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Abstract

In this work, we introduce a novel algorithm for the Biot problem based on a Hybrid
High-Order discretization of the mechanics and a Symmetric Weighted Interior Penalty
discretization of the flow. The method has several assets, including, in particular, the sup-
port of general polyhedral meshes and arbitrary space approximation order. Our analysis
delivers stability and error estimates that hold also when the specific storage coefficient
vanishes, and shows that the constants have only a mild dependence on the heterogeneity
of the permeability coefficient. Numerical tests demonstrating the performance of the
method are provided.

1 Introduction

We consider in this work the quasi-static Biot’s consolidation problem describing Darcian flow
in a deformable saturated porous medium. Our focus is on applications in geosciences, where
the support of general polyhedral meshes is crucial, e.g., to handle nonconforming interfaces
arising from local mesh adaptation or Voronoi elements in the near wellbore region when
modelling petroleum extraction; cf. Figure 1 for an example. Let Ω Ă Rd, 1 ď d ď 3, denote a
bounded connected polyhedral domain with boundary BΩ and outward normal n. For a given
finite time tF ą 0, volumetric load f , fluid source g, the Biot problem consists in finding a
vector-valued displacement field u and a scalar-valued pore pressure field p solution of

´∇¨σpuq ` α∇p “ f in Ωˆ p0, tFq, (1a)
c0dtp`∇¨pαdtuq ´∇¨pκ∇pq “ g in Ωˆ p0, tFq, (1b)

where c0 ě 0 and α ą 0 are real numbers corresponding to the constrained specific storage and
Biot–Willis coefficients, respectively, κ is a real-valued permeability field such that κ ď κ ď κ
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Figure 1: An example of polyhedral mesh in the context of numerical modelling of petroleum extraction.
Voronoi elements are present to match the radial wellbore mesh and the CPG mesh away from the well.

almost everywhere in Ω for given real numbers 0 ă κ ď κ, and the Cauchy stress tensor is
given by

σpuq :“ 2µ∇su ` λId∇¨u,

with real numbers λ ě 0 and µ ą 0 corresponding to Lamé’s parameters and Id identity
matrix of Rdˆd. Equations (1a) and (1b) express, respectively, the mechanical equilibrium
and the fluid mass balance. We consider, for the sake of simplicity, the following homogeneous
boundary conditions:

u “ 0 on BΩˆ p0, tFq, (1c)
κ∇p¨n “ 0 on BΩˆ p0, tFq. (1d)

Initial conditions are set prescribing up¨, 0q “ u0 and, if c0 ą 0, pp¨, 0q “ p0. In the incom-
pressible case c0 “ 0, we also need the following compatibility condition on g:

ż

Ω
gp¨, tq “ 0 @t P p0, tFq, (1e)

as well as the following zero-average constraint on p:
ż

Ω
pp¨, tq “ 0 @t P p0, tFq. (1f)

For the derivation of the Biot model we refer to the seminal work of Terzaghi [26] and Biot [3,4].
A theoretical study of problem (1) can be found in [25]. For the precise regularity assumptions
on the data and on the solution under which our a priori bounds and convergence estimates
are derived we refer to Lemma 8 and Theorem 11, respectively.

A few simplifications are made to keep the exposition as simple as possible while still
retaining all the principal difficulties. For the Biot–Willis coefficient we take

α “ 1,

an assumption often made in practice. For the scalar-valued permeability κ, we assume that
it is piecewise constant on a partition PΩ of Ω into bounded open polyhedra. The treatment of
more general permeability coefficients (with anisotropy and fine-scale spatial variations) can
be done following the ideas of [10,11]. Also, more general boundary conditions than (1c)–(1d)
can be considered up to minor modifications.
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Several difficulties have to be accounted for in the design of a discretization methods
for problem (1): in the context of nonconforming methods, the linear elasticity operator
has to be carefully engineered to ensure stability expressed by a discrete counterpart of the
Korn’s inequality; the Darcy operator has to accomodate rough variations of the permeability
coefficient; the choice of discrete spaces for the displacement and the pressure must satisfy
an inf-sup condition to contribute reducing spurious pressure oscillations for small time steps
combined with small permeabilities when c0 “ 0. An investigation of the role of the inf-sup
condition in the context of finite element discretizations can be found, e.g., in Murad and
Loula [17, 18]. A recent work of Rodrigo, Gaspar, Hu, and Zikatanov [24] has pointed out
that, even for discretization methods leading to an inf-sup stable discretization of the Stokes
problem in the steady case, pressure oscillations can arise owing to a lack of monotonicity of
the operator. Therein, the authors suggest that stabilizing is possible by adding to the mass
balance equation artificial diffusion terms with coefficient proportional to h2{τ (with h and
τ denoting, respectively, the spatial and temporal meshsizes). However, computing the exact
amount of stabilization required is in general feasible only in 1 space dimension.

The discretization of the Biot problem has been considered in several other works. Finite
element discretizations are discussed, e.g., in the monograph of Lewis and Schrefler [16]; cf.
also references therein. A finite volume discretization for the three-dimensional Biot problem
with discontinuous physical coefficients was considered by Naumovich [19]. In [21,22], Phillips
and Wheeler propose and analyze an algorithm that models displacements with continuous
elements and the flow with a mixed method. In [23], the same authors also propose a different
method where displacements are instead approximated using discontinuous Galerkin methods.
In [27], Wheeler, Xue and Yotov study the coupling of multipoint flux discretization for the flow
with a discontinuous Galerkin discretization of the displacements. While certainly effective
on matching simplicial meshes, discontinuous Galerkin discretizations of the displacements
usually do not allow to prove inf-sup stability on general polyhedral meshes.

In this work, we propose a novel discretization of problem (1) where the linear elasticity
operator is discretized using the Hybrid High-Order (HHO) method of [9], while the flow relies
on the Symmetric Weighted Interior Penalty (SWIP) discontinuous Galerkin method of [11,13];
see also [8, Chapter 4]. The proposed method has several assets: (i) it delivers an inf-sup
stable discretization on general meshes including, e.g., polyhedral elements and nonmatching
interfaces; (ii) it allows to increase the space approximation order to accelerate convergence in
the presence of (locally) regular solutions; (iii) it is locally conservative on the primal mesh;
(iv) it is robust with respect to the spatial variations of the permeability coefficient, with
constants in the error estimates that depend on the square root of the heterogeneity ratio;
(v) it is (relatively) inexpensive: at the lowest order, after static condensation of element
unknowns for the displacement, we have 4 (resp. 9) unknowns per face for the displacements
+ 3 (resp. 4) unknowns per element for the pore pressure in 2d (resp. 3d). Finally, the
proposed construction is valid for arbitrary space dimension, a feature which can be exploited
in practice to conceive dimension-independent implementations.

The material is organized as follows. In Section 2, we introduce the discrete setting,
formulate the method, and investigate its local conservation properties by identifying the
conservative normal tractions and mass fluxes. In Section 3, we derive a priori bounds on the
exact solution for regular-in-time volumetric load and mass source. The convergence analysis
of the method is carried out in Section 4. Finally, numerical tests are proposed in Section 5.
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2 Discretization

In this section we introduce the assumptions on the mesh, define the discrete counterparts of
the elasticity and Darcy operators and of the hydro-mechanical coupling terms, formulate the
discretization method and investigate its local conservation properties.

2.1 Mesh and notation

Denote by H Ă R`˚ a countable set of meshsizes having 0 as its unique accumulation point.
Following [8, Chapter 1], we consider h-refined mesh sequences pThqhPH where, for all h P H, Th
is a finite collection of nonempty disjoint open polyhedral elements T such that Ω “

Ť

TPTh T
and h “ maxTPTh hT with hT standing for the diameter of the element T . We assume that
mesh regularity holds in the following sense: For all h P H, Th admits a matching simplicial
submesh Th and there exists a real number % ą 0 independent of h such that, for all h P H,
(i) for all simplex S P Th of diameter hS and inradius rS , %hS ď rS and (ii) for all T P Th,
and all S P Th such that S Ă T , %hT ď hS . A mesh with this property is called regular. It is
worth emphasizing that the simplicial submesh Th is just an analysis tool, and it is not used
in the actual construction of the discretization method. These assumptions are essentially
analogous to those made in the context of other methods supporting general meshes; cf.,
e.g., [2, Section 2.2] for the Virtual Element method. To avoid dealing with jumps of the
permeability inside elements, all the meshes in Th are assumed to be compatible with the
known partition PΩ on which the diffusion tensor is piecewise constant, so that jumps can
only occur at interfaces.

