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Abstract

Recently, barrier certificates have been introduced to prove the safety of continuous or hybrid dynamical systems. A barrier
certificate needs to exhibit some barrier function, which partitions the state space in two subsets: the safe subset in which
the state can be proved to remain and the complementary subset containing some unsafe region. This approach does not
require any reachability analysis, but needs the computation of a valid barrier function, which is difficult when considering
general nonlinear systems and barriers. This paper presents a new approach for the construction of barrier functions for
nonlinear dynamical systems. The proposed technique searches for the parameters of a parametric barrier function using
interval analysis. Complex dynamics with bounded perturbations can be considered without needing any relaxation of the
constraints to be satisfied by the barrier function.
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1 Introduction

Formal verification aims at proving that a certain behavior or property is fulfilled by a system. Verifying, e.g., the
safety property for a system consists in ensuring that it will never reach a dangerous or an unwanted configuration.
Safety verification is usually translated into a reachability analysis problem [5,11,14,38,39]. Starting from an initial
region, a system must not reach some unsafe region. Different methods have been considered to address this problem.
One may explicitly compute the reachable region and determine whether the system reaches the unsafe region [18].
An alternative idea is to compute an invariant for the system, i.e., a region in which the system is guaranteed to
stay [11]. This paper considers a class of invariants determined by barrier functions.

A barrier function [29, 30] partitions the state space and isolates an unsafe region from the part of the state space
containing the initial region. In [30] polynomial barriers are considered for polynomial systems and semi-definite
programming is used to find satisfying barrier functions. Our aim is to extend the class of considered problems to
non-polynomial systems and to non-polynomial barriers. This paper focuses on continuous-time systems.

The design of a barrier function is formulated as a quantified constraints satisfaction problem (QCSP) [8,32]. Interval
analysis is then used to find the parameters of a barrier function such that the QCSP is satisfied. More specifically,
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the algorithm presented in [21] for robust controller design is adapted and supplemented with some of the pruning
schemes found in [9] to solve the QCSP associated to the barrier function design.

The paper is organized as follows. Section 2 introduces some related work. Section 3 defines the notion of barrier
functions and formulates the design of barrier functions as a QCSP. Section 4 presents the framework developed to
solve the QCSP. Design examples are presented in Section 5. Section 6 concludes the work.

In what follows small italic letters x represent real variables while real vectors x are in bold. Intervals [x] and interval
vectors (boxes) [x] are represented between brackets. We denote by IR the set of closed intervals over R, the set of
real numbers. Data structures or sets S are in upper-case calligraphic. The derivative of a function x with respect
to time t is denoted by ẋ.

2 Related work

The verification of the safety properties for dynamical systems has been an active field of research in the last
years. This related work review focuses on methods involving the computation of invariants for dynamical systems.
Alternative methods based on the computation of reachable sets are described in [10,14] and in the references therein.

An invariant is a part of the state space in which the state of a dynamical system can be proved to remain. Invariants
are very useful to prove the safety of dynamical systems. If an invariant does not contain unsafe regions, then the
dynamical system is safe. Methods to characterize invariants have been intensively studied for linear and polynomial
dynamics but much work has still to be done for non-linear dynamical systems.

Coming from the community interested in hybrid systems, a set of methods has been defined to compute invariants
for various classes of systems, for example for linear or affine systems [39] or for polynomial systems [18, 22, 36, 41].
These methods introduce a candidate parametric function, which parameter vector has to be adjusted to define
an invariant of the considered dynamical system. Various techniques are then employed to determine satisfying
parameter vectors. For example, in [36], theory of ideal over polynomials and Gröbner bases are used to define
constraints to be satisfied by the parameter vector to be found. These constraints are then solved numerically
using tools such as those introduced in [12]. In [18], quantified polynomial constraints are introduced for the design
of parameters. Then, satisfying parameter vectors are found using Farkas’ Lemma and solvers from sat-modulo
theory [6]. Sum-of-Squares (SoS) polynomials are used in [22]. The design involves various system simulations and
selection of candidate parameter vectors using linear programming. A final validation of the selected parameter
vectors is then performed with Mathematica and using interval analysis with dReal [15]. Note that our algorithm
presented in Section 4.3 could aso be used as validation method for the approach presented in [22]. Bilinear SoS
programming is considered in [41].

An alternative way to find such an invariant is by considering tools such as Lyapunov functions to prove the stability
properties of dynamical systems [16]. For example, [25] considers parametric functions to find a Lyapunov function
for a system with polynomial dynamics formed by SoS polynomials and employs semidefinite programming (SdP)
for the parameter synthesis. In [34] Lyapunov functions are designed via a branch and relax approach and linear
programming to solve the induced constraints. In [17] Darboux polynomials are used to design specific forms of
Lyapunov functions involving rational functions, logarithmic and exponential terms. Similar invariants have been
also considered in [35].

Safety property verification may also be directly introduced in the design phase, instead of being verified a posteriori,
as done in the previous approaches. In [26, 27], theorem-proving approaches are employed using symbolic-numeric
techniques to synthesize invariants for differential (continuous and hybrid) systems. In particular, quantifier elim-
ination techniques are intensively used and more recently a combination with the approach presented in [22] has
been defined in [4]. Alternatively, techniques searching for barrier certificates aim at determining some parametric
function, called barrier, defining an hyper-surface in the state-space which is never crossed by the dynamics of the
system, see [13, 28, 30, 31, 37]. A parameter vector of this barrier has to be found such that the barrier separates
the region in which the initial state belongs from the unsafe region. In [28,30,31], polynomial dynamics and barrier
function are considered and parameters are designed with SdP, which requires some relaxation to obtain a convex
design problem. In [13], two candidate functions are combined to define more sophisticated barriers, which param-
eters are again found via SdP. In [37], linear matrix inequalities and SoS are used to generate the barrier functions
for hybrid dynamical systems with polynomial dynamics.
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Our work follows this approach for non-linear and possibly non-polynomial continuous-time dynamical systems with
bounded perturbations and uses interval analysis for the barrier parameter vector search phase.

