Search Strategies for Binary Feature Selection for a Naive Bayes Classifier

Abstract : We compare in this paper several feature selection methods for the Naive Bayes Classifier (NBC) when the data under study are described by a large number of redundant binary indicators. Wrapper approaches guided by the NBC estimation of the classification error probability out-perform filter approaches while retaining a reasonable computational cost.
Type de document :
Communication dans un congrès
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.291-296, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015)
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01162981
Contributeur : Fabrice Rossi <>
Soumis le : jeudi 11 juin 2015 - 18:13:23
Dernière modification le : samedi 13 juin 2015 - 01:05:27
Document(s) archivé(s) le : samedi 12 septembre 2015 - 11:11:18

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01162981, version 1
  • ARXIV : 1506.04177

Collections

Citation

Tsirizo Rabenoro, Jérôme Lacaille, Marie Cottrell, Fabrice Rossi. Search Strategies for Binary Feature Selection for a Naive Bayes Classifier. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.291-296, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015). <hal-01162981>

Partager

Métriques

Consultations de
la notice

130

Téléchargements du document

86