We define a face F as a hyperplanar closed connected subset of Ω with positive pd´1q-
dimensional Hausdorff measure and such that (i) either there exist T1, T2 P Th such that
F Ă BT1XBT2 (with BTi denoting the boundary of Ti) and F is called an interface or (ii) there
exists T P Th such that F Ă BT XBΩ and F is called a boundary face. Interfaces are collected
in the set F i

h, boundary faces in Fb
h , and we let Fh :“ F i

h Y Fb
h . The diameter of a face

F P Fh is denoted by hF . For all T P Th, FT :“ tF P Fh | F Ă BT u denotes the set of faces
contained in BT and, for all F P FT , nTF is the unit normal to F pointing out of T . For a
regular mesh sequence, the maximum number of faces in FT can be bounded by an integer
NB uniformly in h. For each interface F P F i

h, we fix once and for all the ordering for the
elements T1, T2 P Th such that F Ă BT1 X BT2 and we let nF :“ nT1,F . For a boundary face,
we simply take nF “ n, the outward unit normal to Ω.

For integers l ě 0 and s ě 1, we denote by PldpThq the space of fully discontinuous piecewise
polynomial functions of degree ď l on Th and by HspThq the space of functions in L2pΩq that
lie in HspT q for all T P Th. The notation HspPΩq will also be used with analogous meaning.
Under the mesh regularity assumptions detailed above, using [8, Lemma 1.40] together with
the results of [12], one can prove that there exists a real number Capp depending on % and l,
but independent of h, such that, denoting by πlh the L2-orthogonal projector on PldpThq, the
following holds: For all s P t1, . . . , l ` 1u and all v P HspThq,

|v ´ πlhv|HmpThq ď Capph
s´m|v|HspThq @m P t0, . . . , s´ 1u. (2)

For an integer l ě 0, we consider the space

C lpV q :“ C lpr0, tFs;V q,
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spanned by V -valued functions that are l times continuously differentiable in the time inter-
val r0, tFs. The space C0pV q is a Banach space when equipped with the norm }ϕ}C0pV q :“

maxtPr0,tFs }ϕptq}V , and the space C lpV q is a Banach space when equipped with the norm
}ϕ}ClpV q :“ max0ďmďl }d

m
t ϕ}C0pV q. For the time discretization, we consider a uniform mesh

of the time interval p0, tFq of step τ :“ tF{N with N P N˚, and introduce the discrete times
tn :“ nτ for all 0 ď n ď N . Non-uniform time meshes can be also be treated, but we avoid
them to keep the notation simple. For any ϕ P C lpV q we denote by ϕn P V its value at discrete
time tn, and we introduce the backward differencing operator δt such that, for all 1 ď n ď N ,

δtϕ
n :“

ϕn ´ ϕn´1

τ
P V. (3)

In what follows, for X Ă Ω, we respectively denote by p¨, ¨qX and }¨}X the standard inner
product and norm in L2pXq, with the convention that the subscript is omitted whenever
X “ Ω. The same notation is used in the vector- and tensor-valued cases. For the sake of
brevity, throughout the paper we will often use the notation a À b for the inequality a ď Cb
with generic constant C ą 0 independent of h, τ , c0, λ, µ, and κ, but possibly depending on
% and the polynomial degree k. We will name generic constants only in statements and when
this helps to follow the proofs.

2.2 Linear elasticity operator

The discretization of the linear elasticity operator is based on the Hybrid High-Order method
of [9]. Let a polynomial degree k ě 1 be fixed. The degrees of freedom (DOFs) for the
displacement are collected in the space

Uk
h :“

#

ą

TPTh

PkdpT qd
+

ˆ

#

ą

FPFh

Pkd´1pF q
d

+

. (4)

For a generic collection of DOFs in Uk
h we use the notation vh :“

`

pvT qTPTh , pvF qFPFh
˘

. We
also denote by vh (not underlined) the function of PkdpThqd such that vh|T “ vT for all T P Th.
The restrictions of Uk

h and vh to an element T are denoted by Uk
T and vT “

`

vT , pvF qFPFT
˘

,
respectively. For further use, we define the reduction map Ikh : H1pΩqd Ñ Uk

h such that, for
all v P H1pΩqd, Ikhv “

`

ppIkhvqT qTPTh , ppI
k
hvqF qFPFT

˘

with

pIkhvqT :“ πkTv @T P Th, pIkhvqF :“ πkFv @F P Fh. (5)

For all T P Th, the reduction map on Uk
T obtained by the appropriate restriction of Ikh is

denoted by IkT .
For all T P Th, we obtain a high-order reconstruction rkT : Uk

T Ñ Pk`1
d pT qd of the displace-

ment field by solving the following local pure traction problem: For a given local collection of
DOFs vT “

`

vT , pvF qFPFT
˘

P Uk
T , find rkTvT P P

k`1
d pT qd such that

p∇sr
k
TvT ,∇swqT “ p∇svT ,∇swqT `

ÿ

FPFT

pvF ´ vT ,∇swnTF qF @w P Pk`1
d pT qd, (6)

with closure conditions
ş

T r
k
TvT “

ş

T vT and
ş

T ∇ssr
k
TvT “

ř

FPFT
ş

F
1
2 pnTF b vF ´ vF b nTF q.

We also define the global reconstruction of the displacement rkh : Uk
h Ñ Pk`1

d pThqd such that,
for all vh P U

k
h,

prkhvhq|T “ r
k
TvT @T P Th. (7)
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The following approximation property was proved in [9, Lemma 2]: For all v P H1pΩqd X
Hk`2pPΩq

d,
}∇spr

k
hI

k
hv ´ vq} À hk`1}v}Hk`2pPΩq

d . (8)

We next introduce the discrete divergence operator Dk
T : Uk

T Ñ PkdpT q such that, for all
q P PkdpT q

pDk
TvT , qqT “ p∇¨vT , qqT `

ÿ

FPFT

pvF ´ vT , qnTF qF (9a)

“ ´pvT ,∇qqT `
ÿ

FPFT

pvF , qnTF qF , (9b)

where we have used integration by parts to pass to the second line. The divergence operator
satisfies the following commuting property: For all T P Th and all v P H1pT qd,

Dk
T I

k
Tv “ πkT p∇¨vq. (10)

The local contribution to the discrete linear elasticity operator is expressed by the bilinear
form aT on Uk

T ˆU
k
T such that, for all wT ,vT P U

k
T ,

aT pwT ,vT q :“ 2µ
!

p∇sr
k
TwT ,∇sr

k
TvT qT ` sT pwT ,vT q

)

` λpDk
TwT , D

k
TvT qT , (11)

with stabilization bilinear form sT such that

sT pwT ,vT q :“
ÿ

FPFT

h´1
F pπ

k
F pR

k
TwT ´wF q, π

k
F pR

k
TvT ´ vF qqF , (12)

where we have introduced a second displacement reconstruction such that, for all vT P U
k
T ,

Rk
TvT :“ rkTvT ´ π

k
Tr

k
TvT ` vT .

The global bilinear form ah on Uk
h ˆU

k
h is assembled element-wise:

ahpwh,vhq :“
ÿ

TPTh

aT pwT ,vT q. (13)

To account for the zero-displacement boundary condition (1c), we consider the subspace

Uk
h,0 :“

!

vh “
`

pvT qTPTh , pvF qFPFh
˘

P Uk
h | vF ” 0 @F P Fb

h

)

. (14)

Define on Uk
h the discrete strain seminorm

}vh}
2
ε,h :“

ÿ

TPTh

}vh}
2
ε,T , }vh}

2
ε,T :“ }∇svT }

2
T `

ÿ

FPFT

h´1
F }vF ´ vT }

2
F . (15)

It can be proved that }¨}ε,h defines a norm on Uk
h,0. Moreover, using [9, Corollary 6], one has

the following coercivity and boundedness result for ah:

η´1p2µq}vh}
2
ε,h ď }vh}

2
a,h :“ ahpvh,vhq ď ηp2µ` dλq}vh}

2
ε,h. (16)

Additionally, we know from [9, Theorem 8] that, for all w P H1
0 pΩq

d XHk`2pPΩq
d such that

∇¨w P Hk`1pPΩq and all vh P U
k
h,0, the following consistency result holds:

ˇ

ˇ

ˇ
ahpI

k
hw,vhq ` p∇¨σpwq,vhq

ˇ

ˇ

ˇ
À hk`1

´

2µ}w}Hk`2pPΩq
d ` λ}∇¨w}Hk`1pPΩq

¯

}vh}ε,h. (17)

To close this section, we prove the following discrete counterpart of Korn’s inequality.
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Proposition 1 (Discrete Korn’s inequality). There is a real number CK ą 0 depending on %
and on k but independent of h such that, for all vh P U

k
h,0, recalling that vh P PkdpThqd denotes

the broken polynomial function such that vh|T “ vT for all T P Th,

}vh} ď CKdΩ}vh}ε,h, (18)

where dΩ denotes the diameter of Ω.

