PAXQuery: Efficient Parallel Processing of Complex XQuery
Jesús Camacho-Rodríguez, Dario Colazzo, Ioana Manolescu

To cite this version:
Jesús Camacho-Rodríguez, Dario Colazzo, Ioana Manolescu. PAXQuery: Efficient Parallel Processing of Complex XQuery. IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers, 2015, 27 (7), pp.1977 - 1991. <http://www.computer.org/web/tkde>. <10.1109/TKDE.2015.2391110>. <hal-01162929>

HAL Id: hal-01162929
https://hal.archives-ouvertes.fr/hal-01162929
Submitted on 11 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PAXQuery: Efficient Parallel Processing of Complex XQuery

Jesús Camacho-Rodríguez, Dario Colazzo, and Ioana Manolescu

Abstract—Increasing volumes of data are being produced and exchanged over the Web, in particular in treestructured formats such as XML or JSON. This leads to a need of highly scalable algorithms and tools for processing such data, capable to take advantage of massively parallel processing platforms.

This work considers the problem of efficiently parallelizing the execution of complex nested data processing, expressed in XQuery. We provide novel algorithms showing how to translate such queries into PACT, a recent framework generalizing MapReduce in particular by supporting many-input tasks. We present the first formal translation of complex XQuery algebraic expressions into PACT plans, and demonstrate experimentally the efficiency and scalability of our approach.

Index Terms—XQuery processing, XQuery parallelization, XML data management.

1 INTRODUCTION

To scale data processing up to very large data volumes, platforms are increasingly relying on implicit parallel frameworks [9], [20], [51]. The main advantage of using such frameworks is that processing is distributed across many sites without the application having to explicitly handle data fragmentation, fragment placement etc.

By far the most widely adopted framework, MapReduce [20] features a very simple processing model consisting of two operations, Map which distributes processing over sets of (key, value) pairs, and Reduce which processes the sets of results computed by Map for each distinct key. However, the simplicity of this processing model makes complex computations hard to express. Therefore, high-level data analytics languages such as Pig [39], Hive [48] or Jaql [12], that are translated (compiled) into MapReduce programs, have emerged. Still, complex processing translates to large and complex MapReduce programs, which may miss parallelization opportunities and thus execute inefficiently.

Recently, more powerful abstractions for implicitly parallel data processing have emerged, such as the Resilient Distributed Datasets [51] or Parallelization Contracts [9] (PACT, in short). In particular, PACT pushes the idea of MapReduce further by (i) manipulating records with any number of fields, instead of (key, value) pairs, (ii) enabling the definition of custom parallel operators by means of second-order functions, and (iii) allowing one parallel operator to receive as input the outputs of several other such operators. Due to its declarative nature, a PACT program can have multiple physical execution plans with varying performance. At compile time, the compiler chooses an optimal strategy (plan) that maximizes parallelisation opportunities, and thus efficiency. The PACT model lies at the core of the Stratosphere platform [47], which can read data from and write data to the Hadoop Distributed File System (HDFS) [3].

In this work, we are interested in the implicit parallelization of XQuery [43], the W3C’s standard query language for XML data. The language has been recently enhanced with features geared towards XML analytics [22], such as explicit grouping. Given a very large collection of documents, evaluating an XQuery query that navigates over these documents and also joins results from different documents raises performance challenges, which may be addressed by parallelism. In contrast with prior work [13], [19], [29], we are interested in implicit parallelism, which does not require the application (or the user) to partition the XML input nor the query across many nodes.

The contributions of this work are the following:
1) We present a novel methodology for massively parallel evaluation of XQuery, based on PACT and previous research in algebraic XQuery optimization.
2) We provide a translation algorithm from the algebraic operators required by a large powerful fragment of XQuery into operators of the PACT parallel framework. This enables parallel XQuery evaluation without requiring data or query partitioning effort from the application.

Toward this goal, we first map XML data instances into PACT nested records, to ensure XML query results are returned after the PACT manipulations of nested records. Second, we bridge the gap between the XQuery algebra, and in particular, many flavors of joins [21], [34], [35] going beyond simple conjunctive equality joins, and PACT operators which (like MapReduce) are fundamentally designed around the equality of key values in their inputs.

Our translation of complex joins is of interest beyond
the XQuery context, as it may enable compiling other high-level languages [12], [39], [48] into PACT and other models, and thus, their efficient parallelization by platforms such as Stratosphere [47] or Spark [4].

3) We fully implemented our translation technique into our PAXQuery platform. We present experiments demonstrating that our translation approach (i) effectively parallelizes XQuery evaluation taking advantage of the PACT framework, and (ii) scales well beyond alternative approaches for implicitly parallel XQuery evaluation, in particular as soon as joins across documents are present in the workload.

It is worth observing that, thanks to XML flexibility, PAXQuery can be exploited for efficiently processing large amount of heterogeneous data, going from relational to JSON data. While JSON data can be easily and efficiently encoded into XML data in a streaming fashion, well established techniques exist to efficiently map rational data into XML data (e.g., [24], [32]); actually, a basic encoding of tables to flat XML files would suffice, as PAXQuery is able to efficiently perform various kind of joins, in order to recombine data coming from XML documents corresponding to different tables.

The remainder of the paper is organized as follows. Section 2 introduces the problem by means of an example. Section 3 provides background on XML, XQuery, and the PACT model. Section 4 overviews our complete solution and characterizes the XQuery algebras targeted by our translation. Section 5 presents the translation algorithm from XQuery plans to PACT, at the core of this work. Section 6 describes our experimental evaluation. Section 7 discusses related work and then we conclude.

2 Motivation

Example 1. Consider the following XQuery that extracts the name of users, and the items of their auctions (if any):

```
let $spc := collection('people'),
   $cc := collection('closed_auctions')
for $sp in $spc/site/people/person, $id in $sp/@id
let $n := $sp/name
let $r :=
  for $c in $cc//closed_auction,
    $b in $c/buyer/@person,
    $s in $c/seller/@person
  let $a := $c/itemref
  where $l = $b or $l = $s
return $a
return <res>{$n,$r}</res>
```

We would like to evaluate this query over two large collections of documents (concerning people, respectively closed auctions) stored in HDFS. Evaluating the query in a massively parallel fashion as previously proposed e.g. in [29] requires the programmer to explicitly insert parallelization primitives for each query, and then we conclude.

3 Background

In the following, we provide background on the XML data model and XQuery dialect we target (Section 3.1), and the PACT programming model used by Stratosphere (Section 3.2).