3 Formulation

This section recalls the safety characterization introduced in [30] for continuous-time systems using barrier functions.

3.1 Safety for continuous-time systems

Consider the autonomous continuous-time perturbed dynamical system

ẋ = f(x,d), (1)

where x ∈ X ⊆ Rn is the state vector and d ∈ D is a constant and bounded disturbance. The set of possible initial
states at t = 0 is denoted X0 ⊂ X . There is some unsafe subset Xu ⊆ X that shall not be reached by the system,
given any x0∈ X 0 at time t = 0 and any d ∈ D. We assume that classical hypotheses (see, e.g., [7]) on f are satisfied
so that (1) has a unique solution x(t,x0,d) ∈ X for any given initial value x0∈ X 0 at time t = 0 and any d ∈ D.

Definition 1 The dynamical system (1) is safe if ∀x0 ∈ X0, ∀d ∈ D and ∀t > 0, x(t,x0,d) /∈ Xu.

3.2 Barrier certificates

A way to prove that (1) is safe is by the barrier certificate approach introduced in [30]. A barrier is a differentiable
function B : X → R that partitions the state space X into X− where B(x) 6 0 and X+ where B(x) > 0 such that
X0 ⊆ X− and Xu ⊆ X+. Moreover, B has to be such that ∀x0 ∈ X0, ∀d ∈ D, ∀t > 0, B(x(t,x0,d)) 6 0.

Proving that B(x(t,x0,d)) 6 0 requires an evaluation of the solution of (1) for all x0 ∈ X0 and d ∈ D. Alternatively,
[30] provides some sufficient conditions a barrier function has to satisfy to prove the safety of a dynamical system,
see Theorem 1.

Theorem 1 Consider the dynamical system (1) and the sets X , D, X0 and Xu. If there exists a function B : X → R
such that

∀x ∈X0, B(x) 6 0, (2)

∀x ∈Xu, B(x) > 0, (3)

∀x ∈ X , ∀d ∈ D,

B(x) = 0 =⇒
〈

∂B(x)

∂x
, f(x,d)

〉

< 0, (4)

then (1) is safe.

In (4) 〈., .〉 stands for the dot product in Rn. In Theorem 1, (2) and (3) ensure that X0 ⊆ X−, and Xu ⊆ X+, while
(4) states that if x is on the border between X− and X+ (i.e., B(x) = 0), then the dynamics f pushes the state back
in X− whatever the value of the disturbance d.

3.3 Parametric barrier functions

The search for a barrier B is challenging since it is over a functional space. As in [30], this paper considers barriers
belonging to a family of parametric functions (or templates) B(x,p) depending on a parameter vector p ∈ P ⊆ Rm.
Then one may search for some parameter value p such that B(x,p) satisfies (2)-(4).

If there is no p ∈ P such that B(x,p) satisfies (2)-(4), this does not mean that the system is not safe: other structures
of functions B(x,p) could provide a barrier certificate.
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4 Characterization using interval analysis

This section presents an approach to find a barrier function that fulfills the constraints of Theorem 1. These con-
straints are first reformulated to cast the design of a barrier function as a quantified constraint satisfaction problem
(QCSP) [32].

4.1 Constraint satisfaction problem

Assume that there exist some functions g0 : X → R and gu : X → R, such that

X0 = {x ∈ X | g0(x) 6 0} (5)

and
Xu = {x ∈ X | gu(x) 6 0}. (6)

Theorem 1 may be reformulated as follows.

Proposition 2 If ∃p ∈ P such that ∀x ∈ X , ∀d ∈ D

ξ (x,p,d) = (g0(x) > 0 ∨B(x,p) 6 0) (7)

∧ (gu(x) > 0 ∨B(x,p) > 0) (8)

∧
(

B(x,p) 6= 0 ∨
〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

(9)

holds true, then the dynamical system (1) is safe.

PROOF. The first component of ξ (x,p,d),

ξ0 (x,p) = (g0(x) > 0 ∨B(x,p) 6 0) (10)

may be rewritten as
ξ0 (x,p) = (g0(x) 6 0 =⇒ B(x,p) 6 0) ,

see, e.g., [19]. If ξ0 (x,p) holds true for some p ∈ P and x ∈ X , then one has either x ∈ X0 and B(x,p) 6 0,
or x /∈ X0. In both cases, (2) is satisfied. Similarly, the second component of ξ (x,p,d) representing (3) may be
rewritten as

ξu(x,p) = (gu(x) 6 0 =⇒ B(x,p) > 0) . (11)

If ξu (x,p) holds true for some p ∈ P and x ∈ X , then one has either x ∈ Xu and B(x,p) 6 0, or x /∈ Xu. In both
cases, (3) is satisfied. Now, one may rewrite the last component of t (x,p,d),

ξb(x,p,d) =

(

B(x,p) 6= 0 ∨
〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

(12)

as

ξb(x,p,d) =
(

B(x,p) = 0 =⇒
〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

, (13)

which corresponds to (4). If ∃p ∈ P such that ∀x ∈ X , ∀d ∈ D, ξ (x,p,d) holds true, then the conditions of
Theorem 1 are satisfied and (1) is safe. 2

In [30], (9) is relaxed into

ξb (x,p,d) =

(〈

∂B

∂x
(x,p), f(x,d)

〉

< 0

)

, (14)
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with the consequence of possible elimination of barrier functions that would satisfy (9) for some p but not (14). Our
aim in this paper is to design barrier functions without resorting to this relaxation by considering methods from
interval analysis [20] which allow to consider strongly nonlinear dynamics and barrier functions.

