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Abstract

We present a method for characterizing coverbal gestural units intended for human-avatar interaction. We 
recorded 12 gesture types, using a motion-capture system. We used the markers positions thus obtained to 
determine the gestural units after stroke segmentation. We complement our linguistic analysis of gestures with 
an elaboration of our biomechanical hypotheses, our method of segmentation, our characterization hypotheses 
and the results obtained.
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1. Introduction

Characterization of the meaning of gestures is tradition-

ally based on body-oriented descriptions [36] capturing 
the gestural elements according to a global descrip-

tion of bodily reference points. We aim to show that 
the meaning of different Gestural Units (GUs) can be 
defined o n t he b asis o f f orms a long t he u pper limb, 
using multiple reference points that are not limited to 
body-orientation, but oriented via each of the segments 
(hand, forearm, arm), thus facilitating an automatic 
characterization of gestures to exploit in a human-

avatar context.

This work takes place in the CIGALE project, whose 
final goal i s to create novel human-avatar interactions 
in the context of theatrical performances starting from 
the off-line analysis, characterization and classification 
of 4 different datasets of gestures we recorded using 
a motion-capture system; one of these datasets is 
presented (Sec. 3) and exploited in this work. Once 
the off-line study is completed, the project will move 
to the on-line analyses in order to evaluate the actual 
possible interaction between humans and the avatar,

∗Corresponding author. Email: ilaria.renna@gmail.com

whose behavior has been built exploiting the off-line 
gesture analysis.

After presenting the state of the art from a linguistic 
and engineering point of view (Sec. 2), we describe 
the database and the adopted biomechanical model 
(Sec. 3). Section 4 provides an overview of the linguistic 
framework within which our semantic characterization 
of co-verbal gestures is presented. The gesture signifi-

cant part (stroke [31], Sec. 5) segmentation represents a 
necessary preliminary to such characterization, since it 
is impossible to characterize the meaning of a gesture 
without knowing when it occurs. For this purpose, an 
automatic segmentation is presented and tested against 
the segmentation of two coders, which serves as ground 
truth, in line with the highest standard methodes of 
both domains: robotics and linguistics (Sec. 5). Once 
this operation is validated, automatic characterization 
relies on centering with respect to the motion variation 
of the degree of freedom (DOF) – the prono-supination 
(Sec. 6). We conclude summing up our results and 
presenting future work (Sec. 7).
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2. State of the art

Gesture segmentation in concatenated units inspired

by Kendon’s work [25, 26, 30] is widely used: a

Gesture Unit consists of a series of Gesture Phrases

which are themselves composed by Gesture Phases.

Each latter unit includes the core-meaning of the

gesture, named stroke (see Sec. 5). Other studies try

to set up syntagmatic rules system for movements

phases available for both gesture and sign of sign

languages [31]. Minor differences exist between these

approaches. In the linguistics part of the present study,

we adopt Kendon’s terminology.

According to their meaning or function, gestures are

classified in several categories. McNeill [37], following

overall Kendon’s classification [27], differentiates ges-

tures in beats, which punctuate the discourse, deic-

tics which includes pointing gestures, iconics which

are “images of concrete entities and/or actions” and

metaphorics which show “images of the abstract”.

Our study concerns gestures which belong to

both iconic and metaphoric categories. We adopt

Kendon’s type gesture of quotable gestures defined as

“those standardized gestures which have fairly stable

meanings within a given community and which, on the

whole, appear to serve in the place of a complete speech

act of same sort” [28].

Gestures/actions segmentation is necessary to cut

streams of motions into single instances that are

consistent to the set of initial model hypotheses

and that can be used as training sequences for

recognition. In computer vision, different techniques

are used to prepare data for gesture recognition and

the segmentation concerns image processing methods

to extract features [12, 13, 33, 48] to represent the

spatial structure of gestures. Such features are then

exploited to learn the temporal structure of gestures

with different methods, e.g. Hidden Markov Models

(HMMs) [7, 20, 50, 54], Baum-Welch [3], parametric

models [21, 56] and others.

When temporal segmentation is needed, different

kinds of methods can be used to investigate motion

profiles and trajectories to recognize human gestures.