3.1 XML and XQuery fragment

XML data. We view XML data as a forest of ordered, node-labeled, unranked trees, as outlined by the simple grammar:

```
Tree       d ::= s_0 | l/[f]
Forest     f ::= [] | f / f | d
```

A tree d is either a text node (s_i), or an element node having the label l_i and a forest of children; in accordance with the W3C’s XML data model, each node is endowed with a unique identity, which we materialize through the i index. A forest f
is a sequence of XML trees; () denotes the empty forest. For the sake of presentation we omitted attributes in our grammar.

XQuery dialect. We consider a representative subset of the XQuery 3.0 language [43]. Our goal was to cover (i) the main navigating features of XQuery, and (ii) key constructs to express analytical style queries e.g. aggregation, explicit grouping, or rich comparison predicates. However, extensions to support other XQuery constructs e.g. if or switch expressions, can be integrated into our proposal in a straightforward manner. The full presentation of our XQuery dialect, including the grammar, can be found in Appendix A.

Figure 2 provides three sample queries. A path starts from the root of each document in a collection found at URI \(\text{Uri} \), or from the root of one document at URI \(\text{Uri} \), or from the bindings of a previously introduced variable. The path expression dialect **Path** belongs to the XPath \(\{0,1\}\) language [37]. We support two different types of comparators in predicates: (ValCmp) to compare atomic values, and (NodeCmp) to compare nodes by their identity. Finally, the **group by** clause groups tuples based on variable values.

In Figure 2, queries \(Q_1 \) and \(Q_2 \) use only one collection of documents while query \(Q_3 \) joins two collections. Further, \(Q_2 \) and \(Q_3 \) construct new XML elements while \(Q_1 \) returns the result of an aggregation over nodes from the input documents.

3.2 PACT framework

The PACT model [9] is a generalization of MapReduce, based on the concept of parallel data processing operators. PACT plans are DAGs of **implicit parallel operators**, that are optimized and translated into **explicit parallel data flows** by Stratosphere.

We introduce below the PACT data model and formalize the semantics of its operators.

Data model. PACT plans manipulate **records** of the form:

\[
((f_1, f_2, \ldots, f_n), \{ (i_1, i_2, \ldots, i_k) \})
\]

where \(1 \leq k \leq n \) and:

- \((f_1, f_2, \ldots, f_n) \) is a list of fields \(f_i \). In turn, a field \(f_i \) is either an atomic value (string) or a list \((r'_1, \ldots, r'_m) \) of records.
- \(\{ (i_1, i_2, \ldots, i_k) \} \) is a possibly empty list of record positions in \([1 \ldots n]\) indicating the key fields for the record. Each of the key fields must be an atomic value.

Annotations and compiler hints characterize the UF behaviour. We describe these next.

1) **Parallelization contract.** A PACT can have \(k \geq 1 \) inputs, each of which is a finite bag of records. The contract determines how input records are organized into groups.

2) **User function.** The UF is executed independently over each bag of records created by the parallelization contract, therefore these executions can take place in parallel. For each input bag of records, the UF returns a bag of records.

3) **Annotations and/or compiler hints** may be used to enable optimizations (with no impact on the semantics), thus we do not discuss them further.

The semantics of the PACT \(op \) given as input \(k \) bags of records \(I_1, \ldots, I_k \), with \(I_i \subset \mathcal{R} \), \(1 \leq i \leq k \), and having the parallelization contract \(c \) and the user function \(f \) is:

\[
\text{op}(I_1, \ldots, I_k) = \bigcup_{s \in \mathcal{C}(I_1, \ldots, I_k)} f(s)
\]

In the above, \(c \) builds bags of records by grouping the input records belonging to bags \(I_1, \ldots, I_k \); \(f \) is invoked on each bag produced by \(c \), and the resulting bags are unioned.

Predefined contracts. Although the PACT model allows creating custom parallelization contracts, a set of them for the most common cases is built-in:

- **Map** has a single input, and builds a singleton for each input record. Formally, given the bag \(I_1 \subset \mathcal{R} \) of records, Map is defined as:

\[
\text{Map}(I_1) = \{ \{ r \} \mid r \in I_1 \}
\]
Numerous logical algebras have been proposed for XQuery [10], [21], [34], [42]. While the language has a functional flavor, most algebras decompose the processing of a query into operators, such as: navigation (or tree pattern matching), which given a path (or tree pattern) query, extracts from a document tuples of nodes matching it; selection; projection; join etc.

A significant source of XQuery complexity comes from nesting: an XQuery expression can be nested in almost any position within another. In particular, nested queries challenge the optimizer, as straightforward translation into nested plans leads to very poor performance. For instance, in Figure 2, \(Q_3 \) contains a nested subquery for \(\$t \) ... \(\$t \) (shown indented in the figure); let us call it \(Q_4 \) and write \(Q_3 = e(Q_4) \). A naïve algebraic expression of such a query would evaluate \(Q_4 \) once per result of \(e \) in order to compute \(Q_3 \) results, which is typically inefficient.

Efficient optimization techniques translate nested XQuery into unnested plans relying on joining and grouping [7], [21], [35]. Thus, a smarter method to represent such query is to connect the sub-plans of \(Q_4 \) and \(e \) with a \textit{join} in the plan of \(Q_3 \); the join condition in this example is \(\$b=\$i \). Depending on the query shape, such \textit{decorrelating} joins may be \textit{nested} and/or \textit{outer}.

Our goal is to complement existing engines, which translate from XQuery to an internal algebra, by an efficient compilation of this algebra into an implicit parallel framework such as PACT. This enables plugging a highly parallel back-end to an XQuery engine to improve its scalability. Accordingly, we aim to adapt to any XML query algebra satisfying the following two assumptions:

- The algebra is tuple-oriented (potentially using nested tuples).
- The algebra is rich enough to support decorrelated (unnested) plans even for nested XQuery; in particular we consider that the query plan has been unnested before we start translating it into PACT.

Three observations are of order here.

First, to express complex queries without nesting, the algebra may include any type of joins (conjunctive/disjunctive, value or identity-based, possibly nested, possibly outer), as well as grouping; accordingly, we must be able to translate all such operators into PACT.

Second, a tuple-based algebra for XQuery provides border operators for (i) creating tuples from XML trees, in leaf operators of the algebraic plan; (ii) constructing XML trees out of tuples, at the top of the algebraic plan, so that XML results can be returned.

Finally, we require no optimization but unnesting [35] to be applied on the XML algebraic plan before translating it to PACT; however, any optimization \textit{may} be applied before (and orthogonal to) our translation.

4.2 Algebra and data model

In the sequel, we present our work based on the algebra in [34]. We describe the nested tuple data model manipulated by this algebra, then present its operators.