4.2 Solving the constraints

To find a valid barrier function one needs to find some p ∈ P such that B(x,p) satisfies the conditions of Proposi-
tion 2. For that purpose, the Computable Sufficient Conditions-Feasible Point Searcher (CSC-FPS) algorithm [21]
is adapted.

In what follows, we assume that X , D, and P are boxes, i.e., X = [x], D = [d], and P = [p]. CSC-FPS may also be
applied when X , D, and P consist of a union of non-overlapping boxes.

Consider some function g : Rn × Rm → Rk and some box [z] ∈ IRk. CSC-FPS is designed to determine whether

∃p ∈ [p] , ∀x ∈ [x] , g (x,p) ∈ [z] (15)

and to provide some satisfying p. We extend CSC-FPS to handle conjunctions and disjunctions of constraints and
supplement it with efficient pruning techniques involving contractors provided by interval analysis [20].

FPS branches over the parameter search box [p]. Branching is performed based on the results provided by CSC. For
a given box [p]0 ⊆ [p], CSC returns true when it manages to prove that (15) is satisfied for some p ∈ [p]0. CSC
returns false when it is able to show that there is no p ∈ [p]0 satisfying (15). CSC returns unknown in the other
cases.

In Proposition 2, ξ (x,p,d) consists of the conjunction of three terms of the form

τ (x,p,d) = (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) . (16)

For ξ0(x,p), defined in (7),
A = ]0,+∞[ and B = ]−∞, 0] ; (17)

for ξu(x,p), defined in (8),
A = ]0,+∞[ and B = ]0,+∞[ ; (18)

for ξb(x,p,d), defined in (9),
A = ]−∞, 0[ ∪ ]0,+∞[ and B = ]−∞, 0[ . (19)

To illustrate the main ideas of CSC-FPS combined with contractors, one focuses on the generic QCSP

∃p ∈ [p] , ∀x ∈ [x] , ∀d ∈ [d] , τ (x,p,d) holds true. (20)

Finding a solution for such QCSP involves three steps: validation, reduction of the parameter and state spaces, and
bisection.

4.2.1 Validation

In the validation step, one tries to prove that some vector p ∈ [p] is such that ∀x ∈ [x], ∀d ∈ [d], τ (x,p,d) holds
true. By definition of τ (x,p,d), one has to prove that

∃p ∈ [p] , ∀x ∈ [x] , ∀d ∈ [d] ,

(u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) . (21)

For that purpose, one chooses some arbitrary p ∈ [p] and evaluates the set of values u ([x] ,p) = {u (x,p) | x ∈ [x]}
and v ([x] ,p, [d]) = {v (x,p,d) | x ∈ [x],d ∈ [d]} taken by u(x,p) and v(x,p,d) for all x ∈ [x] and for all
d ∈ [d]. Outer-approximations of u ([x] ,p) and v ([x] ,p, [d]) are easily obtained using inclusion functions provided
by interval analysis.
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Definition 3 An inclusion function [f ] : IRn → IRk for a function f : Rn → Rk satisfies for all [x] ∈ IRn,

f ([x]) = {f(x) | x ∈ [x]} ⊆ [f ] ([x]) . (22)

The natural inclusion function is the simplest to obtain: all occurrences of the real variables are replaced by their in-
terval counterpart and all arithmetic operations are evaluated using interval arithmetic. More sophisticated inclusion
functions such as the centered form, or the Taylor inclusion function may also be used, see [20].

Using inclusion functions, one may evaluate whether

[u]([x],p) ⊆ A or [v]([x],p, [d]) ⊆ B holds true

for the various A and B defined in (17), (18), and (19).

Different choices can be considered for p: one can take a random point in [p], the middle, or one of the edges of [p].
Here, only the middle of [p] is considered.

4.2.2 Reduction of the parameter and state spaces

To facilitate the search for p ∈ [p] one may previously eliminate parts of [p] which may be proved not to contain
any p satisfying (21). The elimination process can be done by evaluation or by using contractors [9].

4.2.2.1 Evaluation Considering the negation of (21), one deduces that a box [p] can be eliminated, i.e., shown
not to contain any p satisfying (16), if

∀p ∈ [p], ∃x ∈ [x] , ∃d ∈ [d] ,

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (23)

If, using again inclusion functions, one is able to prove that

∃x ∈ [x] , ∃d ∈ [d] ,

[u](x, [p]) ∩ A = ∅ ∧ [v](x, [p] ,d) ∩ B = ∅ (24)

then (23) holds true and one can thus eliminate [p].

In general, [u](x, [p]) and [v](x, [p] ,d) are not degenerated intervals, i.e., are not reduced to a real value. When A
and B are half-lines, as is the case for (7) and (8), one may be able to show that (24) holds true. Nevertheless, this
will be impossible to show for (9) since in this case A = R\ {0} and [u](x, [p]) is not a degenerated interval. To show
that [u](x, [p]) ∩ A = ∅, one needs to have [u](x, [p]) = [0, 0], which is impossible in general.

4.2.2.2 Contractors Consider some function g : Rn → Rk and some set Z ⊂ Rk.

Definition 4 A contractor Cc : IRn → IRn associated to the generic constraint

c ≡ g(x) ∈ Z (25)

is a function taking a box [x] as input and returning a box Cc ([x]) satisfying

Cc ([x]) ⊆ [x] (26)

and
g ([x]) ∩ Z = g (Cc ([x])) ∩ Z. (27)
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Cc provides a box containing the set {x ∈ [x] | g(x) ∈ Z} of solutions of g(x) ∈ Z included in [x]: (26) ensures that
the returned box is included in [x] and (27) ensures that no solution of g(x) ∈ Z in [x] is lost.

