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RIGIDITY VERSUS SYMMETRY BREAKING VIA NONLINEAR

FLOWS ON CYLINDERS AND EUCLIDEAN SPACES

JEAN DOLBEAULT, MARIA J. ESTEBAN, AND MICHAEL LOSS

Abstract. This paper is motivated by the characterization of the optimal

symmetry breaking region in Caffarelli-Kohn-Nirenberg inequalities. As a
consequence, optimal functions and sharp constants are computed in the sym-

metry region. The result solves a longstanding conjecture on the optimal

symmetry range.
As a byproduct of our method we obtain sharp estimates for the principal

eigenvalue of Schrödinger operators on some non-flat non-compact manifolds,

which to the best of our knowledge are new.
The method relies on generalized entropy functionals for nonlinear diffusion

equations. It opens a new area of research for approaches related to carré du

champ methods on non-compact manifolds. However, key estimates depend as
much on curvature properties as on purely nonlinear effects. The method is well

adapted to functional inequalities involving simple weights and also applies to
general cylinders. Beyond results on symmetry and symmetry breaking, and

on optimal constants in functional inequalities, rigidity theorems for nonlinear

elliptic equations can be deduced in rather general settings.

1. Introduction

Symmetry and the breaking thereof is a central theme in mathematics and the
physical sciences. It is well known that symmetric energy functionals might have
states of lowest energy that may or may not have these symmetries. In the lat-
ter case one says, in the language of physics, that the symmetry is broken, i.e.,
the symmetry group of the minimizer is smaller than the symmetry group of the
functional. Needless to say, for computing the optimal value of the functional it
is of advantage that an optimizer be symmetric. In other contexts the breaking of
symmetry leads to interesting phenomena such as crystals in which the translation
invariance of a system is broken. Thus, it is of central importance to decide what
symmetry types, if any, an optimizer has.

Very often functionals depend on parameters and it might be that in one param-
eter range the lowest energy state has the full symmetry of the functional, while in
other parts of the parameter region the symmetry is broken. Thus, in each region
of the parameter space the minimizers possess a fixed symmetry or, to use a term
from physics, a phase and the collection of these various phases constitute a phase
diagram.
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To decide whether a minimizer has the full symmetry or not can be difficult.
To show that symmetry is broken one can minimize the functional in the class of
symmetric functions and then check whether the value of the functional can be
lowered by perturbing the minimizer away from the symmetric situation. If one
can lower the energy in this fashion then symmetry is broken. This procedure is
successful only if one knows a lot about the minimizer in the symmetric class and
can sometimes be a formidable problem, but it is a local problem. It can also
happen that there is degeneracy, that is, the energy of the symmetric as well as
non-symmetric minimizers are the same, i.e., there is a region in parameter space
where there is coexistence.

A real difficulty occurs when the minimizer in the symmetric class is stable, i.e.,
all local perturbations that break the symmetry increase the energy. It is obvious
that, in general, one cannot conclude that the minimizer is symmetric because the
minimizer in the symmetric class and the actual minimizer might not be close in
any reasonable notion of distance. In general it is very difficult to decide, assuming
stability, wether the minimizer is symmetric or not. This is a global problem and
not amenable to linear methods.

It is evident that there are no general techniques available for understanding
symmetry of minimizers. The focus has to be and has been on relevant and non-
trivial examples, such as finding the sharp constant in Sobolev’s inequality [1, 45],
the Hardy-Littlewood-Sobolev inequality [39] or the logarithmic Sobolev inequal-
ity [33] to mention classical examples. In the former two instances, rearrangement
inequalities are the main tool for establishing the symmetry of the optimizers. There
is a fairly large list of such examples that make up the canon of analysis and the
goal of this paper is to add another one to it namely the problem of determining
the sharp constant in the Caffarelli-Kohn-Nirenberg inequalities.

The Caffarelli-Kohn-Nirenberg inequalities

(1.1)

(∫
Rd

|v|p
|x|b p dx

)2/p

≤ Ca,b

∫
Rd

|∇v|2
|x|2 a dx ∀ v ∈ Da,b

have been established in [8], under the conditions that a ≤ b ≤ a + 1 if d ≥ 3,
a < b ≤ a+ 1 if d = 2, a+ 1/2 < b ≤ a+ 1 if d = 1, and a < ac where

ac :=
d− 2

2
.

The exponent

(1.2) p =
2 d

d− 2 + 2 (b− a)

is determined by the invariance of the inequality under scalings. Here Ca,b denotes
the optimal constant in (1.1) and the space Da,b is defined by

Da,b :=
{
v ∈ Lp

(
Rd, |x|−b dx

)
: |x|−a |∇v| ∈ L2

(
Rd, dx

)}
.

The space Da,b can be obtained as the completion of C∞c (Rd), the space of smooth
functions in Rd with compact support, with respect to the norm defined by ‖v‖2 =
‖ |x|−b v ‖2p + ‖ |x|−a∇v ‖22. Inequality (1.1) holds also for a > ac, but in this
case Da,b has to be defined as the completion with respect to ‖ · ‖ of the space
C∞c (Rd \ {0}) :=

{
w ∈ C∞c (Rd) : supp(w) ⊂ Rd \ {0}

}
. The two cases, a > ac and
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a < ac, are related by the property of modified inversion symmetry that can be
found in [12, Theorem 1.4, (ii)]. In this paper we shall assume that a < ac without
further notice. Inequality (1.1) is sometimes called the Hardy-Sobolev inequality:
for d ≥ 3 it interpolates between the usual Sobolev inequality (a = 0, b = 0) and
the weighted Hardy inequalities corresponding to b = a + 1. More details can be
found in [12]. In that paper, F. Catrina and Z.-Q. Wang have also shown existence
results of optimal functions if b > a. For b = a < 0, d ≥ 3, equality in (1.1) is never
achieved in Da,b. For b = a + 1 and d ≥ 2, the best constant in (1.1) is given by
Ca,a+1 = (ac − a)2 and it is never achieved. For a < b < a+ 1 and d ≥ 2, the best
constant in (1.1) is always achieved at some extremal function va,b ∈ Da,b. When
d = 1, optimal functions are even and explicit, as we shall see next.

If we consider inequality (1.1) on the smaller set of functions in Da,b which are
radially symmetric, then the optimal constant is a constant C?a,b ≤ Ca,b and equality
is achieved by

v?(x) =
(

1 + |x|(p−2) (ac−a)
)− 2

p−2 ∀x ∈ Rd .

In other words, we have C?a,b = ‖ |x|−b v? ‖2p / ‖ |x|−a∇v? ‖22. Moreover, all optimal
radial functions are equal to v? up to a scaling or a multiplication by a constant
(and translations if a = b = 0). If d = 1, Ca,b = C?a,b and v? is always an optimal
function. The main symmetry issue is to know for which values of the parameters a
and b the function v? is also optimal for inequality (1.1) when d ≥ 2 or, equivalently,
for which values of a and b we have Ca,b = C?a,b. We shall say that symmetry holds
if Ca,b = C?a,b and that we have symmetry breaking otherwise.

Symmetry results have been obtained in various regions of the (a, b) plane. Mov-
ing planes and symmetrization methods have been applied successfully in [14, 35]
and [27, Lemma 2.1] to cover the range 0 ≤ a < ac when d ≥ 3. The case a < 0 is by
far more difficult. For any d ≥ 2, it has also been proved in [27] that there is a curve
p 7→ (a, b) taking values in the region {(a, b) ∈ R2 : a < 0 and a < b < a+1}, which
originates at (a, b) = (0, 0) when p → 2∗, such that limp→2(a, b − a) = (−∞, 1),
and which separates the region of symmetry from the region of symmetry breaking.
Here we assume that 2∗ = 2 d/(d− 2) if d ≥ 3 and 2∗ = ∞ if d = 2. When d = 2,
a non-explicit region of symmetry attached to a = ac = 0 has been obtained by
a perturbation method in [28]. Perturbation results have also been obtained for
d ≥ 3: see [42, 41] and [44, Theorem 4.8]. Symmetry has been proved in [6, The-
orem 3.1] when a < 0 and b > 0. In the case a < 0, the best known result so far
in the region corresponding to a < 0 and b < 0 can be found in [24] where direct
estimates show that symmetry holds under the condition

b ≥ d (d− 1) + 4 d (a− ac)2

6 (d− 1) + 8 (a− ac)2
+ a− ac =: b direct(a) .

To establish symmetry breaking by perturbation is standard. One expands the
functional

F [v] := C?a,b

∫
Rd

|∇v|2
|x|2 a dx−

(∫
Rd

|v|p
|x|b p dx

)2/p

near the critical point v? to second order by computing

Q[w] := lim
ε→0

1

ε2

(
F [v? + εw]−F [v?]

)
.
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The spectrum of the operator associated with the quadratic form Q determines the
local stability or instability of the critical point v?. If a < 0 and

(1.3) b <
d (ac − a)

2
√

(ac − a)2 + d− 1
+ a− ac =: bFS(a) ,

it turns out that the lowest eigenvalue is negative and the radial optimal function
is unstable, i.e., symmetry is broken. The difference b direct − bFS is of course
nonnegative for any a < 0 but corresponds to a remarkably small region: see
Fig. 1. If b > bFS then the radial optimal function is locally stable. If b = bFS, the
lowest spectral point of the operator associated with Q is a zero eigenvalue, which
incidentally determines bFS. The fact that symmetry can be broken was discovered
by F. Catrina and Z.-Q. Wang in [12]. The sharp condition given in (1.3) is due
to V. Felli and M. Schneider in [30] for d ≥ 3. Actually, the case d = 2 is also
covered by (1.3). For brevity, we shall call it the Felli-Schneider region and call
the curve b = bFS(a) the Felli-Schneider curve. The issue of symmetry in the
Caffarelli-Kohn-Nirenberg inequalities (1.1) was studied numerically in [18]. In [19]
formal expansions were used to establish the behavior of non-radial critical points
near the bifurcation point, supporting the conjecture that the Felli-Schneider curve
is the threshold between the symmetry and the symmetry breaking region. This is
precisely what we prove in this paper.

Theorem 1.1. Let d ≥ 2 and p ∈ (2, 2∗). If either a ∈ [0, ac) and b > 0, or
a < 0 and b ≥ bFS(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities (1.1) are radially symmetric.

a

b

0

−1

1

b = a + 1

b = a

b = bFS(a)

b = b direct(a)

Symmetry region

Symmetry breaking region

ac =
d−2
2

Figure 1. The Felli-Schneider region, or symmetry breaking region,
appears in dark grey and is defined by a < 0, a < b < bFS(a). We prove
that symmetry holds in the light grey region defined by bFS(a) ≤ b < a+1
when a < 0. Symmetry also holds for any b ∈ [a, a + 1) if a ∈ [0, ac).
The curve a 7→ b direct(a) corresponds to the dashed curve. The above
plot is done with d = 3.

Note that for (a, b) = (0, 0) the Caffarelli-Kohn-Nirenberg inequalities are re-
duced to Sobolev’s inequality. In this case the functional F has the larger, non-
compact symmetry group O(d+ 1, 1). The celebrated Aubin-Talenti functions are
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optimal. The optimizers are unique up to multiplications by a constant, transla-
tions and scalings. For (a, b) 6= (0, 0) the functional F has the smaller symmetry
group O(d), i.e., it is invariant under rotations and reflections about the origin,
and scalings. This symmetry persists for the optimizers in the parameter region
b ≥ bFS(a), but is broken in the remaining Felli-Schneider region. The optimizers
have an O(d− 1) symmetry: see [44]. In this sense we have obtained the full phase
diagram for the optimal functions of the Caffarelli-Kohn-Nirenberg inequalities.
The reader may consult [17] for a review of known results and [20] for some recent
progress.