A general approach for segmenting actions is based

on concatenating action grammars to model transitions

in a gesture or between consecutive gestures [53].

Concatenative grammars can be built, for instance, by

joining all models in a common start and end node

and by adding a loop-back transition between these

two nodes; segmentation and labeling of a complex

action sequence is then computed as a minimum-cost

path trough the network using dynamic programming

techniques. Some works [34, 43] use such networks for

action recognition based on HMMs, others [38, 48] on

Conditional Random Fields (CRFs) or on semi-Markov

models [46].

Another strategy for recognizing gestures consists in

dividing video sequences into multiple, overlapping

segments, using a sliding window; classification is then

performed sequentially on all the candidate segments,

and peaks in the resulting classification scores are

interpreted as gesture locations. Sliding window are

used in many template-based representations [17, 59],

in combination with dynamic time warping (DTW) [13,

39] and even grammars [4]. For example, Abdelkader et

al. [1] propose a template-based approach using DTW

to align the different trajectories using elastic geodesic

distances on the shape space; the gesture templates are

then calculated by averaging the aligned trajectories.

A common strategy is to use a generic segmentation

method based on detecting motion boundaries, then sep-

arately classifying the resulting segments. Such motion

boundaries are typically defined as discontinuities and

extrema in acceleration, velocity, or curvature of the

observed motions. For example, Ogale et al. [40] seg-

ment action sequences by detecting minima and max-

ima of optical flow inside body silhouettes; Zhao et

al. [58] calculate velocity and treat local minima in the

velocity as gesture boundaries; Wang et al. [51] treat

local minima in acceleration as a gesture boundary,

allowing them to construct a motion alphabet whose

“characters” of this motion are then combined using

a HMM; Kahol et.al. [24] tested a user centric gesture

segmentation algorithm and developed observer pro-

files based on how individual users segment motion

sequences, encoding gesture boundaries as a binary vec-

tor of hierarchically connected body segment activities.

Boundary detection methods are attractive because they

provide a generic segmentation of the video, which is

not dependent on the gestures classes; some precautions
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are needed because they are not stable across view-

points and they are easily confused by the presence of

multiple, simultaneous movements.

Movements primitives can also be extracted as

joint trajectories using Principal Component Analysis

(PCA) [18, 23]. In Lim et al. [32] each movement

primitive is represented and stored as a set of joint

trajectory basis functions that are then extracted via a

PCA of human motion capture data. In [2], gestures

computed from inertial sensors are defined by hand

paths as a discrete time sequence in the Cartesian space;

these are converted to training functional data by basis

function expansions using B-splines (curve fitting), and

then Functional Principal Component Analysis (FPCA)

is performed on all the training data to determine a

finite set of functional principal components (FPCs)

that explain the modes of variation in the data.

Other sensors than those exploited in computer

vision or in motion capture based approaches can

be used: in [57], for example, accelerometers and

multichannel electromyography (EMG) signals are used

for segmentation.

As we want to validate our gesture characterization

in an off-line situation, we decided to exploit a simple

but robust boundary method for gesture segmentation

based on arm movement considerations (see Sec. 5).

3. The dataset

The dataset examined is composed of 91 isolated

coverbal symbolic gestures. These coverbal gestures are

semantically autonomous and cover all DOF of the

upper limb (see 4.1). Some gestures are performed

using the entire upper limb, while others employ a

subpart only (for example only the fingers) for a total

of 150 different gestures reproduced by one person.

3.1. The marker-set and the biomechanical model

Gestures are collected using a 3D motion-capture

system of digital infra-red cameras, which ensures the

reliability of our understanding of the gesture and the

effectiveness of the characterization of avatar motion.

The system uses hemispherical reflectors glued to the

skin and records their trajectory.

A list of cutaneous markers is established, in order

to model the body segments in three dimensions

(marker-set of 90 points, Fig. 1). This list references the

anatomical positions that should be used in modelling

each segment as a rigid body.

Figure 1. Marker-set visualization.