Example 1 Consider the constraint
c ≡ x1 exp (−x2) ∈ [4,∞[ (28)

and the initial box [x] = ([x1] , [x2])
T = ([0.1, 10] , [0.1, 10])T. From (28), one deduces that

x1 ∈ ([4,∞[ / exp (− [x2])) (29)

Moreover, since one also has x1 ∈ [x1], one deduces that x1 ∈ C1 ([x]), with

C1 ([x]) = ([4,∞[ / exp (− [x2])) ∩ [x1] (30)

Similarly one has x2 ∈ C2 ([x]), with

C2 ([x]) = − log ([4,∞[ / [x1]) ∩ [x2] (31)

A contractor Cc associated to c is then

Cc ([x]) = (C1 ([x]) , C2 ([x]))T . (32)

This contractor for [x] = ([0.1, 10] , [0.1, 10])
T

provides C1 ([x]) = ([0.1165, 10] , [0.1, 0.9163])
T
. This contractor cor-

responds to the generic forward-backward contractor, also called HC4-revise in [9]. It may be simply implemented,
e.g., using IBEX as follows.

Variable x1,x2;
NumConstraint c(x1, x2, x1*exp(-x2) >= 4.0);
CtcFwdBwd contractor(c);
IntervalVector x(2);
x[0]=Interval(0.1,10);
x[1]=Interval(0.1,10);
contractor.contract(x);

Various contractors have been proposed in the literature, e.g., the forward-backward contractor, the contractor by
parallel linearization, the Newton contractor, the Krawczyk contractor, etc. [20]. Most of them are available, e.g., in
IBEX. Example 1 shows that a contractor may be easily implemented from the expression of a generic constraint.

Consider now two functions g1 : Rn → Rk1 and g2 : Rn → Rk2 , two sets Z1 ⊂ Rk1 and Z2 ⊂ Rk2 , and the associated
constraints c1 ≡ g1(x) ∈ Z1 and c2 ≡ g2(x) ∈ Z2. Assume that two contractors Cc1 and Cc2 are available for c1 and
c2. A contractor Cc1∧c2 for the conjunction c1 ∧ c2 of c1 and c2 may be obtained as

Cc1∧c2([x]) = Cc1([x]) ∩ Cc2([x]), (33)

or by composition of contractors
Cc1∧c2([x]) = Cc2(Cc1([x])). (34)

A contractor Cc1∨c2 for the disjunction c1 ∨ c2 of c1 and c2 may be obtained as follows

Cc1∨c2([x]) = 2{Cc1([x]) ∪ Cc2([x])}, (35)

see [9], with 2{·} the interval hull of a set.

Using a contractor Cc for (25), one is able to characterize some [x̃] ⊂ [x] such that ∀x ∈ [x̃], g(x) /∈ Z.

Proposition 5 Consider a box [x], the elementary constraint (25), and the contracted box Cc ([x]) ⊆ [x]. Then,

∀x ∈ [x] \Cc ([x]) , one has g(x) /∈ Z, (36)

where [x] \Cc ([x]) denotes the box [x] deprived of Cc ([x]), which is not necessarily a box.

7



PROOF. Consider x ∈ [x] \Cc ([x]) and assume that g(x) ∈ Z. Since g(x) ∈ Z and x ∈ [x], one should have
x ∈ Cc ([x]), according to (27), which contradicts the fact that x ∈ [x] \Cc ([x]). 2

Proposition 5 can be used to eliminate [p] or a part of [p] for which it is not possible to find any p satisfying (21).
Consider the constraint

τ ≡ (u(x,p) ∈ A) ∨ (v(x,p,d) ∈ B) (37)

and a contractor Cτ for this constraint. It involves elementary contractors for the components of the disjunction in
(37), combined as in (35). For the boxes [x], [p], and [d], one gets

(

[x]
′
, [p]

′
, [d]

′

)

= Cτ
(

[x] , [p] , [d]
)

, (38)

where [x]′, [p]′, and [d]′ are the contracted boxes. Three cases may then be considered.

(1) If [p] \ [p]′ 6= ∅, then ∀p ∈ [p] \[p]′, ∀x ∈ [x], ∀d ∈ [d],

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (39)

and there is no p ∈ [p] \ [p]
′
such that (37) holds true for all x ∈ [x] and for all d ∈ [d]. Consequently, the

search space for p can be reduced to [p]
′
, see Figure 1 (a).

(2) If [x] \ [x]′ 6= ∅ then, from Proposition 5, one has ∀p ∈[p], ∀x ∈[x] \[x]′, ∀d ∈[d],

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (40)

and there is no p ∈ [p] such that (37) holds true for all x ∈ [x], see Figure 1 (b).
(3) If [d] \ [d]′ 6= ∅, then ∀p ∈ [p], ∀x ∈ [x], ∀d ∈ [d] \ [d]′,

u(x,p) /∈ A ∧ v(x,p,d) /∈ B, (41)

and there is no p ∈ [p] such that (37) holds true for all d ∈ [d], see Figure 1 (b).