Proof. Using a broken Korn’s inequality [6] on PkdpThqd (this is possible since k ě 1), one has

d´2
Ω }vh}

2 À }∇s,hvh}
2 `

ÿ

FPF i
h

}rvhsF }
2
F `

ÿ

FPFb
h

}vh}
2
F , (19)

where∇s,h denotes the broken symmetric gradient onH1pThqd. For an interface F P FT1XFT2 ,
we have let rvhsF :“ vT1 ´ vT2 . Thus, the triangle inequality allows to infer that }rvhsF }F ď
}vF ´ vT1}F ` }vF ´ vT2}F . For a boundary face F P Fb

h such that F P FT X Fb
h for some

T P Th we have, on the other hand, }vh}F “ }vF ´ vT }F since vF ” 0 (cf. (14)). Using these
relations in the right-hand side of (19) and rearranging the sums yields the assertion.

2.3 Darcy operator

The discretization of the Darcy operator is based on the Symmetric Weighted Interior Penalty
method of [11, 13], cf. also [8, Section 4.5]. At each time step, the discrete pore pressure is
sought in the broken polynomial space

P kh :“

#

PkdpThq if c0 ą 0,

Pkd,0pThq if c0 “ 0,
(20)

where we have introduced the zero-average subspace Pkd,0pThq :“
 

qh P PkdpThq | pqh, 1q “ 0
(

.
For all F P F i

h, we define the jump and (weighted) average operators such that, for all
ϕ P H1pThq, denoting by ϕT and κT the restrictions of ϕ and κ to T P Th, respectively,

rϕsF :“ ϕT1 ´ ϕT2 , tϕuF :“ ωT1ϕT1 ` ωT2ϕT2 , (21)

where ωT1 “ 1 ´ ωT2
:“ κT2{pκT1

`κT2
q. Denoting by ∇h the broken gradient on H1pThq and

letting, for all F P F i
h, λκ,F :“ 2κT1

κT2{pκT1
`κT2

q, we define the bilinear form ch on P kh ˆ P kh
such that, for all qh, rh P P kh ,

chprh, qhq :“ pκ∇hrh,∇hqhq ´
ÿ

FPF i
h

`

ptκ∇hrhuF ¨nF , rqhsF qF ` prrhsF , tκ∇hqhuF ¨nF qF
˘

`
ÿ

FPF i
h

ςλκ,F
hF

prrhsF , rqhsF qF ,

(22)
where ς ą 0 is a user-defined penalty parameter and the fact that the bondary terms only
appear on internal faces reflects the Neumann boundary condition (1d). From this point
on, we will assume that ς ą C2

trNB with Ctr denoting the constant from the discrete trace
inequality [8, Eq. (1.37)], which ensures that the bilinear form ch is coercive. Since ch is also
symmetric, it defines a seminorm on P kh denoted hereafter by }¨}c,h (the map }¨}c,h is in fact
a norm on Pkd,0pThq).
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The following known results will be needed in the analysis. Let

P˚ :“
 

r P H1pΩq XH2pPΩq | κ∇r¨n “ 0 on BΩ
(

, P k˚h :“ P˚ ` P
k
h .

Extending the bilinear form ch to P k˚h ˆ P k˚h, the following consistency result can be proved
adapting the arguments of [8, Chapter 4] to account for the homogeneous Neumann boundary
condition (1d):

@r P P˚, ´p∇¨pκ∇rq, qq “ chpr, qq @q P P˚h. (23)

Assuming, additionally, that r P Hk`2pPΩq, as a consequence of [8, Lemma 5.52] together
with the optimal approximation properties of πkh on regular mesh sequences one has,

sup
qhPPkd,0pThqzt0u

chpr ´ π
k
hr, qhq

}qh}c,h
À κ

1{2hk}r}Hk`1pPΩq
. (24)

2.4 Hydro-mechanical coupling

The hydro-mechanical coupling is realized by means of the bilinear form bh on Uk
h ˆ PkdpThq

such that, for all vh P U
k
h and all qh P PkdpThq,

bhpvh, qhq :“
ÿ

TPTh

bT pvT , qh|T q, bT pvT , qh|T q :“ ´pDk
TvT , qh|T qT , (25)

where Dk
T is the discrete divergence operator defined by (9a). A simple verification shows

that, for all vh P U
k
h and all qh P PkdpThq,

bhpvh, qhq À }vh}ε,h}qh}. (26)

Additionally, using the definition (9a) of Dk
T and (14) of Uk

h,0, it can be proved that, for all
vh P U

k
h,0, it holds (χΩ denotes here the characteristic function of Ω),

bhpvh, χΩq “ 0. (27)

The following inf-sup condition expresses the stability of the hydro-mechanical coupling:

Lemma 2 (inf-sup condition for bh). There is a real number β depending on Ω, % and k but
independent of h such that, for all qh P Pkd,0pThq,

}qh} ď β sup
vhPU

k
h,0zt0u

bhpvh, qhq

}vh}ε,h
. (28)

Proof. Let qh P Pkd,0pThq. Classically [5], there is vqh P H
1
0 pΩq

d such that ∇¨vqh “ qh and
}vqh}H1pΩqd À }qh}. Let T P Th. Using the H1-stability of the L2-orthogonal projector, it is
inferred that

}∇sπ
k
Tvqh}T ď }∇vqh}T .

Moreover, for all F P FT , using the boundedness of πkF and the continuous trace inequality
of [8, Lemma 1.49] followed by a local Poincaré’s inequality for the zero-average function
pπkTvqh ´ vqhq, we have

h
´1{2

F }πkF pπ
k
Tvqh ´ vqhq}F ď h

´1{2

F }πkTvqh ´ vqh}F À }∇vqh}T .
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As a result, recalling the definition (5) of the local reduction map IkT and (15) of the strain
norm }¨}ε,T , it follows that }IkTvqh}ε,T À }vqh}H1pT qd . Squaring and summing over T P Th, the
latter inequality yields

}Ikhvqh}ε,h À }vqh}H1pΩqd À }qh}. (29)

Using (29), the commuting property (10) and denoting by S the supremum in (28), one has

}qh}
2 “ p∇¨vqh , qhq “

ÿ

TPTh

pDk
T I

k
Tvqh , qhqT “ ´bhpI

k
hvqh , qhq ď S}Ikhvqh}ε,h À S}qh},

and the conclusion follows.

2.5 Formulation of the method

For all 1 ď n ď N , the discrete solution punh, p
n
hq P U

k
h,0 ˆ P kh at time tn is such that, for all

pvh, qhq P U
k
h,0 ˆ PkdpThq,

ahpu
n
h,vhq ` bhpvh, p

n
hq “ lnhpvhq, (30a)

pc0δtp
n
h, qhq ´ bhpδtu

n
h, qhq ` chpp

n
h, qhq “ pg

n, qhq, (30b)

where the linear form lnh on Uk
h is defined as

lnhpvhq :“ pfn,vhq “
ÿ

TPTh

pfn,vT qT . (31)

In petroleum engineering, the usual way to enforce the initial condition is to compute a
displacement from an initial (usually hydrostatic) pressure distribution. For a given scalar-
valued initial pressure field p0 P L2pΩq, we let pp0

h :“ πkhp
0 and set u0

h “ pu0
h with pu0

h P U
k
h,0

unique solution of

ahppu
0
h,vhq “ l0hpvhq ´ bhpvh, pp

0
hq @vh P U

k
h,0. (32)

If c0 “ 0, the value of pp0
h is only needed to enforce the initial condition on the displacement

while, if c0 ą 0, we also set p0
h “ pp0

h to initialize the discrete pressure.

Remark 3 (Discrete compatibility condition for c0 “ 0). Also when c0 “ 0 it is possible to
take the test function qh in (30b) in the full space PkdpThq instead of the zero-average subspace
Pkd,0pThq, since the compatibility condition is verified at the discrete level. To check it, it suffices
to let qh “ χΩ in (30b), observe that the right-hand side is equal to zero since gn has zero
average on Ω (cf. (1e)), and use the definition (22) of ch together with (27) to prove that the
left-hand side also vanishes. This remark is crucial to ensure the local conservation properties
of the method detailed in Section 2.6.

To close this section, we prove stability and approximation properties for the discrete
initial displacement given by (32).

