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Abstract

The first chapter concerns monotype population models. We first study general
birth and death processes and we give non-explosion and extinction criteria, moment
computations and a pathwise representation. We then show how different scales may
lead to different qualitative approximations, either ODEs or SDEs. The prototypes
of these equations are the logistic (deterministic) equation and the logistic Feller
diffusion process. The convergence in law of the sequence of processes is proved
by tightness-uniqueness argument. In these large population approximations, the
competition between individuals leads to nonlinear drift terms.

We then focus on models without interaction but including exceptional events
due either to demographic stochasticity or to environmental stochasticity. In the
first case, an individual may have a large number of offspring and we introduce the
class of continuous state branching processes. In the second case, catastrophes may
occur and kill a random fraction of the population and the process enjoys a quenched
branching property. We emphasize on the study of the Laplace transform, which
allows us to classify the long time behavior of these processes.

In the second chapter, we model structured populations by measure-valued
stochastic differential equations. Our approach is based on the individual dynam-
ics. The individuals are characterized by parameters which have an influence on
their survival or reproduction ability. Some of these parameters can be genetic and
are inheritable except when mutations occur, but they can also be a space location or
a quantity of parasites. The individuals compete for resources or other environmental
constraints. We describe the population by a point measure-valued Markov process.
We study macroscopic approximations of this process depending on the interplay be-
tween different scalings and obtain in the limit either integro-differential equations or
reaction-diffusion equations or nonlinear super-processes. In each case, we insist on
the specific techniques for the proof of convergence and for the study of the limiting
model. The limiting processes offer different models of mutation-selection dynamics.

Then, we study two-level models motivated by cell division dynamics, where the
cell population is discrete and characterized by a trait, which may be continuous. In
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particular, we finely study a process for parasite infection and the trait is the parasite
load. The latter grows following a Feller diffusion and is randomly shared in the two
daughter cells when the cell divides. Finally, we focus on the neutral case when the
rate of division of cells is constant but the trait evolves following a general Markov
process and may split in a random number of cells. The long time behavior of the
structured population is then linked and derived from the behavior a well chosen
SDE (monotype population).

Key words. Population models - Birth and death processes - large population approx-
imations - Continuous state branching processes - Branching processes in random envi-
ronment - Measure-valued Markov processes - Martingale properties - Two-level models
- Cell division dynamics.
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1 Introduction

This course concerns the stochastic modeling of population dynamics. In the first part,
we focus on monotypic populations described by one dimensional stochastic differential
equations with jumps. We consider their scaling limits for large populations and study
the long time behavior of the limiting processes. It is achieved thanks to martingale
properties, Poisson measure representations and stochastic calculus. These tools and
results will be used and extended to measure-valued processes in the second part. The
latter is dedicated to structured populations, where individuals are characterized by a
trait belonging to a continuum.

In the first section, we define birth and death processes with rates depending on the
state of the population and recall some long time properties based on recursion equations.
A pathwise representation of the processes using Poisson point measures is introduced,
from which we deduce some martingale properties. We represent the carrying capacity of
the underlying environment through a scaling parameter K ∈ N and state our results in
the limit of large K. Depending on the demographic rates, the population size renormal-
ized by K is approximated either by the solution of an ordinary differential equation or
by the solution of a stochastic differential equation. The proofs are based on martingale
properties and tightness-uniqueness arguments. When the per individual death rate is
an affine function of the population size, in the limit we obtain either a so called logistic
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equation or a logistic Feller diffusion process. The long time behavior of these limiting
dynamics is studied. Assuming a constant per capita death rate leads to a Feller diffusion
which satisfies the branching property: two disjoint subpopulations evolve independently.
In that case, specific tools using Laplace transforms can be used. We extend this class
of processes by adding jumps, which may be due either to demographic stochasticity or
to environmental stochasticity. We consider them separately and we characterize their
finite dimensional laws and long time behavior using the branching property, the genera-
tor and martingale properties. First, we focus on Continuous State Branching Processes
which arise as scaling limits of branching processes when the individuals may have a
very large number of offspring. This gives rise to a jump term whose rate is propor-
tional to the size of the population. Using the Lamperti transform, we can then both
describe their scaling limits and classify the long time behavior : extinction, absorption
at 0 or exponential growth to infinity. The second class of jump processes models random
environmental catastrophes, which kill a random fraction of the population. The con-
tinuous state process can be obtained as a limit of discrete particle systems, where the
demographic dynamics of the population and the environmental catastrophes occur on
different timescales. Now, only the quenched branching property holds and the long time
behavior of the Laplace exponent is more subtle. We recover the three usual regimes,
subcritical, critical and supercritical but the subcritical case is split in three sub-cases
leading to different asymptotics for the survival probability.

The second part concerns structured populations whose individuals are characterized
by a type taking values in a continuum. Two main examples are developed. The first one
models Darwinian evolution where the type is an heritable trait subject to to selection
and mutation. The second case describes cell division with parasite infection and the type
of a cell is the amount of parasites it carries. In both cases, the mathematical model is a
measure-valued Markov process with jumps. Therefore, we develop some stochastic tools
for such processes and use a pathwise representation driven by Poisson point measures
to obtain martingale properties. We consider different approximations of the process,
depending on the parameter K, which as before scales the population size but now also
the demographic rates. The limiting theorems are proved using compactness-uniqueness
arguments and the semimartingale decomposition of the measure-valued processes.
In the first two subsections, the population model includes mutations which may occur
during each birth event with some positive probability. The mutant inherits a random per-
turbation of the ancestor’s trait. The individuals compete for resources and the individual
death rate depends on the whole population trait distribution, leading to nonlinearities
in the limit. In the large population case, the limiting equation is a nonlinear integro-
differential equation. In the allometric case, when the demographic rates are much larger
but the mutation amplitude very small in an appropriate scale, the limiting object can be
either a nonlinear reaction-diffusion equation or a nonlinear super-process. The latter is a
continuous measure-valued process whose law is characterized by martingale properties.
Simulations show the qualitative differences between the trait supports for these different
asymptotics. It means that a change of scales in the parameters leads to quite different
evolutive scenarios. Let us point out that the classical models for population dynamics
in an ecological or mutational framework can thus be explained from the birth and death
processes describing the evolution of the population at the level of the individuals.
In the last two subsections, we describe two-level models motivated by cell division dy-
namics. First, we consider a finite population of dividing cells. The cells are infected by
parasites which may influence their division rates. The parasites are more abundant and
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reproduce and die faster than the cells and their growth is modeled by a Feller diffusion.
When the cells divide, the parasite load is randomly shared in the two daughter cells.
Following a random cell lineage (by keeping one daughter cell at random at each division)
makes appear a Feller diffusion with catastrophes. When studying the number of infected
cells for large times, we obtain different regimes depending on the positivity or not of a
parameter based on the division rate, the parasite splitting law and the parasite growth
rate. Finally, we consider the long time behavior of a structured population when the
genealogical tree is a branching process. It allows multiple offspring and deaths. Between
the branching events, the individual traits evolve independently following a Markov pro-
cess. The ergodicity of a well chosen one dimensional auxiliary Markov process allows to
prove the convergence of the trait distribution within the population when time goes to
infinity.

Notation
For a Polish space E, P(E) denotes the space of probability measures on E.

The spaces C2
b (R), C2

b (R+), C2
b (Rd) are the spaces of bounded continuous functions whose

first and second derivatives are bounded and continuous, resp. on R, R+, Rd.

In all what follows, C denotes a constant real number whose value can change from one
line to the other.

Acknowledgment
The authors wish to warmly thank Amandine Véber for the reading of the manuscript
and her suggestions.

Part I

Discrete Monotype Population Models
and One-dimensional Stochastic
Differential Equations

In the first chapter, we concentrate on one-dimensional models for population dy-
namics. After recalling the main properties of the birth and death processes, we study
different scaling limits using a martingale approach. Then we investigate the long time
behavior of some classes of limiting processes, in the case of large reproduction events or
random environment using the branching property.

2 Birth and Death Processes

2.1 Definition and non-explosion criterion

Definition 2.1. A birth and death process is a pure jump Markov process whose
jumps steps are equal to ±1. The transition rates are as follows:{

i→ i+ 1 at rate λi
i→ i− 1 at rate µi,

(λi)i∈N∗ and (µi)i∈N∗ being two sequences of positive real numbers and λ0 = µ0 = 0.
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In this case, the infinitesimal generator is the matrix (Qi,j) defined on N× N by

Qi,i+1 = λi , Qi,i−1 = µi , Qi,i = −(λi + µi) , Qi,j = 0 otherwise.

The global jump rate for a population with size i ≥ 1 is λi + µi. After a random time
distributed according an exponential law with parameter λi + µi, the process increases
by 1 with probability λi

λi+µi
and decreases by −1 with probability µi

λi+µi
. If λi + µi = 0,

the process is absorbed at i.

Recall that if (Pi,j(t) : t ∈ R+) denotes the transition semigroup of the process, then

Pi,i+1(h) = λi h+ o(h) ; Pi,i−1(h) = µi h+ o(h) ; Pi,i(h) = 1− (λi + µi)h+ o(h).

Examples: The constant numbers λ, µ, ρ, c are positive.
1) The Yule process corresponds to the case λi = iλ, µi = 0.
2) The branching process or linear birth and death process : λi = iλ, µi = iµ.
3) The birth and death process with immigration : λi = iλ+ ρ, µi = iµ.
4) The logistic birth and death process : λi = iλ, µi = iµ+ c i(i− 1).

The following theorem characterizes the non-explosion in finite time of the process. In
this case, the process will be defined and will have a.s. finite value at any time t ∈ R+.

Theorem 2.2. Suppose that λi > 0 for all i ≥ 1. Then the birth and death process has
almost surely an infinite life time if and only if the following series diverges:∑

i≥1

(
1

λi
+

µi
λiλi−1

+ · · ·+ µi · · ·µ2

λi · · ·λ2λ1

)
= +∞. (2.1)

Corollary 2.3. If for any i, λi ≤ λ i, with λ > 0, the process is well defined on R+.

Remark 2.4. One can check that the birth and death processes mentioned in the examples
above satisfy this property and are well defined on R+.

Proof of Theorem 2.2. Let (Tn)n be the sequence of jump times of the process and (Sn)n
the sequence of the inter-jump times,

Sn = Tn − Tn−1, ∀n ≥ 1; T0 = 0, S0 = 0.

We define T∞ = limn Tn. The process doesn’t explode almost surely and is well defined
on R+ if and only if for any i ≥ 1, Pi(T∞ < +∞) = 0.
The proof consists in showing that the process doesn’t explode almost surely if and only if
the unique non-negative and bounded solution x = (xi)i∈N of Qx = x is the null solution.
This proof is actually achieved for any integer valued pure jump Markov process. We will
then see that it is equivalent to (2.1) for birth and death processes.

For any i ≥ 1, we set h
(0)
i = 1 and for n ≥ 1,

h
(n)
i = Ei(exp(−Tn)) = Ei

(
exp(−

n∑
k=1

Sk)

)
.