One can reduce the size of the sets for the state x and the disturbance d on which (37) has to be verified using the
contraction on the negation of this constraint. Consider the negation τ of τ

τ ≡
(

u(x,p) ∈ A
)

∧
(

v(x,p,d) ∈ B
)

(42)

and a contractor Cτ for this constraint. Assume that after applying Cτ for the boxes [x], [p], and [d], one gets

(

[x] ”, [p] ”, [d]”
)

= Cτ
(

[x] , [p] , [d]
)

. (43)

From Proposition 5, one knows that

∀ (x,p,d) ∈ ([x]× [p]× [d]) \ ([x] ”× [p] ”× [d] ”) ,

u(x,p) ∈ A ∨ v(x,p,d) ∈ B. (44)

Indeed, if [p] ” = [p], one can focus on the search for some p ∈ [p] satisfying (37) by considering only [x]” × [d] ”,
since for all (x,d) ∈ ([x]× [d]) \ ([x] ”× [d] ”), (37) is satisfied for all p ∈ [p], see Figure 2 (a).

Now, if [p] ” 6= [p], then any p ∈ [p] \ [p] ” will satisfy (37) for all (x,d) ∈ ([x]× [d]), see Figure 2 (b).
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[p]

[x] d], [

[p]’

[x] d], [’ ’

[p]

[x] d], [

[p]’

[x] d], [’ ’

( )a

( )b

p p

Fig. 1. Contractions using Cτ ; the set for which (37) is satisfied is in gray; (a) [p] \ [p]′ 6= ∅ and the search space for satisfying
p can be reduced to [p]′ ; (b) [x]′ 6= [x] or [d]′ 6= [d], it is thus not possible to find some p ∈ [p] such that (37) is satisfied for
all x ∈ [x] and all d ∈ [d].

[p]

[x] d], [

[p]’’

[x] d], [’’ ’’

( )b

p p

[p]

[x] d], [

[p]’’

[x] d], [’’ ’’

( )a

p p

Fig. 2. Contractions using Cτ ; the set for which (42) is satisfied is in white; (a) [x]” 6= [x] and/or [d]” 6= [d] and one has only
to find some suitable p ∈ [p] such that (37) is satisfied for all x ∈ [x] ” and all d ∈ [d] ”; (b) [p]” 6= [p], one may choose any
p ∈ [p] \ [p] ” (for example the value of p indicated in red) and (37) will hold true for all (x,d) ∈ ([x]× [d]).

4.2.3 Bisection

One is unable to decide whether some p ∈ [p] satisfies (21) when

[u]([x],p) ∩ A 6= ∅ and [u]([x],p) * A (45)
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or when
[v]([x],p, [d]) ∩ B 6= ∅ and [v]([x],p, [d]) * B. (46)

This situation occurs in two cases. First, when the selected p does not satisfy (21) for all x ∈ [x] and for all d ∈ [d].
Second, when inclusion functions introduce some pessimism, i.e., they provide an over-approximation of the range
of functions over intervals.

To address both cases, one may perform bisections of [x] × [d] and try to verify (21) on the resulting sub-boxes for
the same p. Bisection allows to isolate subsets of [x] × [d] on which one may show that (23) holds true. Bisections
also reduce pessimism, and may thus facilitate the verification of (21). The bisection of [x]× [d] is performed within
CSC as long as the width of the bisected boxes are larger than some εx > 0. When CSC is unable to prove (21) or
(23) and when all bisected boxes are smaller than εx, CSC returns unknown.

FPS performs similar bisections on [p] and stops when the width of all bisected boxes are smaller than εp > 0.

4.2.4 Composition of constraints

To prove the safety of the dynamical system (1), Proposition 2 shows that one has to find some p ∈ [p] such that
∀x ∈ [x], ∀d ∈ [d], ξ (x,p,d) holds true. Since ξ (x,p,d) consists of the conjunction of three elementary constraints of
the form (20), validation requires the verification of (21) for the same p considering (7), (8), and (9) simultaneously.
Invalidation may be performed as soon as one is able to prove that one of the constraints (7), (8), or (9) does not
hold true using (23). Contraction may benefit from the conjunction or disjunction of these constraints, as introduced
in (34) and (35).

4.3 CSC-FPS algorithms with contractors

The CSC-FPS algorithm, presented in [21] is supplemented with the contractors introduced in Section 4.2 to improve
its efficiency. No specific contractor is indicated in this section. Nevertheless, the forward-backward contractor used
in the experimental part provides good results and is provided directly from the explicit expression of the constraint
using tools such as IBEX.

FPS, described in Algorithm 1, searches for some satisfying p ∈ [p], i.e., some p ∈ [p] such that ξ (x,p,d) introduced
in Proposition 2 holds true for all x ∈ [x] and all d ∈ [d]. This may require to bisect [p] into subboxes stored in a
queue Q, which initial content is [p].

A subbox [p]0 ⊆ [p] is extracted from Q at Line 6. A reduction of [p]0 is then performed at Line 8 to eliminate
values of p ∈ [p]0 which cannot be satisfying. To facilitate contraction, e.g., with the classical forward-backward
contractor, specific x ∈ [x] are chosen; here only the midpoint m ([x]) of [x] is considered.

At Line 9, if [p]
′

0 is empty, the next box in Q has to be explored. Otherwise, at Lines 13-15, CSC is called for each

constraint t0, tu, and tb to verify whether m
(

[p]
′

0

)

, the midpoint of [p]
′

0, is satisfying. When all calls of CSC return

true at Line 17, a barrier function with parameter m
(

[p]
′

0

)

is found. When one of the calls of CSC returns false at

Line 21, [p]
′

0 is proved not to contain any satisfying p. In all other cases, when w([p]
′

0), the width of [p]
′

0, is larger

than εp, [p]
′

0 is bisected and the resulting subboxes are stored in Q, see Lines 24-28. When [p]
′

0 is too small, even
if one was not able to decide whether it contains a satisfying p, it is not further considered to ensure termination
of FPS in finite time. The price to be paid in such situation is the impossibility to state whether the initial box [p]
contains some satisfying p. This is done by setting flag to unknown at Line 31. Finally, when Q = ∅, no satisfying p
has been found. Whether [p] may however contain some satisfying p in an unexplored subbox [p]

′

0 depends on the
value of flag.

