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Abstract

This paper presents a scheduling model for computer music
systems. We give an overview of planning and scheduling
issues in computer-aided music creation and rendering, and
propose strategies for executing actions and computations in
music composition or performance contexts.

Introduction

It is well known that the notion of scheduling can imply dif-
ferent levels and complexity in planning tasks and sharing
resources (Lawler et al. 1993). Minimizing the resources and
optimizing the timing of a process requires a strategy to de-
termine the best ordering of tasks, and every task or comput-
ing instruction may itself require a careful planning of oper-
ations. In this paper we highlight some specificities of the
planning and scheduling processes involved in a computer
music application.

Music is a prolific field for computer systems and domain-
specific programming environments. Many of them have
been developed to support composition and other interac-
tive tasks related to music writing and performance (Dan-
nenberg, Desain, and Honing 1997). Therefore, a variety
of applications and computing paradigms exist within com-
puter music environments, implying different perspectives
and concerns regarding the notion of scheduling.

We consider a particular subset of computer music sys-
tems dedicated to computer-aided composition (Assayag
1998). These systems focus on the production and transfor-
mation of musical structures, which can be read as scores
or rendered by audio players or synthesizers. In computer-
aided composition systems the planning (generation and or-
dering of musical actions) and the execution (or “rendering”)
are usually two separate processes which operate sequen-
tially. In this context real-time constraints only concern the
execution phase. In the planning phase, musical data can be
computed following simple best-effort strategies.

Other types of musical systems are more oriented towards
interaction, and process events and audio streams in real-
time during music performances (Puckette 1991). In these
systems the musical rendering is the output of periodic com-
putations driven by interruptions or callbacks from audio
drivers or external systems, which results are produced in
bounded and minimal time intervals. Usually in this case,

preliminary planning is very basic and complex temporal
scenarios can hardly be developed.

Between these two archetypal cases, a number of current
projects and software are challenged by the joint manage-
ment of real-time interaction and the planning of musical
structures organised on the longer term (Echeveste et al.
2013; Agostini and Ghisi 2013; Bresson and Giavitto 2014).

In this paper we describe the characteristics and design
of a scheduling engine for computer music systems con-
forming with both compositional applications (i.e. static
and independent planning and execution processes) and dy-
namic/interactive situations (where planning operations oc-
cur continually and concurrently with the execution). We in-
troduce a two-fold representation connecting the low-level
sequence of actions and the higher-level musical structures
involved in score editing and rendering. We successively de-
scribe the score planning and scheduling models, and show
how they can be made dynamic, allowing planning opera-
tions to be part of the execution process.

Score Representations and Planning

The score is a central notion in music composition, consid-
ered both as a musical object and as a working environment
for composers (see Figure 1). During the process of ren-

Figure 1: Example of a traditional score.

dering, it is reduced to a sequence of timed actions (notes
and other instructions). This process is performed mentally
and naturally by musicians interpreting a score, but it has
to be carefully designed in an computer rendering system.
A planning algorithm (or planner) must translate the score
into this sequence of actions, by mapping the musical data
(pitch, dates etc.) to rendering primitives (functions produc-
ing sound from the data).

As contemporary music scores usually include varied
kinds of musical data and actions (e.g. sounds, gesture no-
tations, automations for controllers etc. — see Figure 2), the
planning strategy must be designed with open and generic
representations of both data and actions.
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Figure 2: Heterogeneous musical data and controls in a score
— extract from Nachleben by J. Blondeau (2014).

Planning Model

Let P (the plan) be a list of actions containing rendering op-
erations (e.g. instructions to the audio system, transmission
of MIDI' messages, or any kind of user-defined actions).
Each element in P is an action a : < t%,id®, f* > where:

e {%is a time-stamp,
e ¢d“ is a unique identifier,
e f?is a function to execute.

P is a low-level representation optimized for scheduling
the rendering process. It must be updated at every modifica-
tion of the score occurring in the system (for instance from
the score editing front-end) and must remain sorted by in-
creasing time-stamps. Three main operations are allowed:

o schedule(P,a) = inserts a at the adequate position in P,
e unschedule(P,a) = removes a from P,

e reschedule(P,a,t") = changes the position of a in P.

Hierarchical Representation

Composers or compositional processes running in a
computer-aided composition environment manipulate musi-
cal objects with a high degree of structure and hierarchy. A
note for instance, which can be considered the minimal spec-
ification unit of a musical score, requires at least two distinct
actions to be rendered via a MIDI synthesizer: a key-on, and
a key-off action. The key-on action must be scheduled at the
actual time of the note, and the key-off at the time + du-
ration of the note. Between these two actions, continuous
controllers can also be transmitted to specify the variation
of some parameters such as the volume, pitch bending, or
other effects implemented in the synthesizer.