Proposition 4 (Stability and approximation properties for pu0
h). The initial displacement (32)

satisfies the following stability condition:

}pu0
h}a,h À p2µq

´1{2
`

dΩ}f
0} ` }p0}

˘

. (33)
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Additionally, recalling the global reduction map Ikh defined by (5), and assuming the additional
regularity p0 P H

k`1pPΩq, u0 P Hk`2pPΩq
d, and ∇¨u0 P Hk`1pPΩq, it holds

p2µq
1{2}pu0

h´I
k
hu

0}a,h À hk`1
´

2µ}u0}Hk`2pPΩq
d ` λ}∇¨u0}Hk`1pPΩq

` ρ
1{2
κ }p

0}Hk`1pPΩq

¯

. (34)

Proof. (1) Proof of (33). Using the first inequality in (16) followed by the definition (32) of
pu0
h, we have

}pu0
h}a,h À sup

vhPU
k
h,0zt0u

ahppu
0
h,vhq

p2µq1{2}vh}ε,h

“ p2µq´
1{2 sup

vhPU
k
h,0zt0u

l0hpvhq ´ bhpvh, π
k
hp

0q

}vh}ε,h
À p2µq´

1{2
`

dΩ}f
0} ` }p0}

˘

,

where to conclude we have used the Cauchy–Schwarz and discrete Korn’s (18) inequalities for
the first term in the numerator and the continuity (26) of bh together with the boundedness
of πkh as a projector for the second. (2) Proof of (34). The proof is analogous to that of point
(3) in Lemma 10 except that we use the approximation properties (2) of πkh instead of (64).
For this reason, elliptic regularity is not needed.

2.6 Flux formulation

We reformulate the discrete problem (30) to unveil the local conservation properties of the
method. Before doing so, we need to introduce a few operators and notations to treat the
boundary terms.

We start from the mechanical equilibrium. Let an element T P Th be fixed and denote by
U BT :“ Pkd´1pFT qd the broken polynomial space of degree ď k on the boundary BT of T . We
define the operator LkT : U BT Ñ U BT such that, for all ϕ P U BT ,

LkTϕ|F :“ πkF

´

ϕ|F ´ r
k
T p0, pϕ|F qFPFT q ` π

k
Tr

k
T p0, pϕ|F qFPFT q

¯

@F P FT . (35)

We also need the adjoint Lk,˚T of LkT such that

@ϕ P U BT , pLkTϕ,ψqBT “ pϕ,L
k,˚
T ψqBT @ψ P U BT . (36)

For a collection of DOFs vT P U
k
T , we denote in what follows by vBT P U BT the function in

U BT such that vBT |F “ vF for all F P FT . Finally, it is convenient to define the discrete stress
operator SkT : Uk

T Ñ PkdpT qdˆd such that, for all vT P U
k
T ,

SkTvT :“ 2µ∇sr
k
TvT ` λIdD

k
TvT . (37)

To reformulate the mass conservation equation, we need to introduce the lifting operator
Rkκ,h : P kh Ñ Pk´1

d pThqd such that, for all qh P P kh , it holds

pRkκ,hqh, τ hq “
ÿ

FPF i
h

prqhsF , tκτ huF ¨nF qF @τ h P Pk´1
d pThqd. (38)

10



Lemma 5 (Flux formulation of problem (30)). Problem (30) can be reformulated as follows:
Find punh, p

n
hq P U

k
h,0 ˆ P

k
h such that it holds, for all pvh, qhq P U

k
h,0 ˆ PkdpThq and all T P Th,

pSkTu
n
T ´ p

n
hId,∇svT qT `

ÿ

FPFT

pΦk
TF pu

n
T , p

n
h |T q,vF ´ vT qF “ pf

n,vT qT ,

(39a)

pc0δtp
n
h, qhqT ´ pδtu

n
T ´ κp∇hp

n
h ´R

k
κ,hp

n
hq,∇hqhqT ´

ÿ

FPFT

pφkTF pδtu
n
F , p

n
hq, qh|T qF “ pg

n, qhq,

(39b)

where, for all T P Th and all F P FT , the numerical traction Φk
TF : Uk

T ˆ PkdpT q Ñ Pkd´1pF q
d

and mass flux φkTF : Pkd´1pF q
d ˆ PkdpThq Ñ Pkd´1pF q are such that

Φk
TF pvT , qq :“

`

SkTvT ´ qId
˘

nTF ` p2µqL
k,˚
T pτBTL

k
T pvBT ´ vT qq,

φkTF pvF , qhq :“

#

`

´ vnF ` tκ∇hqhuF
˘

¨nTF ´
ςλκ,F
hF

rqhsF εTF if F P F i
h,

0 otherwise,

with τBT P P0
dpFT q such that τBT |F “ h´1

F for all F P FT , εTF :“ nT ¨nTF , and it holds, for all
F P F i

h such that F P FT1 X FT2,

Φk
T1F pu

n
T1
, pnh |T1

q `Φk
T2F pu

n
T2
, pnh |T2

q “ 0 (40a)

φkT1F pδtu
n
F , p

n
hq ` φ

k
T2F pδtu

n
F , p

n
hq “ 0. (40b)

Remark 6 (Local mechanical equilibrium and mass conservation). Let an element T P Th be
fixed. Choosing as test functions in (39a) vh P U

k
h,0 such that vF ” 0 for all F P Fh, vT 1 ” 0

for all T 1 P ThztT u, and vT spans PkdpT qd, we infer the following local mechanical equilibrium
relation: For all vT P PkdpT qd,

pSkTu
n
T ´ p

n
hId,∇svT qT ´

ÿ

FPFT

pΦk
TF pu

n
T , p

n
h |T q,vT qF “ pf

n,vT qT .

Similarly, selecting qh in (39b) such that qh|T 1 ” 0 for all T 1 P ThztT u and qT :“ qh|T spans
PkdpT q, we infer the following local mass conservation relation: For all qT P PkdpT q,

pc0δtp
n
h, qT qT ´ pδtu

n
T ´ κp∇hp

n
h ´R

k
κ,hp

n
hq,∇qT qT ´

ÿ

FPFT

pφkTF pδtu
n
F , p

n
hq, qT qF “ pg

n, qT q.

Proof. (1) Proof of (39a). Proceeding as in [7, Section 3.1], the stabilization bilinear form sT
defined by (12) can be rewritten as

sT pwT ,vT q “
ÿ

FPFT

pLk,˚T pτBTL
k
T pwBT ´wT qq,vF ´ vT qF .

Therefore, using the definitions (6) of rkTvT with w “ rkTu
n
T and (9a) of Dk

TvT with q “ pnh |T ,
and recalling the definition (37) of SkT , one has

aT pu
n
T ,vT q “ pS

k
Tu

n
T ,∇svT qT `

ÿ

FPFT

pSkTu
n
TnTF ` p2µqL

k,˚
T pτBTL

k
T pu

n
BT ´ u

n
T qq,vF ´ vT qF .

(41)
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On the other hand, using again the definition (9a) of Dk
TvT with q “ pnh |T , one has

bT pvT , p
n
h |T q “ ´pp

n
hId,∇svT qT ´

ÿ

FPFT

ppnh |TnTF ,vF ´ vT qF . (42)

Equation (39a) follows summing (41) and (42).
(2) Proof of (39b). Using the definition (9b) of Dk

T with vT “ δtu
n
T and q “ qh|T , it is inferred

that
bT pδtu

n
T , qhq “ ´pδtu

n
T ,∇hqhqT `

ÿ

FPFT

pδtu
n
F ¨nTF , qh|T qF . (43)

On the other hand, adapting the results [8, Section 4.5.5] to the homogeneous Neumann
boundary condition (1d), it is inferred

chpp
n
h, qhq “

ÿ

TPTh

#

pκp∇hp
n
h ´R

k
κ,hp

n
hq¨∇hqhqT

´
ÿ

FPFTXF i
h

ptκ∇hp
n
huF ¨nTF ´

ςλκ,F
hF

rpnhsF εTF , qh|T qF

+

. (44)

Equation (39b) follows summing (43) and (44).
(3) Proof of (40). To prove (40a), let an internal face F P F i

h be fixed, and make vh in (40a)
such that vT ” 0 for all T P Th, vF 1 ” 0 for all F 1 P FhztF u, let vF span Pkd´1pF q and
rearrange the sums. The mass flux conservation (40b) follows immediately from the expression
of φkTF observing that, for all pvh, qhq P U

k
h ˆ P

k
h and all F P F i

h, the quantity

`

´ vF ` tκ∇hqhuF
˘

¨nF ´
ςλκ,F
hF

rqhsF

is single-valued on F .