CSC, described in Algorithm 2, determines whether m([p]) satisfies (16) by showing that τ (x,m([p]),d) holds true
for all x ∈ [x] and all d ∈ [d]. Alternatively, CSC may prove that there is no p ∈ [p] satisfying (16) for all x ∈ [x]
and all d ∈ [d].

For that purpose, due to the pessimism of inclusion functions, it may be necessary to bisect [x] × [d] in subboxes
stored in a stack S initialized with [x]× [d].
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Algorithm 1 FPS

1: procedure FPS(ξ0, ξu, ξb, [p],[x], [d])
2: ⊲ ξ0, ξu, and ξb associated to (7), (8), and (9)
3: queue Q := [p]
4: flag := true

5: while Q 6= ∅ do
6: [p]

0
:= dequeue(Q)

7: ⊲ Reduction of [p]
0
using (34), (38), and (39)

8: [p]′
0
:= Cξ0∧ξu(m([x]), [p]

0
)

9: if [p]′
0
= ∅ then

10: continue ⊲ There is no satisfying p ∈ [p]
0

11: end if
12: ⊲ Call CSC for each constraint (7), (8), and (9)
13: r0:= CSC(ξ0,[p]

′

0
, [x],[d])

14: ru:= CSC(ξu,[p]
′

0
, [x],[d])

15: rb:= CSC(ξb,[p]
′

0
, [x],[d])

16: ⊲ m([p]′
0
) is satisfying if all CSCs hold true

17: if (r0=true)∧(ru=true)∧(rb=true) then
18: return(true,m([p]′

0
))

19: end if
20: ⊲ no solution in [p]′0 if one CSC holds false
21: if (r0=false)∨(ru=false)∨(rb=false) then
22: continue
23: end if
24: if w([p]′

0
) > εp then

25: ⊲ no conclusion for [p]′0 and large enough to be bisected
26: ([p]

1
, [p]

2
):=bisect([p]

0

′)
27: enqueue([p]

1
) in Q

28: enqueue([p]
2
) in Q

29: else
30: ⊲ no conclusion for [p]′0 and too small to be bisected
31: flag:=unknown

32: end if
33: end while
34: if flag=unknown then
35: ⊲ a small [p]′0 was not explored, impossible to state whether there is no valid solution in [p]
36: return(unknown,∅)
37: else
38: return(false,∅) ⊲ no valid solution in [p]
39: end if
40: end procedure

For each subbox [x]0 × [d]0 ⊆ [x]× [d], CSC determines at Line 7 whether m([p]0) is satisfying. Alternatively, CSC
tries to prove that [p]0 does not contain any satisfying p for all (x,d) ∈ [x]0 × [d]0. This is done in two steps. First,
at Line 11, one applies (24) considering some (x,d) ∈ [x]0 × [d]0, here taken as the midpoint of [x]0 × [d]0. Second,
one applies Proposition 5 at Lines 15-17 using the result of a contractor for τ , as described in (40) and (41).

When one is not able to conclude and provided that w([x]0 × [d]0) is larger than εx, some parts of [x]0 × [d]0 for
which m([p]0) is satisfying are removed at Line 23, e.g., using the forward-backward contractor, before performing a
bisection and storing the resulting subboxes in S. When w([x]0 × [d]0) is less than εx, to ensure completion of CSC
in a finite time, [x]0 × [d]0 is not further explored. The price to be paid is an impossibility to determine whether
m([p]0) is satisfying for all (x,d) ∈ [x]0 × [d]0. This is indicated by setting flag to unknown at Line 30. Nevertheless,
one may still prove that [p]0 does not contain any satisfying p considering other subboxes of [x]× [d].

5 Examples

This section presents experiments for the characterization of barrier functions. The considered dynamical systems
are described first before providing numerical results, comparison of different approaches and discussions.
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Algorithm 2 CSC

1: procedure CSC(τ ,[p]
0
,[x],[d]) ⊲ τ is of the form (16)

2: stack S := [x]× [d]
3: flag:=true

4: while S 6= ∅ do
5: [x]

0
× [d]

0
:=pop(S)

6: ⊲ Validation of m([p]
0
) using (21)

7: if [u]([x]
0
, m([p]

0
)) ⊆ A∨[v]([x]

0
, m([p]

0
), [d]

0
) ⊆ B then

8: continue
9: end if
10: ⊲ Elimination of [p]

0
using (24)

11: if [u]
(

m
(

[x]
0

)

, [p]
0

)

∩ A = ∅ ∧ [v]
(

m
(

[x]
0

)

, [p]
0
,m

(

[d]
0

))

∩ B = ∅ then
12: return(false)
13: end if
14: ⊲ Reduction of [p]

0
using (38)

15: ([x]′
0
, [p]′

0
, [d]′

0
) := Cτ ([x]0, [p]0, [d]0)

16: ⊲ Prove with Proposition 5 that [p]
0
does not contain any satisfying p

17: if [x]′
0
6= [x]

0
∨ [d]′

0
6= [d]

0
then

18: return(false)
19: end if
20: ⊲ [x]

0
× [d]

0
undetermined and large enough to be bisected

21: if (w([x]
0
× [d]

0
) > εx) then

22: ⊲ Reduction of the state space using (43) and (44)
23: ([x]′′

0
, [d]′′

0
) := Cτ ([x]0,m([p]

0
), [d]

0
)

24: ⊲ Bisection
25: ([x]

1
× [d]

1
, [x]

2
× [d]

2
):=bisect([x]′′

0
× [d]′′

0
)

26: push([x]
1
× [d]

1
) in S

27: push([x]
2
× [d]

2
) in S

28: else
29: ⊲ [x]

0
× [d]

0
too small to be further explored

30: flag:=unknown

31: end if

32: end while
33: return(flag)
34: end procedure

5.1 Dynamical system descriptions

For the following examples, one provides the dynamics of the system, the constraints g0 and gu for the definition
of the sets X0 and Xu, the state space [x], and the parametric expression of the barrier function. In all cases, the
parameter space is chosen as [p] = [−10, 10]m where m is the number of parameters.