Nested tuples data model for XML. The data model extends the W3C’s XPath/XQuery data model with \textit{nested tuples} to facilitate describing algebraic operations.
Formally, a tuple t is a set of variable-value pairs:
\[
\{(\$V_1,v_1), (\$V_2,v_2), \ldots, (\$V_k,v_k)\}
\]
where the variable names $\$V_i$ are all distinct, and each value v_i is either (i) an item, which can be an XML node, atomic value or \bot, or (ii) an homogeneous collection of tuples (see below).

Three flavours of collections are considered, namely: lists, bags and sets, denoted as (t_1,t_2,\ldots,t_n), $\{(t_1,t_2,\ldots,t_n)\}$, and $\{t_1,t_2,\ldots,t_n\}$, respectively.

Tuple schemas are needed for our discussion. The schema S of a tuple t is a set of pairs $\{(\$V_1,S_1),\ldots,(\$V_k,S_k)\}$ where each S_i is the schema of the value of the variable $\$V_i$.

Three operators started from the leaves.

The XML scan operators take as input the ‘people’ (respectively ‘closed_auctions’) XML forests and create a tuple out of each tree in them. XML scan is one of the border operators. XPath and XQuery may perform navigation, which, in a nutshell, binds variables to the result of path traversals. Navigation is commonly represented through tree patterns, whose nodes carry the labels appearing in the paths, and where some target nodes are also annotated with names of variables to be bound, e.g. $\$pc$, $\$i$ etc. The algebra we consider allows to consolidate as many navigation operations from the same query as possible within a single navigation tree pattern, and in particular navigation performed outside of the for clauses [7], [21], [36]. Large navigation patterns lead to more efficient query execution, since patterns can be matched very efficiently against XML documents; for instance, if the pattern only uses child and descendant edges, it can be matched in a single pass over the input [17]. In the spirit of generalized tree patterns [18], annotated tree patterns [40], or XML access modules [6], we assume a navigation (nav) operator parameterized by an extended tree pattern (ETP) supporting multiple returning nodes, child and descendant axis, and nested and optional edges.

The XML construction (construct$_L$) is the border operator responsible for transforming a collection of tuples to XML forests [25], [46]. The information on how to build the XML forest is specified by a list L of construction tree patterns (CTPs in short), attached to the construct$_L$ operator. For each tuple in its input, construct$_L$ builds one XML tree for each CTP in L [34]. In our example, L contains a single CTP that generates for each tuple an XML tree consisting of elements of the form $<res>\{\$n,\$r\}</res>$. We omit further details here; the interested reader may find them in Appendix B.

Example 1 (continuation). The algebraic plan corresponding to the XQuery introduced in Section 2 is shown in Figure 5. For simplicity, we omit the variable types in the operators schema and only show the variable names. We discuss the operators starting from the leaves.

The XML scan operators take as input the ‘people’ (respectively ‘closed_auctions’) XML forests and create a tuple out of each tree in them. XML scan is one of the border operators.

The algebraic representation of XQuery. In the following, we introduce the translation process and the main operators by example. A methodology for translating our XQuery dialect to the algebra we consider was described in [7], and detailed through examples in [33]. The complete list of algebra operators and their semantics can be found in Appendix B.

Full operator set. We briefly comment below on the rest of operators that are handled by our translation.

The rest of unary operators are very close to their known counterparts in nested relational algebra. These are flatten (flat$_p$) which unnests tuples, selection (sel$_p$) based on a predicate ρ, projection (proj$_V$), aggregation (agg$_p,a,r$) computing the usual aggregates over (nested) records, and value-based duplicate elimination (dupelim$_V$). One operator that is slightly different is group-by ($grpG_{d,G_e,s,r}$). In order to conform to
Translation rules.

Fig. 6. Data model translation rules.

XML semantics, the operator may group by identity based on the variables in \(G_{\text{id}} \), and/or by value on the variables in \(G_v \) [21], [34].

Binary operators include the usual cartesian product (prod), join (\(\text{join} \)), outer join (\(o\text{join} \)) and nested outer join (\(n\text{join} \)).

5 XML ALGEBRA TO PACT

Within the global approach depicted in Figure 4, this section describes our contribution: translating (i) from the Extended XQuery Data Model (or EXDM, in short) into the PACT Data Model (Section 5.1) and (ii) from algebraic expressions into PACT plans (Section 5.2). The most complex technical issues are raised by the latter.

XQuery algebraic plans are translated into PACT plans recursively, operator by operator; for each XQuery operator, the translation outputs one or several PACT operators for which we need to choose (i) the parallelization contract (and possibly its corresponding key fields), and (ii) the user function, which together determine the PACT behavior. The hardest to translate are those algebraic operators whose input cannot be fragmented based on conjunctive key equalities (e.g., disjunctive joins). This is because all massively parallel operators in PACT are based on key equality comparisons [9].

Translation rules. As in [42], we use deduction rules to specify our translation. In a nutshell, a deduction rule describes how the translation is performed when certain conditions are met over the input. Our rules rely on translation judgments, noted as \(J, J_1 \), and are of the form:

\[
\text{cond} \quad J_1 \ldots J_n
\]

stating that the translation \(J \) (conclusion) is recursively made in terms of translations \(J_1 \ldots J_n \) (premises) when the (optional) condition \(\text{cond} \) holds. The translation judgments \(J_1 \) are optional; their absence denotes that the rule handles the “fixpoint” (start of the recursive translation).

5.1 Translating XML tuples into PACT records

Rules for translating instances of EXDM into those of PACT rely on translation judgments of the form \(t \stackrel{\lambda}{\rightarrow} r \) or: “the EXDM instance \(t \) translates into the PACT record \(r \)”.

The translation rules appear in Figure 6, where \(+ \) denotes record concatenation. Rules produce records whose key fields are not set yet; as we will see in Section 5.2, the keys are filled in by the translation.

Rule (TUPLE) produces a record from a tuple: it translates each tuple value, and then builds the output record \(r \) by concatenating the results according to tuple order.

There are three rules that can be triggered by rule (TUPLE). First, rule (XMLNODE) translates an XML node into a record with two fields: the first one contains the XML ID, while the second is the text serialization of the XML tree rooted at the node. In turn, rule (ATOMICVALUE) translates an XML value. Finally, rule (COLLVALUE) translates a tuple collection into a single-field record that contains the nested collection of records corresponding to the tuples in the input.

5.2 Translating algebraic expressions to PACT

Rules for translating an algebraic expression into a PACT plan are based on judgments of the form \(A \Rightarrow \mathcal{P} \), or: “\(A \) translates into a PACT plan \(\mathcal{P} \)”. All rules are defined recursively over the structure of their input \(A \); for instance, the translation of \(A = \text{sel}_{\lambda}(A') \) relies on the PACT plan \(\mathcal{P}' \) resulting from the translation of the smaller expression \(A' \), and so on.