We have

Ei

(
exp

(
−
n+1∑
k=1

Sk

)∣∣S1

)
= exp(−S1) Ei

(
EXS1

(
exp(−

n∑
k=1

Sk)

))
,
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by the Markov property, the independence of S1 and XS1 and since the jump times of
the shifted process are Tn − S1. Moreover,

Ei

(
EXS1

(
exp(−

n∑
k=1

Sk)

))
=
∑
j 6=i

Pi(XS1 = j) Ej

(
exp(−

n∑
k=1

Sk)

)
=
∑
j 6=i

Qi,j
qi

h
(n)
j ,

where qi =
∑

j 6=iQi,j . Therefore, for all n ≥ 0,

h
(n+1)
i = Ei

(
Ei

(
exp(−

n+1∑
k=1

Sk)
∣∣S1

))
=
∑
j 6=i

Qi,j
qi

h
(n)
j Ei(exp(−S1)).

Since Ei(exp(−S1)) =
∫∞

0 qie
−qise−sds = qi

1+qi
, we finally obtain that

h
(n+1)
i =

∑
j 6=i

Qi,j
1 + qi

h
(n)
j . (2.2)

Let (xi)i be a non-negative solution of Qx = x bounded by 1. We get h
(0)
i = 1 ≥ xi

and thanks to the previous formula, we deduce by induction that for all i ≥ 1 and for all

n ∈ N, h
(n)
i ≥ xi ≥ 0. Indeed if h

(n)
j ≥ xj , we get h

(n+1)
i ≥

∑
j 6=i

Qi,j
1+qi

xj . As x is solution
of Qx = x, it satisfies xi =

∑
j Qi,j xj = Qi,ixi+

∑
j 6=iQi,jxj = −qixi+

∑
j 6=iQi,jxj , thus∑

j 6=i
Qi,j
1+qi

xj = xi and h
(n+1)
i ≥ xi.

If the process doesn’t explode almost surely, we have T∞ = +∞ a.s. and limn h
(n)
i = 0.

Making n tend to infinity in the previous inequality, we deduce that xi = 0. Thus, in this
case, the unique non-negative and bounded solution of Qx = x is the null solution.
Let us now assume that the process explodes with a positive probability. Let zi =
Ei(e−T∞). There exists i such that Pi(T∞ < +∞) > 0 and for this integer i, zi > 0.

Going to the limit with T∞ = limn Tn and Tn =
∑n

k=1 Sk yields zj = limn h
(n)
j . Making

n tend to infinity proves that z is a non-negative and bounded solution of Qz = z, with
zi > 0. It ensures that the process doesn’t explode almost surely if and only if the unique
non-negative and bounded solution x = (xi)i∈N of Qx = x is x = 0.

We apply this result to the birth and death process. We assume that λi > 0 for i ≥ 1
and λ0 = µ0 = 0. Let (xi)i∈N be a non-negative solution of the equation Qx = x. For
n ≥ 1, introduce ∆n = xn − xn−1. Equation Qx = x can be written x0 = 0 and

λnxn+1 − (λn + µn)xn + µnxn−1 = xn , ∀n ≥ 1.

Setting fn =
1

λn
and gn =

µn
λn

, we get

∆1 = x1 ; ∆2 = ∆1 g1 + f1 x1 ; . . . ; ∆n+1 = ∆n gn + fn xn.

Remark that for all n, ∆n ≥ 0 and the sequence (xn)n is non-decreasing. If x1 = 0, the
solution is zero. Otherwise we deduce that

∆n+1 = fnxn +
n−1∑
k=1

fk gk+1 · · · gn xk + g1 · · · gn x1.
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Since (xk)k is non-decreasing and defining rn =
1

λn
+
n−1∑
k=1

µk+1 · · ·µn
λkλk+1 · · ·λn

+
µ1 · · ·µn
λ1 · · ·λn

, it

follows that rn x1 ≤ ∆n+1 ≤ rn xn, and by iteration

x1(1 + r1 + · · ·+ rn) ≤ xn+1 ≤ x1

n∏
k=1

(1 + rk).

Therefore we have proved that the boundedness of the sequence (xn)n is equivalent to
the convergence of

∑
k rk and Theorem 2.2 is proved.

2.2 Kolmogorov equations and invariant measure

Let us recall the Kolmogorov equations, (see for example Karlin-Taylor[51]).

Forward Kolmogorov equation: for all i, j ∈ N,

dPi,j
dt

(t) =
∑
k

Pi,k(t)Qk,j = Pi,j+1(t)Qj+1,j + Pi,j−1(t)Qj−1,j + Pi,j(t)Qj,j

= µj+1Pi,j+1(t) + λj−1Pi,j−1(t)− (λj + µj)Pi,j(t). (2.3)

Backward Kolmogorov equation: for all i, j ∈ N,

dPi,j
dt

(t) =
∑
k

Qi,k Pk,j(t) = Qi,i−1Pi−1,j(t) +Qi,i+1Pi+1,j(t) +Qi,iPi,j(t)

= µiPi−1,j(t) + λiPi+1,j(t)− (λi + µi)Pi,j(t). (2.4)

Let us define for all j ∈ N the probability measure

pj(t) = P(X(t) = j) =
∑
i

P(X(t) = j|X(0) = i)P(X(0) = i) =
∑
i

P(X(0) = i)Pi,j(t).

A straightforward computation shows that the forward Kolmogorov equation (2.3) reads

d pj
dt

(t) = λj−1 pj−1(t) + µj+1 pj+1(t)− (λj + µj) pj(t). (2.5)

This equation is useful to find an invariant measure, that is a sequence (qj)j of nonnegative
real numbers with

∑
j qj < +∞ and satisfying for all j,

λj−1 qj−1 + µj+1 qj+1 − (λj + µj) qj = 0.

2.3 Extinction criterion - Extinction time

Some of the following computation can be found in [51] or in [2], but they are finely
developed in [9].

Let T0 denote the extinction time and ui = Pi(T0 <∞) the probability to see extinction
in finite time starting from state i.
Conditioning by the first jump XT1 ∈ {−1,+1}, we get the following recurrence property:
for all i ≥ 1,

λiui+1 − (λi + µi)ui + µiui−1 = 0 (2.6)
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This equation can also be easily obtained from the backward Kolmogorov equation (2.4).
Indeed

ui = Pi(∃t > 0, Xt = 0) = Pi(∪t{Xt = 0}) = lim
t→∞

Pi,0(t),

and
dPi,0
dt

(t) = µiPi−1,0(t) + λiPi+1,0(t)− (λi + µi)Pi,0(t).

Let us solve (2.6). We know that u0 = 1. Let us first assume that for a state N , λN = 0

and λi > 0 for i < N . Define u
(N)
i = Pi(T0 < TN ), where TN is the hitting time of N .

Thus uN0 = 1 et uNN = 0. Setting

UN =

N−1∑
k=1

µ1 · · ·µk
λ1 · · ·λk

,

straightforward computations using (2.6) yield that for i ∈ {1, · · · , N − 1}

u
(N)
i = (1 + UN )−1

N−1∑
k=i

µ1 · · ·µk
λ1 · · ·λk

and in particular u
(N)
1 =

UN
1 + UN

.

For the general case, let N tend to infinity. We observe that extinction will happen (or

not) almost surely in finite time depending on the convergence of the series
∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

.

Theorem 2.5. (i) If
∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

= +∞, then the extinction probabilities ui are equal

to 1. Hence we have almost-sure extinction of the birth and death process for any finite
initial condition.

(ii) If
∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

= U∞ <∞, then for i ≥ 1,

ui = (1 + U∞)−1
∞∑
k=i

µ1 · · ·µk
λ1 · · ·λk

.

There is a positive probability for the process to survive for any positive inital condition.

Application of Theorem 2.5 to the binary branching process (linear birth and
death process): any individual gives birth at rate λ and dies at rate µ. The population
process is a binary branching process and individual life times are exponential variables
with parameter λ+ µ. An individual either gives birth to 2 individuals with probability
λ

λ+µ or dies with probability µ
λ+µ .

Applying the previous results, one gets that when λ ≤ µ, i.e. when the process is sub-
critical or critical, the sequence (UN )N tends to infinity with N and there is extinction
with probability 1. Conversely, if λ > µ, the sequence (UN )N converges to µ

λ−µ and

straightforward computations yield ui = (µ/λ)i.
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Application of Theorem 2.5 to the logistic birth and death process. Let us
assume that the birth and death rates are given by

λi = λ i ; µi = µ i+ c i(i− 1). (2.7)

The parameter c models the competition pressure between two individuals. It’s easy

to show that in this case, the series

∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

diverges, leading to the almost sure

extinction of the process. Hence the competition between individuals makes the extinction
inevitable.

Let us now come back to the general case and assume that the series

∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

diverges. The extinction time T0 is well defined and we wish to compute its moments.

We use the standard notation

π1 =
1

µ1
; πn =

λ1 . . . λn−1

µ1 . . . µn
∀n ≥ 2.

Proposition 2.6. Let us assume that

∞∑
k=1

µ1 · · ·µk
λ1 · · ·λk

=
∑
n

1

λnπn
= +∞. (2.8)

Then
(i) For any a > 0 and n ≥ 1,

Gn(a) = En+1(exp(−aTn)) = 1 +
µn + a

λn
− µn
λn

1

Gn−1(a)
. (2.9)

(ii) E1(T0) =
∑

k≥1 πk and for every n ≥ 2,

En(T0) =
∑
k≥1

πk +

n−1∑
k=1

1

λkπk

∑
i≥k+1

πi =

n−1∑
k=1

 ∑
i≥k+1

λk+1 . . . λi−1

µk+1 . . . µi

 .

Proof. (i) Let τn be a random variable distributed as Tn under Pn+1 and consider the
Laplace transform of τn. Following [3, p. 264] and by the Markov property, we have

τn−1
(d)
= 1{Yn=−1}En + 1{Yn=1}

(
En + τn + τ ′n−1

)
where Yn, En, τ ′n−1 and τn are independent random variables, En is an exponential random
variable with parameter λn + µn and τ ′n−1 is distributed as τn−1 and P(Yn = 1) =
1− P(Yn = −1) = λn/(λn + µn). Hence, we get

Gn−1(a) =
λn + µn

a+ λn + µn

(
Gn(a)Gn−1(a)

λn
λn + µn

+
µn

λn + µn

)
and (2.9) follows.
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(ii) Differentiating (2.9) at a = 0, we get

En(Tn−1) =
λn
µn

En+1(Tn) +
1

µn
, n ≥ 1.

Following the proof of Theorem 2.5, we first deal with the particular case when λN = 0
for some N > n, EN (TN−1) = 1

µN
and a simple induction gives

En(Tn−1) =
1

µn
+

N∑
i=n+1

λn . . . λi−1

µn . . . µi
.

We get E1(T0) =
∑N

k=1 πk and writing En(T0) =
∑n

k=1 Ek(Tk−1), we deduce that

En(T0) =
N∑
k=1

πk +
n−1∑
k=1

1

λkπk

N∑
i=k+1

πi.

In the general case, let N > n. Thanks to (2.8), T0 is finite and the process a.s. does
not explode in finite time for any initial condition. Then TN → ∞ Pn-a.s., where we
use the convention {TN = +∞} on the event where the process does not attain N . The
monotone convergence theorem yields

En(T0;T0 ≤ TN ) −→
N→+∞

En(T0).

Let us consider a birth and death process XN with birth and death rates (λNk , µ
N
k : k ≥ 0)

such that (λNk , µ
N
k ) = (λk, µk) for k 6= N and λNN = 0, µNN = µN .

Since (Xt : t ≤ TN ) and (XN
t : t ≤ TNN ) have the same distribution under Pn, we get

En (T0;T0 ≤ TN ) = En
(
TN0 ;TN0 ≤ TNN

)
,

which yields
En(T0) = lim

N→∞
En
(
TN0 ;TN0 ≤ TNN

)
≤ lim

N→∞
En
(
TN0
)
,

where the convergence of the last term is due to the stochastic monotonicity of TN0 with
respect to N under Pn. Using now that TN0 is stochastically smaller than T0 under Pn,
we have also

En(T0) ≥ En(TN0 ).