Our method yields a stronger result than Theorem 1.1, which can be interpreted
as a rigidity result. Consider the equation

(1.4) − ∇ ·
(
|x|−2 a∇v

)
= |x|−b p |v|p−2 v .

Theorem 1.2. Assume that d ≥ 2 and p ∈ (2, 2∗). If either a ∈ [0, ac) and b > 0,
or a < 0 and b ≥ bFS(a), then any nonnegative solution v of (1.4) which satisfies∫
Rd
|v|p
|x|b p dx <∞ is equal to v? up to a scaling.

This uniqueness result is not true anymore in the Felli-Schneider region of sym-
metry breaking: there we find at least two distinct nonnegative solutions, one radial
and the other one non-radial. Our method of proof relies on a computation which
is by many aspects similar to the one that can be found in [31, 7] in the case of
elliptic equations on compact manifolds, and without weights. Such results are
called rigidity results because they aim at proving that only trivial solutions may
exist. Trivial solutions are replaced in our case by the radial solution v?.

We would also like to emphasize that our method does not rely on any kind of
rearrangement technique. So far, it seems that symmetrization techniques simply
do not work for the examples at hand.

The key idea of our method is to exhibit a nonlinear flow under the action of
which F is monotone non-increasing, and whose limit is v?. In practice, we do not
need to take into account the whole flow, and it is enough to perturb a critical point
of F in the infinitesimal direction indicated by the flow: we reach a contradiction
if this critical point is not radially symmetric. Why the flow is the right tool to
consider, at least at heuristic level, will be explained in Section 4.

Before doing that, we will reduce the Caffarelli-Kohn-Nirenberg inequalities to
Sobolev type inequalities in which the dimension n is not necessarily an integer.
Actually n plays the role of a dimension in view of the scaling properties of the
inequalities and with respect to this dimension they are critical. Alternatively, the
inequalities can be seen as Sobolev type inequalities on Rd with a weight |x|n−d.

Sharp constants in Sobolev type inequalities can be characterized as optimal
decay rates of entropies under the action of a fast diffusion flow: see [15]. There
is a by now standard method to prove this, which is a nonlinear version of the
carré du champ method of D. Bakry and M. Emery, and whose strategy goes back
to [2, 3]. The nonlinear version was studied in [10, 11, 9] in the case of the fast
diffusion equation. The key idea is to prove that a nonlinear Fisher information
and its derivative can be compared. The carré du champ method takes curvature
and weights very well into account. The identity, which encodes the Bochner-
Lichnerowicz-Weitzenböck formula in the context of semi-groups and Markov pro-
cesses, is usually designated as the CD(ρ,N) condition and has been extensively
used in the context of Riemannian geometry. See [4] for a detailed account. This
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book, and in particular [4, chapter 6], has also been a source of inspiration for the
change of variables of Section 4 and for the idea to change the dimension from d
to n.

The link between the carré du champ method and rigidity results was established
in [5] and later exploited for interpolation inequalities and evolution problems on
manifolds in [16]. See [25, 21] for more recent and detailed results in this direction.
However, in our setting, the relation of the Fisher information and its derivative
along the flow is more a nonlinear effect than a curvature issue, as in [43, 29]. This
will be made clear in Section 4. As a last observation, let us mention that the
optimal cases of interpolation on the sphere and on the line, which were obtained
by the combination of a stereographic projection and the Emden-Fowler transfor-
mation in [22], are understood using nonlinear flow methods, but the interpolation
on the cylinder, which is closely connected with (1.1) as we shall see next, was still
open.

The Caffarelli-Kohn-Nirenberg inequalities (1.1) on Rd are equivalent to Gagliar-
do-Nirenberg interpolation inequalities on the cylinder C1 := R × Sd−1. As was
observed in [12], this follows from the Emden-Fowler transformation

(1.5) v(r, ω) = ra−ac ϕ(s, ω) with r = |x| , s = − log r and ω =
x

r
.

With this transformation, inequality (1.1) can be rewritten as

(1.6) ‖∂sϕ‖2L2(C1) + ‖∇ωϕ‖2L2(C1) + Λ ‖ϕ‖2L2(C1) ≥ µ(Λ) ‖ϕ‖2Lp(C1) ∀ϕ ∈ H1(C1) ,

where Λ := (ac − a)2 and, using (1.2), the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√

Λ .

Strictly speaking, (1.2) with a < ac is given by a = ac−
√

Λ, but (1.6) is independent
of the sign of a−ac, hence proving that (1.2) also holds with a > ac: this is a proof
of the modified inversion symmetry property. Notice that ∇ω denotes the gradient
with respect to angular variables only, and we shall use the notation ∆ω for the
Laplace-Beltrami operator on Sd−1.

Radial symmetry of v means that ϕ depends only on s and we shall then say
that ϕ is symmetric. Scaling invariance in Rd is equivalent to invariance under
translations in the s-direction and any optimal function satisfies, with a proper
normalization, the Euler-Lagrange equation

(1.7) − ∂2
s ϕ− ∆ω ϕ+ Λϕ = ϕp−1 in C1 .

The symmetric solution to (1.7) is explicit and given by

(1.8) ϕΛ(s) =
(
p
2 Λ
) 1
p−2

(
cosh

(
p−2

2

√
Λ s
))− 2

p−2

.

Among symmetric solutions (solutions depending only on s), it is unique up to
translations in the s-direction. The Felli-Schneider curve is given in terms of the
parameters p = 2n

n−2 , where n is the new dimension, and Λ by

Λ = Λ FS := 4
d− 1

p2 − 4
.

The results of Theorems 1.1 and 1.2 have an exact counterpart on the cylinder.
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Corollary 1.3. Assume that d ≥ 2 and p ∈ (2, 2∗). Equality in (1.6) is achieved
by ϕΛ if and only if Λ ≤ Λ FS. Moreover, up to translations, the unique solution
to (1.7) is equal to ϕΛ if Λ ≤ Λ FS.

As a consequence, the value of the optimal constant is explicit for any Λ ≤ Λ FS

and given by µ(Λ) = |Sd−1|1− 2
p µR(Λ) with

µR(Λ) :=
‖∂sϕΛ‖2L2(R) + Λ ‖ϕΛ‖2L2(R)

‖ϕΛ‖2Lp(R)

= p
2 Λ

p+2
2 p

(
2
√
π Γ
(

p
p−2

)
(p− 2) Γ

(
3 p−2

2 (p−2)

)) p−2
p

.

Our method is not limited to the cylinder C1 = R × Sd−1 and provides rigidity
results for a large class of non-compact manifolds. Let us consider the case of a
general cylinder

C = R×M

where (M, g) is a smooth compact connected Riemannian manifold of dimension
d−1, without boundary. Let us denote by ∆g the Laplace-Beltrami operator on M.
We denote by dvg the volume element. We shall also denote by Ricg the Ricci tensor
and by λM1 the lowest positive eigenvalue of −∆g. We consider the case where the
curvature of M is bounded from below and define

κ := inf
M

inf
ξ∈Sd−2

Ricg(ξ , ξ) ,

λθ :=

(
1 + δ θ

d− 1

d− 2

)
κ+ δ (1− θ)λM1 with δ =

n− d
(d− 1) (n− 1)

,

where the dependence of λθ on θ will be discussed in Remark 2. With

λ? := λθ? where θ? :=
(d− 2) (n− 1)

(
3n+ 1− d (3n+ 5)

)
(d+ 1)

(
d (n2 − n− 4)− n2 + 3n+ 2

) if d ≥ 2 ,

let us state a rigidity result for the equation

(1.9) − ∂2
s ϕ− ∆g ϕ+ Λϕ = ϕp−1 in C .

Theorem 1.4. Assume that d ≥ 2, p ∈ (2, 2∗) and Λ > 0. If Λ ≤ λ?
p−2 , then

any positive solution ϕ ∈ H1(C) of (1.9) is equal to ϕΛ, up to a translation in the
s-direction.

The condition in Theorem 1.4 is reminiscent of the result of J.R. Licois and
L. Véron in [37, 38] which uses an interpolation between λM1 and κ.

To conclude the introduction, we come back to the question of the Gagliardo-
Nirenberg interpolation inequalities on a general cylinder C
(1.10) ‖∂sϕ‖2L2(C) + ‖∇gϕ‖2L2(C) + Λ ‖ϕ‖2L2(C) ≥ µ(Λ) ‖ϕ‖2Lp(C) ∀ϕ ∈ H1(C)
where µ(Λ) denotes the optimal constant for any Λ > 0. As an extension of the
constant found by V. Felli and M. Schneider, we define

Λ FS :=
4λM1
p2 − 4

for a general manifold M. Notice that λM1 = d− 1 = κ+ 1 if M = Sd−1 and, as a
consequence in this case, λ?

p−2 = Λ FS. Let us define

µ?(Λ) :=
(
volg(M)

)1− 2
p µR(Λ) .
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Corollary 1.5. Assume that d ≥ 2 and p ∈ (2, 2∗). The optimal constant in (1.10)
is given by µ(Λ) = µ?(Λ) if and only if Λ ∈ (0,Λ?] where Λ? is such that

λ?
p− 2

≤ Λ? ≤ Λ FS ,

and if Λ? < Λ FS, then λ?
p−2 < Λ? < Λ FS.

Our paper is organized as follows. We first generalize the linear instability result
of V. Felli and M. Schneider in Section 2. In Section 3, we reformulate our problem
as a critical Sobolev inequality in a space with a dimension n > d, which allows
us to use tools based on the fast diffusion equation in Section 4, at least at the
heuristic level. The results of Section 1 are proved in Section 6. They rely on a
key technical result which is stated in Corollary 5.5. Our methods also yield new
sharp spectral estimates on cylinders (which were announced in [26]). Moreover,
a precise version of an improved Hardy inequality is obtained. These results are
proved in Section 7.

2. Linear instability of symmetric critical points

On C1 = R × Sd−1, we consider the measure dν = ds dω, where dω is the
measure induced by Lebesgue’s measure on Sd−1 ⊂ Rd. On a general cylinder C =
R ×M, we consider the measure dν = ds dvg and still denote by ω the generic
variable on M. Since Caffarelli-Kohn-Nirenberg inequalities (1.1) are equivalent
to Gagliardo-Nirenberg inequalities (1.6) on C1 with Λ := (ac − a)2 and since
solutions of (1.4) are transformed into solutions to (1.7) by the Emden-Fowler
transformation (1.5), we will work directly in the general cylinder setting, that is,
on C. Minor modifications of an existence argument proved in [12] for extremals
of (1.6) yields the existence of optimal functions for (1.10) for any p ∈ (2, 2∗) with
2∗ = 2 d

d−2 if d ≥ 3 and 2∗ = ∞ if d = 1 or 2. Up to multiplication by a constant,
all extremal functions are positive on C.

Is s 7→ ϕΛ(s) as defined by (1.8) and seen as a function on C optimal for (1.6) ?
Equivalently, is ϕΛ a minimizer of

ϕ 7→ G[ϕ] := ‖∂sϕ‖2L2(C) + ‖∇ωϕ‖2L2(C) + Λ ‖ϕ‖2L2(C) − µ?(Λ) ‖ϕ‖2Lp(C) ?