The specific behavior of each rule is encoded in the choice of the parallelization contracts (and corresponding keys) and the user functions, so this is what we comment on below.

Preliminaries. In the translation, we denote a PACT operator by its parallelization contract \(c \), user function \(f \) and the list \(K \) of key field positions in the PACT input. In particular:

- a unary PACT is of the form \(cf^K \); if \(K = \emptyset \), for simplicity we omit it and use just \(cf \);
- a binary PACT is of the form \(cf^{K_1,K_2} \), assuming that the key of the left input records consists of the fields \(K_1 \) and that of the right input records of \(K_2 \), respectively.

To keep track of attribute position through the translation, we use a set of helper functions associating to variables...
Fig. 7. Border operators translation rules.

\[
A \Rightarrow P \quad S_A; e \Rightarrow e' \quad f := \text{nav}(e') \quad \text{(NAVIGATION)}
\]

\[
\text{nav}_e(A) \Rightarrow \text{mp}_f(P)
\]

\[
S_A; G_{id} \Rightarrow G'_{id} \quad S_A; G_v \Rightarrow G'_v \quad K := G'_{id} + G'_v \quad f := \gamma \gamma \gamma (K)
\]

\[
\gamma \gamma \gamma G_{id}, G_v, s_r(A) \Rightarrow \text{rd}_f'(P)
\]

\[
A \Rightarrow P \quad S_A; p \Rightarrow p_i \quad f := \text{flat}(pi) \quad \text{(FLATTEN)}
\]

\[
\text{flat}_p(A) \Rightarrow \text{mp}_f(P)
\]

\[
A \Rightarrow P \quad S_A; p \Rightarrow \rho' \quad f := \text{sel}(\rho') \quad \text{(SELECTION)}
\]

\[
\text{sel}_\rho(A) \Rightarrow \text{mp}_f(P)
\]

\[
A \Rightarrow P \quad S_A; V \Rightarrow V' \quad f := \text{proj}(V') \quad \text{(PROJECTION)}
\]

\[
\text{proj}_V(A) \Rightarrow \text{mp}_f(P)
\]

\[
\text{if } p\.\text{length} \neq 1 \text{ then } f := \text{agg}(pi, a) \quad U := \text{mp}_f \text{ else } K := 0 \quad f := \gamma \gamma \gamma (pi, a) \quad U := \text{rd}_f' \quad \text{(AGGREGATION)}
\]

\[
\text{agg}_{p, s_r}(A) \Rightarrow U (P)
\]

\[
A \Rightarrow P \quad S_A; V \Rightarrow v, K \quad f := \text{dupelim} \quad \text{dupelim}_v(A) \Rightarrow \text{rd}_f'(P) \quad \text{(DUPELIM)}
\]

Fig. 8. Unary operators translation rules.

from S, the index positions of the corresponding fields in the PACT records. These functions are outlined in Table 1; we use the term S-records as a shortcut for records obtained by translating tuples that conform to schema S. The helper functions implementation details are quite straightforward.

5.2.1 Border operators translation

Figure 7 outlines the translation of border operators.

Rule (CONSTRUCTION) translates the logical construct_L operator into a data sink that uses our output function xmlwrite. For each input record from P, xmlwrite generates XML content using the list of construction patterns in L' and writes the results to a file.

Rule (SCAN) translates the logical operator scan_f into a data source built up by means of our input function xmlscan. For each XML document in f, xmlscan returns a single-field record holding the content of the document.

5.2.2 Unary operators translation

Unary operators are translated by the rules in Figure 8.

Rule (NAVIGATION) uses an auxiliary judgment that translates the input ETP e into e' using S_A. Navigation is applied over each record independently, and thus we use a PACT with a Map contract. The UF is nav, which generates new records from the (possibly partial) embeddings of e' in each input record.

Rule (GROUP-BY) translates a group-by expression into a PACT with a Reduce contract, as the records need to be partitioned by the value of their grouping fields. The fields in K, which form the key used by the Reduce contract, are obtained appending G'_v to G'_u. K is also handed to the $\gamma \gamma \gamma$ UF, which creates one record from each input collection of records. The new record contains the values for each field in K, and a new field which is the collection of the input records themselves.

Example 2. The following XQuery groups together the people that share interest in the same auctions:

\[
\text{let } spc := \text{collection('people')} \\
\text{for } sp \in \text{spc/people/person,} \\
\text{so in sp/watches/watch/@open_auction} \\
\text{let } sn := \text{sp/name} \\
\text{group by } so \\
\text{return } \text{<rea}<a> (so) (sn) </rea>
\]

The XML algebraic expression generated from this query is shown in Figure 9a. Using the judgments in Figure 8, the expression is translated into the PACT plan of Figure 9b. Observe that the grouping variable so is translated into field position 5, since: i) two record fields are created for each of the first variables spc and sp (rules (TUPLE) and (XMLNODE) in Figure 6) and ii) the subsequent two fields correspond to the id-value pair for so; the mapping of S_2 tuples into PACT records is shown in Figure 10 (the key field is highlighted). The same holds for the encoding of fields used in other figures.

Rule (FLATTEN) translates a flatten expression into a Map PACT, that applies the flattening UF flat on each input record independently. The path pi to the nested collection is obtained from p using S_A.

Rule (SELECTION) produces a Map PACT that applies the selection to each record produced by P. Selection is performed by the sel UF, which uses the filtering condition ρ' obtained from ρ and S_A.

Fig. 9. Logical expression (a) and corresponding PACT plan (b) for the query in Example 2.

Fig. 10. Example of tuple representation in PACT.
Fig. 11. Cartesian product and conjunctive equi-join translation rules.

Rule (PROJECTION) translates a projection expression into a PACT using a Map contract. The positions V' of the fields that should be kept by the projection are obtained from V using the schema S_A.

The translation of (AGGREGATION) is interesting as it can use one PACT or another, depending on the path p to the variable being aggregated. If the variable is contained in a nested collection, i.e., $p.length \neq 1$, we produce a PACT with a Map contract; for each input record, the \texttt{Map} UF executes the aggregation operation a over the field pointed by pi and outputs a record with the aggregation results.

Otherwise, if the aggregation is executed on the complete input collection, we use a Reduce contract wrapping the input in a single group. The \texttt{Map} UF creates an output record having (i) a field with a nested collection of all input records and (ii) a field with the result of executing the aggregation a over the field pointed by pi.

Finally, rule (DUPLÉLIM) translates a duplicate elimination expression into a PACT with a Reduce contract. Each group handed to the UF holds the bag of records containing the same values in the fields pointed by K; the duplicate elimination UF, denoted by \texttt{dupelim}, outputs only one record from the group.