Generally, three non-aligned anatomical reference

points are sufficient to define a segment. In our model

(Fig. 2), the torso, arm, forearm, and hand segments

have been defined based on coordinates of spatial

perspective using a standardized method. This method

enables the creation of three orthogonal axes for each

system of segment coordinates [15, 55]. It involves

calculation of the centers of the wrist, elbow, and

shoulder joints, as well as those of the cervical and

lumbar regions [15]. For the hand, the origin of the

coordinate system is the centre of the wrist joint, Y is

the unitary vector connecting the centre of the 2nd and

5th metacarpal heads to the origin, X is the normal

unitary vector containing the origin and the 2nd and

5th metacarpal heads, Z is the vector result of axes X

and Y. For the forearm, the origin of the coordinate

system is the centre of the elbow joint, Y is the unitary

vector connecting the centre of the wrist joint to the

origin, X is the unitary vector normal to the plane

containing the origin and the styloid processes of the

ulna and radius, Z is the vector result of axes X and

Y. For the arm, the origin of the coordinate system is

the centre of the shoulder joint, Y is the unitary vector
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connecting the centre of the elbow joint to the origin,

X is the unitary vector normal to the plane containing

the origin, the epicondyle and the epitrochlea, Z is the

vector result of axes X and Y. For the torso, the origin

of the coordinate system is the centre of the cervical

joint, Y is the unitary vector connecting the lumbar

joint to the origin, Z is the unitary vector normal to the

plane connecting the origin, the lumbar joint and the

suprasternal space, X is the vector result of axes Y and

Z.

The coordinate system of each joint is defined

through sets of adjacent segment coordinates, allowing

the description of the three-dimensional articulation of

the shoulder, the elbow, and the wrist at every moment

of the gesture. To establish the kinematics of the joints,

we used a sequence of successive rotations around

the mobile axes, using Euler angles [55]. The dynamic

sequence of rotations enables the definition of joint

coordinates through the axes of two adjacent segments:

one axis for the proximal segment and another for the

distal segment; and a floating axis, perpendicular to the

other two.

The various joint movements of the wrist, elbow and

shoulder are calculated thanks to this biomechanical

model, as are the palmar/dorsal flexion and the adduc-

tion/abduction of the wrist. These correspond to the

flexion/extension and adduction/abduction of the hand

as described in the action schemas (Sec. 4). The exten-

sion/flexion and supination/pronation of the elbow

correspond to the extension/flexion of the forearm

and supination/pronation of the hand respectively for

the action schemas (see 4.2). Finally, shoulder motion

is measured in retropulsion/forward flexion, abduc-

tion/adduction and internal/external rotation. These

correspond, respectively, to the extension/flexion,

abduction/adduction and external/internal rotation of

the arm for action schemas.

4. Linguistic redefinition in light of human-avatar
interaction

The recorded coverbal gestures match emblematic

quote gestures [27, 42], i.e. semantically autonomous

gestures, whose significance is independent of the

surrounding discourse. The 91 gestures can be

Figure 2. The adopted biomechanical model.

divided into a dozen GUs, with the following senses:

reject, refuse, despise, discredit, pass, accept, consider

something, consider someone, offer, not care, commit,

revere. These semantic labels have been tested and

validated with a French-speaking population in a

previous study [6].

Each GU corresponds to a particular action schema

implementing some (or all) of the segments of the upper

limb. Action schemas are based on the motion of various

DOF of the segments of the upper limb in a specific

order. This order emerges from the difference in the

range of motion of each DOF involved in the schema

according to its range of motion. Motion is transferred

through moments of inertia attached to each DOF

and as a function of (involuntary) conjoint movement

of the longitudinal axis (exterior/interior rotation or

pronation/supination) associated with any joint with

two DOF [9, 10, 35]. Thus, for the GU “refuse”, for

example (Fig. 3), the action diagram shows the hand

motion towards the forearm.

4.1. Flow of motion propagation

In the action diagram, the position of the pole of

adduction (motion towards the joint on the plane of the

palm) determines the direction of motion propagation.