This can be tested by perturbing G around ϕΛ. Here we simply extend the strategy
of [12, 30] to a general cylinder C. Since the ground state of the Schrödinger

operator − ∂2
s + Λ − (p − 1)µ?(Λ)ϕp−2

Λ is generated by ϕ
p/2
Λ , we may consider

G
[
ϕΛ + εϕ

p/2
Λ φ1

]
as ε → 0, where φ1 is an eigenfunction associated with the first

positive eigenvalue λM1 of −∆g on M. An elementary computation shows that

G
[
ϕΛ + εϕ

p/2
Λ φ1

]
= ε2 ‖ϕΛ‖pLp(R)

(
λM1 − 1

4 (p2 − 4) Λ
)

+ o(ε2) .

Proposition 2.1. With the above notations, ϕΛ is not a local minimizer of G if
Λ > 4λM1 /(p2 − 4).

One can actually check that Proposition 2.1 states the sharp condition for linear
instability of ϕΛ. Details are left to the reader. See [26] for a similar computation for
spectral estimates, and [19] for an expansion of the non-symmetric branch around
the bifurcation point. Hence the region of linear instability of symmetric critical
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points is given by α > αFS, with

α :=
p− 2

2

√
Λ =

(1 + a− b) (ac − a)

ac − a+ b
and αFS :=

√
p− 2

p+ 2
λM1 .

In terms of Λ, the above condition is equivalent to Λ > Λ FS :=
4λM

1

p2−4 . When M =

Sd−1, λM1 = d− 1 and we recover the expression of Λ FS found in [30].

3. A change of variables and a Sobolev type inequality

The first step of our method is a change of variables which reduces the Caffarelli-
Kohn-Nirenberg inequalities to a Sobolev type inequality in a non-integer dimension
n > d. A similar transformation can also be used for Gagliardo-Nirenberg inequal-
ities on cylinders, combined with an inverse Emden-Fowler transformation.

3.1. The case of Caffarelli-Kohn-Nirenberg inequalities. We start by prov-
ing that (1.1) is equivalent to a Sobolev type inequality with a weight. From now
on, we also assume that d ≥ 2. Written in spherical coordinates, with

r = |x| and ω =
x

|x| ,

the Caffarelli-Kohn-Nirenberg inequality (1.1) becomes(∫ ∞
0

∫
Sd−1

|v|p r d−b p dr
r
dω

) 2
p

≤ Ca,b

∫ ∞
0

∫
Sd−1

|∇v|2 r d−2 a dr

r
dω

where |∇v|2 =
∣∣∂v
∂r

∣∣2 + 1
r2 |∇ωv|

2
and ∇ω denotes the gradient with respect to the

angular variable ω ∈ Sd−1. Next we consider the change of variables r 7→ rα,

(3.1) v(r, ω) = w(rα, ω) ∀ (r, ω) ∈ R+ × Sd−1

so that

α1− 2
p

(∫ ∞
0

∫
Sd−1

|w|p r d−b pα
dr

r
dω

) 2
p

≤ Ca,b

∫ ∞
0

∫
Sd−1

(
α2
∣∣∂w
∂r

∣∣2 + 1
r2 |∇ωw|2

)
r
d−2 a−2

α +2 dr

r
dω ,

and pick α so that

n =
d− b p
α

=
d− 2 a− 2

α
+ 2 .

This is why we consider the parameters

α =
p− 2

2

√
Λ =

(1 + a− b) (ac − a)

ac − a+ b
and n =

2 p

p− 2
=

d

1 + a− b .

If we think of n as a non-integer dimension, then p = 2n
n−2 is the associated critical

Sobolev exponent. Since −∞ < a < ac, 0 < b − a < 1 and 2 < p < 2 d
d−2 , the

parameters α and n vary in the ranges 0 < α < ∞ and d < n < ∞. The Felli-
Schneider curve in the (α, n) variables is given by

α =

√
d− 1

n− 1
=: αFS .
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Hence, the region of symmetry breaking is given by α > αFS. In the new variables,
the derivatives are given by

Dw =

(
α
∂w

∂r
,

1

r
∇ωw

)
.

On Rd ≈ (0,+∞)× Sd−1, we consider the measure

dµ := rn−1 dr dω .

The inequality becomes

(3.2) α1− 2
p

(∫
Rd
|w|p dµ

) 2
p

≤ Ca,b

∫
Rd
|Dw|2 dµ

and has the homogeneity of Sobolev’s inequality for functions defined on Rn if n is
an integer. The result of Theorem 1.1 can be rephrased as follows.

Proposition 3.1. Let d ≥ 2 and assume that α ≤ αFS. Then optimality in (3.2)
is achieved by radial functions.

The r.h.s. in (3.2) generically differs from the usual Dirichlet integral because of
the coefficient α in the derivative D and because the angular variable ω is in Sd−1

with d < n.

Notations. When there is no ambiguity, we will omit the index ω and from now
on note that ∇ = ∇ω denotes the gradient with respect to the angular variable
ω ∈ Sd−1 and that ∆ is the Laplace-Beltrami operator on Sd−1. We define the
self-adjoint operator L by

Lw := −D∗Dw = α2 w′′ + α2 n− 1

r
w′ +

∆w

r2
.

The fundamental property of L is the fact that∫
Rd
w1 Lw2 dµ = −

∫
Rd

Dw1 · Dw2 dµ ∀w1, w2 ∈ D(Rd) .

3.2. The case of Gagliardo-Nirenberg inequalities on general cylinders.
If we study solutions to (1.9) or inequality (1.10), the strategy is to use the inverse
Emden-Fowler transform to rewrite the problem on (0,∞) ×M and then use the
change of variables r 7→ rα as in Section 3.1 to write a Sobolev type inequality. Let
us consider the change of variables

(3.3) ϕ(s, ω) = e
2 s
p−2 w

(
e−α s, ω

)
∀ (s, ω) ∈ C = R×M ,

with

α =
p− 2

2

√
Λ and n =

2 p

p− 2
.

Inequality (1.10) is then equivalent to

(3.4) µ(Λ)α1− 2
p

(∫
(0,∞)×M

|w|p dµ
) 2
p

≤
∫

(0,∞)×M
|Dw|2 dµ

where dµ := rn−1 dr dvg is a measure on (0,∞) ×M and Dw =
(
α ∂w
∂r ,

1
r ∇gw

)
where ∇g denotes the gradient on M. Inequality (3.4) coincides with (3.2) when
M = Sd−1. With these notations, (1.9) can be rewritten as

−D∗ Dw + wp−1 = 0 in (0,∞)×M .
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The region where we shall prove symmetry is given by

(3.5) α ≤ 1

2

√
(p− 2)λ?

with λ? defined in the introduction. The symmetry region coincides with α ≤ αFS

when M = Sd−1. Conversely, symmetry is broken if α > αFS with

αFS =
p− 2

2

√
Λ FS =

√
p− 2

p+ 2
λM1 .

Notations. When there is no ambiguity, we shall write ∇g = ∇ and ∆g = ∆ in
what follows.

4. Heuristics: monotonicity along a well chosen nonlinear flow

In this section we collect some observations on the monotonicity of a general-
ized Fisher information along a fast diffusion flow. These observations explain our
strategy. We consider the measure dµ = rn−1 dr dvg on (0,∞)×M.

Let us start with the Fisher information. We transform the Sobolev type in-
equality (3.4) of the previous section as follows. With

(4.1) u
1
2−

1
n = |w| ⇐⇒ u = |w|p with p =

2n

n− 2

the r.h.s. in (3.4) is transformed into a generalized Fisher information

(4.2) I[u] :=

∫
(0,∞)×M

u |Dp|2 dµ where p =
m

1−m um−1 and m = 1− 1

n
,

while the l.h.s. in (3.4) is now proportional to a mass,
∫

(0,∞)×M u dµ. Here p is the

pressure function, as in [46, 5.7.1 p. 98]. If we replace m by 1− 1
n , we get that

(4.3) p = (n− 1)u−
1
n

is such that Dum = −uDp and Du
u = −n Dp

p . The reader is invited to check that∫
(0,∞)×M

(
α2

∣∣∣∣∂w∂r
∣∣∣∣2 +

1

r2
|∇w|2

)
dµ = 1

4

(
n−2
n−1

)2 I[u]

and

∫
(0,∞)×M

|w|p dµ =

∫
(0,∞)×M

u dµ .

For later purpose, let η := 4
(
n−1
n−2

)2
α1− 2

p . Collecting these considerations, we have

shown that the optimal constant in (3.4) can be characterized as follows.

Proposition 4.1. With the above notations and Λ = 4α2/(p− 2)2, we have

(4.4) µ(Λ) = η−1 inf

{
I[u] :

∫
(0,∞)×M

u dµ = 1

}
.

Here the infimum is taken over the nonnegative functions in L1((0,∞)×M such
that

∫
(0,∞)×M um dµ and I[u] are finite, which is the image of H1(C) after the

transformations (3.3) and (4.1). We are interested not only in minimizers, but also
in critical points of I under the mass constraint.
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Next we consider the fast diffusion equation in Rd, with d ≥ 2, given by

(4.5)
∂u

∂t
= Lum , m = 1− 1

n
.

At a heuristic level, (4.5) preserves the mass and decreases the Fisher information
when the parameters are in the symmetry range determined by (3.5). In this range,
the decay of the Fisher information is strict, except for self-similar solutions which
correspond to symmetric critical points of I under a mass constraint, as we shall
see below. We will actually use the flow only to characterize the direction in which
one has to perturb an arbitrary critical point. To understand why such a direction
has to be considered, it is useful to use the quantities provided by the nonlinear
flow. Let us give some details.

Equation (4.5) admits self-similar solutions of Barenblatt type, which are
given by

u?(t, r, ω) = t−n
(
c? +

r2

2 (n− 1)α2 t2

)−n
∀ (t, r, ω) ∈ (0,∞)× (0,∞)×M .

The constant c? is a numerical constant which has to be adjusted so that∫
(0,∞)×M u? dµ = 1. It has an explicit value and depends only on d and n. Also

notice that the variable t plays the role of a scaling parameter. Except in this
section, in which we deal with an evolution problem for heuristical reasons, t has
to be understood in the sense of a positive scale.

If we assume that the solution to (4.5) is supplemented with an initial datum
u(t = 0, x) = u0(x) ≥ 0 such that

∫
(0,∞)×M u0 dµ = 1, then it makes sense to

consider a solution to the Cauchy problem which preserves the mass, that is, such
that

d

dt

∫
(0,∞)×M

u dµ = 0 ,

as was done for the classical fast diffusion equation in [34], and consider d
dtI[u(t, ·)].

The functional I is invariant under scalings. Indeed, let λ be an arbitrary positive
real number. If we consider uλ(x) = λn u(λx) for any x ∈ Rd, we get that I[uλ] =
I[u] for any λ > 0. As a special case, when u = u?, it is clear that I[u?] is
independent of t > 0. In the symmetry range, the function u? is optimal for (4.4).
In any case, we have the following characterization.

Proposition 4.2. With the above notations and Λ = 4α2/(p− 2)2, we have

η µ?(Λ) = I[u?(t, ·)] ∀ t > 0 .

This result is easy to prove (details are left to the reader) and the question is to
know under which conditions we also have I[u?(t, ·)] = η µ(Λ), i.e., µ(Λ) = µ?(Λ).

Our strategy for proving Theorem 1.1 is to establish that in the range (3.5), the
converse is also true, namely that d

dtI[u(t, ·)] = 0 implies that u = u? up to a time
shift, that is, up to a rescaling. Heuristically, this can be done as follows. If u
solves (4.5), then the pressure function p given by (4.3) solves

(4.6)
∂p

∂t
=

1

n
pL p− |Dp|2 .
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Let us define
(4.7)

Q[p] :=
1

2
L |Dp|2−Dp ·DL p and K[p] :=

∫
(0,∞)×M

(
Q[p]− 1

n
(L p)2

)
p1−n dµ .