5.2.3 Binary operators translation

The rules are depicted in Figure 11; we assume that the inputs A_1 and A_2 of the algebraic binary operator translate into the PACT plans P_1 and P_2.

a) Cartesian product. This operator requires the simple \texttt{concatenation} UF, taking as input a pair of records, and outputting their concatenation: $\texttt{concat}(r_1, r_2) = r_1 + r_2$.

Rule (\texttt{CartesianProduct}) translates a cartesian product into a Cross PACT with a \texttt{UF}.

b) Joins with conjunctive equality predicates. This family comprises joins on equality predicates, which can be simple (natural) equi-joins, or outer joins (without loss of generality we focus on left outer joins).

b.1) Conjunctive equi-join. The conjunctive equi-join operator is translated by rule (\land \texttt{JOIN}), as follows. First, the predicate ρ over A_1 and A_2 translates into a predicate ρ' over records produced by P_1 and P_2. Then, the list of fields pointed by the left (\rightarrow_l), resp. right (\rightarrow_r) of the condition ρ' are extracted, and finally they are used as the keys of the generated Match PACT.

b.2) Left outer conjunctive equi-join. In the rule (LO \land \texttt{JOIN}), the output PACT is a CoGroup whose keys are taken from the fields of the translated join predicate ρ'. The CoGroup contract groups the records produced by P_1 and P_2 sharing the same key. Then, the \texttt{concat} UF that we describe next is applied over each group, to produce the expected result.

\textbf{Definition 1 (\texttt{concat})}: The left outer concatenation UF, \texttt{concat}, of two record bags $\{(r_1, \ldots, r_x)\}$ and $\{(r'_1, \ldots, r'_y)\}$ is defined as:

- If $y \neq 0$, the cartesian product of the two bags.
- Otherwise, $\{(r_1+\perp', \ldots, r_x+\perp')\}$ i.e., concatenate each left input record with a \perp-record having the schema (structure) of the right records.

b.3) Nested left outer conjunctive equi-join. Similar to the non-nested case, rule (NLO \land \texttt{JOIN}) translates the nested left outer conjunctive equi-join into a CoGroup PACT whose key is extracted from ρ'. However, we need a different UF in order to generate the desired right-hand side nested records, and we define it below.

\textbf{Definition 2 (\texttt{concat})}: The nested left outer concatenation UF, \texttt{concat}, of the bags $\{(r_1, \ldots, r_x)\}$ and $\{(r'_1, \ldots, r'_y)\}$ is defined as:

- If $y \neq 0$, $\{(r_1+(r'_1, \ldots, r'_y), \ldots, r_x+(r'_1, \ldots, r'_y))\}$ i.e., nest the right set as a new field concatenated to each record from the left.
- Otherwise, $\{(r_1+(\perp', \ldots, r_x+(\perp'))\}$ i.e., add to each left record a field with a list containing a \perp-record conforming to the schema of the right records.

\textbf{Example 3}. The following XQuery extracts the name of users and the items that they bought (if any):

\begin{verbatim}
let $spc := collection('people'),
 $cc := collection('closed_auctions')
for $sp in $spc/site/people/person, $i in $sp/bid
let $n := $sp/name
let $r :=
 for $x in $cc/closed_auction,
 $b in $c/buyer/person
 let $a := $cc/itemref
 where $i = $b
return $a
return <res>{$n,$r}</res>
\end{verbatim}

The query translates into the algebraic expression depicted in Figure 12a, while the corresponding PACT plan is shown in Figure 12b.

Rule (NLO \land \texttt{JOIN}) translates the nested left outer conjunctive equi-join into a PACT with a CoGroup contract that groups together all records having the same values in the fields corresponding to $\$1 (K1) and $\$b (K2), and applies our \texttt{concat} UF on them.

\textbf{c) Joins with disjunctive equality predicates}. Translating joins with disjunctive equality predicates is harder. The reason is that PACT contracts are centered around equality of record fields, and thus inherently not suited to disjunctive semantics. To solve this mismatch, our translation relies on using more
than one PACT for each operator, as we explain below. The rules are depicted in Figure 13

c.1) Disjunctive equi-join. In rule $(\lor \text{JOIN}_n)$, the predicate ρ' is generated from ρ using S_{A_1} and S_{A_2}. Then, for each conjunctive predicate ρ'_k in ρ', we create a Match whose keys are the fields participating in ρ'_k. Observe that the UF's of these Match operators should guarantee that no erroneous duplicates are generated when the evaluation of more than one conjunctive predicates ρ'_i, ρ'_j, $i \neq j$ is true for a certain record. To that purpose, we define the new UF pnjoin below, parameterized by k and performing a partial negative join.

Definition 3 (pnjoin): Let $\rho' = \rho'_1 \lor \rho'_2 \lor \ldots \lor \rho'_n$ and k be an integer, with $0 \leq k < n$. Given two records r_1, r_2, the $\text{pnjoin}(\rho', k)$ UF evaluates $\rho'_1 \lor \rho'_2 \lor \ldots \lor \rho'_k$ over r_1, r_2, and outputs $r_1 \cup r_2$ if they evaluate to false.

Note that the UF ensures correct multiplicity of each record in the result.

Example 4. The following XQuery extracts the names of users involved in at least one auction, either as buyers or sellers:

```xquery
let $spc := \text{collection('people')},$
    $sec := \text{collection('closed_auctions')}$
for $sp in spc/site/people/person,$i in $sp/bid,$c in $sec/closed_auction,$b in $sc/buyers/person,$s in $sc/seller/person$
let $sn := $sp/name
where $s1 = $b or $s1 = $s
return <res>{$sn}</res>
```

Figure 14a shows the equivalent algebraic expression, while the corresponding PACT plan is shown in Figure 14b.

Rule $(\lor \text{JOIN}_n)$ translates the disjunctive equi-join into two PACTs with Match contracts, one per disjunction. Observe that two distinct values (0 and 1) of k are used in the pnjoin UF's to prevent spurious duplicates, one for $\text{match} = \text{true}$ and one for $\text{match} = \text{false}$.

c.2) (Nested) left outer disjunctive equi-join. The translation of the plain and nested variants of the outer disjunctive equi-join, described by the $(\text{LO} \lor \text{JOIN}_n)$ and $(\text{LNO} \lor \text{JOIN}_n)$ rules respectively, are very similar; as illustrated next, the main difference resides in the different post-processing operations they adopt. The translation of these two operators is chal-
1. Avoid the generation of duplicate records. We adopt a non trivial variation of the technique used previously for disjunctive equi-join.

