HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Boolean Network Identification from Multiplex Time Series Data

Abstract : Boolean networks (and more general logic models) are useful frameworks to study signal transduction across multiple pathways. Logical models can be learned from a prior knowledge network structure and multiplex phosphoproteomics data. However, most efficient and scal-able training methods focus on the comparison of two time-points and assume that the system has reached an early steady state. In this paper, we generalize such a learning procedure to take into account the time series traces of phosphoproteomics data in order to discriminate Boolean networks according to their transient dynamics. To that goal, we exhibit a necessary condition that must be satisfied by a Boolean network dynamics to be consistent with a discretized time series trace. Based on this condition, we use a declarative programming approach (Answer Set Programming) to compute an over-approximation of the set of Boolean networks which fit best with experimental data. Combined with model-checking approaches, we end up with a global learning algorithm and compare it to learning approaches based on static data.
Document type :
Conference papers
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download

Contributor : Loïc Paulevé Connect in order to contact the contributor
Submitted on : Wednesday, June 17, 2015 - 5:02:38 PM
Last modification on : Wednesday, April 27, 2022 - 3:47:27 AM
Long-term archiving on: : Tuesday, April 25, 2017 - 11:11:23 AM


Files produced by the author(s)



Max Ostrowski, Loïc Paulevé, Torsten Schaub, Anne Siegel, Carito Guziolowski. Boolean Network Identification from Multiplex Time Series Data. CMSB 2015 - 13th conference on Computational Methods for Systems Biology, Sep 2015, Nantes, France. pp.170-181, ⟨10.1007/978-3-319-23401-4_15⟩. ⟨hal-01164751⟩



Record views


Files downloads