If a movement of adduction is in first or second

position, the flow of motion is distal-proximal, going

from the hand towards the forearm. If adduction is in

third position, then it is the result of the first two, and

so does not present significant motion.
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Refuse prep.   Adduction  Exten. Pro.+ Exten forearm  Exter. Rot. +Pro  Flex. forearm 

Figure 3. Action schema for the GU "refuse" . This gesture begins
with a movement of the hand (Adduction, 1). The order of the
motion is numbered. The photograms illustrate the execution of
the gesture at different moments of what is gathered in the action
schema. The first photogram capture the preparation phase before
the stroke.

Therefore, the gesture is initiated on the forearm and

spreads towards the hand in a distal-proximal flux. We

thus define two types of GUs. The first 8 GUs in the list

above are built on the hand while the last 4 (offer, not

care, protect, revere) are built on the arm.

4.2. Action schema of hand motions
The sequence of hand motions is based on a structure

such that the motion or position of the first two

DOF cause involuntary motion of the third DOF. This

third motion is either the result of a biomechanical

constraint related to motion around the longitudinal

axis (pronation/supination), or to a sequence based

on the moment of inertia. In both cases, the poles of

motion in third position are completely determinable

and follow the first two movements such that

their sequence affects the pole of the third motion.

So, the sequence ADD.EXTEN leads to involuntary

PRONATION, while the reverse order, EXTEN.ADD

leads to SUPINATION [5, 6].

4.3. Grouping GUs by direction
Tracking the order of the poles in motion is affected

by the range of motion, the temporal sequence of

the emergence of motion, the initial position and the

acceleration, but these criteria, which vary even among

themselves, are difficult to hierarchise. On the other

hand, it is possible to classify GUs on a formal basis by

semantic field (Fig. 4).

Initially, it is necessary to determine the spread

of motion; either the gesture starts from the hand

and motion goes up the forearm, or it starts in the

arm and spreads towards the hand (hand and arm in

the diagram). For the hand (Fig. 4, left), the initial

prono-supination of the gesture may be marked or

unmarked. At the next level, we examine prono-

supination with respect to the initial position. This

gives us 8 manual action schemas. For the arm (Fig. 4,

right), we examine the ADD/ABD position or motion

of the arm. Subsequently, the 4 GUs of the arm can be

distinguished through prono-supination.

Figure 4. Diagram presenting the formal presentation of gestures
according to semantic characterization.

Each of these GUs has a semantic label. A first level

of hyperonymic grouping includes 4 semantic sets:

i) positioning with respect to items, ii) consideration

or judgment, iii) implication, and iv) interest. This

semantic level corresponds to the 2nd level of formal

disjunction in the diagram. Another possibility is a

two part semantic grouping corresponding to the first
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formal disjunction (hand or arm): positioning in the

world versus relational positioning. Therefore, various

levels of formal differentiation correspond to specific

semantic labeling.

5. Segmentation of gestural signals

Each gestural signal in our database is composed of

a sequence: T-pose, gesture, T-pose. Extraction of the

gesture requires automatic segmentation. The generally

accepted sequence includes 4 phases [11, 36]: 1. resting

position; 2. preparation (pre-stroke); 3. core (stroke);

4. retraction (post-stroke). This sequence describes the

structure of a gesture. However, it is impossible to

find an automatic, objective criterion to extract the

stroke, the semantically significant part. This is a

complex operation even for a human, and remains

uncertain [47].

In our case, segmentation is carried out on the

basis of morpho-kinetic properties (as defined by

Kendon [29]). Indeed, the preparation of motion

consists of a ballistic motion that brings the arm(s) to

the core of the motion [8]. This ballistic motion involves

acceleration followed by deceleration as the final

position is approached, then symmetrical acceleration

and deceleration to the first set, and a return to

the resting position. T-poses are also characterized by

acceleration and deceleration of movement.

In order to extract the stroke of each gesture, we

consider the absolute value of the derivative of the Y

index positions (seen in all cases as the body part that

moves the most): the minimum of this signal represents

the transition between acceleration and deceleration.

So for automatic segmentation the stroke considered

is the part between the minimal phase that precedes

the second maximum (property of the beginning of

a stroke) and the minimal phase that follows the

penultimate maximum (end of a stroke) (Fig. 5). A

threshold is set up to avoid minimal and maximal

phases due to noise (small adjustment or preparatory

motions) from being considered.