In order to handle boundary terms, we also define

(4.8) b(r) := rn−1

∫
M

(
∂
∂r

(
p1−n |Dp|2

)
− 2

n
p1−n p′ L p

)
dvg .

Lemma 4.3. With the notations defined by (4.3), (4.7) and (4.8), if u is a smooth
solution of (4.5), with α ≤ αFS, and if limr→0+ b(r) = 0 = limr→+∞ b(r) for
any t > 0, then

d

dt
I[u(t, ·)] = − 2 (n− 1)n−1K[p(t, ·)] .

Proof. Let us define the domain M(r,R) := (r,R)×M, and its boundary Mr ∪MR

where Mr := {r} ×M. Using (4.5) and (4.6), we can compute

d

dt

∫
M(r,R)

u |Dp|2 dµ =

∫
M(r,R)

∂u

∂t
|Dp|2 dµ+ 2

∫
M(r,R)

uDp · D∂p
∂t

dµ

=

∫
M(r,R)

L (um) |Dp|2 dµ+ 2

∫
M(r,R)

uDp · D
( 1

n
pL p− |Dp|2

)
dµ .

By integration by parts we get

d

dt

∫
M(r,R)

u |Dp|2 dµ =

∫
M(r,R)

um L |Dp|2 dµ+
2

n

∫
M(r,R)

u pDp · DL p dµ

+
2

n

∫
M(r,R)

uDp · DpL p dµ− 2

∫
M(r,R)

uDp · D |Dp|2 dµ

+α2

∫
MR

(
(um)′ |Dp|2 − um ∂

∂r (|Dp|2)
)
Rn−1 dvg

−α2

∫
Mr

(
(um)′ |Dp|2 − um ∂

∂r (|Dp|2)
)
rn−1 dvg

= −
∫
M(r,R)

um L |Dp|2 dµ+
2

n

∫
M(r,R)

u pDp · DL p dµ

+
2

n

∫
M(r,R)

uDp · DpL p dµ

+α2

∫
MR

(
(um)′ |Dp|2 + um ∂

∂r (|Dp|2)
)
Rn−1 dvg

−α2

∫
Mr

(
(um)′ |Dp|2 + um ∂

∂r (|Dp|2)
)
rn−1 dvg ,
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where the last line is also given by an integration by parts:∫
M(r,R)

uDp · D |Dp|2 dµ = −
∫
M(r,R)

D(um) · D |Dp|2 dµ

=

∫
M(r,R)

um L |Dp|2 dµ− α2

∫
MR

um ∂
∂r (|Dp|2)Rn−1 dvg

+ α2

∫
Mr

um ∂
∂r (|Dp|2) rn−1 dvg .

1) By definition of Q, we get that∫
M(r,R)

um L |Dp|2 dµ = 2

∫
M(r,R)

umQ[p] dµ+ 2

∫
M(r,R)

um Dp · DL p dµ .

2) Since uDp = −D(um), an integration by parts gives∫
M(r,R)

uDp · DpL p dµ = −
∫
M(r,R)

D(um) · DpL p dµ

=

∫
M(r,R)

um (L p)2 dµ+

∫
M(r,R)

um Dp · DL p dµ

− α2

∫
MR

um p′L pRn−1 dvg + α2

∫
Mr

um p′L p rn−1 dvg .

and with u p = (n− 1)um we find that

2

n

∫
M(r,R)

u pDp · DL p dµ+
2

n

∫
M(r,R)

uDp · DpL p dµ

=
2

n

∫
M(r,R)

um (L p)2 dµ+ 2

∫
M(r,R)

um Dp · DL p dµ

− 2α2

n

∫
MR

um p′L pRn−1 dvg +
2α2

n

∫
Mr

um p′L p rn−1 dvg .

Collecting terms and passing to the limits as r → 0 and R → +∞ establishes
Lemma 4.3. �

A natural approach is to show that I[u(t, ·)] is nonincreasing by proving that
K[p(t, ·)] is nonnegative for any t > 0 in the range (3.5). By Lemma 4.3, it is enough
to prove that limr→0+

b(r) = 0 = limr→+∞ b(r) for any t > 0. As a consequence
the flow drives any initial condition towards a minimum of I, which is a self-similar
solution of Barenblatt type, i.e., u? up to a translation with respect to t. Hence
I[u] ≥ I[u?(t, ·)], which is equivalent to the sharp form of inequality (1.1).

We can avoid considering the flow by focusing on critical points for I[u] under
the mass constraint. The Euler-Lagrange equation integrated against Lum must
vanish, provided that the integral exists. Heuristically, this quantity coincides with
the time derivative of I[u(t, ·)] at the critical point. By Lemma 4.3, K[p] must then
vanish for critical points. Since u solves an elliptic equation, we have additional
regularity and decay properties of which we can take advantage to get rid of the
boundary terms. With slight technical modifications, this is the line of arguments
we shall use to prove the main results of the paper in Section 6.
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5. The key computations

The goal of this section is to characterize the functions such that K[p] = 0: see
Corollary 5.5. This result is the main ingredient of our method.

5.1. A preliminary computation. The calculations below are carried out for a
function p defined on (0,∞)×M where M is a d− 1 dimensional smooth, compact
Riemannian manifold. Here ′ and ∇ respectively denote the derivative with respect
to r and the gradient on M, g is the metric tensor, ∆ the Laplace-Beltrami operator
on M and dvg the volume element. We recall that

L p = α2 p′′ + α2 n− 1

r
p′ +

∆ p

r2
,

Dp · Dw = α2 p′w′ +
∇p · ∇w

r2
and |Dp|2 = α2 |p′|2 +

|∇p|2
r2

.

We also define

k[p] := Q(p)− 1

n
(L p)2 =

1

2
L |Dp|2 − Dp · DL p− 1

n
(L p)2 ,

and

kM[p] :=
1

2
∆ |∇p|2 −∇p · ∇∆ p− 1

n−1 (∆ p)2 − (n− 2)α2 |∇p|2 .

Lemma 5.1. Let n 6= 1 be any real number, d ∈ N, d ≥ 2, and consider a function
p ∈ C3((0,∞) ×M), where (M, g) is a smooth, compact Riemannian manifold.
Then we have

k[p] = α4

(
1− 1

n

)[
p′′ − p′

r
− ∆ p

α2 (n− 1) r2

]2

+ 2α2 1

r2

∣∣∣∣∇p′ − ∇pr
∣∣∣∣2 +

1

r4
kM[p] .

Proof. By definition of k[p], we have

k[p] = α2

2

[
α2 p′2 + |∇p|2

r2

]′′
+ α2

2
n−1
r

[
α2 p′2 + |∇p|2

r2

]′
+ 1

2 r2 ∆
[
α2 p′2 + |∇p|2

r2

]
−α2 p′

(
α2 p′′ + α2 n−1

r p′ + ∆ p
r2

)′
− 1

r2∇p · ∇
(
α2 p′′ + α2 n−1

r p′ + ∆ p
r2

)
− 1
n

(
α2 p′′ + α2 n−1

r p′ + ∆ p
r2

)2

,

which can be expanded as

α2

2

[
2α2 p′′2 + 2α2 p′ p′′′ + 2 |∇p′|2+∇p·∇p′′

r2 − 8 ∇p·∇p′

r3 + 6 |∇p|2
r4

]
+α2 n−1

r

[
α2 p′ p′′ + ∇p·∇p′

r2 − |∇p|2
r3

]
+ 1

r2

[
α2 p′∆ p′ + α2 |∇p′|2 + ∆ |∇p|2

2 r2

]
−α2 p′

(
α2 p′′′ + α2 n−1

r p′′ − α2 n−1
r2 p′ − 2 ∆ p

r3 + ∆ p′

r2

)
− 1
r2

(
α2∇p · ∇p′′ + α2 n−1

r ∇p · ∇p′ +
∇p·∇∆ p

r2

)
− 1
n

[
α4 p′′2 + α4 (n−1)2

r2 p′2 + (∆ p)2

r4 + 2α4 n−1
r p′ p′′ + 2α2 p′′∆ p

r2 + 2α2 n−1
r3 p′∆ p

]
.

By ordering the terms in powers of α, we get the result. �
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5.2. An identity if d ≥ 3. On the smooth compact Riemannian manifold (M, g)
we denote by Hf the Hessian of f , i.e, Hfi;j = ∇i ∂jf where ∇j denotes the
covariant derivative. Thus Hf is a symmetric covariant tensor of rank 2. With a
slight abuse of language we identify its trace with the Laplace-Beltrami operator

∆ f = Tr (Hf) =
∑
i,j

gi,j Hfj;i

where, as usual,
∑
j g

i,jgj,k = δik. If A and B are covariant tensors, we will also
abbreviate the notations by using

A : B :=
∑
i,j,k,l

gi,j Aj,kg
k,l Bl,i and ‖A‖2 := A : A .

It will be convenient to introduce the trace free Hessian

Lf := Hf − 1

d− 1
(∆f) g .

Let us define the tensor Zf and its trace free counterpart by

Zf :=
∇f ⊗∇f

f
and Mf := Zf − 1

d− 1

|∇f |2
f

g .

We use the notations λθ, λ? = λθ? and δ = 1
d−1 − 1

n−1 of the introduction. The

following result is adapted from [37, 25].

Lemma 5.2. Assume that d ≥ 3 and n > d. If p is a positive function in C3(M),
then ∫

M

kM[p] p1−n dvg ≥
[
λ? − (n− 2)α2

] ∫
M

|∇p|2 p1−n dvg .

If M = Sd−1, there is a positive constant ζ? such that∫
Sd−1

kM[p] p1−n dω ≥
[
λ? − (n− 2)α2

] ∫
Sd−1

|∇p|2 p1−n dω

+ ζ? (n− d)

∫
Sd−1

|∇p|4 p1−n dω .

Proof. The Bochner-Lichnerowicz-Weitzenböck formula

1
2 ∆ (|∇f |2) = ‖Hf‖2 +∇(∆f) · ∇f + Ric(∇f,∇f)

yields that

A :=

∫
M

(
1
2 ∆(|∇p|2)−∇(∆p) · ∇p− 1

n−1 (∆p)2
)
p1−n dvg

=

∫
M

(
‖Hp‖2 + Ric(∇p,∇p)− 1

n−1 (∆p)2
)
p1−n dvg .

Here Ric(∇p,∇p) is the Ricci curvature tensor contracted with ∇p⊗∇p.
Set p = fβ , where β = 2

3−n . A straightforward computation shows that

Hfβ = β fβ−1
(
Hf + (β − 1) Zf

)
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and hence∫
M

(
‖Hp‖2 − 1

n−1 (∆p)2
)
p1−n dvg

= β2

∫
M

(
‖Hf + (β − 1) Zf‖2 − 1

n−1

(
Tr (Hf + (β − 1) Zf)

)2)
dvg

= β2

∫
M

(
‖Lf + (β − 1) Mf‖2 + δ

(
Tr (Hf + (β − 1) Zf)

)2)
dvg .

Next we observe that∫
M

(
Tr (Hf + (β − 1) Zf)

)2
dvg

=

∫
M

(
(∆ f)2 + 2 (β − 1) ∆ f

|∇f |2
f

+ (β − 1)2 |∇f |4
f2

)
dvg .