2. Recognise records generated by the left hand-side expression which do not join any record coming from the right-hand side expression. We use the XML node identifiers in each left hand-side record to identify it uniquely, so that, after the parallel evaluation of each conjunction, a Reduce post-processing PACT groups all resulting combinations having the same left hand-side record; if none of such combinations exists, the left hand-side record representing a group is concatenated to a (nested) \(\perp\)-record conforming to the right input schema, and the resulting record is output; otherwise the output record(s) are generated from the combinations.

In the first step, we must evaluate in parallel the joins related to predicates \(\rho'_k\). A PACT with a CoGroup contract is built for each conjunctive predicate \(\rho'_k\). Each such PACT groups together all records that share the same value in the fields pointed by \(\rho'_k\); then applies the \(\text{nopnjoin}\) UF (see below) on each group, with the goal of avoiding erroneous duplicates in the result; the UF is more complex than \(\text{pnjoin}\) though, as it has to handle the disjunction and the nesting. \(\text{nopnjoin}\) is parameterized by \(k\), as we will use it once for each conjunction \(\rho'_k\). Furthermore, \(\text{nopnjoin}\) takes as input two bags of records and is defined as follows, along the lines of \(\text{pnjoin}\).

Definition 4 \(\text{nopnjoin}\): Let \(\rho' = \rho'_1 \lor \rho'_2 \lor \ldots \lor \rho'_n\) be a predicate where each \(\rho'_k\) is conjunctive, Given two input bags \(\{(r_1, \ldots, r_x)\}\) and \(\{(r'_1, \ldots, r'_y)\}\), the \(\text{nopnjoin}(\rho', k)\) UF is defined as follows:

- If the second input is empty \((y = 0)\), return \(\{(r_1+(\perp'), \ldots, r_x+(\perp'))\}\) i.e., concatenate every left input record with a field containing a nested list of one \(\perp\)-record conforming to the schema of the right input.
- Otherwise, for each left input record \(r_i\):
 1. create an empty list \(c_i\);
 2. for each \(r'_j, 1 \leq j \leq y\), evaluate \(\rho'_1 \lor \rho'_2 \lor \ldots \lor \rho'_k\) over \(r_i\) and \(r'_j\), and add \(r'_j\) to \(c_i\) if the result is false;
 3. if \(c_i\) is empty, then insert into \(c_i\) a \(\perp\)-record with the schema of the right input;
 4. output \(r_i\) concatenated with a new field whose value is \(c_i\).

The second PACT produced by the \((\text{LO} \lor \text{JOIN})\) and \((\text{NLO} \lor \text{JOIN})\) rules uses a Reduce contract, taking as input the outputs of all the \text{CoGroup} operators; its key consists of the XML node identifiers in each left hand-side record (we denote by \(~\) the extraction of these fields from the schema). This amounts to grouping together the records originated from the same left input record.

Depending on the join flavor though, this last PACT uses a different UF. For the plain (non-nested) join \((\text{LO} \lor \text{JOIN})\), we use the \(\text{nopost}^{1/4}\) UF producing records with an unnested right side. For the nested join \((\text{NLO} \lor \text{JOIN})\), on the other hand, the \(\text{nopost}^{1/4}\) UF is used to produce nested records. Due to space constraints, we omit the definition of these UFs here and delegate their details to Appendix C.

Example 1 (continuation). Our algorithms translate the algebraic expression shown in Figure 5 into the PACT plan depicted in Figure 15; observe that it is the same PACT plan that was shown in less detail in Figure 1.

Rule \((\text{NLO} \lor \text{JOIN})\) translates the nested left outer disjunctive equi-join into (i) two PACTs with \text{CoGroup} contracts, one for each disjunction, and (ii) a PACT with a Reduce contract that groups together records originating from the same left-hand side record, i.e., \(K\) holds field positions \#0, \#2, \#4, which contain the XML node identifiers of \$pc, \$p, \$i, respectively.

d) Joins on inequalities. Our XQuery subset also supports joins with inequality conditions. In this case, the translation uses \text{Cross} contracts. Further, just like for joins with disjunctive predicates, the non-nested and nested outer variants of the \(\theta\)-join require more than one PACT. The corresponding translation rules can be found in Appendix D.

Syntactically complex translation vs. performance Clearly, complex joins such as those considered in c) could be translated into a single \text{Cross} PACT over the pairs of records as in d). However, this would be less efficient and scale poorly (number of comparisons quadratic in the input size), so our experiments will demonstrate.

6 EXPERIMENTAL EVALUATION

We implemented our PAXQuery translation approach in Java 1.6, and relied on the Stratosphere platform [47] supporting PACT. We first describe the experimental setup, and then present our results.

Experimental setup. The experiments run in a cluster of 8 nodes on an 1GB Ethernet. Each node has 2 \times 2.93GHz Quad Core Xeon CPUs, 16GB RAM and two 600GB SATA hard disks and runs Linux CentOS 6.4. PAXQuery is built on top of Stratosphere 0.2.1; it stores the XML data in HDFS 1.1.2. The reported results are averaged over three runs.

XML data. We used XMark [45] data; to study queries joining several documents, we used the split option of the XMark generator to create four collections of XML documents, each containing a specific type of XMark subtrees: users (10% of...
TABLE 2
Query details.

<table>
<thead>
<tr>
<th>Query</th>
<th>Collections</th>
<th>Algebra operators (#)</th>
<th>Parallelization contracts (#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_1 - q_4$ users</td>
<td>Navigation (1)</td>
<td>Map (1)</td>
<td></td>
</tr>
<tr>
<td>q_5, q_6 closed auc.</td>
<td>Navigation (1)</td>
<td>Map (1)</td>
<td></td>
</tr>
<tr>
<td>q_7 users</td>
<td>Navigation (1)</td>
<td>Map (1)</td>
<td></td>
</tr>
<tr>
<td>q_8 closed auc.</td>
<td>Navigation (1)</td>
<td>Map (2) Reduce (1)</td>
<td></td>
</tr>
<tr>
<td>q_9 items</td>
<td>Navigation (2) Aggregation (2)</td>
<td>Map (6) Reduce (1) Match (1)</td>
<td></td>
</tr>
<tr>
<td>q_{10} users closed auc.</td>
<td>Navigation (3) Projection (2) NLO conj. equi-join (2)</td>
<td>Map (5) CoGroup (2)</td>
<td></td>
</tr>
<tr>
<td>q_{11} users</td>
<td>Projection (1) Dup. elim. (1) NLO conj. equi-join (1)</td>
<td>Reduce (1) CoGroup (1)</td>
<td></td>
</tr>
<tr>
<td>q_{12} users closed auc.</td>
<td>Navigation (2) Projection (1) NLO conj. equi-join/ aggregation (1)</td>
<td>Map (3) CoGroup (1)</td>
<td></td>
</tr>
<tr>
<td>q_{13} users closed auc.</td>
<td>Navigation (2) Projection (1) NLO disj. equi-join (1)</td>
<td>Map (3) Reduce (2) CoGroup (2)</td>
<td></td>
</tr>
<tr>
<td>q_{14} users open auc.</td>
<td>Projection (1) NLO theta-join (1)</td>
<td>Map (5) Reduce (2) Cross (1)</td>
<td></td>
</tr>
</tbody>
</table>

the dataset size), items (50%), open auctions (25%) and closed auctions (15%). All documents are simply stored in HDFS (which replicates them three times), that is, we do not control the distribution/allocation of documents over the nodes.