5.1. Segmentation evaluation

To evaluate automatic segmentation methods, it

is necessary to compare an automatic segmenter’s

performance against the segmentations produced by

human judges (coders). In general, methods for

performing this comparison designate as comparison

reference only the segmentation of a single coder [44].

However, this approach assumes that the only coder is

unbiased and able to provide a perfect segmentation.

Indeed, previous works, e.g. [22], showed that inter-

annotator agreement between human coders can be

rather poor. Thus, an automatic segmenter should

be compared directly against different coders [19] to

ensure that it does not over-fit to the preference and bias

of one particular coder.

Given our dual aim, to evaluate inter-annotator

agreement on the one hand and automatic segmentation

on the other, we decided to adopt two methods:

Accurate Temporal Segmentation Rate (ATSR) [45] and

F-score [49]. ATSR is a time-based metric that measures

performance in terms of accurately detecting the

beginning and end of the stroke for each gesture signal.

F-score provides more information than accuracy and

enables individuated errors typologies. Three different

cases are evaluated with both methods:

1. automatic segmentation is compared with the

annotator considered as ground truth (case 1);

2. automatic segmentation is compared to a second

annotator (the ground truth) (case 2);

3. the two annotators are compared against one

another (case 3).

For each considered gesture, the ATSR was computed

as follows: the Absolute Temporal Segmentation Error

(ATSE) is evaluated by summing the absolute temporal

error between the ground truth and the result of the

algorithm for the start and stop event and dividing

this sum by the total length of the gesture occurrence

measured from the ground truth as formalized in

Equation 1. Once the ATSE are calculated, ATSR metrics

are computed by subtracting the average ATSE to

1 in order to obtain the accuracy rate as shown in

Equation 2. A perfectly accurate segmentation produces

an ATSR of 1.
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Figure 5. On the left, the signals of the gesture "revere". On the right, the signals for "accept". From top to bottom: positions of the
index for Y, speed (derivative) and absolute value of the speed with automatic individuation of the stroke between two green points.

AT SE =
| StartGT − StartAlg | + | StopGT − StopAlg |

| StopGT − StartGT |
(1)

AT SR = 1 − 1
n

n∑
i=1

AT SE(i) . (2)

Equation 1 counts differences that occur frame by

frame, so an error is taken into account even when

annotations differ for just a few frames. To limit this

effect and so to avoid small ground truth timing errors

producing irrelevant penalties during the computation

of the ATSE [45], it is possible to fix a toleration value α

so that

if AT SE(i) < α then AT SE(i) = 0 . (3)

As a stroke is in general of about 100 frames, we

took α = 0.2. This corresponds to a global difference of

α ∗ 100 = 20 frames (around 0.17s, given the acquisition

rate is 120f /s) compared to the duration of the ground

truth, which is an adequate choice considering that, on

average, it is easy to have 10-frame-errors for each start

or stop. In case 1 we obtain AT SR = 0.6038, in case 2

AT SR = 0.5857 and in case 3 AT SR = 0.8707.
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Figure 6. Different possible segmentation errors. Here, FP = False Positive, FN= False Negative, TP= True Positive and FS=outside
segmentation.

This kind of method lacks completeness as it does

not categorize the errors [52]. In fact, the errors can be

categorized into 5 types, as shown in Figure 6.

It is, of course, quite important to know whether

the automatic segmentation is wrong but the stroke

is preserved (Error 2 in Figure 6) or cut out (all other

cases in the figure). In order to assess the quality of our

segmentation and of inter-annotator agreement, let us

consider precision (p) and recall (r) [16, 41]: precision is

the fraction of detections that are true positives rather

than false positives (Equation 4), while recall is the

fraction of true positives that are detected rather than

missed (Equation 5). In probabilistic terms, precision is

the probability that detection is valid, and recall is the

probability that ground truth data was detected:

p =
T P

T P + FP
(4) r =

T P
T P + FN

. (5)

Precision and Recall can be combined in the F-score

as follows:

Fβ = (1 + β2) ∗
p ∗ r
β2p + r

. (6)

When the parameter β = 1, F-score is said to be

balanced and written as F1:

F1 = 2 ∗
p ∗ r
p + r

. (7)

The F1 score can be seen as a weighted average of

precision and recall; F1 score reaches its best value at 1

and worst one at 0. The obtained results are summed

up in Table 1. In general, high F1 values are obtained;

r is higher than p in the comparison with automatic

segmentation meaning that the algorithm returned

most of the relevant results, while p is higher for the

inter-annotator agreement: they obtained more relevant

than irrelevant agreement. Results concerning the

kinds of errors are presented in Table 2.