We recall that d ≥ 3 and hence

|∇f |4
f2

= ‖Zf‖2 =
d− 1

d− 2
‖Mf‖2 .

Using integration by parts, we get that∫
M

∆ f
|∇f |2
f

dvg =

∫
M

|∇f |4
f2

dvg − 2

∫
M

Hf : Zf dvg

=
d− 1

d− 2

∫
M

‖Mf‖2 dvg − 2

∫
M

Lf : Zf dvg −
2

d− 1

∫
M

∆ f
|∇f |2
f

dvg .

This yields∫
M

∆ f
|∇f |2
f

dvg =
d− 1

d+ 1

[∫
M

d− 1

d− 2
‖Mf‖2 dvg − 2

∫
M

Lf : Mf dvg

]
by noting that one can replace Zf by Mf because Lf is trace free.

Using the Bochner-Lichnerowicz-Weitzenböck formula once more we obtain∫
M

(∆ f)2 dvg =
d− 1

d− 2

∫
M

‖Lf‖2 dvg +
d− 1

d− 2

∫
M

Ric(∇f,∇f) dvg .

Hence we find that for any θ,∫
M

(
Tr (Hf + (β − 1) Zf)

)2
dvg − (1− θ)

∫
M

(∆ f)2 dvg

= θ

[
d− 1

d− 2

∫
M

‖Lf‖2 dvg +
d− 1

d− 2

∫
M

Ric(∇f,∇f) dvg

]
+ 2 (β − 1)

d− 1

d+ 1

[∫
M

d− 1

d− 2
‖Mf‖2 dvg − 2

∫
M

Lf : Mf dvg

]
+ (β − 1)2 d− 1

d− 2

∫
M

‖Mf‖2 dvg .

Altogether, we get

A− β2 δ (1− θ)
∫
M

(∆ f)2 dvg = β2

∫
M

(
a ‖Lf‖2 + 2 bLf : Mf + c ‖Mf‖2

)
dvg

+ β2

(
1 + δ θ

d− 1

d− 2

)∫
M

Ric(∇f,∇f) dvg ,
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where

a = 1 + δ θ
d− 1

d− 2
,

b = (β − 1)

(
1− 2 δ

d− 1

d+ 1

)
,

c = (β − 1)2

(
1 + δ

d− 1

d− 2

)
+ 2 (β − 1)

δ (d− 1)2

(d+ 1) (d− 2)
.

The smallest value of θ for which
(
a ‖Lf‖2 + 2 bLf : Mf+ c ‖Mf‖2

)
is nonnegative

is determined by the condition b2 − a c = 0, that is, θ = θ? < 0. Notice that with

this choice θ > − (d−2)
δ (d−1) = − (d−2) (n−1)

n−d for any d > 2 and n > d, so that the

coefficient a is always positive.
The conclusion holds by the Poincaré inequality∫

M

(∆ f)2 dvg ≥ λM1
∫
M

|∇f |2 dvg .

To bound the term involving the Ricci tensor, we simply use the pointwise estimate

Ric(∇p,∇p) ≥ κ |∇p|2

and recall that d−1
d−2 κ ≤ λM1 , with equality when M = Sd−1. Altogether, the

function θ 7→ λθ :=
(
1+δ θ d−1

d−2

)
κ+δ (1−θ)λM1 is constant if M = Sd−1, monotone

non-increasing otherwise, and we get that

A− λθ β2

∫
M

|∇f |2 dvg ≥ aβ2

∫
M

∥∥Lf + b
a Mf

∥∥2
dvg − b2−a c

a β2

∫
M

‖Mf‖2 dvg .

In the general case, with d ≥ 3, the conclusion holds with θ = θ?, b
2 − a c = 0 and

λ? = λθ? . If M = Sd−1 with d ≥ 3, we choose θ = 0 and get the conclusion. �

Remark 1. With p = fβ and β = 2
3−n and δ = 1

d−1 − 1
n−1 , we have proved that∫

M
kM[p] p1−n dvg can be written as a sum of squares, namely∫
M

kM[p] p1−n dvg

= (1−θ)β2 δ

∫
M

(∆f)2 dvg+aβ2

∫
M

∥∥Lf + b
a Mf

∥∥2
dvg+

(
c− b2

a

)
β2

∫
M

‖Z f‖2 dvg

+ β2
(
1 + δ θ d−1

d−2

) ∫
M

Ric(∇f,∇f) dvg − 4 (n−2)
(n−3)2 α

2

∫
M

|∇f |2 dvg

for any θ ∈ [θ?, 1] and a, b and c as above. This identity is more precise than the
result in Lemma 5.2. Combined with Lemma 5.1, this shows that

∫
M

k[p] dvg can
be written as a sum of squares, with explicit coefficients.

Remark 2. Notice that the constant λ? is an estimate of the largest constant λ
such that∫

M

(
1
2 ∆(|∇p|2)−∇(∆p) · ∇p− 1

n−1 (∆p)2 − λ |∇p|2
)
p1−n dvg ≥ 0 ,

for any positive function p ∈ C3(M). It is estimated by λθ with θ ∈ [θ?, 1]. In
the case of the sphere, that is, M = Sd−1, we have that d−1

d−2 κ = λM1 and λθ =(
1 + δ d−1

d−2

)
κ =

(
d−2
d−1 + δ

)
λM1 is independent of θ. Otherwise, by Lichnerowicz’
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theorem, we know that d−1
d−2 κ ≤ λM1 (with strict inequality if M 6= Sd−1, thanks

to Obata’s theorem). Hence θ 7→ λθ is a non-increasing function, and since θ? is
always negative, we have a simple lower bound for λ?:

λ? ≥ λ0 = κ+ δ λM1 .

As in [25], a better, nonlocal, estimate is obtained by refining λ? as

λ? := inf
f ∈ C3(M)
s.t.∇f 6≡ 0

δ (1− θ)
∫
M

(∆ f)2 dvg +
(

1 + δ θ d−1
d−2

) ∫
M

Ricg(∇f,∇f) dvg∫
M
|∇f |2 dvg

.

Remark 3. With θ = θ?, the constants a, b and c are explicit and given by

a =
(d− 1) (d− 2) (n+ 1)2

(d+ 1)
[
d (n2 − n− 4)− (n2 − 3n− 2)

] , b = − (n+ 1) (d− 1)

(n− 3) (d+ 1)
,

c =
(d− 1)

[
d (n2 − n− 4)− (n2 − 3n− 2)

]
(d− 2) (d+ 1) (n− 3)2

.

If M = Sd−1, we have λM1 = d− 1, κ = d− 2 and

λ? =
n− 2

n− 1
(d− 1) , ζ? = − (d− 1)

(
d (3n+ 5)− 3n− 1

)
(d− 2) (d+ 1)2 (n− 3)2

.

5.3. A Poincaré inequality if d = 2. The manifold M is one-dimensional if
d = 2, i.e., it is a smooth closed curve with curvilinear coordinate ω. A direct
computation shows that

kM[p] =
n− 2

n− 1
|∆p|2 − (n− 2)α2 |∇p|2 .

Lemma 5.3. Assume that M is a smooth closed curve. If p is a positive function
of class C2(M), then∫

M

kM[p] p1−n dvg ≥
(
n− 2

n− 1
λM1 − (n− 2)α2

)∫
M

|∇p|2 p1−n dvg

+
1

12
(n+ 3) (n− 2)

∫
M

|∇p|4
p2

p1−n dvg .

Proof. Since

∇ ·
(
p

1−n
2 ∇p

)
= p

1−n
2

(
∆p +

1− n
2

|∇p|2
p

)
,

we may take the square, integrate by parts the cross term and use the Poincaré
inequality ∫

M

∣∣∣∇ · (p 1−n
2 ∇p

)∣∣∣2 dvg ≥ λM1 ∫
M

∣∣∣p 1−n
2 ∇p

∣∣∣2 dvg .
Notice that∫

M

∆p
|∇p|2
p

p1−n dvg =
1

3

∫
M

∇ ·
(
|∇p|2∇p

)
p−n dvg =

n

3

∫
M

|∇p|4
p2

p1−n dvg

and − 1
12 (n+ 3) (n− 1) =

(
1−n

2

)2
+ 2 1−n

2
n
3 . Hence we get∫

M

|∆p|2 p1−n dvg ≥ λM1
∫
M

|∇p|2 p1−n dvg+
1

12
(n+3) (n−1)

∫
M

|∇p|4
p2

p1−n dvg .

The conclusion immediately follows. �
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5.4. Consequences for K[p] and some remarks. With Q[p] defined by (4.7),
we recall that

K[p] =

∫
(0,∞)×M

(
Q[p]− 1

n
(L p)2

)
p1−n dµ =

∫
(0,∞)×M

k[p] p1−n dµ .

The following result is a direct consequence of Lemmas 5.1, 5.2 and 5.3 (also see
Remark 1).

Corollary 5.4. Assume that d ∈ N, n ∈ R and n > d ≥ 2 and consider a function
p ∈ C3((0,∞)×M). Then we have

(5.1) K[p] ≥
(

1− 1

n

)
α4

∫
(0,∞)×M

∣∣∣∣p′′ − p′

r
− ∆ p

α2 (n− 1) r2

∣∣∣∣2 p1−n dµ

+ 2α2

∫
(0,∞)×M

1

r2

∣∣∣∣∇p′ − ∇pr
∣∣∣∣2 p1−n dµ

+
[
λ? − (n− 2)α2

] ∫
(0,∞)×M

1

r4
|∇p|2 p1−n dµ .

Remark 4. When M = Sd−1 with d ≥ 2, λ? − (n − 2)α2 = (n − 2)
(
α2

FS − α2
)

with α2
FS = d−1

n−1 . The difference of the two terms in (5.1) involves an additional

term equal to ζ? (n− d)
∫

(0,∞)×M |∇p|4 p1−n dµ if d ≥ 3, where the expression of ζ?
can be found in Remark 3, but one can choose a = 1 while b is unchanged. If d = 2,
the difference of the two terms in (5.1) is bounded from below by

1

12
(n+ 3) (n− 1)

∫
(0,∞)×M

|∇p|4
p2

p1−n dµ .

Corollary 5.5. Assume that n > d ≥ 2 and that (n − 2)α2 ≤ λ?. Then, for any
function p ∈ C3((0,∞)×M), K[p] ≥ 0 and K[p] = 0 if and only if u = u?(t, ·) for
some t > 0.

Proof. Let us deal first with the case M = Sd−1. In this case the condition
(n− 2)α2 ≤ λ? is equivalent to α ≤ αFS. By Lemma 5.2, p is only a function
of r. Moreover, since K[p] = 0 we find that p′′ = p′/r for all r, which implies that
p(r) = a+ b r2 for some constants a and b.

Let us now address the case of M 6= Sd−1, which is more delicate. If
(n− 2)α2 ≤ λ?, the inequality K[p] ≥ 0 follows from Corollary 5.4. Moreover,
under the same assumption,

K[p] ≥
(

1− 1

n

)
α4

∫
(0,∞)×M

∣∣∣∣p′′ − p′

r
− ∆ p

α2 (n− 1) r2

∣∣∣∣2 p1−n dµ

+ 2α2

∫
(0,∞)×M

1

r2

∣∣∣∣∇p′ − ∇pr
∣∣∣∣2 p1−n dµ .