3 Stability analysis

In this section we study the stability of problem (30) and prove its well-posedness. We recall
the following discrete Gronwall’s inequality, which is a variation of the one proved in [15,
Lemma 5.1].

Lemma 7 (Discrete Gronwall’s inequality). Let an integer N and reals δ,G ą 0, and K ě 0
be given, and let panq0ďnďN , pbnq0ďnďN , and pγnq0ďnďN denote three sequences of nonnegative
real numbers such that, for all 0 ď n ď N

an ` δ
n
ÿ

m“0

bm `K ď δ
n
ÿ

m“0

γmam `G.

Then, if γmδ ă 1 for all 0 ď m ď N , letting ςm :“ p1´ γmδq´1, it holds, for all 0 ď n ď N ,
that

an ` δ
n
ÿ

m“0

bm `K ď exp

˜

δ
n
ÿ

m“0

ςmγm

¸

ˆG. (45)
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Lemma 8 (A priori bounds). Assume f P C1pL2pΩqdq and g P C0pL2pΩqq, and let pu0
h, p

0
hq “

ppu0
h, pp

0
hq with ppu

0
h, pp

0
hq defined as in Section 2.5. For all 1 ď n ď N , denote by punh, p

n
hq the

solution to (30). Then, for τ small enough, it holds that

}uNh }
2
a,h ` }c

1{2

0 pNh }
2 `

1

2µ` dλ
}pNh ´ p

N
h }

2 `

N
ÿ

n“1

τ}pnh}
2
c,h À

`

p2µq´1 ` c0

˘

}p0}2

` p2µq´1d2
Ω}f }

2
C1pL2pΩqdq ` p2µ` dλqt

2
F}g}

2
C0pL2pΩqq ` c

´1
0 t2F}g}

2
C0pL2pΩqq, (46)

with the convention that c´1
0 }g}2C0pL2pΩqq “ 0 if c0 “ 0 and pNh :“ ppNh , 1q.

Remark 9 (A priori bound on the pressure when c0 “ 0). When c0 “ 0, the choice (20) of
the discrete space for the pressure ensures that pnh “ 0 for all 0 ď n ď N . Thus, the third term
in the left-hand side of (46) yields an estimate on }pNh }

2, and the a priori bound reads

}uNh }
2
a,h `

1

2µ` dλ
}pNh }

2 `

N
ÿ

n“1

τ}pnh}
2
c,h À

p2µq´1
´

d2
Ω}f }

2
C1pL2pΩqdq ` }p

0}2
¯

` p2µ` dλqt2F}g}
2
C0pL2pΩqq. (47)

The convention c´1
0 }g}2C0pL2pΩqq “ 0 if c0 “ 0 is justified since the term T2 in point (4) of the

proof of Lemma 8 vanishes in this case thanks to the compatibility condition (1e).

Proof. Throughout the proof, Ci with i P N˚ will denote a generic positive constant indepen-
dent of h, τ , and of the physical parameters c0, λ, µ, and κ.
(1) Estimate of }pnh ´ pnh}. Using the inf-sup condition (28) followed by (27) to infer that
bhpvh, p

n
hq “ 0, the mechanical equilibrium equation (30a), and the second inequality in (16),

for all 1 ď n ď N we get

}pnh ´ p
n
h} ď β sup

vhPU
k
h,0zt0u

bhpvh, p
n
h ´ p

n
hq

}vh}ε,h
“ β sup

vhPU
k
h,0zt0u

bhpvh, p
n
hq

}vh}ε,h

“ β sup
vhPU

k
h,0zt0u

lnhpvhq ´ ahpu
n
h,vhq

}vh}ε,h
ď C

1{2

1

´

dΩ}f
n} ` p2µ` dλq

1{2}unh}a,h

¯

,

where we have set, for the sake of brevity, C
1{2

1 :“ βmaxpCK, ηq. This implies, in particular,

}pnh ´ p
n
h}

2 ď 2C1

`

d2
Ω}f

n}2 ` p2µ` dλq}unh}
2
a,h

˘

(48)

(2) Energy balance. Adding (30a) with vh “ τδtu
n
h to (30b) with qh “ τpnh, and summing the

resulting equation over 1 ď n ď N , it is inferred

N
ÿ

n“1

τahpu
n
h, δtu

n
hq `

N
ÿ

n“1

τpc0δtp
n
h, p

n
hq `

N
ÿ

n“1

τ}pnh}
2
c,h “

N
ÿ

n“1

τ lnhpδtu
n
hq `

N
ÿ

n“1

τpgn, pnhq. (49)

We denote by L and R the left- and right-hand side of (49) and proceed to find suitable lower
and upper bounds, respectively.
(3) Lower bound for L. Using twice the formula

2xpx´ yq “ x2 ` px´ yq2 ´ y2, (50)
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and telescoping out the appropriate summands, the first two terms in the left-hand side of (49)
can be rewritten as, respectively,

N
ÿ

n“1

τahpu
n
h, δtu

n
hq “

1

2
}uNh }

2
a,h `

1

2

N
ÿ

n“1

τ2}δtu
n
h}

2
a,h ´

1

2
}u0

h}
2
a,h,

N
ÿ

n“1

τpc0δtp
n
h, p

n
hq “

1

2
}c

1{2

0 pNh }
2 `

1

2

N
ÿ

n“1

τ2}c
1{2

0 δtp
n
h}

2 ´
1

2
}c

1{2

0 p0
h}

2.

(51)

Using the above relation together with (48) and }fN} ď }f }C1pL2pΩqdq, it is inferred that

1

4
}uNh }

2
a,h ´

1

2
}u0

h}
2
a,h `

1

2
}c

1{2

0 pNh }
2 ´

1

2
}c

1{2

0 p0
h}

2

`
1

8C1p2µ` dλq
}pNh ´ p

N
h }

2 `

N
ÿ

n“1

τ}pnh}
2
c,h ď L`

d2
Ω

4p2µ` dλq
}f }2C1pL2pΩqdq. (52)

(4) Upper bound for R. For the first term in the right-hand side of (49), discrete integration
by parts in time yields

N
ÿ

n“1

τ lnhpδtu
n
hq “ pf

N ,uNh q ´ pf
0,u0

hq ´

N
ÿ

n“1

τpδtf
n,un´1

h q, (53)

hence, using the Cauchy–Schwarz inequality, the discrete Korn’s inequality followed by (16) to
estimate }unh}

2 ď
C2d2

Ω
µ }unh}

2
a,h for all 1 ď n ď N (with C2 :“ C2

Kη{2), and Young’s inequality,
one has
ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

τ lnhpδtu
n
hq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

8

˜

}uNh }
2
a,h ` }u

0
h}

2
a,h `

1

2tF

N
ÿ

n“1

τ}un´1
h }2a,h

¸

`
C2d

2
Ω

µ

˜

}fN}2 ` }f0}2 ` 2tF

N
ÿ

n“1

τ}δtf
n}2

¸

ď
1

8

˜

}uNh }
2
a,h ` }u

0
h}

2
a,h `

1

2tF

N
ÿ

n“0

τ}unh}
2
a,h

¸

`
C2C3d

2
Ω

µ
}f }2C1pL2pΩqdq,

(54)

where we have used the classical bound }fN}2`}f0}2`2tF
řN
n“1 τ}δtf

n}2 ď C3}f }
2
C1pL2pΩqdq

to conclude. We proceed to estimate the second term in the right-hand side of (49) by splitting
it into two contributions as follows (here, gn :“ pgn, 1q):

N
ÿ

n“1

τpgn, pnhq “
N
ÿ

n“1

τpgn, pnh ´ p
n
hq `

N
ÿ

n“1

τpgn, pnhq :“ T1 ` T2. (55)

Using the Cauchy–Schwarz inequality, the bound
řN
n“1 τ}g

n}2 ď tF}g}
2
C0pL2pΩqq together
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with (48) and Young’s inequality, it is inferred that

|T1| ď

#

N
ÿ

n“1

τ}gn}2

+1{2

ˆ

#

N
ÿ

n“1

τ}pnh ´ p
n
h}

2

+1{2

ď tF}g}C0pL2pΩqq ˆ

#

2C1

tF

N
ÿ

n“1

τ
`

d2
Ω}f

n}2 ` p2µ` dλq}unh}
2
a,h

˘

+1{2

ď 8C1t
2
Fp2µ` dλq}g}

2
C0pL2pΩqq `

d2
Ω

16p2µ` dλq
}f }2C1pL2pΩqdq `

1

16tF

N
ÿ

n“1

τ}unh}
2
a,h.