One musical object is therefore interpreted as a set of ac-
tions. Nevertheless, these actions need to be gathered to-
gether in some way in order to ease musical manipulations
(a time modification of the note may require the whole set
of corresponding actions to be rescheduled). Following the

'MIDI (Musical Instrument Digital Interface) is a standard pro-
tocol and file format for transferring scores and instructions be-
tween musical software and digital instruments. MIDI messages
can be seen as instructions sent to external synthesizers (play/stop
note, set volume or effect parameters, etc.)

same principle, higher-level musical objects aggregate other
objects (e.g. a chord gathers several simultaneous notes, a
sequence gathers a number of chords under a common time
referential) and a hierarchy of musical objects emerges. Hi-
erarchical structures are therefore natural representations for
time structures in music (Barbar, Desainte-Catherine, and
Miniussi 1993).2

The planning model we propose is based on this hierarchi-
cal conception, where every musical object has a container
and/or a set of children objects. It allows to maintain a cor-
respondence between arbitrarily complex structures manip-
ulated at the musical level and the linear sequence of timed-
actions in P.

We consider a musical structure S: < t9,id% C° >
where:

o 9 is a time-stamp relative to the container of .S,
e id® is a unique hierarchical identifier,
e (% is alist of children objects.

The hierarchical identifiers are constructed by appending
a local unique identifier ¢ to the container’s id:

Sx € C% — idSx =id®v 4

Figure 3 shows a graphical representation of a structure .S
with the following structure:

S =<0,O,[51752}>

S1 =<t1,1,[81.1,51.2] >

So =<t,2,0 >

Sii =<ti1,1.1,[S1.1.1,511.2,51.1.3] >
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Figure 3: Example of a hierarchical musical structure and
conversion to a plan (timed list of actions). S is a sequence
structured as a 3-levels hierarchy (sequence/chords/notes).
Sy is a sequence of 3 actions (e.g. parameter changes in a
synthesizer’s effect controller).

2Similar models have been proposed as well as in other do-
mains, see for instance (Balaban and Murray 1998).



We call A” is a list of actions a; directly related to a struc-
ture S (not including the ones corresponding to its children).
A® must be specified by the system designer, depending on
the type and value of S.

The planner retrieves the set of actions AS correspond-
ing to a hierarchical musical structure S through a recursive
traversal of the children tree C*°:

P = AS = append(A?, U AS)) | AP =)
S;eCS

In this process for each a; =< t%,id%, f*% > € ASi

e The functions f/ depend on the type and value of S; and
are independent from the planning and scheduling model.
Their determination is the main task of the system pro-
grammer using this model.

e The time-stamps ¢*/ of the actions must be expressed
as absolute time values in P. They can be partially de-
rived from the hierarchy of the top-level structure S
for instance, the absolute time of S;; in Figure 3 is
9t =ty 143
The specific properties of .S; may also be taken into ac-
count to determine t%/ for a; € ASi; for instance to a
“note” structure N of duration d”¥ correspond two actions
respectively at times ¢V and (tV 4 d™).

e The action identifiers id® are automatically derived
from id:. For instance, three actions directly related to a
structure with identifier id: = a.b will be assigned iden-
tifiers id** = a.b.1, id*? = a.b.2 and id*3 = a.b.3. This
correspondence allows to maintain and retrieve informa-
tion about the musical structure and hierarchy of S from
the planning and scheduling processes.

The basic scheduling operations mentioned previously
can then be applied to any musical structure S:

o schedule(P,S) = schedule(P,a) ¥V a € AS
o unschedule(P,S) = unschedule(P,a) ¥ a € AS

e reschedule(P, S,t') = reschedule(P,a,t'*) ¥V a € AS
with /% = t% + (¢’ — t9)

Score Rendering and Scheduling

A scheduler must execute the plan P derived from the score
(or more exactly, from the musical structure represented in
the score), executing all actions a; € P on due time. This
execution of P can be implemented using standard schedul-
ing and optimization strategies.

Basic Execution model

We note a; = P/[j] the action at position j in P (j € N*)
and we define a virtual “cursor” position 57 so that a;p =
P[jT] is the next action in P that the scheduler will execute.

At all time ¢, as P is sorted by increasing t**, we will verify
that:

3In the same example, notice for instance that the note’s relative
time-tags t°1-i7 = 0 since these objects are synchronized with
their respective containers (the chords S1.1 and Si.2).

jP =min(i € Nt | t% >1¢).
The scheduler loop below checks periodically ¢%i*
against the current clock time and executes actions from the
last time interval at each iteration:

Algorithm 1 RENDER(P)
loop
while ¢%” < CLOCK_TIME( ) do
CALL(f%)
g =" +1
end while
SLEEP(T)
end loop

Note that past actions (i.e. actions a; | t* < ¢ that are
already executed at time t) are not removed from P, so that
backward modifications and jumps of the cursor remain pos-
sible at any time.