We deduce that

En(T0) = lim
N→∞

En(TN0 ) = lim
N→∞

N∑
k=1

πk +
n−1∑
k=1

1

λkπk

N∑
i=k+1

πi,

which ends up the proof.

Exercise. Assume (2.8). Show that for every n ≥ 0,

En+1(T 2
n) =

2

λnπn

∑
i≥n

λiπi Ei+1(Ti)
2;

En+1(T 3
n) =

6

λnπn

∑
i≥n

λiπi Ei+1(Ti) Vari+1(Ti).
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2.4 Trajectorial representation of birth and death processes

We consider as previously a birth and death process with birth rates (λn)n and death
rates (µn)n. We write λn = λ(n) and µn = µ(n), where λ(.) and µ(.) are two functions
defined on R+. We assume further that there exist λ̄ > 0 and µ̄ > 0 such that for any
x ≥ 0,

λ(x) ≤ λ̄ x ; µ(x) ≤ µ̄(1 + x2). (2.10)

This assumption is satisfied for the logistic case where λ(x) = λx and µ(x) = cx(x−1) +
µx.

Assumption (2.10) is a sufficient condition ensuring the existence of the process on R+,
as observed in Corollary 2.3.

Proposition 2.7. On the same probability space, we consider a Poisson point mea-
sure N(ds, du) with intensity dsdu on R+ × R+ (see Appendix). We also consider
a random variable Z0 independent of N and introduce the filtration (Ft)t given by
Ft = σ(Z0, N((0, s]×A), s ≤ t, A ∈ B(R+)).

The left-continuous and right-limited non-negative Markov process (Zt)t≥0 defined by

Zt = Z0 +

∫ t

0

∫
R+

(
1{u≤λ(Zs−)} − 1{λ(Zs−)≤u≤λ(Zs−)+µ(Zs−)}

)
N(ds, du) (2.11)

is a birth and death process with birth (resp. death) rates (λn)n (resp. (µn)n).

If for p ≥ 1, E(Zp0 ) < +∞, then for any T > 0,

E
(

sup
t≤T

Zpt
)
< +∞. (2.12)

Proof. For n ∈ N, let us introduce the stopping times

Tn = inf{t > 0, Zt ≥ n}.

For t ≥ 0, we have

Zpt∧Tn = Zp0 +

∫ t∧Tn

0

∫
R+

(
(Zs− + 1)p − Zps−

)
1{u≤λ(Zs−)}N(ds, du)

+

∫ t∧Tn

0

∫
R+

(
(Zs− − 1)p − Zps−

)
1{λ(Zs−)≤u≤λ(Zs−)+µ(Zs−)}N(ds, du).

The second part of the r.h.s. is non-positive and the first part is increasing in time,
yielding the upper bound

sup
s≤t

Zps∧Tn ≤ Z
p
0 +

∫ t∧Tn

0

∫
R+

(
(Zs− + 1)p − Zps−

)
1{u≤λ(Zs−)}N(ds, du).

Since there exists C > 0 such that (1 + x)p − xp ≤ C(1 + xp−1) for any x ≥ 0 and by
(2.10), we get

E(sup
s≤t

Zps∧Tn) ≤ E(Zp0 ) + C λ̄E
(∫ t∧Tn

0
Zs (1 + Zp−1

s ) ds

)
≤ C̄

(
1 +

∫ t

0
E
(

sup
u≤s∧Tn

Zpu
)
ds

)
,
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where C̄ is a positive number independent of n. Since the process is bounded by n before
Tn, Gronwall’s Lemma implies the existence (for any T > 0) of a constant number CT,p
independent of n such that

E
(

sup
t≤T∧Tn

Zpt
)
≤ CT,p. (2.13)

In particular, the sequence (Tn)n tends to infinity almost surely. Indeed, otherwise
there would exist T0 > 0 such that P(supn Tn < T0) > 0. Hence E

(
supt≤T0∧Tn Z

p
t

)
≥

np P(supn Tn < T0), which contradicts (2.13). Making n tend to infinity in (2.13) and
using Fatou’s Lemma yield (2.12).

Remark that given Z0 and N , the process defined by (2.11) is unique. Indeed it can
be inductively constructed. It is thus unique in law. Let us now recall its infinitesimal
generator and give some martingale properties.

Theorem 2.8. Let us assume that E(Zp0 ) <∞, for p ≥ 2.

(i) The infinitesimal generator of the Markov process Z is defined for any bounded mea-
surable function φ from R+ into R by

Lφ(z) = λ(z)(φ(z + 1)− φ(z)) + µ(z)(φ(z − 1)− φ(z)).

(ii) For any measurable function φ such that |φ(x)| + |Lφ(x)| ≤ C (1 + xp), the process
Mφ defined by

Mφ
t = φ(Zt)− φ(Z0)−

∫ t

0
Lφ(Zs)ds (2.14)

is a left-limited and right-continous (càdlàg) (Ft)t-martingale.

(iii) The process M defined by

Mt = Zt − Z0 −
∫ t

0
(λ(Zs)− µ(Zs))ds (2.15)

is a square-integrable martingale with quadratic variation

〈M〉t =

∫ t

0
(λ(Zs) + µ(Zs))ds. (2.16)

Remark that the drift term of (2.15) involves the difference between the birth and death
rates (i.e. the growth rate), while (2.16) involves the sum of both rates. Indeed the drift
term describes the mean behavior whereas the quadratic variation reports the random
fluctuations.

Proof. (i) is well known.

(ii) Dynkin’s theorem implies that Mφ is a local martingale. By the assumption on φ and
(2.12), all the terms of the r.h.s. of (2.14) are integrable. Therefore Mφ is a martingale.

(iii) We first assume that E(Z3
0 ) < +∞. By (2.10), we may apply (ii) to both functions

φ1(x) = x and φ2(x) = x2. Hence Mt = Zt − Z0 −
∫ t

0 (λ(Zs) − µ(Zs))ds and Z2
t −

Z2
0 −

∫ t
0

(
λ(Zs)(2Zs + 1)− µ(Zs)(1− 2Zs)

)
ds are martingales. The process Z is a semi-

martingale and Itô’s formula applied to Z2 gives that Z2
t −Z2

0−
∫ t

0 2Zs
(
λ(Zs)−µ(Zs)

)
ds−

〈M〉t is a martingale. The uniqueness of the Doob-Meyer decomposition leads to (2.16).
The general case E(Z2

0 ) < +∞ follows by a standard localization argument.
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3 Scaling Limits for Birth and Death Processes

If the population is large, so many birth and death events occur that the dynamics
becomes difficult to describe individual per individual. Living systems need resources
in order to survive and reproduce and the biomass per capita depends on the order of
magnitude of these resources. We introduce a parameter K ∈ N∗ = {1, 2, . . .} scaling
either the size of the population or the total amount of resources. We assume that the
individuals are weighted by 1

K .

In this section, we show that depending on the scaling relations between the population
size and the demographic parameters, the population size process will be approximate
either by a deterministic process or by a stochastic process. These approximations will
lead to different long time behaviors.

In the rest of this section, we consider a sequence of birth and death processes ZK

parametrized by K, where the birth and death rates for the population state n ∈ N are
given by λK(n) and µK(n). Since the individuals are weighted by 1

K , the population
dynamics is modeled by the process (XK

t , t ≥ 0) ∈ D(R+,R+) with jump amplitudes ± 1
K

and defined for t ≥ 0 by

XK
t =

ZKt
K

. (3.1)

This process is a Markov process with generator

LKφ(x) = λK(Kx)
(
φ(x+

1

K
)− φ(x)

)
+ µK(Kx)

(
φ(x− 1

K
)− φ(x)

)
. (3.2)

Therefore, adapting Proposition 2.7 and Theorem 2.8, one can easily show that if λK(n) ≤
λ̄n (uniformly in K) and if

sup
K

E((XK
0 )3) < +∞, (3.3)

then

sup
K

E(sup
t≤T

(XK
t )3) < +∞, (3.4)

and for any K ∈ N∗, the process

MK
t = XK

t −XK
0 −

1

K

∫ t

0
(λK(ZKs )− µK(ZKs ))ds (3.5)

is a square integrable martingale with quadratic variation

〈MK〉t =
1

K2

∫ t

0
(λK(ZKs ) + µK(ZKs ))ds. (3.6)

3.1 Deterministic approximation - Malthusian and logistic Equations

Let us now assume that the birth and death rates satisfy the following assumption:

λK(n) = nλ
( n
K

)
; µK(n) = nµ

( n
K

)
, where the functions

λ and µ are non negative and Lipschitz continuous on R+,

λ(x) ≤ λ̄ ; µ(x) ≤ µ̄(1 + x). (3.7)

We will focus on two particular cases:
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The linear case: λK(n) = nλ and µK(n) = nµ, with λ, µ > 0.

The logistic case: λK(n) = nλ and µK(n) = n(µ+
c

K
n) with λ, µ, c > 0.

By (3.3), the population size is of the order of magnitude of K and the biomass per capita
is of order 1

K . This explains that the competition pressure from one individual to another
one in the logistic case is proportional to 1

K .

We are interested in the limiting behavior of the process (XK
t , t ≥ 0) when K →∞.

Theorem 3.1. Let us assume (3.7), (3.3) and that the sequence (XK
0 )K converges in

law (and in probability) to a real number x0. Then for any T > 0, the sequence of
processes (XK

t , t ∈ [0, T ]) converges in law (and hence in probability), in D([0, T ],R+), to
the continuous deterministic function (x(t), t ∈ [0, T ]) solution of the ordinary differential
equation

x′(t) = x(t)(λ(x(t))− µ(x(t))) ;x(0) = x0. (3.8)

In the linear case, the limiting equation is the Malthusian equation

x′(t) = x(t)(λ− µ).

In the logistic case, one obtains the logistic equation

x′(t) = x(t)(λ− µ− c x(t)). (3.9)

These two equations have different long time behaviors. In the Malthusian case, depend-
ing on the sign of λ − µ, the solution of the equation tends to +∞ or to 0 as time goes
to infinity, modeling the explosion or extinction of the population. In the logistic case
and if the growth rate λ − µ is positive, the solution converges to the carrying capacity
λ− µ
c

> 0. The competition between individuals yields a regulation of the population

size.

Proof. The proof is based on a compactness-uniqueness argument. More precisely, the
scheme of the proof is the following:

1) Uniqueness of the limit.
2) Uniform estimates on the moments.
3) Tightness of the sequence of laws of (XK

t , t ∈ [0, T ]) in the Skorohod space. We
will use the Aldous and Rebolledo criterion.

4) Identification of the limit.

Thanks to Assumption (3.7), the uniqueness of the solution of equation (3.8) is obvious.
We also have (3.4). Therefore it remains to prove the tightness of the sequence of laws
and to identify the limit. Recall (see for example [33] or [47]) that since the processes
(XK

t = XK
0 + MK

t + AKt )t are semimartingales, tightness will be proved as soon as we
have

(i) The sequence of laws of (supt≤T |XK
t |) is tight,

(ii) The finite variation processes 〈MK〉 and AK satisfy the Aldous conditions.
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Let us recall the Aldous condition (see [1]): let (Y K)K be a sequence of Ft-adapted
processes and τ the set of stopping times for the filtration (Ft)t. The Aldous condition
can be written: ∀ε > 0, ∀η > 0, ∃δ > 0, K0 such that

sup
K≥K0

sup
S,S′∈τ ;S≤S′≤(S+δ)∧T

P(|Y K
S′ − Y K

S | > ε) ≤ η.