It is worth highlighting that in Cases 1 and 2,

Error 2 is the most frequent. This means that the

segmentation method preserves the strokes despite

the error. Moreover, the lower error is the cut stroke

(Error 1). We can therefore assume that the presented

segmentation method is robust to analyze the presented

gestures model. For the inter-annotator agreement, we

note that most errors stem from one annotator cutting

the stroke or because one anticipated the other (Error 3).
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Table 1. Results obtained for the three cases of study.

p r F1

Case 1 0.7430 0.92162 0.8227
Case 2 0.7358 0.9151 0.8157
Case 3 0.9077 0.9053 0.9065

Table 2. Errors occurred in the cases of study.

Case 1 Case 2 Case 3

Error 1 4 5 17
Error 2 53 49 15
Error 3 24 16 54
Error 4 10 21 5
Error 5 0 0 0

6. Action schema component properties

To characterize the action schemas for each of the

coverbal gestures recorded, the segmented signals are

transformed into kinematic data in accordance with the

biomechanical model (Sec. 3.1). The motion of different

degrees of freedom for each joint in the right upper limb

(shoulder, elbow, and wrist) is taken into account and

normalized temporally on 101 points [14]. Our starting

point for this characterization is the assumption that in

human-human communication, the motion of DOF is

most visible in prono-supination regardless of the type

of gesture (performed on the entire upper limb or only

one of its segments). We therefore decided to focus the

analysis, initially, on the signals that were temporally

aligned with the prono-supination zone, which contains

the widest variation. Biomechanical parameters, such

as initial and final positions of each DOF and their

maximal range, were taken into account (Fig.7).

We analyzed gestures involving the motion of all

segments of the upper limb (33 of the 91 gestures

captured). The stages considered in the decision tree

(diagram in Fig. 4) move from i) the 1st node (manual or

brachial flow) to ii) the 4th node (separation of gestures

by prono-supination).

The first stage involves determination of the flow

of motion from the arm (proximal-distal) or from the

hand (distal-proximal). We therefore calculated: 1) for

the initial position, the moment in which the min.

and max. of each DOF appear within the automatically

cut stroke; 2) the temporal difference between the

Figure 7. The signals for different segments of the upper limb.
For the hand, supination/pronation in red, abduction/adduction
in sky blue and dotted purple for flexion/extension. For
the forearm, extension/flexion in dotted dark green. For
the arm, internal/external rotation in dotted dark blue,
abduction/adduction in dotted green and extension/flexion in
yellow. Vertical lines indicate the highest variation in prono-
supination.

min. and the max. of the DOF from one segment

to another (arm [offer, not care, commit and revere],

forearm and hand [for all the other gestures]). Within

the latter calculation, the choice of the min. or max.

value for one DOF or another correspond to the initial

position, therefore a priori opposed to the pole seen

in motion during the stroke. If hand motion is EXTEN

(positive value), then the initial position corresponds to

a minimum (flexion, negative value). Thus, for example,

for the top line of diagram in Fig. 3, which illustrates the

poles in motion in the “refuse” gesture, ADD.EXTEN

>PRO, the initial position chosen was the max. value

of the ADD/ABD, the min. value of the FLEX/EXTEN

and the min. value of the SUPI/PRO. We set a minimal

threshold of 10 frames, corresponding to 2 running

video frames at 25f/s, for a temporal difference that

enables the determination of the flow.

6.1. Discussion

Determination of flow using this method (for the 33

gestures tested, covering the 12 GUs presented in Sec. 4;

we underline that each GU occurred between 2 and 3

times), is conformed to expectations in 87.88% of cases.