(56)

Owing the compatibility condition (1e), T2 “ 0 if c0 “ 0. If c0 ą 0, using the Cauchy–Schwarz
and Young’s inequalities, we have

|T2| ď

#

tF

N
ÿ

n“1

τc´1
0 }gn}2

+1{2

ˆ

#

t´1
F

N
ÿ

n“1

τ}c
1{2

0 pnh}
2

+1{2

ď
t2F
2c0
}g}2C0pL2pΩqq `

1

2tF

N
ÿ

n“1

τ}c
1{2

0 pnh}
2.

(57)
Using (54), (56), and (57), we infer

R ď
1

8

˜

}uNh }
2
a,h ` t

´1
F

N
ÿ

n“0

τ}unh}
2
a,h ` }u

0
h}

2
a,h

¸

`
1

2tF

N
ÿ

n“1

τ}c
1{2

0 pnh}
2 `

t2F
2c0
}g}2C0pL2pΩqq

` 8C1t
2
Fp2µ` dλq}g}

2
C0pL2pΩqq `

ˆ

1

16p2µ` dλq
`
C2C3

µ

˙

d2
Ω}f }

2
C1pL2pΩqdq. (58)

(5) Conclusion. Using (52), the fact that L “ R owing to (49), and (58), it is inferred that

}uNh }
2
a,h ` 4}c

1{2

0 pNh }
2 `

1

p2µ` dλq
}pNh ´ p

N
h }

2 ` 8
N
ÿ

n“1

τ}pnh}
2
c,h ď

C4

tF

N
ÿ

n“0

τ}unh}
2
a,h `

C4

tF

N
ÿ

n“1

τ4}c
1{2

0 pnh}
2 `G, (59)

where C4 :“ maxp1, C1q while, observing that }c
1{2

0 p0
h} ď }c

1{2

0 p0} since πkh is a bounded oper-
ator, and recalling from (33) that }u0

h}
2
a,h ď C5p2µq

´1
`

d2
Ω}f

0}2 ` }p0}2
˘

,

C´1
4 G :“

5C5

2µ

`

d2
Ω}f

0}2 ` }p0}2
˘

` 4}c
1{2

0 p0}2 `
4t2F
c0
}g}2C0pL2pΩqq

` 64C1t
2
Fp2µ` dλq}g}

2
C0pL2pΩqq `

ˆ

5

2p2µ` dλq
`

8C2C3

µ

˙

d2
Ω}f }

2
C1pL2pΩqdq.

Using Lemma (7) with a0 :“ }u0
h}

2
a,h and an :“ }unh}

2
a,h ` 4}c

1{2

0 pnh}
2 for 1 ď n ď N , δ :“ τ ,

b0 :“ 0 and bn :“ }pnh}
2
c,h for 1 ď n ď N , K “ 1

p2µ`dλq}p
N
h ´ pNh }

2, and γn “ C4
tF
, the desired

result follows.

Owing linearity, the well-posedness of (30) is an immediate consequence of Lemma 8.
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4 Error analysis

In this section we carry out the error analysis of the method.

4.1 Projection

We consider the error with respect to the sequence of projections ppunh, ppnhq1ďnďN , of the exact
solution defined as follows: For 1 ď n ď N , ppnh P P

k
h solves

chppp
n
h, qhq “ chpp

n, qhq @qh P PkdpThq, (60a)

with the closure condition
ş

Ω ppnh “
ş

Ω p
n. Once ppnh has been computed, punh P U

k
h,0 solves

ahppu
n
h,vhq “ lnhpvhq ´ bhpvh, pp

n
hq @vh P U

k
h,0. (60b)

The well-posedness of problems (60a) and (60b) follow, respectively, from the coercivity of ch
on Pkd,0pThq and of ah on Uk

h,0. The projection ppunh, ppnhq is chosen so that a convergence rate
of pk ` 1q in space analogous to the one derived in [9] can be proved for the }¨}a,h-norm of
the displacement at final time tF. To this purpose, we also need in what follows the following
elliptic regularity, which holds, e.g., when Ω is convex: There is a real number Cell ą 0 only
depending on Ω such that, for all ψ P L2

0pΩq, with L2
0pΩq :“

 

q P L2pΩq | pq, 1q “ 0
(

, the
unique function ζ P H1pΩq X L2

0pΩq solution of the homogeneous Neumann problem

´∇¨pκ∇ζq “ ψ in Ω, κ∇ζ¨n “ 0 on BΩ, (61)

is such that
}ζ}H2pPΩq

ď Cellκ
´1{2}ψ}. (62)

For further insight on the role of the choice (60) and of the elliptic regularity assumption we
refer to Remark 13.

Lemma 10 (Approximation properties for ppunh, ppnhq). Let a time step 1 ď n ď N be fixed.
Assuming the regularity pn P Hk`1pPΩq, it holds

}ppnh ´ p
n}c,h À hkκ

1{2}pn}Hk`1pPΩq
. (63)

Moreover, recalling the global reduction map Ikh defined by (5), further assuming the regularity
un P Hk`2pPΩq

d, ∇¨un P Hk`1pPΩq, and provided that the elliptic regularity (62) holds, one
has

}ppnh ´ p
n} À hk`1ρ

1{2
κ }p

n}Hk`1pPΩq
, (64)

p2µq
1{2}punh ´ I

k
hu

n}a,h À hk`1
´

2µ}un}Hk`2pPΩq
d ` λ}∇¨un}Hk`1pPΩq

` ρ
1{2
κ }p

n}Hk`1pPΩq

¯

.

(65)

with global heterogeneity ratio ρκ :“ κ{κ.

Proof. (1) Proof of (63). By definition, we have that }ppnh ´ p
n}c,h “ infqhPPkdpThq

}qh ´ p
n}c,h.

To prove (63), it suffices to take qh “ πkhp
n in the right-hand side of the previous expression

and use the approximation properties (2) of πkh.
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(2) Proof of (64). Let ζ P H1pΩq solve (61) with ψ “ pn ´ ppnh. From the consistency
property (23), it follows that

}ppnh ´ p
n}2 “ ´p∇¨pκ∇ζq, ppnh ´ pnq “ chpζ, pp

n
h ´ p

nq “ chpζ ´ π
1
hζ, pp

n
h ´ p

nq.

Then, using the Cauchy–Schwarz inequality, the estimate (63) together with the approximation
properties (2) of π1

h, and elliptic regularity, it is inferred that

}ppnh ´ p
n}2 “ chpζ ´ π

1
hζ, pp

n
h ´ p

nq ď }ζ ´ π1
hζ}c,h}pp

n
h ´ p

n}c,h

À hk`1κ
1{2}ζ}H2pPΩq

}pn}Hk`1pPΩq
À hk`1ρ

1{2
κ }pp

n
h ´ p

n}}pn}Hk`1pPΩq
,

and (64) follows.
(3) Proof of (65). We start by observing that

}punh ´ I
k
hu

n}a,h “ sup
vhPU

k
hzt0u

ahppu
n
h ´ I

k
hu

n,vhq

}vh}a,h
À sup

vhPU
k
hzt0u

ahppu
n
h ´ I

k
hu

n,vhq

p2µq1{2}vh}ε,h
, (66)

where we have used the first inequality in (16). Recalling the definition (31) of the linear form
lnh , the fact that fn “ ´∇¨σpuq `∇p, and using (60a), it is inferred that

ahppu
n
h ´ I

k
hu

n,vhq “ lnhpv
n
hq ´ ahpI

k
hu

n,vhq ´ bhpvh, pphnq

“
 

´ ahpI
k
hu

n,vhq ´ p∇¨σpunq,vhq
(

`
 

p∇pn,vhq ´ bhpvh, ppnhq
(

.
(67)

Denote by T1 and T2 the terms in braces. Using (17), it is readily inferred that

|T1| À hk`1
´

2µ}un}Hk`2pPΩq
d ` λ}∇¨un}Hk`1pPΩq

¯

}vh}ε,h. (68)

For the second term, performing an element-wise integration by parts on p∇p,vhq and recalling
the definition (25) of bh and (9a) of Dk

T with q “ ppnh, it is inferred that

|T2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPTh

#

pppnh ´ p
n,∇¨vT qT `

ÿ

FPFT

pppnh ´ p
n, pvF ´ vT qnTF qF

+ˇ

ˇ

ˇ

ˇ

ˇ

À hk`1ρ
1{2
κ }p

n}Hk`1pPΩq
}vh}ε,h,

(69)

where the conclusion follows from the Cauchy–Schwarz inequality together with (64). Plug-
ging (68)–(69) into (67) we obtain (65).