Let us show this property for the sequence (AK)K . We have

E(|AKS′ −AKS |) ≤ E

(∫ S′

S
XK
s |λ(XK

s )− µ(XK
s )|ds

)

≤ CE

(∫ S′

S
(1 + (XK

s )2)ds

)
by (3.7)

≤ C δ E

(
sup
s≤T

(1 + (XK
s )2)

)

which tends to 0 uniformly in K as δ tends to 0. We use a similar argument for (〈MK〉)K
to conclude for the tightness of the laws of (XK)K . Prokhorov’s Theorem implies the rel-
ative compactness of this family of laws in the set of probability measures on D([0, T ],R),
leading to the existence of a limiting value Q.

Let us now identify the limit. The jumps of XK have the amplitude 1
K . Since the mapping

x→ supt≤T |∆x(t)| is continuous from D([0, T ],R) into R+, then the probability measure
Q only charges the subset of continuous functions. For any t > 0, we define on D([0, T ],R)
the function

ψt(x) = xt − x0 −
∫ t

0
(λ(xs)− µ(xs)) xsds.

The assumptions yield
|ψt(x)| ≤ C sup

t≤T
(1 + (xt)

2)

and we deduce the uniform integrability of the sequence (ψt(X
K))K from (3.4). The pro-

jection mapping x→ xt isn’t continuous on D([0, T ],R) but since Q only charges the con-
tinuous paths, we deduce thatX → ψt(X) isQ-a.s. continuous, ifX denotes the canonical
process. Therefore, since Q is the weak limit of a subsequence of (L(XK))K (that for
simplicity we still denote L(XK)) and using the uniform integrability of (ψt(X

K))K , we
get

EQ(|ψt(X)|) = lim
K

E(|ψt(XK)|) = lim
K

E(|MK
t |).

But
E(|MK

t |) ≤
(
E(|MK

t |2)
)1/2

tends to 0 by (3.6), (3.7) and (3.4). Hence the limiting process X is the deterministic
solution of the equation

x(t) = x0 +

∫ t

0
xs(λ(xs)− µ(xs))ds.

That ends the proof.
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3.2 Stochastic approximation - Feller and logistic Feller diffusions

Let us now assume that

λK(n) = n (γK + λ) ; µK(n) = n
(
γK + µ+

c

K
n
)
, (3.10)

where γ, λ, µ, c are nonnegative constants and λ > µ. The coefficient γ > 0 is called the
allometry coefficient. Such population model describes the behavior of small individuals
which are born or die very fast. As we will see in the next theorem, this assumption
changes the qualitative nature of the large population approximation.

Theorem 3.2. Assume (3.10) and (3.3) and that the random variables XK
0 converge in

law to a random variable X0. Then for any T > 0, the sequence of processes (XK
t , t ∈

[0, T ]) converges in law, in D([0, T ],R+), to the continuous diffusion process (Xt, t ∈
[0, T ]) solution of the stochastic differential equation

Xt = X0 +

∫ t

0

√
2γXsdBs +

∫ t

0
Xs(λ− µ− cXs)ds. (3.11)

In this case, the limiting process is stochastic. Indeed there are so many birth and
death jump events that the stochasticity cannot completely disappear. Hence the term√

2γXtdBt models the demographic stochasticity. Its variance is proportional to the
renormalized population size. When c = 0, we get the Feller diffusion equation

dXt =
√

2γXtdBt +Xt(λ− µ)dt. (3.12)

If c 6= 0, Equation (3.11) is called by extension the logistic Feller diffusion equation (see
Etheridge [32] and Lambert [55]).

Proof. Here again the proof is based on a uniqueness-compactness argument.
Let us first prove the uniqueness in law of a solution of (3.11). We use a general result
concerning one-dimensional stochastic differential equations (see Ikeda-Watanabe [45]
p.448). The diffusion and drift coefficients are of class C1 and non zero on (0,+∞)
but can cancel at 0. So Equation (3.11) is uniquely defined until the stopping time
Te = T0 ∧ T∞ where T0 is the hitting time of 0 and T∞ the explosion time. Furthermore,
0 is an absorbing point for the process. In the particular case where c = 0 (no interaction),
the process stays in (0,∞) or goes to extinction almost surely (see Subsection 4.1 and
Proposition 4.7). When c > 0, the process goes to extinction almost surely, as recalled
below.

Lemma 3.3. For any x > 0, Px(Te = T0 < +∞) = 1 if c > 0.

Proof of Lemma 3.3. Recall Ikeda-Watanabe’s results in [45] (see also Shreve-Karatzas
[49] Prop. 5.32). Let Yt denote the solution of the one-dimensional stochastic differential
equation dYt = σ(Yt)dBt + b(Yt)dt. Let us introduce the two functions:

Λ(x) =

∫ x

1
exp

(
−
∫ z

1

2b(y)

σ2(y)
dy

)
dz;

κ(x) =

∫ x

1
exp

(
−
∫ z

1

2b(y)

σ2(y)
dy

)(∫ z

1
exp

(∫ η

1

2b(y)

σ2(y)
dy

)
dη

σ2(η)

)
dz.

Then there is equivalence between the two following assertions:
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(a) For any y > 0, Py(T Ye = T Y0 < +∞) = 1.
(b) Λ(+∞) = +∞ and κ(0+) < +∞.

In our case, straightforward computations allow us to show that (b) is satisfied by the
solution of (3.11) as soon as c 6= 0.

Let us now prove that there exists a constant C1,T such that

sup
t≤T

sup
K

E((XK
t )3) ≤ C1,T , (3.13)

where C1,T only depends on T . Following the proof of Theorem 2.8 (iii), we note that

(XK
t )3 − (XK

0 )3 −
∫ t

0

{
γK2XK

s

(
(XK

s +
1

K
)3 + (XK

s −
1

K
)3 − 2(XK

s )3

)
+λKXK

s

(
(XK

s +
1

K
)3 − (XK

s )3

)
+ (µK + cXK

s )XK
s

(
(XK

s −
1

K
)3 − (XK

s )3

)}
ds

is a local martingale. Therefore, using that (x+ 1
K )3+(x− 1

K )3−2x3 = 6
K2x, a localization

argument and Gronwall’s inequality, we get (3.13).
Hence, we may deduce a pathwise second order moment estimate:

sup
K

E
(

sup
t≤T

(XK
t )2

)
≤ C2,T , (3.14)

where C2,T only depends on T . Indeed, we have

XK
t = XK

0 +MK
t +

∫ t

0
XK
s (λ− µ− cXK

s )ds,

where MK is a martingale. Then, there exists C ′T > 0 with

E
(

sup
s≤t

(XK
s )2

)
≤ C ′T

(
E((XK

0 )2) + sup
s≤t

E((XK
s )2) + E

(
sup
s≤t

(MK
s )2

))
,

and by Doob’s inequality,

E
(

sup
s≤t

(MK
s )2

)
≤ CE(〈MK〉t) = CE

(∫ t

0

(
2γXK

s +
XK
s

K
(λ+ µ+ cXK

s )
)
ds

)
.

Finally Gronwall’s Lemma and (3.13) allow to get (3.14). The proof of the tightness
follows as in the proof of Theorem 3.1.

Let us now identify the limit. We consider a limiting value Q. Remark once again that
since the mapping x → supt≤T |∆x(t)| is continuous from D([0, T ],R) into R+, then Q
charges only the continuous paths. For any t > 0 and φ ∈ C2

b , we define on D([0, T ],R)
the function

ψ1
t (x) = φ(xt)− φ(x0)−

∫ t

0
Lφ(xs) ds,

where Lφ(x) = γ xφ′′(x) + ((λ− µ)x− cx2)φ′(x). Note that |ψ1
t (x)| ≤ C

∫ T
0 (1 + x2

s)ds,
which implies the uniform integrability of the sequence (ψ1

t (X
K))K by (3.13).
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Let us prove that the process (ψ1
t (X), t ≥ 0) is a Q-martingale. That will be right as

soon as EQ(H(X)) = 0 for any function H defined as follows:

H(X) = g1(Xs1) · · · gk(Xsk)(ψ1
t (X)− ψ1

s(X)),

for 0 ≤ s1 ≤ · · · ≤ sk ≤ s < t and g1, · · · , gk ∈ Cb(R+).
Now, φ(XK

t ) is a semimartingale and

φ(XK
t ) = φ(XK

0 ) +MK,φ
t +

∫ t

0
LKφ(XK

s )ds.

Moreover, if φ ∈ C3
b , |LKφ(x)− Lφ(x)| ≤ C

K
(1 + x2) and

E
(∫ T

0
|LKφ(XK

s )− Lφ(XK
s )|ds

)
≤ C

K
E(sup

s≤T
(1 + |XK

s |2)). (3.15)

We denote by ψKt (X) the similar function as ψ1
t (X) with L replaced by LK .

The function HK will denote the function similar to H with ψ1
t replaced by ψKt . We

write

EQ(H(X)) = EQ(H(X))− E(H(XK)) +
(
EQ(H(XK))− E(HK(XK))

)
+ E(HK(XK)).

The third term is zero since ψKt (XK) is a martingale. It’s easy to prove the convergence
to 0 of the second term using (3.15). The first term tends to 0 by continuity and uniform
integrability. Hence we have proved that under Q the limiting process satisfies the fol-
lowing martingale problem: for any φ ∈ C3

b , the process φ(Xt)− φ(X0)−
∫ t

0 Lφ(Xs)ds is
a martingale. We know further that for any T > 0, E(supt≤T (Xt)

2) < +∞. It remains to
show that under Q, (Xt) is the unique solution of (3.11). Such point is standard and can
be found for example in Karatzas-Shreve [49] but we give a quick proof. Applying the
martingale problem to φ(x) = x, then φ(x) = x2, we get that Xt is a square integrable
semimartingale and that Xt = X0 + Mt +

∫ t
0 Xs(λ − µ − cXs) ds and the martingale

part Mt has quadratic variation
∫ t

0 2γXsds. Then a representation theorem is used to
conclude. Indeed, let us increase the probability space and consider an auxiliary space
(Ω′,A′,P′) and a Brownian motion W defined on the latter. On Ω× Ω′, let us define

Bt(ω, ω
′) =

∫ t

0

1√
2γXs(ω)

1{Xs(ω) 6=0}dMs(ω) +

∫ t

0
1{Xs(ω)=0}dWs(ω

′).

It’s obvious that the processes Bt and B2
t − t are continuous martingale on the product

probability space. Then B is a Brownian motion by the Lévy’s characterization. In
addition, we compute

E

((
Mt −

∫ t

0

√
2γXsdBs

)2
)

= E
(∫ t

0
1{Xs(ω)=0}d〈M〉s

)
= 0.