XML queries. We used a subset of XMark queries from our XQuery fragment, and added queries with features supported by our dialect but absent from the original XMark, e.g. joins on disjunctive predicates; all queries are detailed in Appendix E.

Table 2 outlines the queries: the collection(s) that each query carries over, the corresponding algebraic operators and their numbers of occurrences, and the parallelization contracts used in the plan generated by our translation framework. Queries q_9-q_{14} all involve value joins, which carry over thousands of documents arbitrarily distributed across the HDFS nodes.

6.1 PAXQuery scalability

Our first goal is to check that PAXQuery brings to XQuery evaluation the desired benefits of implicit parallelism. For this, we fixed a set of queries, generated 11,000 documents (34GB) per node, and varied the number of nodes from 1 to 2, 4, 8 respectively; the total dataset size increases accordingly in a linear fashion, up to 272GB. Figure 16 shows the response times for each query. Queries q_1-q_6 navigate in the input document according to a given navigation pattern of 5 to 14 nodes; each translates into a Map PACT, thus their response time follows the the size of the input. These queries scale up well; we see a moderate overhead in Figure 16 as the data volume and number of nodes increases.

 Queries q_7 and q_8 apply an aggregation over all the records generated by a navigation. For both queries, the navigation generates nested records and the aggregation consists on two steps. The first step goes over the nested fields in each input record, and thus it uses a Map contract. The second step is executed over the results of the first. Therefore, a Reduce contract that groups together all records coming from the previous operator is used. Since the running time is dominated by the Map PACTs which parallelize very well, q_7 and q_8 also scale up well.

Queries q_{9}-q_{12} involve conjunctive equi-joins over the collections. Query q_{13} executes a NLO disjunctive equi-join, while q_{14} applies a NLO theta-join. We notice a very good scaleup for q_9-q_{13}, whose joins are translated in many PACTs (recall the rules in Figure 13). In contrast, q_{14}, which translates into a Cross PACT, scales noticeably less well. This validates the interest of translating disjunctive equi-joins into many PACTs (as our rules do), rather than into a single Cross, since, despite parallelization, it fundamentally does not scale.

6.2 Comparison against other processors

To evaluate the performance of our processor against existing alternatives, we started by comparing it on a single node with other popular centralized XQuery processors. The purpose is to validate our choice of an XML algebra as outlined in Section 4.2 as input to our translation, by demonstrating that single-site query evaluation based on such an algebra is efficient. For this, we compare our processor with BaseX 7.7 [8], Saxon-PE 9.4 [44] and Qizx/open 4.1 [41], on a dataset of 11,000 XML documents (34GB).

Table 3 shows the response times for each query and processor; the shortest time is shown in bold, while OOM stands for out of memory, and TO for timeout (above 2 hours). In Table 3, we identify two query groups. First, q_1-q_8 do not feature joins; while the performance varies across systems, only BaseX and PAXQuery are able to run all these queries. PAXQuery outperforms other systems because, compiled in PACT, it is able to exploit the multicore architecture.

In the second group, queries q_9-q_{14} join across the documents. None of the competing XQuery processors completes their evaluation, while PAXQuery executes them quite fast. For these, the usage of outer joins and multicore parallelization are key to this good performance behavior.
We next compare our system with other alternatives for implicitly parallel evaluation of XQuery. As explained in the Introduction, no comparable system is available yet. Therefore, for our comparison, we picked the BaseX centralized system (the best performing in the experiment above) and used Hadoop-MapReduce on one hand, and Stratosphere-PACT on the other hand, to parallelize its execution.

We compare PAXQuery, relying on the XML algebra-to-PACT translation we described, with the following alternative architecture. We deployed BaseX on each node, and parallelized XQuery execution as follows:

1) Manually decompose each query into a set of leaf subqueries performing just tree pattern navigation, followed by a recomposition subquery which applies (possibly nested, outer) joins over the results of the leaf subqueries;
2) Parallelize the evaluation of the leaf subqueries through one Map over all the documents, followed by one Reduce to union all the results. Moreover, if the recomposition query is not empty, start a new MapReduce job running the recomposition XQuery query over all the results thus obtained, in order to compute complete query results.

This alternative architecture is in-between ChuQL [29], where the query writer explicitly controls the choice of Map and Reduce keys, i.e., MapReduce is visible at the query level, and PAXQuery where parallelism is completely hidden. In this architecture, \(q_1 \sim q_8 \) translate to one Map and one Reduce, whereas \(q_9 \sim q_{14} \) feature joins which translates into a recomposition query and thus a second job.

Table 4 shows the response times when running the query on the 8 nodes and 272GB; the shortest time is in bold. First, we notice that BaseX runs 2 to 5 times faster on Stratosphere than on Hadoop. This is due to Hadoop’s checkpoints (writing intermediary results to disk) while Stratosphere currently does not, trading reliability for speed. For queries without joins \((q_1 \sim q_8)\), PAXQuery is faster for most queries than BaseX on Hadoop or Stratosphere; this simply points out that our in-house tree pattern matching operator (physical implementation of \(nav \)) is more efficient than the one of BaseX. Queries with joins \((q_9 \sim q_{14})\) fail in the competitor architecture again. The reason is that intermediary join results grow too large and this leads to an out-of-memory error. PAXQuery evaluates such queries well, based on its massively parallel (outer) joins.

6.3 Conclusions of the experiments

Our experiments demonstrate the efficiency of an XQuery processor built on top of PACT.

First, our scalability evaluation has shown that the translation to PACT allows PAXQuery to parallelize every query execution step with no effort required to partition, redistribute data etc., and thus to scale out with the number of machines in a cluster. The only case where scale-up was not so good is \(q_{14} \) where we used a Cross (cartesian product) to translate an inequality join; an orthogonal optimization here would be to use a smarter dedicated join operator for such predicates, e.g. [38].