Three of the four cases not validated were below the

10-frame threshold and therefore meet no determinable

flow; a further case (a realization of “revere") shows a

flow reverse to expectations.

9
EAI Endorsed Transactions on 

Creative Technologies 
01-06 2015 | Volume 2 | Issue 3 | e5



The fourth stage of characterization – wherein poles

in motion are used to determine the action schema –

was conducted with two types of data (a. and b. below).

Initial calculations concern the average of two or

three realizations by GUs (33 gestures in total), thus

covering the 12 averaged GUs for which moving poles

and semantic labels are already known. We then

determine the maximum range for each DOF, either a.

within the boundary of prono-supination as shown in

Fig. 7, or b. a wider range, starting from the stroke and

calculating the difference between the final and initial

position of each DOF. We thus obtained the motion

poles for all DOF that characterize the GUs, that is

60 DOF for 12 GUs. Results for the first type of data

(a. in the demarcation of prono-supination) show a

recognition rate of 76.67%. The other option (b. in the

stroke with the difference in initial and final position)

shows much better characterization ratios 90%. Out of

60 DOF, the opposite pole appears only for 6 expected

poles. In both options, an average of 6 DOF measured

per GU, the pole that was most prone to error was the

hand in ABD/ADD (36% error in a., 67% error in b.).

This pole also shows the smallest range (25◦ and 35◦).

Intermediary stages of the characterization (2 and 3

diagram Fig. 4) involve - marking of the initial positions

of prono-supination and ABD vs. ADD motion of the

arm (stage 2); - determination of the initial position and

the identical vs. opposed motion of prono-supination

and the motion pole between PRO and SUPI (stage 3).

The characterization of ABD vs ADD of the arm and

PRO vs SUPI is unproblematic. In contrast, marking the

initial positions of prono-supination (stage 2) does not

give the expected results. In this case, only the range

difference of the interior/exterior rotation between the

beginning and end of the stroke is significant. For a

confidence interval of 95%, there is no overlap between

“reject/refuse” on the one hand and “despise” on the

other. For the trio “pass/accept/discredit” non-overlap

was also checked. Thus, the DOF marking criterion

(PRO/SUPI) of stage 2 should be modified into a

differential of the range of rotation in relatively marked

EXT/INT. For step 3, the identity or opposition between

the initial position and prono-supination is a good

criterion, since, with a confidence interval of 95%, there

is no overlap between “reject/refuse/despise" on the

one hand, and “consider something” on the other. The

same is true between “pass/accept/discredit” on the

one hand, and “consider someone” on the other.

All in all, the only phases which are not fully

satisfactory are phases 1 (with a single case of inversion

for “revere”) and 4 (with 90% of expected poles).

Intermediary steps are 100% reliable.

7. Conclusion

In this study, we have presented a method for the

characterization of 12 gestural units involving the

upper limb. A motion-capture system was used to build

a reliable gesture database to prove that the meaning of

different Gestural Units can be defined on the basis of

forms along the upper limb, using multiple reference

points, that are not limited to body-orientation, but

oriented via each of the segments (hand, forearm,

arm). For this purpose an automatic segmentation

was exploited. Tests of the segmentation protocol

demonstrate its robustness in the individuation of the

stroke necessary for the characterization of gestures.

Simple characterization methods fulfill the require-

ment to associate each stage with formal semantic tag-

ging. This is so since GUs that share the same poles

differ only in the sequence in which these poles appear

in the action schema. However, we have yet to character-

ize 4 of these. In this study, we cannot separate ’refuse’

from ’reject’ and ’accept’ from ’pass’. Still both groups

can be labeled: on the one hand, negative positioning

with respect to things, and on the other, the same type

of positioning, only positive. Consequently, all gestures

are semantically associated with a variable granularity.

As this characterization has been conducted in light

of a human-avatar interaction with an off-line system,

the next step is to test the presented method in an on-

line set-up using a simpler capture system, namely a

kinect, on different subjects reproducing the presented

kind of gesture also in other form as, for example,

involving only a single moving segment (e.g., the hand).
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