Thus, Mt =
∫ t

0

√
2γXsdBs, which ends the proof.
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3.3 Selection strategy in random environments

In (3.11), the stochastic term is demographic in the sense that, as seen in the previous
section, it comes from a very high number of births and deaths. Another stochastic
term can be added to the deterministic equation to model a random environment. In
Evans, Hening and Schreiber [37], the authors consider the population abundance process
(Yt, t ≥ 0) governed by the stochastic differential equation

dYt = Yt(r − cYt) + σYtdWt , Y0 > 0, (3.16)

where (Wt)t≥0 is a standard Brownian motion.
The growth rate has a stochastic component whose σ2 is the infinitesimal variance. The
process is well defined and has an explicit form which can be checked using Itô’s formula:

Yt =
Y0 exp

(
(r − σ2

2 )t+ σWt

)
1 + Y0

r
c

∫ t
0 exp

(
(r − σ2

2 )s+ σWs

)
ds
.

Then Yt ≥ 0 for all t ≥ 0 almost surely.

The authors deduce the long time behavior of the process depending on the sign of r− σ2

2 .
We refer to [37] for the proof.

Proposition 3.4. 1. If r − σ2

2 < 0, then limt→∞ Yt = 0 almost surely.

2. If r − σ2

2 = 0, then lim inft→∞ Yt = 0 almost surely, lim supt→∞ Yt = ∞ almost

surely and limt→∞
1
t

∫ t
0 Ysds = 0 almost surely.

3. If r − σ2

2 > 0, then (Yt)t has a unique stationary distribution which is the law

Γ( 2r
σ2 − 1, σ

2

2c ) = Γ(k, θ), with density x −→ 1
Γ(k)θk

xk−1e−
x
θ .

Of course, a challenge is to consider a mixed model with demographic stochasticity and
random environment, consisting in adding the term

√
YtdBt to the r.h.s. of (3.16). Some

work has been developed in this sense in [13] in the case without interaction c = 0.
Modeling branching processes in random environment will be the aim of Section 5.

4 Continuous State Branching Processes

In this part, we consider a new class of stochastic differential equations for monotype
populations, taking into account exceptional events where an individual has a large
number of offspring. We generalize the Feller equation (3.12) obtained in Subsection 3.2
by adding jumps whose rates rates are proportional to the population size. The jumps
are driven by a Poisson point measure, as already done in Subsection 2.4. This class of
processes satisfies the branching property: the individuals of the underlying population
evolve independently. Combining this property with the tools developed in the first part,
we describe finely the processes, their long time behavior and the scaling limits they
come from.
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4.1 Definition and examples

Definition 4.1. Let r ∈ R, γ ≥ 0 and µ be a σ-finite measure on (0,∞) such that∫∞
0

(
h ∧ h2

)
µ(dh) is finite. Let N0(ds, dh, du) be a Poisson point measure on R3

+ with

intensity dsµ(dh)du and Ñ0 its compensated measure. Let B be a standard Brownian
motion independent of N0 and Z0 an integrable non-negative random variable independent
of N0 and B.
The Continuous State Branching process (CSBP) Z associated with r, B, N0 and Z0 is the
unique non-negative strong solution in D(R+,R+) of the following stochastic differential
equation

Zt = Z0 +

∫ t

0
rZsds+

∫ t

0

√
2γZsdBs +

∫ t

0

∫ ∞
0

∫ ∞
0

1{u≤Zs−}h Ñ0(ds, dh, du). (4.1)

The triplet (r, γ, µ) is the characteristic triplet of the CSBP Z and identifies its law.

The difficulties in the proof of the existence and uniqueness come from the term
√
Zt

(which is non-Lipschitz for Z close to 0). We refer to Fu and Li [39] for a general frame-
work on the existence and uniqueness of such equations. In particular, the definition can
be extended to any initial non-negative random variable X0. The fact that Z0 has a finite
first moment and that

∫∞
0

(
h ∧ h2

)
µ(dh) is finite allows to focus here on conservative

CSBP, i.e. for any t ≥ 0, E(Zt) is finite. We refer to the last part of this section for
non-conservative CSBP : these latter may blow up in finite time.
In the forthcoming Proposition 4.5 and Section 4.5, the Lamperti representation and scal-
ing limits of discrete branching processes will be proved to actually provide alternative
ways to construct and identify CSBP.
We recall from the previous section that the term

√
2γZsdBs corresponds to continuous

fluctuations of the population size, with variance proportional to the number of individ-
uals. The last term describes the jumps of the population size whose rate at time s is
proportional to the size Zs− and the distribution proportional to the measure µ. The
jump term appears in the scaling limit when the individuals reproduction law charges
very large numbers (the second moment has to be infinite, see Section 4.5). The case
µ(dz) = cz−(1+α)dz (α ∈ (1, 2)) plays a particular role (see below), since the correspond-
ing CSBP is then a stable process. We stress that in the definition given above the jumps
appear only through the compensated Poisson measure, which uses the integrability as-
sumption on µ. Thus, the drift term rZs can be seen as the sum of the drift term of a
Feller diffusion and the drift term due to the mean effect of the jumps.

4.2 Characterization and properties

Let Z be a CSBP with characteristic triplet (r, γ, µ). It’s a Markov process.

Proposition 4.2. The infinitesimal generator of Z is given by: for every f ∈ C2
b (R+),

Af(z) = rzf ′(z) + γzf ′′(z) +

∫ ∞
0

(
f(z + h)− f(z)− hf ′(z)

)
zµ(dh).

We refer to the Appendix for complements on the semimartingale decomposition. We
note from the expression of A that the function z → z2 doesn’t belong (in general) to the
domain of the generator. But one can prove that C2 functions with two first derivative
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bounded belong to the domain. It can be achieved by monotone convergence using non-
decreasing sequences of functions gn ∈ C2

b such that ‖ g′n ‖∞ + ‖ g′′n ‖∞ is bounded and
there exists C > 0 such that

|Af(z)| ≤ C
(
‖ f ′ ‖∞ + ‖ f ′′ ‖∞

)
z

for every z ≥ 0.

Exercise. Prove that Ez(Zt) = z exp(rt) for any t, z ≥ 0 and that (exp(−rt)Zt : t ≥ 0)
is a martingale. What can you say about the long time behavior of Zt? What is the
interpretation of r ?
One can use the two-dimensional Itô formula.

We give now the key property satisfied by our class of processes. If necessary, we denote
by Z(z) a CSBP starting at z.

Proposition 4.3. The process Z satisfies the branching property, i.e.

Z(z+z̃) d
= Z(z) + Z̃(z̃) (z, z̃ ∈ R+),

where Z et Z̃ are independent CSBP’s with the same distribution.
Then the Laplace transform of Zt is of the form

Ez
[

exp(−λZt)
]

= exp{−zut(λ)}, with λ ≥ 0,

for some non-negative function ut and any z ≥ 0.

Proof. To simplify the notation, we write Xt = Zt+Z ′t, where Z0 = z, Z ′0 = z̃ and Z and
Z ′ are two independent CSBP’s. The process X satisfies a.s. :

Xt = X0 +

∫ t

0
rXsds+

∫ t

0

√
2γZsdBs +

√
2γZ ′sdB

′
s (4.2)

+

∫ t

0

∫ ∞
0

∫ Zs−

0
hÑ0(ds, dh, du) +

∫ t

0

∫ ∞
0

∫ Z′s−

0
hÑ ′0(ds, dh, du)

where B and B′ are two independent Brownian motions and N0 and N ′0 are two inde-
pendent Poisson point measures on R3

+ with intensity dsµ(dh)du. We introduce the real
valued process B′′ defined by

B′′t =

∫ t

0
1lZs>0

√
2γZsdBs +

√
2γZ ′sdB

′
s√

2γXs
+

∫ t

0
1lZs=0dBs

and note that B′′ is a Brownian motion by Lévy Theorem since it is a continuous local
martingale with quadratic variation equal to t. We also define the random point measure
N ′′0 on R3

+ by

N ′′0 (ds, dh, du) = N0(ds, dh, du)1{u≤Zs−} + N̂ ′0(ds, dh, du),

where N̂ ′0 is the random point measure on R3
+ given by N̂ ′0(ds, dh, [u1, u2]) =

N ′0(ds, dh, [u1−Zs−, u2−Zs−]). The random measure N ′′0 is also a Poisson point measure
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with intensity dsµ(dh)du since N0 and N ′0 are independent. Adding that (4.2) can be
rewritten as

Xt = X0 +

∫ t

0
rXsds+

∫ t

0

√
2γXsdB

′′
s +

∫ t

0

∫ ∞
0

∫ Xs−

0
hÑ ′′0 (ds, dh, du),

the process X is a CSBP with initial condition z + z̃.
Furthermore, the branching property ensures that for λ > 0,

Ez+z′
[

exp(−λZt)
]

= Ez
[

exp(−λZt)
]
Ez′
[

exp(−λZt)
]

which yields the linearity of the Laplace exponent (taking the logarithm).

Combining Propositions 4.2 and 4.3, we characterize the finite dimensional distributions
of a CSBP.

Corollary 4.4 (Silverstein [68]). Let λ > 0. The Laplace exponent ut(λ) is the unique
solution of

∂

∂t
ut(λ) = −ψ(ut(λ)), u0(λ) = λ, (4.3)

where ψ is called the branching mechanism associated with Z and is defined by

ψ(λ) = −rλ+ γλ2 +

∫ ∞
0

(
e−λh − 1 + λh

)
µ(dh). (4.4)

Proof. Applying Propositions 4.2 and 4.3 and defining z → fλ(z) := exp(−λz) ∈ C2
b (R+),

we get Ptfλ(z) = exp(−zut(λ)) and

∂

∂t
Ptfλ(1) = APtfλ(1) = −∂ut(λ)

∂t
exp(−ut(λ)).

Thus computing the generator for the function z → exp(−zut(λ)) yields the result.

An alternative proof of this result can be given by using Itô’s formula to prove that
(exp(−vT−t(λ)Zt) : t ∈ [0, T ]) is a martingale if and only if v is the solution of (4.3). This
idea will be extended to the random environment in the next section.

Exercise. 1) Check that for any λ > 0 and t > 0, ut(λ) is the unique solution of the
integral equation ∫ λ

ut(λ)

1

ψ(v)
dv = t.

2) Compute ut(λ) for a Feller diffusion and deduce from it the extinction probability.

4.3 The Lamperti transform

The following result is fundamental for the trajectorial and long time study of CSBP,
since it allows to see these processes (whose dynamics are multiplicative) as the time
change of some Lévy processes (which are well known additive random processes). We
recall that a Lévy process is a càdlàg process with stationary independent increments.
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Proposition 4.5 (Lamperti [57, 58]). Let Y be a Lévy process defined by

Yt := y0 + rt+ γBt +

∫ t

0

∫ ∞
0

hÑ(ds, dh),

where r ∈ R, γ ≥ 0, N is a Poisson point measure on R2
+ with intensity dsµ(dh), Ñ its

compensated measure and
∫∞

0

(
h ∧ h2

)
µ(dh) < ∞. Writing Y + for the process Y killed

when it reaches 0, the equation

Zt = Y +∫ t
0 Zsds

(4.5)

has a unique solution Z for t ≥ 0. This process Z is càdlàg and distributed as the CSBP
with characteristic (r, γ, µ) started at y0.

In particular, when µ(dz) = cz−(1+α)dz (r = 0, γ = 0), we recover the stable Lévy
processes. A converse statement is given in the last part of this section. It relies on the
expression Yt = Zγt with γt = inf{u :

∫ u
0 β(Zs)ds > t}.

To prove Proposition 4.5, we use the following lemma, which we derive from Chapter 6
(random time changes) of Ethier & Kurtz [33].