4.2 Error equations

We define the discrete error components as follows: For all 1 ď n ď N ,

enh :“ unh ´ punh, ρnh :“ pnh ´ ppnh. (70)

Owing to the choice of the initial condition detailed in Section 2.5, the inital error pe0
h, ρ

0
hq :“

pu0
h´ pu0

h, p
0
h´ pp0

hq is the null element in the product space Uk
h,0ˆP

k
h . On the other hand, for

all 1 ď n ď N , penh, ρ
n
hq solves

ahpe
n
h,vhq ` bhpvh, ρ

n
hq “ 0 @vh P U

k
h, (71a)

pc0δtρ
n
h, qhq ´ bhpδte

n
h, qhq ` chpρ

n
h, qhq “ Enh pqhq, @qh P P

k
h , (71b)

with consistency error

Enh pqhq :“ pgn, qhq ´ pc0δtpp
n
h, qhq ´ chppp

n
h, qhq ` bhpδtpu

n
h, qhq. (72)
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4.3 Convergence

Theorem 11 (Estimate for the discrete errors). Let pu, pq denote the unique solution to (1),
for which we assume the regularity

u P C2pH1pPΩq
dq X C1pHk`2pPΩq

dq,

p P C1pHk`1pPΩqq.
(73)

If c0 ą 0 we further assume p P C2pL2pΩqq. Define, for the sake of brevity the following
bounded quantities:

N1 :“ p2µ` dλq
1{2
}u}C2pH1pPΩq

dq ` }c
1{2

0 p}C2pL2pΩqdq,

N2 :“
p2µ` dλq1{2

2µ

´

2µ}u}C1pHk`2pPΩq
dq ` λ}∇¨u}C1pHk`1pPΩqq

` ρ
1{2
κ }p}C1pHk`1pPΩqq

¯

` }c
1{2

0 p}C0pHk`1pPΩqq
.

Then, assuming the elliptic regularity (62), it holds, letting ρnh :“ pρnh, 1q,

}eNh }
2
a,h ` }c

1{2

0 ρNh }
2 `

1

2µ` dλ
}ρNh ´ ρ

N
h }

2 `

N
ÿ

n“1

τ}ρnh}
2
c,h À

´

τN1 ` h
k`1N2

¯2
. (74)

Remark 12 (Error estimate in the incompressible case). In the incompressible case c0 “ 0,
the third term in the left-hand side of (74) delivers an estimate on the L2-norm of the pressure
since ρNh “ 0 (cf. (1f)).

Proof. Throughout the proof, Ci with i P N˚ will denote a generic positive constant indepen-
dent of h, τ , and of the physical parameters c0, λ, µ, and κ.
(1) Basic error estimate. Using the inf-sup condition (28), equation (27) followed by (71a),
and the second inequality in (16) it is readily seen that

}ρnh´ρ
n
h} ď β sup

vhPU
k
h,0zt0u

bhpvh, ρ
n
h ´ ρ

n
hq

}vh}ε,h
“ β sup

vhPU
k
h,0zt0u

´ahpe
n
h,vhq

}vh}ε,h
ď C

1{2

1 p2µ`dλq
1{2}enh}a,h.

(75)
with C

1{2

1 “ βη1{2. Adding (71a) with vh “ τδteh to (71b) with qh “ τρnh and summing the
resulting equation over 1 ď n ď N , it is inferred that

N
ÿ

n“1

τahpe
n
h, δte

n
hq `

N
ÿ

n“1

τpc0δtρ
n
h, ρ

n
hq `

N
ÿ

n“1

τ}ρnh}
2
c,h “

N
ÿ

n“1

τEnh pρnhq. (76)

Proceeding as in point (3) of the proof of Lemma 8, and recalling that pe0
h, ρ

0
hq “ p0, 0q, we

arrive at the following error estimate:

1

4
}eNh }

2
a,h `

1

4C1p2µ` dλq
}ρNh ´ ρ

N
h }

2 `
1

2
}c

1{2

0 ρNh }
2 `

N
ÿ

n“1

τ}ρnh}
2
c,h ď

N
ÿ

n“1

τEnh pρnhq. (77)

(2) Bound of the consistency error. Using gn “ c0dtp
n `∇¨pdtun ´ κ∇pnq, the consistency
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property (23), and observing that, using the definition (22) of ch, integration by parts together
with the homogeneous displacement boundary condition (1c), and (27),

chpp
n ´ ppnh, ρ

n
hq ` p∇¨pdtunq, ρnhq ` bhpδtpu

n
h, ρ

n
hq “ 0,

we can decompose the right-hand side of (77) as follows:

N
ÿ

n“1

τEnh pρnhq “
N
ÿ

n“1

τpc0pdtp
n ´ δtpp

n
hq, ρ

n
hq `

N
ÿ

n“1

τchpp
n ´ ppnh, ρ

n
h ´ ρ

n
hq

`

N
ÿ

n“1

τ tp∇¨pdtunq, ρnh ´ ρnhq ` bhpδtpu
n
h, ρ

n
h ´ ρ

n
hqu :“ T1 ` T2 ` T3.

(78)

For the first term, inserting ˘δtpn into the first factor and using the Cauchy-Schwarz inequality
followed by the approximation properties of pp0

h (a consequence of (2)) and (64) of ppnh, it is
inferred that

|T1| À

#

c0

N
ÿ

n“1

τ
“

}dtp
n ´ δtp

n}2 ` }δtpp
n ´ ppnhq}

2
‰

+1{2

ˆ

#

N
ÿ

n“1

τ}c
1{2

0 ρnh}
2

+1{2

ď C2

´

τN1 ` h
k`1N2

¯

`
1

2

N
ÿ

n“1

τ}c
1{2

0 ρnh}
2.

(79)

For the second term, the choice (60a) of the pressure projection readily yields

T2 “ 0. (80)

For the last term, inserting ˘Ikhu
n into the first argument of bh, and using the commuting

property (10) of Dk
T , it is inferred that

T3 “

N
ÿ

n“1

τ

#

ÿ

TPTh

”

p∇¨pdtun ´ δtunq, ρnh ´ ρnhqT ` pDk
T δtpI

k
Tu

n ´ punT q, ρ
n
h ´ ρ

n
hqT

ı

+

.

Using the Cauchy–Schwarz inequality, the bound }Dk
T δtpI

k
Tu

n´ punT q}T À }δtpI
k
Tu

n´ punT q}ε,T
valid for all T P Th, and the approximation properties (34) and (65) of pu0

h and punh, respectively,
we obtain

|T3| À

#

N
ÿ

n“1

τ
”

}dtu
n ´ δtu

n}2H1pΩqd ` }δtpI
k
hu

n ´ punhq}
2
ε,h

ı

+1{2

ˆ

#

N
ÿ

n“1

τ}ρnh ´ ρ
n
h}

2

+1{2

ď C3C1

´

τN1 ` h
k`1N2

¯2
`

1

4C1p2µ` dλq

N
ÿ

n“1

τ}ρnh ´ ρ
n
h}

2.

(81)

Using (79)–(81) to bound the right-hand side of (78), it is inferred

}eNh }
2
a,h `

1

C1p2µ` dλq
}ρNh ´ ρ

N
h }

2 ` 2}c
1{2

0 ρNh }
2 ` 4

N
ÿ

n“1

τ}ρnh}
2
c,h

ď
1

C1p2µ` dλq

N
ÿ

n“1

τ}ρnh ´ ρ
n
h}

2 ` 2
N
ÿ

n“1

τ}c
1{2

0 ρnh}
2 `G, (82)
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with G :“ 4pC1C3 ` C2q
`

τN1 ` h
k`1N2

˘2. The conclusion follows using the discrete Gron-
wall’s inequality (45) with δ “ τ , K “ }eNh }

2
a,h, a

0 “ 0 and an “ 1
C1p2µ`dλq

}ρnh ´ ρnh}
2 `

2}c
1{2

0 ρnh}
2 for 1 ď n ď N , bn “ 4}ρnh}

2
c,h, and γ

n “ 1.

Remark 13 (Role of the choice (60) and of elliptic regularity). The choice (60) for the
projection ensures that the term T2 in step (2) of the proof of Theorem 11 vanishes. This
is a key point to obtain an order of convergence of pk ` 1q in space. For a different choice,
say ppnh “ πkhp

n, this term would be of order k, and therefore yield a suboptimal estimate for
the terms in the left-hand side of (83) below (the estimate (84) would not change and remain
optimal). This would also be the case if we removed the elliptic regularity (62) assumption.