We write

p(r, ω) =
∑
k≥0

αk pk(r) yk(ω)

where (yk)k≥0 is a basis of eigenfunctions associated with −∆ and (λMk )k≥0 denotes
the corresponding sequence of eigenvalues. Notice that λM0 = 0 and λMk > 0 for
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any k ≥ 1. When K[p] = 0, then

0 = α4

(
1− 1

n

)∑
k≥0

α2
k

[
p′′k −

p′k
r

+
λMk pk

α2 (n− 1) r2

]2

+ 2α2 1

r2

∑
k≥0

α2
k λ

M
k

[
p′k −

pk
r

]2
.

All the terms in the r.h.s. are nonnegative, which means that we have to solve
simultaneously

(5.2) p′′k −
p′k
r

+
λMk pk

α2 (n− 1) r2
= 0

for any k ≥ 0 and

(5.3) p′k −
pk
r

= 0

for any k ≥ 1. The first equation shows that, up to multiplication by an arbitrary
non-zero constant,

p±k (r) = rβ
±
k with β±k = 1±

√
1− λMk

α2 (n− 1)
.

For k ≥ 1, equations (5.2) and (5.3) are only compatible if at least one of β±k = 1,
which entails that λMk = (n − 1)α2. We shall prove that this is never the case for
k ≥ 1. Because M 6= Sd−1 we can use Lichnerowicz’ and Obata’s theorems to con-
clude that the strict inequality d−1

d−2 κ < λM1 holds. This implies that λ∗ <
n−2
n−1 λ

M
1 ,

and hence that α2 (n− 1) < λM1 . Altogether, p = p0 has to be radially symmetric
and given by p(r) = a + b r2, for some positive constants a and b. This concludes
the proof. �

Remark 5. If M = Sd−1, the case n = d ≥ 3 and α = αFS corresponds to Sobolev’s
inequality and the condition (n− 2)α2 ≤ λ? is equivalent to α2 ≤ α2

FS = d−1
n−1 = 1.

Our results do not apply to this case, because of course it is well known that there
is no rigidity in this case.

6. Proof of the main results

Assume that p ∈ (2, 2∗) and consider an optimal function for the Caffarelli-
Kohn-Nirenberg inequalities (1.1). Such a solution exists according to [12]. Up to a
multiplication by a constant, it solves (1.4). Hence Theorem 1.1 can be considered
as a special case of Theorem 1.2. Similarly, we can consider the interpolation
inequality (1.10). For the same reasons as in [12], an optimal function exists, which

solves (1.9) and the upper bound in Corollary 1.5, that is, Λ? ≤ Λ FS =
4λM

1

p2−4 follows

from Proposition 2.1.
Corollary 1.3 is equivalent to Theorems 1.1 and 1.2. The proof of equivalence

relies on the Emden-Fowler change of variables (1.5). Details are left to the reader.
Moreover, it is clear that Corollary 1.3 is a special case of Theorem 1.4 and Corol-
lary 1.5, which we prove next.
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Take any positive solution ϕ ∈ H1(C) to (1.9) and recall that by undoing the
Emden-Fowler transformation (1.5), the function p defined in (4.3) can be written as
(6.1)

p(r, ω) = (n− 1)u−
1
n (r, ω) = p+2

p−2 r
(
ϕ(− log r

α , ω)
)− p−2

2 ∀ (r, ω) ∈ (0,∞)×M ,

with α = p−2
2

√
Λ and n = 2 p

p−2 , and it satisfies the equation

(6.2) pL p− n

2
|Dp|2 =

2 (n− 1)2

n− 2
in (0,∞)×M .

Lemma 6.1. Let α ≤ αFS. For any positive solution p of (6.2), corresponding to
ϕ ∈ H1(C),∫

(0,∞)×M

(
pL p− n

2
|Dp|2 − 2 (n− 1)2

n− 2

)
(Lum) dµ = −n (n− 1)n−1K[p] .

Proof. Take 0 < r < R < +∞. Then a straightforward integration by parts yields∫
(r,R)×M

(
pLp− n

2
|Dp|2 − 2 (n− 1)2

n− 2

)
(Lum) dµ

= −n (n− 1)n−1

∫
(r,R)×M

(
1

2
L |Dp|2 − Dp · DL p− 1

n
(L p)2

)
p1−n dµ

+ α2 rn−1

∫
M

(
n

2
um
( |Dp|2

p

)′
+

2 (n− 1)2

n− 2
(um)′

)
dvg

∣∣∣∣∣
R

r

.

The regularity of p will be proved in Appendix A. The boundary term is bounded
by a constant times (c(r) + c(R)), where

(6.3) c(r) := rn−1

∫
M

(
|u′|um−1 + um |Dp| |Dp′|+ um |Dp|2 |p

′|
p

)
dvg .

By Proposition A.2 in the Appendix, limr→0 c(r) = limR→∞ c(R) = 0 and this ends
the proof. �

Proof of Theorem 1.4. Let us consider a solution ϕ of (1.9). Define p by (6.1),
which then satisfies (6.2). It follows from Lemma 6.1 that any positive solution
of (6.2) satisfies K[p] = 0. By Corollary 5.5, whenever α ≤ αFS, we get that
K[p] = 0 determines the solution and establishes the symmetry result. �

Proof of Corollary 1.5. We have to discuss the equality cases. A similar discussion
has been done in [25, Theorem 4]. Here we observe that the rigidity result covers
the case Λ = λ?/(p − 2). Now, if Λ? < Λ FS, let us consider Λn > Λ? such that
limn→+∞ Λn = Λ?. Then, taking a non-radially symmetric extremal function ϕn of
(1.10) with Λ = Λn, by elliptic estimates, we see that the sequence {ϕn}n converges
uniformly to an extremal solution of (1.10) with Λ = Λ?. Since for any Λ < Λ FS

the radial extremals of (1.10) are strict local minima, the radial extremal of (1.10)
for Λ = Λ? cannot be approached by the sequence {ϕn}n: see [27] for a similar
case. Hence, if Λ? < Λ FS, at Λ = Λ? there are at least two distinct nonnegative
solutions of (1.7), which contradicts the rigidity property at Λ = λ?/(p− 2). Thus
we know that Λ? >

λ?
p−2 if Λ? < Λ FS. �
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7. Some consequences

This section illustrates some consequences of our main results by two further
results, respectively on Schrödinger operators on cylinders and Hardy type inequal-
ities on the Euclidean space.

7.1. Spectral estimates for Schrödinger operators on cylinders. Rigidity
results and optimality in interpolation inequalities have interesting consequences
on spectral estimates for Schrödinger operators on cylinders. The results of this
section have been announced in [26]. Here our goal is to compare

Λ(µ) := sup
{
λC1 [V ] : V ∈ Lq(C) , ‖V ‖Lq(C) = µ

}
,

Λ?(µ) := ΛR

(
(volg(M)

)−1/q
µ
)

and ΛR(µ) := sup
{
λR1 [V ] : V ∈ Lq(R) , ‖V ‖Lq(R) = µ

}
where −λC1 [V ] and −λR1 [V ] denote the lowest eigenvalues of the Schrödinger oper-
ators −∂2

s − ∆− V and −∂2
s − V respectively on C and R.

Assume that q ∈ (1,+∞) and let us define

µ1 := q (q − 1)

( √
π Γ(q)

Γ(q + 1/2)

)1/q

and β :=
2 q

2 q − 1
.

Notice that µ1 = µ?(Λ = 1) with the notations of Section 1. According to [36, 40],
we have

(7.1) ΛR(µ) = (q − 1)2

(
µ

µ1

)β
∀µ > 0 .

As a consequence, we obtain the one-dimensional Keller-Lieb-Thirring inequality :
if V is a nonnegative real valued potential in Lq(R), then we have

(7.2) λR1 [V ] ≤ ΛR(‖V ‖Lq(R)) .

Equality holds if and only if, up to scalings, translations and multiplications by a
positive constant,

V (s) =
q (q − 1)

(cosh s)2
=: V1(s) ∀ s ∈ R

where ‖V1‖Lq(R) = µ1, λR1 [V1] = (q − 1)
2
. Moreover the function ϕ(s) = (cosh s)1−q

generates the corresponding eigenspace. See [24] for more details in the context of
Caffarelli-Kohn-Nirenberg inequalities.

The classical Keller-Lieb-Thirring inequality in Rd asserts that for all γ ≥ 0 if

d ≥ 3, γ > 0 if d = 2, and γ > 1/2 if d = 1, the lowest negative eigenvalue, −λRd1 [V ],
of the operator −∆− V satisfies

λR
d

1 [V ]γ ≤ L1
γ,d ‖V+‖γ+d/2

Lγ+d/2(Rd)
∀V ∈ Lq(Rd)

with optimal constant L1
γ,d. See [36, 40, 23] for details.

Proposition 7.1. Let d ≥ 2 and q ∈ (d/2,+∞). The function µ 7→ Λ(µ) is convex,
positive and such that, with γ = q − d

2 ,

Λ(µ)q−
d
2 ∼ L1

γ, d µ
q as µ→ +∞ .
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With the notations of Theorem 1.4, there exists a positive µ? with

(7.3) volg(M)
2

2q−1
λ?

2 (q − 1)
µβ1 ≤ µβ? ≤ volg(M)

2
2q−1

λM1
(2 q − 1)

µβ1

such that

Λ(µ) = Λ?(µ) ∀µ ∈ (0, µ?] and Λ(µ) > Λ?(µ) ∀µ > µ? .

As a special case, if M = Sd−1, inequalities in (7.3) are in fact equalities.

Proof. The existence of the function µ 7→ Λ(µ) is an easy consequence of a Hölder
estimate:

‖∂su‖2L2(C) + ‖∇u‖2L2(C) −
∫
C
V |u|2 dν ≥ ‖∂su‖2L2(C) + ‖∇u‖2L2(C) − µ ‖u‖2Lp(C)

with µ = ‖V+‖Lq(C) and q = p/(p − 2), and of the Gagliardo-Nirenberg inequal-

ity (1.10). Since the equality case in Hölder’s inequality is achieved by V = up−2

up to some multiplicative constant, our Keller-Lieb-Thirring inequality

λC1 [V ] ≤ Λ
(
‖V+‖Lq(C)

)
∀V ∈ Lq(C) .

is in fact exactly equivalent to (1.10) and µ 7→ Λ(µ) is the inverse of the function
Λ 7→ µ(Λ) in (1.10). Hence (7.3) is equivalent to the estimates of Corollary 1.5.
The estimate of Λ(µ) as µ → +∞ and its other properties can be proved exactly
as in [23]. Let us give some details. By a scaling argument, it can be proved that
as Λ goes to +∞, the minimizers of µ(Λ) concentrate at some point of M. Then,
a blow-up analysis at the concentration point shows that, as Λ→ +∞,

µ(Λ) ∼ Λ1−ϑ (L1
γ, d

) 1
q with L1

γ, d =

(
inf

ϕ∈H1(Rd)\{0}

‖∇ϕ‖2
L2(Rd)+‖ϕ‖

2

L2(Rd)
‖ϕ‖2

Lp(Rd)

)−γ− d2
,

See [36, 40, 12, 23, 26] for further details. �

7.2. Hardy inequalities with potentials. With v(x) = |x|a u(x) and Λ = (ac −
a)2, the Caffarelli-Kohn-Nirenberg inequalities (1.1) can be rewritten as∫

Rd
|∇u|2 dx−

(
a2
c − Λ

) ∫
Rd

|u|2
|x|2 dx ≥ µ(Λ)

(∫
Rd

|u|p
|x|(b−a)p

dx

)2/p

.

On the other hand, if V is a given smooth nonnegative potential on Rd such that
V (0) = 0, then by Hölder’s inequality we get that∫
Rd
V
|u|2
|x|2 dx =

∫
Rd

V

|x| dq
|u|2

|x|2( dp−ac)
dx ≤

(∫
Rd

V q

|x|d dx
)1/q (∫

Rd

|u|p
|x|(b−a)p

dx

)2/p

.