Lemma 4.6. Let X be a càdlàg process from R+ to R+ and β be a nonnegative continuous
function on R+. We define At :=

∫ t
0 1/β(Xu)du and assume that

lim
t→∞

At = +∞, T := inf{t ≥ 0 : At = +∞} = inf{t ≥ 0 : β(Xt) = 0} a.s.

(i) There exists a unique function τ from R+ to [0, T ) which is solution of the equation
Aτt = t.

(ii) The process Z defined by Zt := Xτt for t ≥ 0 is the unique solution of Zt =
X∫ t

0 β(Zs)ds
for t ≥ 0.

(iii-Martingale problem) If (f(Xt)−
∫ t

0 g(Xs)ds : t ≥ 0) is an (FXt )t martingale, then

(f(Zt)−
∫ t

0 β(Zs)g(Zs)ds : t ≥ 0) is an (FZt )t martingale.

Proof. (i) simply comes from the fact that t → At is an increasing bijection from [0, T )
to R+.
(ii) is deduced from (i) by noticing that

Aτt = t (t ≥ 0) ⇐⇒ τ ′t = β(Zt) a.e. ⇐⇒ τt =
∫ t

0 β(Zs)ds (t ≥ 0) . (4.6)

(Take care of the regularity of the processes).
To prove (iii), we first check that {τs ≤ t} = {At ≥ s} ∈ FXt . The optional sampling
theorem ensures that if f(Xt) −

∫ t
0 g(Xs)ds is an (FXt )t martingale, then f(Xτt) −∫ τt

0 g(Xs)ds = f(Zt) −
∫ t

0 g(Zs)τ
′
sds is an (FYτ(t))t martingale. Recalling from (4.6) that

τ ′s = β(Xτs) = β(Zs) a.e, we get the result.

Proof of Proposition 4.5. The existence and uniqueness of the problem (4.5) come from
Lemma 4.6 (i) and (ii) with X = Y + and β(x) = x. Indeed, we first note that
E(Y1) ∈ (−∞,∞) and the following law of large numbers holds: Yt/t→ E(Y1) a.s. Then∫∞

0 1/Y +
s ds =∞ a.s. Let us now check that the first time at which At is infinite is the first

time at which Y + reaches 0. The fact that inf{t ≥ 0 : Y +
t = 0} ≤ inf{t ≥ 0 : At =∞} is

obvious. To get the converse inequality, we denote by T the non-decreasing limit of the
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stopping times Tε = inf{t ≥ 0 : Yt ≤ ε} for ε → 0 and prove that YT = 0 on the event
{T <∞} (quasi-left continuity). For that purpose, we use

E
(
f(YT∧t)− f(YTε∧t)−

∫ T∧t

Tε∧t
Qf(Ys)ds

∣∣FTε∧t) = 0.

for f ∈ C2
b (R+), where we have denoted by Q the generator of Y :

Qf(y) := rf ′(y) + γf ′′(y) +

∫ ∞
0

(
f(y + h)− f(y)− hf ′(y)

)
µ(dh).

Then a.s. on the event {T ≤ t}, we have

lim
ε→0

E(f(YT∧t)|FTε∧t) = f(0),

and using some non-negative function f ∈ C2
b (R+) which coincides with x2 in a neigh-

borhood of 0, we obtain YT = 0 on {T <∞}.
To check that the process given by (4.5) is indeed a CSBP, we use again the generator Q of
Y . Let us first note that the generator of Y + is given by x→ Qf(x)1lx>0 for f ∈ C2

b (R+).
Then Lemma 4.6 (iii) ensures that for f ∈ C2

b (R+),

f(Zt)−
∫ t

0
ZsQf(Zs)ds

is a martingale. It identifies the distribution of the càdlàg Markov process Z via its
generator Af(z) = zQf(z). More precisely, the uniqueness of the martingale problem is
required here to ensure the uniqueness of the distribution of the process and we refer to
Ethier & Kurtz [33], Theorem 4.1 in Section 4 for a general statement. In our particular
case, the proof can be made directly using the set of functions fλ(z) = exp(−λz). Indeed,
the independence and stationarity of the increments of Y ensure the branching property
of Z. One can then follow the proof of Corollary 4.4 to derive Ez(exp(−λZt)) from A
and identify the finite dimensional distributions of Z.

4.4 Long time behavior

In this section, the characteristic triplet (r, γ, µ) is assumed to be non identical to 0, to
avoid the degenerate case where Z is a.s. constant.

Proposition 4.7. (i-unstability) With probability one, Zt tends to 0 or to ∞ as t→∞.
(ii-extinction probability) Denoting by η the largest root of ψ, we have

Pz( lim
t→∞

Zt = 0) = exp(−zη) (z ≥ 0).

In particular, extinction occurs a.s. if and only if r = −ψ′(0) ≤ 0.
(iii-absorption probability) P(∃t > 0 : Zt = 0) > 0 if and only if

∫∞
1/ψ(x)dx <∞.

As an illustration, which is left as an exercise, check that the CSBPs with characteristics
(r, 0, 0) and (0, 0, x−21[0,1](x)dx) have positive extinction probability but null absorption
probability. For stable CSBPs (including the Feller diffusion), extinction and absorption
coincide.
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Proof. (i) is a consequence of the Lamperti representation given in Proposition 4.5. In-
deed a non-degenerate Lévy process Y either goes to +∞, −∞ or oscillates and we stress
that Y is killed at 0 in the Lamperti transform. So{∫ ∞

0
Zsds =∞

}
⊂
{
Zt

t→∞−→ 0
}
∪
{
Zt

t→∞−→ ∞
}
.

Adding that{∫ ∞
0

Zsds <∞
}
⊂
{
Zt

t→∞−→ Y +∫∞
0 Zsds

and

∫ ∞
0

Zsds <∞
}
⊂
{
Zt

t→∞−→ 0
}

ends up the proof.

Concerning the extinction (ii), we first use (i) to write exp(−Zt) → 1{limt→∞ Zt=0} as
t → ∞. By the bounded convergence theorem, Ez(exp(−Zt)) → Pz(limt→∞ Zt = 0).
Moreover, Ez(exp(−Zt)) = exp(−zut(1)) by Proposition 4.3. Noting that the branching
mechanism ψ is convex (and non trivial), it is positive for z > η and negative for 0 < z < η.
Thus, ut(1)→ η as t→∞ and Pz(limt→∞ Zt = 0) = exp(−zη).
Let us finally deal with the absorption (iii). We note that Pz(Zt = 0) =
limλ→∞ exp(−zut(λ)) = exp(−zut(∞)) and recall from Proposition 4.4 that∫ λ

ut(λ)

1

ψ(u)
du = t.

If ut(λ) is bounded for λ > 0 (with some fixed t), then
∫∞

1/ψ <∞ (by letting λ→∞).
Conversely the fact that ut(∞) <∞ is bounded for t ≥ 0 forces

∫∞
1/ψ(x)dx = +∞ (by

letting λ and then t go to ∞).

4.5 Scaling limits

In this section, we obtain the CSBP as a scaling limit of Galton-Watson processes. We
recall that a Galton-Watson process X with reproduction law ν is defined by

Xn+1 =

Xn∑
i=1

Li,n,

where (Li,n : i ≥ 1, n ≥ 0) are i.i.d random variables with common distribution ν.
Let us associate a random walk to this process, denoted by S. It is obtained by summing
the number of offspring of each individual of the Galton-Watson tree as follows :

S0 := Z0, Sk+1 := Sk + Lk−An+1,n − 1

for each k ∈ [An, An+1) and n ≥ 0, where An :=
∑n−1

j=0 Xj . Thus the increments of
the random walk S are distributed as ν shifted by −1. This random walk S satisfies
SAn+1 − SAn =

∑Xn
i=1(Li,n − 1) = Xn+1 −Xn, so that

Xn = SAn = S∑n−1
i=0 Xi

, (4.7)

which yields the discrete version of the Lamperti time change. It both enlightens the
Lamperti transform in the continuous setting (Proposition 4.5) and allows us to prove
the following scaling limit.
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Theorem 4.8. Let XK be a sequence of Galton-Watson processes with reproduction law
νK and [Kx] initial individuals. We consider the scaled process

ZKt =
1

K
XK

[vKt]
(t ≥ 0),

where (vK)K is a sequence tending to infinity. Denoting by SK the random walk associated
with ZK , we assume that

1

K
SK[KvK .] ⇒ Y,

where Y is a Lévy process. Then ZK ⇒ Z, where Z is the CSBP characterized by (4.5).

The Feller diffusion case (µ = 0) is the only possible limit of Galton-Watson processes
with bounded variance (see [41]). It comes from the convergence of (S[K2t]/K : t ≥ 0) to
a Brownian motion under second moment assumption. More generally, the stable case
with drift ψ(λ) = −rλ+ cλα+1 (α in (0, 1]) corresponds to the class of CSBPs which can
be obtained by scaling limits of Galton-Watson processes with a fixed reproduction law
(i.e. νK = ν).
Several proofs of this theorem can be found. One can use a tightness argument and
identify the limit thanks to the Laplace exponent. Such a proof is in the same vein as
the previous section and we refer to [41] for details. As mentioned above, the proof can
also be achieved using discrete Lamperti transform (4.7) with an argument of continuity.
This argument can be adapted from Theorem 1.5 chapter 6 in Ethier-Kurtz [33] :

Lemma 4.9. Let Y be a Lévy process killed at 0 and β a continuous function. Assume
that Y K ⇒ Y , where Y K is a càdlàg process from R+ to R+ and define the process ZK

as the solution of ZKt = Y K∫ t
0 β(ZKs )ds

. Then ZK ⇒ Z.

4.6 On the general case.

What is the whole class of branching processes in the continuous setting? What is the
whole class of scaling limits of Galton-Watson processes? These two classes actually
coincide and extend the class of CSBPs with finite first moment (called conservative
CSBPs) we have considered above.

Theorem 4.10. [58, 20] The càdlàg Markov processes Z which take values in [0,∞] and
satisfy the branching property are in one to one correspondence with Lévy processes Y
with no negative jumps, through the equation

Zt = Y +∫ t
0 Zs

.

Such a process Z is still characterized by a triplet (r, γ, µ), with r ∈ R, γ ∈ R+ but the
measure µ on R+ only satisfies that∫ ∞

0

(
1 ∧ z2

)
µ(dz) <∞.

More specifically, the Laplace exponent ut of Z, which uniquely determines the finite
dimensional distributions, is the unique solution of

∂ut(λ)

∂t
= −ψ(ut(λ)), u0(λ) = λ,
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where

ψ(λ) := −rλ+ γλ2 +

∫ ∞
0

(e−λh − 1 + λh1h≤1)µ(dh).

More generally, the results given above can be extended. Thus, the expression of the
generator A remains valid and Z is given by the following SDE (see Proposition 4 in [20])

Zt = Z0 +

∫ t

0
rZsds+

∫ t

0

√
2γZsdBs +

∫ t

0

∫ 1

0

∫ Zs−

0
hÑ0(ds, dh, du)

+

∫ t

0

∫ ∞
1

∫ Zs−

0
hN0(ds, dh, du),

where B is a standard Brownian motion, N0(ds, dz, du) is a Poisson random measure on
R3

+ with intensity dsµ(dz)du independent of B, and Ñ0 is the compensated measure of N0.

We stress that the class of CSBPs obtained now yields the (only possible) scaling limits
of Galton-Watson processes (or more generally discrete space continuous time branching
processes) [57, 58, 20].
A new phenomenon appears in the non-conservative case : the process may explode in
finite time.