Remark 14 (BDF2 time discretization). In the numerical test cases of Section 5, we have
used a BDF2 time discretization, which corresponds to the backward differencing operator

δ
p2q
t ϕ :“

3ϕn`2 ´ 4ϕn`1 ` ϕn

2τ
,

used in place of (3). The analysis is essentially analogous to the backward Euler scheme, the
main difference being that formula (50) is replaced by

2xp3x´ 4y ` zq “ x2 ´ y2 ` p2x´ yq2 ´ p2y ´ zq2 ` px´ 2y ` zq2.

As a result, the error scales as τ2 instead of τ .

Corollary 15 (Convergence). Under the assumptions of Theorem 11, it holds that

p2µq
1{2}∇s,hpr

k
hu

N
h ´ u

N q} ` }c
1{2

0 pp
N
h ´ p

N q} `
1

2µ` dλ
}ppNh ´ p

N q ´ ppNh ´ p
N q}

À τN1 ` h
k`1N2 ` c

1{2

0 hk`1}pN}Hk`1pPΩq
, (83)

#

N
ÿ

n“1

τ}pnh ´ p
n}2c,h

+1{2

À τN1 ` h
k`1N2 ` h

kκ
1{2t

1{2

F }p}C0pHk`1pPΩqq
. (84)

Proof. Using the triangular inequality, recalling the definition (70) of eNh and ppNh and (16) of
}¨}a,h-norm, it is inferred that

p2µq
1{2}∇s,hpr

k
hu

N
h ´ u

N q} À }eNh }a,h ` p2µq
1{2}∇s,hpr

k
hpuh ´ r

k
hI

k
hu

N q}

` p2µq
1{2}∇spr

k
hI

k
hu

N ´ uN q},

}pNh ´ p
N ´ ppNh ´ p

N q} ď }ρNh ´ ρ
N
h } ` }pp

N
h ´ p

N},

}c
1{2

0 pp
N
h ´ p

N q} ď }c
1{2

0 ρNh } ` }c
1{2

0 ppp
N
h ´ p

N q}.

To conclude, use (74) to estimate the left-most terms in the right-hand sides of the above
equations. Use (65) and (64), the approximation properties (8) of rkhI

k
h, respectively, for the

right-most terms. This proves (83). A similar decomposition of the error yields (84).

5 Numerical tests

In this section we provide numerical evidence to confirm the theoretical results.
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Figure 2: Triangular, Cartesian and hexagonal-dominant meshes for the numerical tests

5.1 Convergence

We first consider a manufactured regular exact solution to confirm the convergence rates
predicted in (74). Specifically, we solve the two-dimensional incompressible Biot problem
(c0 “ 0) in the unit square domain Ω “ p0, 1q2 with tF “ 1 and physical parameters µ “ 1,
λ “ 1, and κ “ 1. The exact displacement u and exact pressure p are given by, respectively

upx, tq “
`

´ sinpπtq cospπx1q cospπx2q, sinpπtq sinpπx1q sinpπx2q
˘

,

ppx, tq “ ´ cospπtq sinpπx1q cospπx2q.

The volumetric load is given by

f px, tq “ 6π2psinpπtq ` π cospπtqq ˆ
`

´ cospπx1q cospπx2q, sinpπx1q sinpπx2q
˘

,

while gpx, tq ” 0. Dirichlet boundary conditions for the displacement and Neumann boundary
conditions for the pressure are inferred from exact solutions to BΩ.

We consider the triangular, Cartesian and (predominantly) hexagonal mesh families de-
picted in Figure 2. The time discretization is based on the second order Backward Differenti-
ation Formula (BDF2); cf. 14. The time step τ on the coarsest mesh is taken to be 0.1{2

pk`1q
2

for every choice of the spatial degree k, and it decreases with the mesh size h according to
the theoretical convergence rates, thus, if h2 “ h1{2, then τ2 “ τ1{2

pk`1q
2 . The implementa-

tion is based on the hho platform1, which relies on the linear algebra facilities provided by
the Eigen3 library [14]. Figure 3 displays convergence results for the various mesh families
and polynomial degree up to 3. The error measures are }pNh ´ πkhp

N} for the pressure and
}uNh ´ I

k
hu

N}a,h for the displacement. Using the triangle inequality together with (74) and
the approximation properties (2) of πkh and (8) of prkh ˝ I

k
hq, it is a simple matter to prove

that these quantities have the same convergence behaviour as the terms in the left-hand side
of (74). In all cases, the numerical results show asymptotic convergence rates that are in
agreement with theoretical predictions.

The convergence in time was also separately checked considering the method with spatial
degree k “ 3 on the hexagonal mesh with mesh size h “ 0.0172 and time step decreasing from
τ “ 0.1 to τ “ 0.0125. Figure 4 confirms the second order convergence of the BDF2.

5.2 Barry and Mercer’s test case

A test case more representative of actual physical configurations is that of Barry and Mercer [1],
for which an exact solution is available (we refer to the cited paper and also to [20, Section 4.2.1]

1DL15105 Université de Montpellier
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Figure 3: Errors vs. h
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Figure 4: Time convergence with BDF2, hexagonal mesh

for the its expression). We let Ω “ p0, 1q2 and consider the following time-independent bound-
ary conditions on BΩ

u¨τ “ 0, nT∇un “ 0, p “ 0,

where τ denotes the tangent vector on BΩ. The evolution of the displacement and pressure
fields is driven by a periodic pointwise source (mimicking a well) located at x0 “ p0.25, 0.25q:

g “ δpx´ x0q sinpt̂q,

with normalized time t̂ :“ βt for β :“ pλ ` 2µqκ. As in [22, 24], we use the following values
for the physical parameters:

c0 “ 0, E “ 1 ¨ 105, ν “ 0.1, κ “ 1 ¨ 10´2,

where E and ν denote Young’s modulus and Poisson ratio, respectively, and

λ “
Eν

p1` νqp1´ 2νq
, µ “

E

2p1` νq
.

In the injection phase t̂ P p0, πq, we observe an inflation of the domain, which reaches its
maximum at t̂ “ π{2; cf. Figure 5a. In the extraction phase t̂ P pπ, 2πq, on the other hand, we
have a contraction of the domain which reaches its maximum at t̂ “ 3π{2; cf. Figure 5b.

The following results have been obtained with the lowest-order version of the method
corresponding to k “ 1 (taking advantage of higher orders would require local mesh refinement,
which is out of the scope of the present work). In Figure 6 we plot the pressure profile at
normalized times t̂ “ π{2 and t̂ “ 3π{2 along the diagonal p0, 0q–p1, 1q of the domain. We
consider two Cartesian meshes containing 1,024 and 4,096 elements, respectively, as well as
two (predominantly) hexagonal meshes containing 1,072 and 4,192 elements, respectively. In
all the cases, a time step τ “ p2π{βq ¨ 10´2 is used. We note that the behaviour of the pressure
is well-captured even on the coarsest meshes. For the finest hexagonal mesh, the relative error
on the pressure in the L2-norm at times t̂ “ π{2 and t̂ “ 3π{2 is 2.85%.

To check the robustness of the method with respect to pressure oscillations for small
permeabilities combined with small time steps, we also show in Figure 7 the pressure profile
after one step with κ “ 1 ¨ 10´6 and τ “ 1 ¨ 10´4 on the Cartesian and hexagonal meshes
with 4,096 and 4,192 elements, respectively. This situation corresponds to the one considered
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(a) t̂ “ π{2 (b) t̂ “ 3π{2

Figure 5: Pressure field on the deformed domain at different times for the finest Cartesian mesh containing
4,192 elements

(a) t̂ “ π{2, κ “ 1 ¨ 10´2 (b) t̂ “ 3π{2, κ “ 1 ¨ 10´2

Figure 6: Pressure profiles along the diagonal p0, 0q–p1, 1q of the domain for different normalized times t̂ and
meshes (k “ 1). The time step is here τ “ p2π{βq ¨ 10´2.
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(a) Cartesian mesh (cardpThq “ 4,028) (b) Hexagonal mesh (cardpThq “ 4,192)

Figure 7: Pressure profiles along the diagonal p0, 0q–p1, 1q of the domain for κ “ 1 ¨ 10´6 and time step
τ “ 1 ¨ 10´4. Small oscillations are present on the Cartesian mesh (left), whereas no sign of oscillations is
present on the hexagonal mesh (right).

in [24, Figure 5.10] to highlight the onset of spurious oscillations in the pressure. In our case,
small oscillations can be observed for the Cartesian mesh (cf. Figure 7a), whereas no sign of
oscillations in present for the hexagonal mesh (cf. Figure 7b). One possible conjecture is that
increasing the number of element faces contributes to the monotonicity of the scheme.
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