Second, we have shown that PAXQuery outperforms competitor XQuery processors, whether centralized or distributed over Hadoop and Stratosphere. None of the competing processors was able to evaluate any of our queries with joins across documents on the data volumes we considered, highlighting the need for efficient parallel platforms for evaluating such queries.

7 RELATED WORK

Massively parallel XML query processing. In this area, MRQL [23] proposes a simple SQL-like XML query language implemented through a few operators directly compilable into MapReduce. Like our XQuery fragment, MRQL queries may be nested, however, its dialect does not allow expressing the rich join flavours that we use. Further, the XML navigation supported by MRQL is limited to XPath, in contrast to our richer navigation based on tree patterns with multiple returning nodes, and nested and optional edges.

ChuQL [29] is an XQuery extension that exposes the MapReduce framework to the developer in order to distribute computations among XQuery engines; this leaves the parallelization work to the programmer, in contrast with our implic-
ily parallel approach which does not expose the underlying parallelism at the query level.

HadoopXML [19] and the recent [13] process XML queries in Hadoop clusters by explicitly fragmenting the input data in a schema-driven, respectively, query-driven way, which is effective when querying one single huge document. In contrast, we focus on the frequent situation when no single document is too large for one node, but there are many documents whose global size is high, and queries may both navigate and join over them. Further, we do not require any partitioning work from the application level.

After the wide acceptance of Hadoop, other parallel execution engines and programming abstractions conceived to run custom data intensive tasks over large data sets have been proposed: PACT [9], Dryad [27], Hyracks [16] or Spark [51]. Among these, the only effort at parallelizing XQuery is the ongoing VXQuery project [5], translating XQuery into the Algebricks algebra, which compiles into parallel plans executable by Hyracks. In contrast, PAXQuery translates into an implicit parallel logical model such as PACT. Thus, our algorithms do not need to address underlying parallelization issues such as data redistribution between computation steps etc. which [16] explicitly mentions.

XQuery processing in centralized settings has been thoroughly studied, in particular through algebras in [21], [34], [35], [42]. In this work, our focus is on extending the benefits of implicit large-scale parallelism to a complex XML algebra, by formalizing its translation into the implicitly parallel PACT paradigm. As shown by our experiments, even on top of the Hadoop/Stratosphere-based architectures used in the experimental comparison with PAXQuery, existing XML processors [8], [41], [44] cannot scale in the presence of joins across multiple documents of large collections. Our algebraic based approach, instead, allows to delegate much more to Stratosphere system wrt the distributed solution proposed in Section 6, where joins remain internal to the XQuery engine.

XML data management has also been studied from many other angles, e.g. on top of column stores [15], distributed with [30] or without [1] an explicit fragmentation specification, in P2P [31] etc. We focus on XQuery evaluation through the massively parallel PACT framework, which leads to specific translation difficulties we addressed.

Parallelizable nested languages. Recently, many high-level languages which translate into massively parallel frameworks have been proposed; some of them work with nested data and/or feature nesting in the language, thus somehow resemble XQuery. While PAXQuery’s implementation is specific to XQuery, the concepts shown in this work are applicable to these other languages.

Jaql [12] is a scripting language tailored to JSON data, which translates into MapReduce programs; Meteor [26], also for JSON, translates into PACT. None of these languages handles XQuery semantics exactly, since JSON does not feature node identity; the languages are also more limited, e.g. Jaql only supports equi-joins.

The Asterix Query Language [11], or AQL in short, is based on FLOWR expressions and resembles XQuery, but ignores node identity which is important in XQuery and which we support. Like VXQuery, AQL queries are translated into Algebricks; recall that unlike our translation, its compilation to the underlying Hyracks engine needs to deal with parallelization related issues.

Finally, other higher level languages that support nested data models and translate into parallel processing paradigms include Pig [39] or Hive [48]. Our XQuery fragment is more expressive, in particular supporting more types of joins. In addition, Pig only allows two levels of nesting in queries, which is a limitation. In contrast, we translate XQuery into unnested algebraic plans with (possibly nested, possibly outer) joins and grouping which we parallelize, leading to efficient execution even for (originally) nested queries.

Complex operations using implicit parallel models. The problem of evaluating complex operations through implicit parallelism is of independent interest. For instance, the execution of join operations using MapReduce has been studied extensively. Shortly after the first formal proposal to compute equi-joins on MapReduce [50], other studies extending it [14], [28] or focusing on the processing of specific join types such as multi-way joins [2], set-similarity joins [49], or θ-joins [38], appeared. PAXQuery is the first to translate a large family of joins (which can be used outside XQuery), into the more flexible PACT parallel framework.

8 CONCLUSION AND FUTURE WORK

We have presented the PAXQuery approach for the implicit parallelization of XQuery, through the translation of an XQuery algebraic plan into a PACT parallel plan. We targeted a rich subset of XQuery 3.0 including recent additions such as explicit grouping, and demonstrated the efficiency and scalability of PAXQuery with experiments on collections of hundreds of GBs.

For future work, we contemplate the integration of indexing techniques into PAXQuery to improve query evaluation time. Further, we would like to explore reutilization of intermediary results in the PACT framework to enable efficient multiple-query processing.

Acknowledgements. This work has been partially funded by the KIC EIT ICT Labs activity 12115. We would like to thank Kostas Tzoumas and the anonymous reviewers for their valuable comments and suggestions to improve the quality of this work.

REFERENCES

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391110

["Xqizopen","http://www.axyana.com/xqizopen/"],

Jesús Camacho-Rodríguez is a member of the technical staff at Hortonworks. He obtained his PhD degree from Université Paris-Sud and Inria in September 2014, and a CS Engineering degree from University of Almería in 2009. From 2009 to 2011, he was a research engineer at Inria, where his work focused on XML data management in P2P systems. His research interests include parallel and distributed query processing, query optimization, and efficient large-scale data management.

Dario Colazzo graduated from University of Pisa and received his PhD from the same university, in 2004. After his PhD, Dario has been research visitor at Ecole Normale Supérieure in Paris, and a post-doc, first at University of Venezia and then at Université Paris-Sud, where he became associate professor in 2005. Since 2013 he is full professor at Université Paris-Dauphine. His research activities focus on safe and efficient management of semi-structured data.

Ioana Manolescu received her PhD from Inria and Université de Versailles Saint-Quentin in 2001, after graduating from Ecole Normale Supérieure in Paris. Ioana has been a post-doc at Politecnico di Milano, Italy, then she joined Inria where she is now senior researcher and the lead of the OAK team, specialized in database optimization techniques for complex, large data. Her research interests include algebraic optimizations, adaptive storage and efficient management of semantically rich data.