216,0.450,
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Fig. 5. The phase ¢ = arctan(Kg/K;) (where Kg and K; are the real and imaginary
parts of the permeability K ), as a function of the non-dimensional frequency @ in
the case of an array of spheres and forvarious values of the volume fraction of the
solid phase, ¢, From the top, ¢ = 0.125,0.216, 0.450,

for computing the permeability, described in the general case in
Section 2.2, appears here to be very similar to the case of the tube,
studied in the last section.

Fig.4 represents the magnitude of the non-dimensional perme-
ability, |K|/S, as a function of the non-dimensional frequency @ in
the case of an array of spheres and for various values of the vol-
ume fraction of the solid phase, ¢; = (4/37a*)/(8b%). In Fig. 5 is
plotted the phase ¢ = arctan(K/K; ), where Kz and K, are the real
and imaginary parts of the permeability K, as functions of the non-
dimensional frequency @ in the case of a network of spheres and
for various values of the volume fraction of the solid phase, ¢;. The
full lines correspond to the solution computed by the FFT based it-
erative scheme while the discrete points are results obtained from
series expansion by Chapman and Higdon [15]. It can be noticed
that our results are in good agreement with the ones of Chapman
and Higdon [15].

In order toinvestigate the role of the pore geometry we consider
the case of a three-dimensional flow through a regular array of
ellipsoids. The unit cell is described in Fig. 6. It is cuboidal and
contains an ellipsoid of semi-axes a,, a; and a; aligned with the



Fg 6. The unit cell of the periodic array of ellipsoidal inclusions,

cartesian axes Ox,, Ox; and Ox; respectively. The volume of the
inclusionisV; = 4w aya,a./3 and the porosityisf = 1—4/3ra,a;
ay/(8b%) (b being the half-width of the basic cell) when the
inclusions are not interpenetrable. The permeability tensor is
orthotropic and has the following non-zero components: K,(w),
Ky(w) and Kys(w).
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The semi-axes of the ellipsoid are chosen asfollows: a; = a; =
R/e'? and a; = */*R where € = as/a, is the aspect ratio of the
ellipsoid and R is the radius of the sphere corresponding to an
aspect ratio ¢ = 1. The porosity is then given byf = 1 — 4/37R*/
(8b*) and is independent of the aspect ratio . For our numerical
applications, R = b/2 and the value of the aspect ratio is taken
in the range [1/8, 2\/5]. The case € = 1/8 corresponds to a flat
spheroid with the semi-axes a, = a; = b and ay = b/8. The case
e=2y2 corresponds to a prolate spheroidal inclusion with the
semi-axes a; = a; = b/(2+/2) and a; = b. The value of the aspect
ratio is restricted to the interval [1/8. Zﬁ] since for other values
the condition of non-interpenetration is not verified and the
porosity does not remain independent of the aspect ratio. In Fig. 7
we represent the magnitude of the non-dimensional permeability,
|K33|/S as a function of the aspect ratio for different values of the
non-dimensional frequency @ = 1, 10, 100, 1000. Fig. 8 displays
similar results for the phase ¢ = arctan(Ki3z/Kay) where K
and K3y denote the real and imaginary parts respectively of the
permeability Kja. It can be observed that the magnitude of the
permeability is higher in the case of prolate cavities than for
oblate cavities. Obviously, with the array of oblate spheroids, the
solid phase is more compact in the plane orthogonal to the flow
direction.
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5. Conclusion

In this paper we have proposed a FFT based iterative scheme

for computing the dynamic permeabilicy of periodic porous media.
This iterative scheme uses an exact expression of the dynamic
Green tensor in the Fourier space. As a first validation of the
approach, we compare our results with an existing closed-form
solution in the case of a flow through a regular array of tubes. A
validation with existing numerical data provided in the literature
has also been proposed in the case of a flow through a regular
array of rigid spheres. The FFT based method appears as an
efficient alternative to other numerical methods for computing the
dynamic permeability of porous solids. Indeed, this method is time
saving, due to the use of the Fast Fourier Transform and memory
saving, because there is no need of memaory storage for interaction
matrices as in Finite Element or Finite Difference methods. So, the
use of that method for example in the case of elasticity problems
allows us to treat geometries containing as many as 20482 pixels
by using only 144 Go of memory. In addition, due to the regular
discretization used in this method, it is well adapted for computing
the dynamic permeability of samples whose microstructure is
obtained from microtomography since in that case all data are
provided on a regular framework. The use of such data is therefore
straightforward for performing FFT computations.

Appendix. Computation of (£, k) and A%, x)

The strain rate field £(& ) computed from the velocity field v(&),
given by the second relation in (17), is: -

O = eE+E0D)
i

= [KkLf kLS

2o _k_][( frag+E@kf]
1 ) -

+——[nE)k + k() — 2k 00| A1)
1—wl'= = =

The stress field is given by:

a(§) = pE) + 2pa[EE) — pig)]

[ f) @& +E @ k)] + #f_:g_i

i
[EF1— &)
2up ; -

T—x [iﬂg).k +Rp(E) — 2K(n(£) : k)} — Zuom()
+2pon(£) kI. (A.2)
The stress can be put into the form given by (19)with the following
expressions for PiE.K) and .d.':'li. K

+



i i
(E.x0)= ———[k*f)@E+E@ KL+ —=f &l
(A3)

2 _
A% = — f”k [@u + KBl — 2k ® u}

+ 2pol— Zpll @ k +k &1]

By replacing k* by I — k in the first relation in (A.3) it is easy
ta recover the expression of (%, &) given by (20). By using the
Property: -

I=k@k+Kk Bk + kS + KTk (Ad)

in the second in (A.3) and after some simple algebraic manipula-
tions, we obtain:
2pigk _ _
A0 = [0 Bk + kEk

+ 2kt @ k- + KBR +1 @], (A5)

Mate that,in the above relation, the last term proportional o “IgI"
can be deleted since the Green tensor A%(&, k) is applied to a

deviatoric tensor p(§). With this last operation, one recovers the
expression given by (21).
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