Let us denote by µ 7→ Λ(µ) the inverse of Λ 7→ µ(Λ). Then we have the following
result.

Proposition 7.2. Let d ≥ 1 and q ∈ (min{1, d/2},+∞). Assume that V is a

nonnegative function such that |x|−d V q is integrable. Then, for any u ∈ Ḣ1(Rd) :=
{u ∈ L1

loc(Rd) : ∇u ∈ L2(Rd)}, we have∫
Rd
|∇u|2 dx−

∫
Rd
V
|u|2
|x|2 dx−

(
a2
c − Λ(µ)

) ∫
Rd

|u|2
|x|2 dx ≥ 0 if µ =

(∫
Rd

V q

|x|d dx
)1/q

.
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As a special case, if µ =
(∫

Rd
V q

|x|d dx
)1/q

≤ µ? with µ? defined as in Proposition 7.1,

then with Λ? given by (7.1), we have∫
Rd
|∇u|2 dx−

∫
Rd
V
|u|2
|x|2 dx−

(
a2
c − Λ?(µ)

) ∫
Rd

|u|2
|x|2 dx ≥ 0 ∀u ∈ Ḣ1(Rd) .

The above result is a generalized form of Hardy’s inequality. If d ≥ 3, we
recover the usual form by taking V ≡ 0, with optimal constant a2

c . There is no
optimal potential because the equality in Hölder’s inequality would mean that V is
proportional to |u|p−2, so that |x|−d V q is not integrable if v(x) = |x|−a u(x) is an
optimal function for (1.1).

Appendix A. Regularity and decay estimates

We denote by ′ and ∇ the differentiation with respect to s and ω respectively.
We work in the general setting and do not assume that M = Sd−1.

Proposition A.1. Any positive solution ϕ ∈ H1(C) of (1.7) with p ∈ (2, 2∗) is
uniformly bounded and smooth. Moreover there are two positive constants, C1 and
C2 such that, for all (s, ω) ∈ C,

C1 e
−
√

Λ |s| ≤ ϕ(s, ω) ≤ C2 e
−
√

Λ |s| ,

|ϕ′(s, ω)| , |ϕ′′(s, ω)| , |∇ϕ(s, ω)| , |∇ϕ′(s, ω)| , |∆ϕ(s, ω)| ≤ C2 e
−
√

Λ |s| .

Proof. A similar result was proved in [13]. Here we work in a more general setting
when M 6= Sd−1. For sake of completeness, we sketch the main steps of the proof.

Step 1. The solution is bounded, smooth and lim|s|→+∞ ϕ(s, ω) = 0 for any ω ∈M.
Boundedness is obtained by a Moser iteration scheme. The C∞ regularity fol-
lows by a localized boot-strap argument based on, e.g., [32, Corollary 7.11, Theo-
rem 8.10, and Corollary 8.11]. If s 7→ χ(s) is a smooth truncation function such that
0 ≤ χ ≤ 1, χ ≡ 1 if |s| ≤ 1 and χ ≡ 0 if |s| ≥ 2, then ϕε(s, ω) := ϕ(s, ω)

(
1−χ(ε s)

)
has an arbitrary small norm in H1(C) and limε→0+

‖ϕε‖L∞(C) = 0, again by a Moser
iteration scheme.

Step 2. Exponential decay of ϕ in |s|. For any µ ∈ (0,
√

Λ), let h(s) := e−µ |s| and
define

sµ := inf
{
s > 0 : |ϕ(σ, ω)|p−2 < Λ− µ2 , ∀ (σ, ω) ∈ C ∩ {|σ| > s}

}
.

By the Strong Maximum Principle applied to the function (h− ϕ) which solves

− ∂2
s (h− ϕ)−∆ (h− ϕ) + µ2 (h− ϕ) ≥

(
Λ− µ2 − |ϕ|p−2

)
ϕ ≥ 0

for |s| ≥ sµ, we get the estimate

0 < ϕ ≤ ‖ϕ‖L∞(C) e
−µ (|s|−sµ) ∀ (s, ω) ∈ C ∩ {|s| > sµ} .

Step 3. Optimal exponential decay of ϕ in |s|. The function h1(s, ω) := e−
√

Λ |s|

satisfies the equation −∆h1 + Λh1 = 0 on C ∩ {|s| > 1}. Hence, by the Strong
Maximum Principle, we have

ϕ(s, ω) ≥
(

min
C∩{|s|≤1}

ϕ

)
e−
√

Λ (|s|−1) .

From Step 2 we know that for some positive M and s̄, we have

− ∂2
s ϕ−∆ϕ+

(
Λ− M

s2

)
ϕ ≤ 0 in C ∩ {|s| > s̄} ,
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while the function h2(s, ω) := e−
√

Λ |s| e
λ
|s| satisfies

− ∂2
s h2−∆h2+

(
Λ− M

s2

)
h2 = − 1

s2

(
M + 2λ

√
Λ + 2λ

s + λ
s2

)
h2 in C∩{|s| > s̄} .

By taking λ < − M
2
√

Λ
and applying the Strong Maximum Principle for S > 0 large

enough, we obtain

0 < ϕ ≤ ‖ϕ‖L∞(C) e
− λS e−

√
Λ (|s|−S) in C ∩ {|s| > S} .

Step 4. Optimal exponential decay in |s| for ∇ϕ, ∆ϕ. Using local charts and [32,
Theorem 8.32, p. 210] on local C1,α estimates, all first derivatives of ϕ converge to 0

with rate e−
√

Λ |s| as |s| → +∞. [32, Theorem 8.10, p. 186] provides local Wk+2,2

estimates of the order e−
√

Λ |s| for |s| large enough. The result follows from [32,
Corollary 7.11, Theorem 8.10, and Corollary 8.11] if k is taken large enough. �

Next we rephrase the results of Proposition A.1 in the language of the pressure
function p of Section 4 using (6.1) and establish the estimates needed in Lemmas 4.3
and 6.1.

Proposition A.2. Let m = 1− 1/n and ϕ ∈ H1(C) be a positive solution of (1.9)
with p ∈ (2, 2∗). Then the functions p associated with ϕ according to (6.1) are such
that p′′, p′/r, p/r2, ∇p′/r, ∇p/r2 and ∆p/r2 are bounded as r → +∞ and of class
C∞ on (0,∞)×M. Moreover, if α ≤ αFS, as r → 0+, we have

(i)
∫
M
|p′(r, ω)|2 dvg ≤ O(1),

(ii)
∫
M
|∇p(r, ω)|2 dvg ≤ O(r2),

(iii)
∫
M
|p′′(r, ω)|2 dvg ≤ O(1/r2),

(iv)
∫
M

∣∣∇p′(r, ω)− 1
r ∇p(r, ω)

∣∣2 dvg ≤ O(1),

(v)
∫
M
|∆p(r, ω)|2 dvg ≤ O(1/r2).

Moreover, with the notations defined by (4.8) and (6.3),

lim
r→0+

b(r) = 0 = lim
r→+∞

b(r)

and
lim
r→0+

c(r) = 0 = lim
r→+∞

c(r) .

Proof. We say that f(s, ω) ∼ g(s, ω) as s→ +∞ (resp. s→ −∞) if the ratio f/g is
bounded from above and from below by positive constants, independent of ω, and
for s (resp. −s) large enough.

There are some easy consequences of the change of variables (6.1) and of Proposi-

tion A.1: since ϕ(s, ω) ∼ e
√

Λ s as s→ −∞, ϕ(− log r/α, ω) ∼ r−2/(p−2) as r → +∞
and it is straightforward to check that p′′, p′/r, p/r2, ∇p′/r and ∇p/r2 are bounded
as r → +∞. As a consequence, we obtain that

|b(r)| , c(r) ≤ O(r2−n)→ 0 as r → +∞
because, by assumption, we know that n > d ≥ 2.

To complete the proof, one has to establish that limr→0+
b(r) = limr→0+

c(r) =
0. A convenient method for that relies on the Kelvin transformation. Let

u(r, ω) = r−2n ũ(R,ω) and p(r, ω) = r2 p̃(R,ω)

with R = 1/r. It is a remarkable fact to observe that ũ solves the same equation
as u, which can be easily seen after applying the Emden-Fowler transformation
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w(r, ω) = r2−n w̃(R,ω) to the function w such that u(r, ω) = |w(r, ω)| 2n
n−2 . With

evident notations if ϕ and ϕ̃ are given in terms of w and w̃ by (1.5), then ϕ̃(s, ω) =
ϕ(−s, ω) for any (s, ω) ∈ R×M and it is clear that equation (1.9) is invariant under
the transformation s 7→ − s.

According to Proposition A.1, p(r, ω) = r2 p̃(1/r, ω) is bounded away from 0 and
from infinity, and, uniformly in ω,

|p′(r, ω)| = |2 r p̃
(

1
r , ω

)
− p̃′

(
1
r , ω

)
| ≤ O

(
1

r

(√
Λ− ϕ̃′(s, ω)

ϕ̃(s, ω)

))
,

1
r |∇p(r, ω)| = r |∇ p̃

(
1
r , ω

)
| ≤ O

(
1

r

∇ϕ̃(s, ω)

ϕ̃(s, ω)

)
,

which are of order at most 1/r. Moreover, also uniformly in ω,

|p′′(r, ω)| = |2 p̃
(

1
r , ω

)
− 2

r
p̃′
(

1
r , ω

)
+

1

r2
p̃′′
(

1
r , ω

)
|

≤ O
(

1

r2

(
ϕ̃′′(s, ω)

ϕ̃(s, ω)
− p

2

|ϕ̃′(s, ω)|2
|ϕ̃(s, ω)|2 + α

ϕ̃′(s, ω)

ϕ̃(s, ω)

))
,

| 1r ∇p′(r, ω)− 1
r2 ∇p(r, ω)| = |∇ p̃

(
1
r , ω

)
− 1

r ∇ p̃′
(

1
r , ω

)
|

≤ O
(

1

r2

(
p

2

ϕ̃′(s, ω)∇ϕ̃(s, ω)

|ϕ̃(s, ω)|2 − ∇ϕ̃
′(s, ω)

ϕ̃(s, ω)

))
,

1

r2
|∆ p(r, ω)| = |∆ p̃

(
1
r , ω

)
| ≤ O

(
1

r2

(
∆ϕ̃(s, ω)

ϕ̃(s, ω)
− p

2

|∇ϕ̃(s, ω)|2
|ϕ̃(s, ω)|2

))
,

which are of order at most 1/r2. This shows that |b(r)|, c(r) ≤ O(rn−4) and
concludes the proof if 4 ≤ d < n. When d = 2 or 3 and p > 4, i.e., n < 4, more
detailed estimates are needed. We will actually prove Properties (i)–(v) as r → 0+.
Using the fact that ϕ̃ and ϕ solve the same equation, this amounts to prove that

(i)
∫
M

∣∣∣ϕ′(s,ω)
ϕ(s,ω) −

√
Λ
∣∣∣2 dvg ≤ O(e2αs),

(ii)
∫
M

∣∣∣∇ϕ(s,ω)
ϕ(s,ω)

∣∣∣2 dvg ≤ O(e2αs),

(iii)
∫
M

∣∣∣ϕ′′(s,ω)
ϕ(s,ω) −

p
2
|ϕ′(s,ω)|2
|ϕ(s,ω)|2 + α ϕ′(s,ω)

ϕ(s,ω)

∣∣∣2 dvg ≤ O(e2αs),

(iv)
∫
M

∣∣∣p2 ϕ′(s,ω)∇ϕ(s,ω)
|ϕ(s,ω)|2 − ∇ϕ

′(s,ω)
ϕ(s,ω)

∣∣∣2 dvg ≤ O(e2αs),

(v)
∫
M

∣∣∣∆ϕ(s,ω)
ϕ(s,ω) −

p
2
|∇ϕ(s,ω)|2
|ϕ(s,ω)|2

∣∣∣2 dvg ≤ O(e2αs),

as s→ −∞.