Proposition 4.11. The CSBP Z blows up with positive probability, which means that
P1(Zt =∞) > 0 for some t ≥ 0, if and only if

ψ′(0+) = −∞ and

∫
0

ds

ψ(s)
> −∞.

In this section, we have focused on the size of the population Zt. The scaling limits
actually provide a natural notion of genealogy for the limiting object, see [30]. An other
point of view, using the flow of subordinators which comes by letting the initial size vary,
has been exhibited recently by Bertoin and Le Gall [12]. Finally, several extensions of
CBSPs have been considered. In particular, for CSBP with immigration, we refer to [39]
for the SDE characterization and to [19] for the Lamperti transform.

5 Feller Diffusion with Random Catastrophes

We deal now with a new family of branching processes taking into account the effects of
the environment on the population dynamics. It may cause random fluctuations of the
growth rate [13, 36] or catastrophes which kill a random fraction of the population [7].
Here, we are focusing on a Feller diffusion with catastrophes, in order to simplify the study
and fit with the motivations given in Section 8. We aim at enlightening new behaviors due
to the random environment and we refer to Subsection 5.4 for extensions and comments
on (more general) CSBP’s in random environment.

5.1 Definition and scaling limit

We consider the Feller diffusion (3.12) and add some random catastrophes, whose rates
are given by a function τ and whose effect on the population size are multiplicative and
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given by some random variable F taking values in [0, 1]. This process Y is defined as the
solution of the following SDE :

Yt = y0 +

∫ t

0
rYsds+

∫ t

0

√
2γYsdBs −

∫ t

0

∫ ∞
0

∫ 1

0
1lu≤τ(Ys− )

(
1− θ

)
Ys−N1(ds, du, dθ)

where B and N1 are respectively a Brownian motion and a Poisson point measure on
R+ × R+ × (0, 1] with intensity ds duP(F ∈ dθ), which are independent.
Thus, the random variable F is the intensity of the catastrophe. We assume that P(F >
0) = 1 and P(F ∈ (0, 1)) > 0 to avoid absorption by a single catastrophe. Similarly, we
also assume that

E(log(F )) > −∞.

The rate τ at which the catastrophes occur may depend on the population size. We refer
to Section 8 for motivations for cell division. More generally, the fact that τ is increasing
is relevant when the catastrophe is actually a regulation of the population dynamics. We
may think about the effect of a treatment for an infected population or invasive species
or protocols for web treatment of tasks such as TCP...

Following Section 3.2, the process can be constructed as a scaling limit, which enlightens
the two time scales involved in the dynamics, namely the time scale of the demography of
the population and that of the catastrophes. It is achieved by considering a linear birth
and death process Y K

t starting from [Ky] individuals. Its individual birth and death rates
are given by λ + Kγ and µ + Kγ. Moreover the process Y K jumps with rate τ(n/K)
from n to [θn] where θ is chosen randomly following the distribution F . More precisely

Y K
t = [Ky0] +

∫ t

0

∫ ∞
0

(
1lu≤Y Ks−(λ+Kγ) − 1lY Ks−(λ+Kγ)≤u≤Y Ks−(λ+Kγ+µ+Kγ)

)
N0(ds, du)

−
∫ t

0

∫ ∞
0

1lu≤τ(Y Ks−/K)(Ys− − [θYs−])N1(ds, du, dθ).

Then (Y K
t /K : t ≥ 0) converges weakly to (Yt : t ≥ 0) as K →∞, see [5] for more details.

Taking the integer part of the population size after a catastrophe is convenient when
proving the convergence of the scaling limit via tightness and limiting martingale problem.
Other models in discrete space would yield the same limiting object. For example, each
individual could be killed independently with probability F when a catastrophe occurs.
We also recall from the previous sections that scaling limits of other processes, such as
Galton Watson processes, lead to the Feller diffusion.

5.2 Long time behavior when catastrophes occur at a constant rate

In this section, we assume that τ(.) = τ is constant and the successive catastrophes can
be represented by a Poisson point process {(Tk, Fk) : k ≥ 0} on R+× [0, 1] with intensity
τdtP(F ∈ θ). The long time behavior of Y can be guessed thanks to the following
heuristic:

Yt ≈ Zt.ΠTk≤tFk

where Z is a Feller diffusion with parameters (r, γ) and all the catastrophes during the
time interval [0, t] have been postponed at the final time. We recall from Section 4.2
that Zt is equal to ertMt where M is a martingale. We prove in this section (see the
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two forthcoming theorems) that Yt behaves as exp(rt)ΠTk≤tFk = exp(Kt) as t goes to
infinity, where

Kt := rt+
∑
Tk≤t

logFk = rt+

∫ t

0

∫ 1

0
log(θ)N1(ds, [0, τ ], dθ),

with N1(ds, [0, τ ], dθ) a Poisson point measure with intensity τdsP(F ∈ dθ) and K a Lévy
process. It turns out that the asymptotic behavior of Feller diffusions with catastrophes
will be inherited from the classification of long time behavior of Lévy processes. First,
we check that

Ȳt := exp(−Kt)Yt

is a continuous local martingale, which extends the result of Section 4.2 to random envi-
ronment.

Lemma 5.1. The process (Ȳt : t ≥ 0) satisfies the SDE

Ȳt = y0 +

∫ t

0
e−Ks/2

√
2γȲsdBs. (5.1)

Proof. Since for every t ∈ R+, 0 ≤ Yt ≤ Xt, where Xt is a Feller diffusion, all the
stochastic integrals that we write are well defined. Applying the two dimensional Itô’s
formula with jumps to F (Kt, Yt) = Ȳt, with F (x, y) = exp(−x)y, we get

Ȳt =y0 +

∫ t

0
e−Ks

[
rYsds+

√
2γYsdBs

]
−
∫ t

0
rYse

−Ksds

+

∫ t

0

∫ ∞
0

∫ 1

0

(
Yse
−Ks − Ys−e

−Ks−
)

1lu≤τN1(ds, du, dθ)

=y0 +

∫ t

0
e−Ks

√
2γYsdBs +

∫ t

0

∫ ∞
0

∫ 1

0
Ȳs−

(
θe− log(θ) − 1

)
1lu≤τN(ds, du, dθ)

=y0 +

∫ t

0
e−Ks

√
2γYsdBs.

Then (Ȳt : t ≥ 0) satisfies the SDE (5.1).

We now state the absorption criterion.

Theorem 5.2. (i) If r ≤ E(log(1/F ))τ , then P(∃t > 0 : Yt = 0) = 1.
(ii) Otherwise, P(∀t ≥ 0 : Yt > 0) > 0.

For the proof, we first consider the quenched process, conditioned by the environment
FN1 . Indeed the transformation Yt− → xYt− = Yt preserves the branching property of
the Feller diffusion. The Feller diffusion then undergoes deterministic catastrophes given
by the conditional Poisson point measure N1.

Lemma 5.3 (Quenched characterization). (i) Conditionally on FN1 and setting for
t0, λ ≥ 0 and t ∈ [0, t0],

u(t, y) = exp

(
− λy

γλ
∫ t0
t e−Ksds+ 1

)
,

30



The process (u(t, Ȳt) : 0 ≤ t ≤ t0) is a bounded martingale.
(ii) For all t, λ, y0 ≥ 0,

Ey0
(
exp(−λȲt) | FN1

)
= exp

(
− λy0

γλ
∫ t

0 e
−Ksds+ 1

)
. (5.2)

Exercise. Prove that conditionally on FN1
, Y satisfies the branching property.

One may write a direct proof following Proposition 4.3 or use Lemma 5.3 (ii).

We stress that the non conditional (annealed) branching property does not hold. For-
mally, the quenched process can be defined on the probability space (Ω,F ,P) := (Ωe ×
Ωd,Fe⊗Fd,Pe⊗Pd) by using a Poisson Point process N1(w) = N1(we, wd) := N1(we) for
catastrophes and a Brownian motion Bt(w) = Bt(we, wd) := Bt(wd) for the demographic
stochasticity. Thus, the process Y conditioned on the environment FN1 = σ(Ks) = σ(Fe)
(quenched process) is given by Y (we, .) Pe a.s.

Proof. Let us work conditionally on FN1
. Using Itô’s formula for a function u(t, y) which

is differentiable by parts with respect to t and infinitely differentiable with respect to y,
we get

u(t, Ȳt) = u(0, y0)+

∫ t

0

[
∂u

∂s
(s, Ȳs) +

∂2u

∂y2
(s, Ȳs)γȲse

−Ks
]
ds

+

∫ t

0

∂u

∂y
(s, Ȳs)e

−Ks/2
√

2γȲsdBs.

The function u has been chosen to cancel the finite variation part, i.e. it satisfies

∂u

∂s
(s, y) +

∂2u

∂y2
(s, y)γye−Ks = 0 (s, y ≥ 0).

Then the process (u(t, Ȳt) : 0 ≤ t ≤ t0) is a local martingale bounded by 1 and thus a
real martingale and (i) holds. We deduce that

Ey0
(
u(t0, Ȳt0) | FN1

)
= u(0, Ȳ0),

which gives (ii).

Before proving Theorem 5.2, we deal with the functional of the Lévy process involved in
the extinction.

Lemma 5.4. If r ≤ τE(log(1/F )), then lim inft→∞Kt = −∞ and
∫∞

0 exp(−Ks)ds =
+∞ a.s.
Otherwise, limt→∞Kt = +∞ and

∫∞
0 exp(−Ks)ds < +∞ a.s.

Proof. If r ≤ τE(log(1/F )), then E(K1) ≤ 0 and the Lévy process Kt either goes to −∞
or oscillates. In any case, the sequence of stopping times

T0 := 0, Tk := inf{t ≥ Tk−1 + 1 : Kt ≤ 0} < +∞
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is finite for k ≥ 0. Then,∫ ∞
0

exp(−Ks)ds ≥
∑
k≥1

∫ Tk+1

Tk

exp(−Ks)ds

≥
∑
k≥1

∫ 1

0
exp(−(KTk+s −KTk))ds =:

∑
k≥1

Xk,

where Xk are non-negative (non identically zero) i.i.d. random variables. Then∫∞
0 exp(Ks)ds = +∞ a.s. Conversely if r > τE(log(1/F )), there exists ε > 0 such

that E(K1)− ε > 0 and Kt − εt goes to +∞ a.s. Then

L := inf{Ks − εs : s ≥ 0} > −∞ a.s.

and
∫∞

0 exp(εs)ds = +∞ yields the result.

Proof of Theorem 5.2. Integrating (5.2), we get by bounded convergence that

lim
t→∞

Ey0(exp(−λȲt)) = Ey0
(

exp

(
− λy0

γλ
∫∞

0 exp(−Ks)ds+ 1

))
.

The process (Ȳt : t ≥ 0) converges in distribution as t→ +∞ to Ȳ∞ whose distribution is
specified by the right hand side of the above limit. Letting λ→ +∞, we get by bounded
convergence:

Py0(Ȳ∞ = 0) = Ey0
(

exp

(
− y0

γ
∫∞

0 exp(−Ks)ds

))
. (5.3)

Recalling from Lemma 5.1 that (Ȳt : t ≥ 0) is a non-negative local martingale, we obtain
by Jensen’s inequality that (exp(−Ȳt) : t ≥ 0) is a positive sub-martingale bounded by 1.
We deduce that the convergence towards Ȳ∞, which is possibly infinite, also holds a.s.
Using Lemma 5.4, we obtain that the probability of the event

{lim inf
t→∞

Yt = 0} = {lim inf
t→∞

eKt Ȳt = 0}

is either one or less than one depending on r ≤ τE(log(1/F )) or r > τE(log(1/F )).
Moreover, the absorption probability of the Feller diffusion is positive (see Section 4.2) and
the Markov property ensures that Y is a.s. absorbed on the event {lim inft→∞ Yt = 0}.