With a period T in the order of a millisecond, this simple
algorithm will support and render most of the standard mu-
sical scores. However, it may be challenged with scores in-
cluding complex or high-rate sampled data, or if the actions
involve computations with execution times that can not be
neglected as compared to 7. Some strategies for optimizing
its execution are discussed further on.

Dealing with Long-term Executions

The system described so far is mostly suitable for dealing
with instantaneous actions. In musical systems however (and
in particular in the dynamic context we will consider in the
next section), we must take into account actions that build or
modify musical structures, which might involve arbitrarily
complex computations. The execution time can then become
a critical point for the correct rendering of the score.

The estimation of this execution time (or of the worst-case
execution time — WCET) and its consideration in scheduling
systems has been broadly discussed in the literature (Wil-
helm et al. 2008). In our case we will consider that either the
approximate execution time of an action is known and con-
sidered null, or this action falls into the category of “long-
term” execution actions. In order to have the renderer loop
performing as fast as possible, we will delegate the execu-
tion of long-term actions to a separate background process.

The execution strategy adopted for an action a is deduced
from f“: the action is instantly executable if f¢ € Agzp,
where Az is a finite set of functions considered instan-
taneous in our system (z7 standing for “zero-time”). The
macro CALL in Algorithm 1 is therefore defined as follows:

Algorithm 2 CALL(a)
if f¢ € Azt then
EXECUTE(f%)
else
PROCESS(a)
end if

The call PROCESS(a) in Algorithm 2 sends the execution
of the action a outside the scope of the scheduler: the ac-



tion is wrapped into a task structure and stored in a FIFO
queue. The FIFO queue is managed by a thread-pool (Krie-
mann 2004), which dispatches the tasks to worker threads:
if a worker is available, the task is processed immediately,
otherwise it remains in the queue until a worker thread be-
comes available. Most of the time, the length of the queue
remains very small: accumulation happens only when many
actions are scheduled in a same, very short time interval.

Tasks are therefore processed as non preemptible in back-
ground processes (Henzinger, Horowitz, and Kirsch 2003)
and do not impact the timing of the rendering process.

In a musical software, Az contains for instance MIDI
and external control message senders. In the next sections
we will consider examples of more complex actions that are
notin Azp.

Dynamic Planning and Scheduling

In its traditional form, a score is a static structure result-
ing from a compositional process. It is said static for it does
not undergo any modification while being performed or ren-
dered. In computer music systems however it is possible to
imagine that an action triggered during the score rendering
modifies its own structure (the initial plan). We will speak
of an interactive, or dynamic score (Desainte-Catherine and
Allombert 2005).

Dynamic Scores

In a dynamic score, actions or external events can redefine
the plan during its own execution. In this case the scheduling
and planning are concurrent processes. The planning is said
“continual” (desJardins et al. 1999).

In our model, this dynamic characteristics amounts to al-
lowing the functions f% attached to the actions a; € P to
perform changes on the structure .S, and thereby to request
updates of P. In other words, actions can invoke the basic
scheduling operations schedule, unschedule and reschedule,
which respectively schedule new actions, remove and mod-
ify previously planned actions. The overall architecture of
the system is sketched in Figure 4.

High-Level Thread-pool
Musical Planner Scheduler |«
Data N
Actions Plan
> > Workers
i ;
; Rendering TaSki _®
User front-end Loop >0
—_— —

Figure 4: Dynamic architecture. Interactions between high-
level structures, planning and scheduling.

The concurrent planning and scheduling operations in the
dynamic model require the use of a lock mechanism to se-

cure the concurrent read/write operation on P, as well as ef-
ficient sort strategies to be called at adequate moments when
the plan is modified.

Extension of the Model

The dynamic score model allows user actions to modify the
score S, leading the modification or scheduling of other ac-
tions. The result of an action execution if f* ¢ Az may
therefore affect a musical structure in the middle of its ren-
dering process, and new planning operations may be re-
quired immediately when this execution finishes. For this
purpose the tasks sent to the thread pool are assigned an
optional callback returning data to the high-level structure
upon completion (see the Thread-pool to High-Level arrow
on Figure 4).

A number of other situations are to be taken into account,
such as actions being unscheduled while their associated
task is running in the thread pool. This case can be handled if
the scheduler stores a pointer to the task in the action struc-
ture at transferring it to the thread pool. Scheduling opera-
tions on the action can then easily change the state or abort
the associated task.