Example 2 Consider the system
(

ẋ1

ẋ2

)

=

(

x1 + x2

x1x2 − 0.5x2
2

)

with g0(x) = (x1+1.25)2+(x2−1.25)2−0.05, gu(x) = (x1+2.5)2+(x2−0.8)2−0.05, and [x] = [−103, 0]×[−103, 103].

The parametric barrier function is B(x,p) = p1p2(x0+p3)
(x0+p3)2+p2

2

+ x1 + p4.

Example 3 Consider the system from [2]

(

ẋ1

ẋ2

)

=

(

−x1 + x1x2

−x2

)

with g0(x) = (x1 − 1.125)2 + (x2 − 0.625)2 − 0.0125, gu(x) = (x1 − 0.875)2 + (x2 − 0.125)2 − 0.0125, and [x] =
[−100, 100]× [−100, 100]. The parametric barrier function used is B(x,p) = ln(p1x1)− ln(x2) + p2x2 + p3.

Example 4 Consider the system from [24]
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(

ẋ1

ẋ2

)

=





x2

− x1+x2√
1+(x1+x2)2





with g0(x) = x1
2+x2

2−0.5, gu(x) = (x1−3.5)2+(x2−0.5)2−0.5 , and [x] = [−103, 103]× [−100, 100]. A quadratic
parametric barrier function is chosen B(x,p) = p1x

2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6.

Example 5 Consider the disturbed system from [30]

(

ẋ1

ẋ2

)

=

(

x2

−x1 +
d
3x

3
1 − x2

)

with g0(x) = (x1 − 1.5)2 + x2
2 − 0.25, gu(x) = (x1 + 0.8)2 + (x2 + 1)2 − 0.25, [x] = [−100, 100]× [−10, 10], and

d ∈ [0.9, 1.1]. The parametric barrier function B(x,p) = p1x
2
1 + p2x

2
2 + p3x1x2 + p4x1 + p5x2 + p6 is considered.

Example 6 Consider the system with a limit cycle

(

ẋ1

ẋ2

)

=

(

x2 + (1 − x2
1 − x2

2)x1 + ln(x2
1 + 1)

−x1 + (1− x2
1 − x2

2)x2 + ln(x2
2 + 1)

)

with g0(x) = (x1 − 1)2+(x2 +1.5)2− 0.05, gu(x) = (x1 +0.6)+ (x2 − 1)2− 0.05, and [x] = [−103, 103]× [−103, 103].

The parametric barrier function used is B(x,p) =
(

x1+p1

p2

)2

+
(

x2+p3

p4

)2

− 1.

Example 7 Consider the Lorenz system from [40]









ẋ1

ẋ2

ẋ3









=









10(x2 − x1)

x1(28− x3)− x2

x1x2 − 8
3x3









with g0(x) = (x1+14.5)2+(x2+14.5)2+(x3−12.5)2−0.25, gu(x) = (x1+16.5)2+(x2+14.5)2+(x3−2.5)2−0.25, and
[x] = [−20, 20]× [−20, 0]× [−20, 20]. The considered parametric barrier function is B(x,p) = p1x

2
1+p2x1+p3x3+p4.

Example 8 Consider the system from [23]

























ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

























=

























−x1 + 4x2 − 6x3x4

−x1 − x2 + x3
5

x1x4 − x3 + x4x6

x1x3 + x3x6 − x3
4

−2x3
2 − x5 + x6

−3x3x4 − x3
5 − x6

























with g0(x) = (x1 − 3.05)2 + (x2 − 3.05)2 + (x3 − 3.05)2 + (x4 − 3.05)2 + (x5 − 3.05)2 + (x6 − 3.05)2 − 0.0001,
gu(x) = (x1 − 7.05)2 + (x2 − 3.05)2 + (x3 − 7.05)2 + (x4 − 7.05)2 + (x5 − 7.05)2 + (x6 − 7.05)2 − 0.0001, and
[x] = [0, 10] × [0, 10] × [2, 10] × [0, 10] × [0, 10] × [0, 10]. The considered parametric barrier function is B(x,p) =
p1x

2
1 + p2x

4
2 + p3x

2
3 + p4x

2
4 + p5x

4
5 + p6x

2
6 + p7.

5.2 Experimental conditions and results

CSC-FPS, presented in Section 4, has been implemented using the IBEX library [3, 9]. The selection of candidate
barrier functions is performed choosing polynomials with increasing degree, except for Examples 2, 3, and 5, where
parametric functions taken from [1, 2] are considered.
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Fig. 3. Results for Example 2.
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Fig. 4. Results for Example 5 with various values of the disturbance d.
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Fig. 5. Results for Example 6.

For each example, the computing time to get a valid barrier function and the number of bisections of the search
box [p] are provided. Table 1 summarizes the results for the versions of CSC-FPS with and without contractors.
As in [21], we choose εx = 10−1 and εp = 10−5. Computations were done on an Intel core 1.7 GHz processor with
8 GB of RAM. If after 30 minutes of computations no valid barrier function has been found, the search is stopped.
This is denoted by T.O. (time out) in Table 1. Moreover, for Examples 2, 5, and 6, graphical representation of the
computed barrier functions are provided. In Figures 3, 4, and 5, X0 is in green, Xu is in red, the bold line is the
barrier function and some trajectories starting from X0 are also represented.