Proof of (i). Let us consider a positive solution ϕ to (1.9) and define on R the
function

ϕ0(s) =

∫
M

ϕ(s, ω) dvg .

By integrating (1.9) on M, we know that ϕ0 solves

−ϕ′′0 + Λϕ0 =

∫
M

ϕp−1 dvg =: h0(s) ∼ e−(p−1)
√

Λ |s| in R .
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From the integral representation

ϕ0(s) =
e−
√

Λs

2
√

Λ

∫ s

−∞
e
√

Λt h0(t) dt+
e
√

Λs

2
√

Λ

∫ ∞
s

e−
√

Λt h0(t) dt ,

we deduce that ϕ0(s) ∼ e
√

Λs ∼ ϕ(s, ω) as s→ −∞ and

ϕ′0(s)−
√

Λϕ0(s)

ϕ(s, ω)
∼ − e−2

√
Λs

∫ s

−∞
e
√

Λt h0(t) dt = O(e2αs) as s→ −∞ .

If we define ψ(s, ω) := e
√

Λ |s| (ϕ(s, ω)− ϕ0(s)
)
, we may observe that it is bounded

and solves the equation

(A.1) − ∂2
sψ − ∆ψ − 2

√
Λ ∂sψ = e

√
Λ |s| (ϕp−1 − ϕp−1

0

)
=: H ≤ O(e−2α|s|)

and
∂sϕ(s, ω)

ϕ(s, ω)
−
√

Λ = O(e2αs) +
∂sψ(s, ω)

e−
√

Λ s ϕ(s, ω)
as s→ −∞ .

We recall that e−
√

Λ s ϕ(s, ω) is bounded from above and from below by positive

constants as s→ −∞, and |e−
√

Λ s ∂sϕ(s, ω)| is bounded above. As a consequence,
we know that ∂sH = O(e2αs) as s→ −∞. Hence we know that∣∣∣∂sϕ(s, ω)

ϕ(s, ω)
−
√

Λ
∣∣∣ ≤ C |∂sψ(s, ω)|+O(e2αs) ,

where C is a constant. We differentiate (A.1) with respect to s. The function ∂sψ

solves

(A.2) − ∂2
s (∂sψ)− ∆ (∂sψ)− 2

√
Λ ∂s(∂sψ) = ∂sH ,

with

|∂sH(s, ω)| ≤ O(e2αs) as s→ −∞ .

Let us define

χ1(s) :=
1

2

∫
M

|∂sψ|2 dvg ,

multiply (A.2) by ∂sψ and integrate over M. Using

χ′1 =

∫
M

∂sψ ∂
2
sψ dvg

and

χ′′1 =

∫
M

∂sψ ∂
2
s (∂sψ) dvg +

∫
M

|∂2
sψ|2 dvg ,

we obtain that the nonnegative function χ1 solves
(A.3)

− χ′′1 +

∫
M

|∂2
sψ|2 dvg +

∫
M

(
|∇(∂sψ)|2 − λ1 |∂sψ|2

)
dvg︸ ︷︷ ︸

≥0

+ 2λ1 χ1− 2
√

Λχ′1 = h1 ,

where the Poincaré inequality∫
M

|∇(∂sψ)|2 dvg ≥ λ1

∫
M

|∂sψ|2 dvg
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holds because
∫
M
∂sψ dvg = 0 for any s ∈ R, by definition of ψ, and where

h1 :=

∫
M

∂sH ∂sψ dvg .

From the Cauchy-Schwarz inequality, we deduce that

|χ′1(s)|2 =

(∫
M

∂sψ ∂
2
sψ dvg

)2

≤
∫
M

|∂sψ|2 dvg
∫
M

|∂2
sψ|2 dvg = 2χ1(s)

∫
M

|∂2
sψ|2 dvg ,

that is ∫
M

|∂2
sψ|2 dvg ≥

|χ′1|2
2χ1

,

and inserting this estimate in (A.3) we obtain

−χ′′1 +
|χ′1|2
2χ1

+ 2λ1 χ1 − 2
√

Λχ′1 ≤ h1 .

Let ζ1 =
√
χ1 and observe that it solves

− ζ ′′1 + λ1 ζ1 − 2
√

Λ ζ ′1 ≤
h1

2 ζ1
.

By Cauchy-Schwarz inequality, for s→ −∞,

|h1(s)| ≤
√

2

(∫
M

|∂sH|2 dvg
)1/2

ζ1(s) ≤ C e2αs ζ1(s) .

Using once more an integral representation of the solution, with µ :=
√

Λ + λ1, it
is easy to check that

e
√

Λs ζ1(s) ≤ e−µs

4µ

∫ s

−∞
e(µ+

√
Λ)t h1(t)

ζ1(t)
dt+

eµs

4µ

∫ ∞
s

e(
√

Λ−µ)t h1(t)

ζ1(t)
dt ,

which is enough to deduce that ζ1(s) ≤ O
(
eαs
)

as s→ −∞. Note that the condition
that

µ−
√

Λ =
√

Λ + λ1 −
√

Λ ≥ α
is equivalent to the inequality α ≤ αFS. Hence we have shown that for α ≤ αFS,

(A.4) χ1(s) ≤ O
(
e2αs

)
as s→ −∞ .

This ends the proof of (i).

Proof of (ii). By differentiating (1.9) with respect to ω, we obtain

− ∂2
s ∇ϕ− ∇∆ϕ+ Λ∇ϕ = (p− 1)ϕp−2∇ϕ in C .

We proceed as in case (i). With similar notations, by defining

χ2(s) :=
1

2

∫
M

|∇ϕ|2 dvg ,

after multiplying the equation by ∇ϕ and using the fact that∫
M

(∆ϕ)2 dvg ≥ λ1

∫
M

|∇ϕ|2 dvg
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as, e.g., in [25, Lemma 7] and the Cauchy-Schwarz inequality, we obtain

−χ′′2 +
|χ′2|2
2χ2

+ 2 (Λ + λ1)χ2 ≤ h2

with h2 := (p − 1)
∫
M
ϕp−2|∇ϕ|2 dvg = O

(
e− p

√
Λ |s|). The function ζ2 =

√
χ2

satisfies

− ζ ′′2 + (Λ + λ1) ζ2 ≤
h2

2 ζ2
.

By the Cauchy-Schwarz inequality, h2/ζ2 = O
(
e− (p−1)

√
Λ |s|). We easily deduce

that
χ2(s) ≤ O

(
e 2 (α+

√
Λ) s
)

as s→ −∞ .

Indeed, we observe that
√

Λ + λ1−
√

Λ ≥ α for any Λ ∈ (0,Λ FS) and ϕ(s, ω) ∼ e
√

Λ s

as s→ −∞, which ends the proof of (ii).

Proof of (iii). With ψ = e−
√

Λs (ϕ− ϕ0) and ϕ0(s) =
∫
M
ϕ(s, ω) dvg as in case (i),

we can check that

(A.5)
ϕ′′

ϕ
− p

2

|ϕ′|2
|ϕ|2 + α

ϕ′

ϕ
= O(e2αs) +

e
√

Λs

ϕ
∂2
sψ

+

(
(2− p)

√
Λ + α− p ϕ

′
0 −
√

Λϕ0

ϕ

)
e
√

Λs

ϕ
∂sψ −

p

2

(e√Λs

ϕ

)2

|∂sψ|2 .

Because according to Proposition A.1 ∂sψ and ∂sϕ
ϕ are bounded as s → −∞, and

taking into account (A.4), it remains to prove that

χ3(s) :=
1

2

∫
M

|∂2
sψ|2 dvg

is of order O(e2αs). We differentiate (A.1) twice with respect to s. After multiplying
the equation by ∂2

sψ and using the fact that∫
M

|∇(∂2
sψ)|2 dvg ≥ λ1

∫
M

|∂2
sψ|2 dvg

because
∫
M
∂2
sψ dvg = 0, we obtain

−χ′′3 +
|χ′3|2
2χ3

+ 2λ1 χ3 − 2
√

Λχ′3 ≤ h3 ,

with h3 :=
∫
M
∂2
sH ∂2

sψ dvg . With the same arguments as in case (i), we deduce
that

χ3(s) ≤ O(e2αs) as s→ −∞ .

This ends the proof of (iii).

Proof of (iv). The term ϕ′(s,ω)∇ϕ(s,ω)
|ϕ(s,ω)|2 is easily bounded after integrating with

respect to ω because ∂s ϕ
ϕ is bounded according to Proposition A.1 and by (ii). As

for the term ∇ϕ′(s,ω)
ϕ(s,ω) , we proceed like in case (ii). By applying the operator ∇∂s

to (1.9), we obtain

− ∂2
s (∇∂sϕ)− ∇∆(∂sϕ) + Λ∇∂sϕ = ∂s∇H

= (p− 1)ϕp−2

(
∇∂sϕ+ (p− 2)

∂sϕ∇ϕ
ϕ

)
in C .
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With similar notations, by defining

χ4(s) :=
1

2

∫
M

|∇∂sϕ|2 dvg ,

after multiplying the equation by ∇∂sϕ and using the Poincaré inequality∫
M

|∆(∂sϕ)|2 dvg ≥ λ1

∫
M

|∇(∂sϕ)|2 dvg

we obtain

−χ′′4 +
|χ′4|2
2χ4

+ 2 (Λ + λ1)χ4 ≤ h4 ,

with h4 :=
∫
M
∂s∇H ∂s∇ϕdvg. With the same arguments, we deduce that

χ4(s) ≤ O
(
e 2 (α+

√
Λ) s
)

as s→ −∞ .

We end the proof of (iv) by observing that ϕ(s, ω) ∼ e
√

Λ s as s→ −∞.

Proof of (v). By applying the Laplace-Beltrami operator to (1.9), we obtain

− ∂2
s (∆ϕ)− ∆2ϕ+ Λ ∆ϕ = ∆H = (p− 1)ϕp−2

(
∆ϕ+ (p− 2)

|∇ϕ|2
ϕ

)
in C .

We proceed as in case (ii). With similar notations, by defining

χ5(s) :=
1

2

∫
M

|∆ϕ|2 dvg ,

after multiplying the equation by ∆ϕ and using the fact that

−
∫
M

∆ϕ∆2ϕdvg =

∫
M

|∇∆ϕ|2 dvg ≥ λ1

∫
M

|∆ϕ|2 dvg ,

we obtain

−χ′′5 +
|χ′5|2
2χ5

+ 2 (Λ + λ1)χ5 ≤ h5

with h5 :=
∫
M

∆H ∆ϕdvg. With the same arguments, we deduce that

χ5(s) ≤ O
(
e 2 (α+

√
Λ) s
)

as s→ −∞ ,

using again the fact that
√

Λ + λ1 −
√

Λ ≥ α for any Λ ∈ (0,Λ FS) and ϕ(s, ω) ∼
e
√

Λ s as s→ −∞. The estimate for the other term follows from (ii). This ends the
proof of (v). �
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