k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth

Adrian Kosowski 1, 2 Bi Li 3, 4 Nicolas Nisse 4 Karol Suchan 5, 6
2 GANG - Networks, Graphs and Algorithms
LIAFA - Laboratoire d'informatique Algorithmique : Fondements et Applications, Inria Paris-Rocquencourt
4 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : Cops and robber games, introduced by Winkler and Nowakowski [41] and independently defined by Quilliot [43], concern a team of cops that must capture a robber moving in a graph. We consider the class of k-chordal graphs, i.e., graphs with no induced (chordless) cycle of length greater than k, k ≥ 3. We prove that k − 1 cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new structural decomposition for a graph class including k-chordal graphs. We present a polynomial-time algorithm that, given a graph G and k ≥ 3, either returns an induced cycle larger than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most k − 1 vertices. This allows us to prove that any k-chordal graph with maximum degree ∆ has treewidth at most (k −1)(∆ −1) +2, improving the O(∆ (∆ −1) k−3) bound of Bodlaender and Thilikos (1997). Moreover, any graph admitting such a tree-decomposition has small hyperbolicity. As an application, for any n-vertex graph admitting such a tree-decomposition, we propose a compact routing scheme using routing tables, addresses and headers of size O(k log ∆ + log n) bits and achieving an additive stretch of O(k log ∆). As far as we know, this is the first routing scheme with O(k log ∆ + log n)-routing tables and small additive stretch for k-chordal graphs.
Type de document :
Article dans une revue
Algorithmica, Springer Verlag, 2015, 72 (3), pp.758-777
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

Contributeur : Nicolas Nisse <>
Soumis le : samedi 13 juin 2015 - 10:51:25
Dernière modification le : vendredi 4 janvier 2019 - 17:33:21
Document(s) archivé(s) le : mardi 25 avril 2017 - 07:51:34


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01163494, version 1


Adrian Kosowski, Bi Li, Nicolas Nisse, Karol Suchan. k-Chordal Graphs: from Cops and Robber to Compact Routing via Treewidth. Algorithmica, Springer Verlag, 2015, 72 (3), pp.758-777. 〈hal-01163494〉



Consultations de la notice


Téléchargements de fichiers