The results in Table 1 show the importance of contractors which are beneficial in all cases. Thanks to contractors,
valid barrier functions were obtained for all examples, which is not the case employing the original version of CSC-
FPS proposed in [21]. In theory, both FPS and CSC are of exponential complexity in the dimension m of the
parameter space and n of the state space. In practice, contractors allow, on the considered examples, to get solutions
in a reasonable amount of time, even for systems with a larger number of states and parameters.

The search for barrier functions using the relaxed version (14) of the constraint (12) as in [30], has also been
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Table 1
Results of CSC-FPS without and with contractors

Without contr. With contr.

Example n m time bisect. time bisect.

1 2 4 36s 4520 16s 4553

2 2 3 T.O. / 1s 159

3 2 6 1133s 20388 1s 6

4 2 6 253s 14733 7s 435

5 2 4 T.O. / 98s 4072

6 3 4 167s 1753 21s 47

7 6 7 697s 67600 1s 261

performed using the version of our algorithms with contractors considering the same parametric barrier functions.
We were not able to find a valid barrier function in less than 30 minutes. This shows the detrimental effect of the
relaxation (14) on the search technique.

Some examples were also addressed using RSolver, which is a tool to solve some classes of QCSP [32]. Nevertheless,
this requires some modifications of the examples, since RSolver does not address dynamics or constraints involv-
ing divisions [33]. Moreover, the type of constraints processed by RSolver, for problems such as (20), allows only
parametric barrier functions that are linear in the parameters. Outer-approximating boxes for the initial and the
unsafe regions X0, Xu defined by g0 and gu are given to Rsolver. As a consequence, Examples 2, 3 and 4 could
not be considered. Only Examples 5, 6, and 7 were tested by Rsolver, which was able to find a satisfying barrier
function only for Lorenz in less than 1s. RSolver was unable to find a solution for Examples 5 and 6. Rsolver is well
designed for problems with parametric barriers linear in the parameters, but has difficulties for non-linear problem
and non-convex constraints such as (12).

Table 2 provides results obtained using dReal [15], which is sat-modulo-theory solver [6], based on interval analysis
tools to handle first-order logic formulas over the real numbers. In the tested version (3.15.11.03) of dReal, the
support for QCSP such as (20) does not benefit from contractors. A randomization heuristic is used in the search of
satisfying parameter vectors. This leads to results obtained in a amount of time varying with the runs. A precision
parameter of 0.001 (a tentative to have a fair comparison with respect to values of εX and εP used in our algorithm)
was employed. Due to the non-deterministic behavior of dReal, each example has be run 10 times and we report
minimal and maximal values for the execution time and the number of bisections. When no solution is found in less
than 30 minutes, the value T.O. (time out) is indicated.

Table 2 shows that dReal can handle all considered problems despite the absence of contractors. In particular, one
observes that randomization speed up the search for valid parameters, as for example, in case of examples 2, 5, 6 and
7. Nevertheless, as a consequence, the overall algorithm has a varying execution time. The absence of contractors
may increase the parameter search time, as for example, in the case of examples 1, 3, and 4. Combining randomized
methods and contractor programming should be very beneficial to efficiently solve QCSP.

Table 2
Results of dReal for 10 executions with precision of 0.001

Time (in s) Bisections

Example Min Max Min Max

1 285.1 T.O. 31337 /

2 0.06 0.19 35 94

3 113.3 T.O. 61 /

4 533.3 T.O. 51 /

5 0.05 0.06 34 39

6 0.08 0.08 54 55

7 0.4 0.4 107 109
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6 Conclusion

This paper presents a new method to find parametric barrier functions for nonlinear continuous-time perturbed
dynamical systems. The proposed technique addresses the design of quite general barrier functions for continuous-
time systems described by nonlinear dynamics that are also general. The search for barrier functions is formulated
as an interval quantified constraint satisfaction problem. A branch-and-prune algorithm proposed in [21] has been
supplemented with contractors to address this problem. Contractors are instrumental in solving problems with large
number of parameters. The proposed approach can thus find barrier functions for a large class of possibly perturbed
dynamical systems.

Alternative techniques based on RSolver or dReal may be significantly more efficient for some specific classes of
problems, e.g., where the parameters appear linearly in the parametric barrier functions. Combining ideas from
RSolver, dReal and our approach may be very useful to further improve the global efficiency of barrier function
characterization.

Future work will be dedicated to the search for the class of parametric barrier functions to consider. This may be
done by exploring a library of candidate barrier functions. In our approach rejection of a candidate function occurs
mainly after a timeout. Even if contractors aiming at eliminating some parts of the parameter space were defined,
their efficiency is limited. Better contractors for that purpose may be very helpful.

An other future research direction is to extend the proposed method to hybrid systems as done in [30], i.e., to
consider a set of quantified constraints for each location of an hybrid automaton and the constraints associated to
the transitions.
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[17] Éric Goubault, Jacques-Henri Jourdan, Sylvie Putot, and Sriram Sankaranarayanan. Finding non-polynomial positive invariants
and lyapunov functions for polynomial systems through darboux polynomials. In American Control Conference, pages 3571–3578,
2014.

[18] Sumit Gulwani and Ashish Tiwari. Constraint-based approach for analysis of hybrid systems. In Computer Aided Verification, pages
190–203. Springer, 2008.

[19] Michael Huth. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, 2004.

[20] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied Interval Analysis. Springer, 2001.
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