The dynamic model also makes it possible that musical
structures be only partially known while the rendering pro-
cess starts running, which requires considering the availabil-
ity of the data before to perform actions. It is therefore use-
ful in the score execution to separate functions and data.
For this purpose we extend our definition of an action as:
< t*id*, f* D* > where D® is a piece of data used by the
function f¢ attached to the action (in the general case D¢ is
a description of the musical structure .S). We must then con-
sider the case where the data D required by f®* and set by
f?2 is not available (e.g. if the computation of f*2 does not
finish on time). The availability of D® can be checked by the
scheduler prior to the creation of a task for an action a, and
behaviours can be determined to react accordingly (e.g. the
action a may be skipped, or sent to a thread that will sleep
until D® becomes available). The implementation of such
behaviours, though not described here, is done by extending
the definition of the action tuple.

Of course this architecture does not guarantee that com-
putations will finish and make any data available on time.
However, the score rendering process can run safely dele-
gating actions to the thread pool and reacting to task termi-
nation (or non-termination) with predefined behaviours.

Example

In this section we propose a simple score example making
use of the dynamic scheduling operations described in the
previous sections. The score on Figure 5a contains the fol-
lowing objects:

e A hierarchical sequence of chords and notes (S) rendered
as a sequence of MIDI messages,

e An audio file (A) rendered through a standard audio
player,

e Two continuous controllers (C7, Cs) sending values to ex-
ternal audio systems at a high rate (in the order of 100Hz),
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Figure 5: Score example.

e Special events labelled (), @) and 3) which respectively:

— reschedule C; to the event’s position,
— unschedule (remove) Cs,
— build and schedule a new controller (C3).

We can see this score as a dynamic system controlling
sound synthesizers and audio effects. We can imagine for
instance that C'; acts on a parameter of the synthesizer re-
ceiving the MIDI notes, and that Cy and Cj3 control audio
effects applied to the general audio output. In order to make
this dynamic score an interactive one we can also imagine
that the events (I), @) and @) appear dynamically during the
execution of the score as the consequences of external events
(e.g. performer inputs, sensors, etc.)

The functions f®, f% and f% corresponding to the
events (D), @ and ) can be defined as:

o f9 :reschedule(P,Co,t)
= reschedule(P, a;, t* + t%) for each a; € A2
o f9 :unschedule(P,C5)
= unschedule(P, a;) for each a; € A®>
o f : schedule(P,BUILD(C3))
= BUILD(C3) then schedule(P, a;) for each a; € ACs
This score is converted into a plan P by collecting actions
from its internal objects. The successive execution states af-
ter each event are displayed on Figure 5b, 5¢ and 5d.

The execution of a score like the one in this example re-
mains continuous despite the dynamic plan modifications.

Still, we can notice couple of artefacts in the rendered out-
put. As f%' moves numerous actions of P, the scheduler can
miss the first few rendering actions of Cs when this object is
rescheduled.* Similarly, in situations like 3) where an object
is computed and immediately scheduled, we can observe a
latency between the time ag is executed and the time Cf is
effectively scheduled. This latency seems hard to manage
due to the unpredictability of the OS-controlled preemptive
scheduling environment in which the system runs.

It is important to precise however that both previous re-
marks are due objects being scheduled on the fly at the ex-
act action times, and would not hold (or would not be de-
tectable) if a reasonable delay is secured between the ac-
tion times and the newly scheduled objects’ dates. Defin-
ing operations feasible on time is part of the responsibility
of the composer (or of the musical system designer); never-
theless, the estimation and consideration of such delays and
constraints in the action planning and execution could be an
interesting direction for future works.

Conclusion and Perspectives

The scheduling engine we described implements dynamic
features, including the execution of actions with non-
deterministic behaviours or execution times, in a musical
score renderer system (that is, the kernel of a score-based
musical software). The hierarchical structure we propose

“Missing events — especially initializing events — can be a seri-
ous problem in the control of stateful synthesizers.



permits manipulations at the musical level to be propagated
at the low-level of the scheduler, and the scheduler actions
to modify the top-level musical representations. At the dif-
ference of models such as the Hierarchical Task Network
planning (Georgievski and Aiello 2015), the hierarchy here
is considered at the level of the user (musical) representa-
tions and related planning operations, but remains out of the
scope of task executions.

The straightforward approach described in this paper un-
veils planning and scheduling problematics in computer sci-
ence applied to music. We are currently comparing it to
a number of different approaches, for instance using tree-
structured action lists and shorter-term planning.

The system is implemented in the OpenMusic environ-
ment (Bresson, Agon, and Assayag 2011). This environment
has a wide user base in the contemporary/computer music
community, which shall soon provide real-sized situations
and use cases to assess its efficiency and reliability.

At a higher, musical level, our future work will concern
the interfaces and tools proposed to the musicians that will
allow them to take full advantage of the system, for instance
for choosing or defining dynamic (re)scheduling actions,
or specifying the behaviours of the scheduler regarding the
availability of data.
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