Let us note that the a.s. convergence relies here on the fact that (exp(−Ȳt) : t ≥ 0) is a
bounded sub-martingale. This method can be adapted to study the long time behavior
of a conservative CSBP instead of using the Lamperti transform (see Section 4). We
describe now the speed at which the absorption occurs. The random environment makes
three asymptotic regimes appear in the subcritical case.

Theorem 5.5 (Growth and speed of extinction, [7]). We assume that E((logF )2) <∞.

a/ If r < τE(log(1/F )) (subcritical case), then

(i) If τE(F logF ) + r < 0 (strongly subcritical regime), then there exists c1 > 0
such that for every y0 > 0,

Py0(Yt > 0) ∼ c1y0e
t(r+τ [E(F )−1]), as t→∞.
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(ii) If τE(F logF ) + r = 0 (intermediate subcritical regime), then there exists
c2 > 0 such that for every y0 > 0,

Py0(Yt > 0) ∼ c2y0t
−1/2et(r+τ [E(F )−1]), as t→∞.

(iii) If τE(F logF )+r > 0 (weakly subcritical regime), then for every y0 > 0, there
exists c3 > 0 such that

Py0(Yt > 0) ∼ c3t
−3/2et(r+τ [E(Fχ)−1]), as t→∞,

where χ is the root of E(Fχ logF ) + r on (0, 1).

b/ If r = τE(log(1/F )) (critical case), then for every y0 > 0, there exists c4 > 0 such
that

Py0(Yt > 0) ∼ c4t
−1/2, as t→∞.

c/ If r > τE(log(1/F )) (supercritical case), then there exists a finite r.v. W such that

e−KtYt −−−→
t→∞

W a.s., {W = 0} =
{

lim
t→∞

Yt = 0
}
.

The asymptotic results a/ − b/ rely on the study of P(Yt > 0) = E
(
f
(∫ t

0 e
−βKsds

))
,

for t→∞, where f has a polynomial decay when x→∞ and here β = 1. It is linked to
the asymptotic distribution of It = inf{Ks : s ≤ t} and the different asymptotics appear
for P(It ≥ x) when t→∞. The proof in [7] uses a discretization of

∫ t
0 exp(−βKs)ds of

the form
∑n

i=0 Πi
j=0Ai and the different regimes are inherited from local limit theorems

for semi-direct products [60].

5.3 Monotone rate of catastrophes

We first deal with increasing rates, which are relevent for the applications on cell infection
developped in the second part.

Proposition 5.6. We assume that τ is a non-decreasing function.
(i) If there exists y1 ≥ 0 such that r ≤ E(log(1/F ))τ(y1), then

P
(
∃t > 0, Yt = 0

)
= 1.

(ii) If r > E(log(1/F )) supx≥0 τ(x), then P(∀t ≥ 0 : Yt > 0) > 0.

Heuristically, if r ≤ E(log(1/F ))τ(y1), as soon as Y ≥ y1, the division rate is larger than
r(y1) and Theorem 5.2 (i) ensures that the process is pushed back to x1. Eventually, it
reaches zero by the strong Markov property, since each time it goes below y1, it has a
positive probability to reach 0 before time 1.
The proof can be made rigorous by using a coupling with a Feller diffusion with catas-
trophes occurring at constant rate τ(y1). Finally, we note that the case

r > E(log(1/F ))τ(x) for every x ≥ 0; r = E(log(1/F )) sup
x≥0

τ(x)

remains open.

Let us now consider the case when τ is non-increasing. The asymptotic behavior now
depends on

τ∗ = inf
x≥0

τ(x). (5.4)
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Proposition 5.7. We assume that r is a non-increasing function.

(i) If r ≤ E(log(1/F ))τ∗, then P
(
∃t > 0, Yt = 0

)
= 1.

(ii) Else, P(∀t > 0, Yt > 0) > 0.

The proof is easier in that case and we refer to [5] for details.

5.4 Further comments : CSBPs in random environment

We have studied a particular case of continuous state branching processes in random en-
vironment. It can be extended in several ways. A general construction of Feller diffusions
in random environment has been provided by Kurtz [54]. It relies on the scaling and time
change

Yt = exp(Mt)Zτt , where τt =

∫ t

0
exp(−Ms)Asds,

M is a càdlàg process and Z is a Feller diffusion and A is non-decreasing and absolutely
continuous w.r.t. Lebesgue measure.
In the case where Mt = Kt and At = γt, this construction leads to the Feller diffusion
with catastrophes. When Mt is a Brownian motion and At = γt, we obtain a Feller
diffusion in a Brownian environment. Its asymptotic behavior is close to the one of Feller
diffusion with catastrophes and can be found in [13]. It uses the explicit expression of
the density of some functional of Brownian motion involved in the Laplace exponent of
the process.

The construction of Kurtz has been extended by Borovkov [16] to the case where A is
no more absolutely continuous. The time change can also be generalized to the stable
case but does not hold for general CSBP in random environment. We refer to [8] for
the quenched construction without second moment assumptions, as a scaling limit, when
M has finite variations. Let us mention [7] for the asymptotic study of CSBP with
catastrophes, which extends the asymptotic results given in Section 5.2. New asymptotic
behaviors appear for the process, which may oscillate in (0,∞) in the critical regime.

A possible generalization of our results is the combination of Brownian fluctuations of
the drift and catastrophes

Yt = y0 +

∫ t

0
Ys−dMs +

∫ t

0

√
2γsYsdBs −

∫ t

0

∫
R+×[0,1]

1lu≤τ(Ys− )

(
1− θ

)
Ys−N1(ds, du, dθ),

where dMs = rsds+σedB
e
s and N1 is a Poisson Point Process with intensity ds duP(F ∈

dθ) and both are independent of B. Such stochastic differential equations both integrate
small fluctuations and dramatic random events due to the environment. Finding a general
approach to deal with the long time behavior of CSBP in random environment is an open
and delicate question.
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Part II

Structured Populations and
Measure-valued Stochastic Differential
Equations

In this chapter the individuals are characterized by some quantitative traits. Therefore
the population is described by a random point measure with support on the trait space.
We first study the measure-valued process modeling the population dynamics including
competition and mutation events. We give its martingale properties and determine some
scaling limits. Then we consider the particular case of cell division with parasite infection
and the Markov processes indexed by continuous time Galton-Watson trees.

6 Population Point Measure Processes

6.1 Multitype models

In the previous sections, the models that we considered described a homogeneous popula-
tion and could be considered as toy models. A first generalization consists in considering
multitype population dynamics. The demographic rates of a subpopulation depend on its
own type. The ecological parameters are functions of the different types of the individuals
competiting with each other. Indeed, we assume that the type has an influence on the re-
production or survival abilities, but also on the access to resources. Some subpopulations
can be more adapted than others to the environment.

For simplicity, the examples that we consider now deal with only two types of individuals.
Let us consider two sub-populations characterized by two different types 1 and 2. For
i = 1, 2, the growth rates of these populations are r1 and r2. Individuals compete for
resources either inside the same species (intra-specific competition) or with individuals of
the other species (inter-specific competition). As before, let K be the scaling parameter
describing the capacity of the environment. The competition pressure exerted by an
individual of type 1 on an individual of type 1 (resp. type 2) is given by c11/K (resp.
c21/K). The competition pressure exerted by an individual of type 2 is respectively given
by c12/K and c22/K. The parameters cij are assumed to be positive.

By similar arguments as in Subsection 3.1, the large K-approximation of the population
dynamics is described by the well known competitive Lotka-Volterra dynamical system.
Let x1(t) (resp. x2(t)) be the limiting renormalized type 1 population size (resp. type 2
population size). We get{

x′1(t) = x1(t) (r1 − c11 x1(t)− c12 x2(t));

x′2(t) = x2(t) (r2 − c21 x1(t)− c22 x2(t)).
(6.1)

This system has been extensively studied and its long time behavior is well known. There
are 4 possible equilibria: the unstable equilibrium (0, 0) and three stable ones: ( r1c11 , 0),
(0, r2c22 ) and a non-trivial equilibrium (x∗1, x

∗
2) given by

x∗1 =
r1c22 − r2c12

c11c22 − c12c21
; x∗2 =

r2c11 − r1c21

c11c22 − c12c21
.
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Of course, the latter is possible if the two coordinates are positive. The (unique) solution
of (6.1) converges to one of the stable equilibria, describing either the fixation of one
species or the co-existence of both species. The choice of the limit depends on the signs
of the quantities r2c11 − r1c21 and r1c22 − r2c12 which respectively quantify the invasion
ability of the subpopulation 2 (resp. 1) in a type 1 (resp. type 2) monomorphic resident
population.

One could extend (6.1) to negative coefficients cij , describing a cooperation effect of
species j on the growth of species i. The long time behavior can be totally different.
For example, the prey-predator models have been extensively studied in ecology (see [43],
Part 1). The simplest prey-predator system{

x′1(t) = x1(t) (r1 − c12 x2(t));

x′2(t) = x2(t) (c21 x1(t)− r2),
(6.2)

with r1, r2, c12, c21 > 0, has periodic solutions.

Stochastic models have also been developed, based on this two type-population model.
Following the previous sections, a first point of view consists in generalizing the logistic
Feller stochastic differential equation to this two-dimensional framework. The stochastic
logistic Lotka-Volterra process is then defined by{

dX1(t) = X1(t) (r1 − c11X1(t)− c12X2(t)) dt+
√
γ1X1(t)dB1

t ;

dX2(t) = X2(t) (r2 − c21X1(t)− c22X2(t)) dt+
√
γ2X2(t)dB2

t ,

where the Brownian motions B1 and B2 are independent and give rise to the demographic
stochasticity (see Cattiaux-Méléard [22]). Another point of view consists in taking ac-
count of environmental stochasticity (see Evans, Hening, Schreiber [37]).

Of course, we could also study multi-dimensional systems corresponding to multi-type
population models. In what follows we are more interested in modeling the case where
the types of the individuals belong to a continuum. That will allow us to add mutation
events where the offspring of an individual may randomly mutate and create a new type.

6.2 Continuum of types and measure-valued processes

Even if the evolution appears as a global change in the state of a population, its basic
mechanisms, mutation and selection, operate at the level of individuals. Consequently,
we model the evolving population as a stochastic system of interacting individuals, where
each individual is characterized by a vector of phenotypic trait values. The trait space X
is assumed to be a closed subset of Rd, for some d ≥ 1.

We will denote by MF (X ) the set of all finite non-negative measures on X . Let M be
the subset of MF (X ) consisting of all finite point measures:

M =

{
n∑
i=1

δxi , n ≥ 0, x1, ..., xn ∈ X

}
.

Here and below, δx denotes the Dirac mass at x. For any µ ∈MF (X ) and any measurable
function f on X , we set 〈µ, f〉 =

∫
X fdµ.
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We wish to study the stochastic process (Yt, t ≥ 0), taking its values inM, and describing
the distribution of individuals and traits at time t. We define

Yt =

Nt∑
i=1

δXi
t
, (6.3)

Nt = 〈Yt, 1〉 ∈ N standing for the number of individuals alive at time t, and X1
t , ..., X

Nt
t

describing the individuals’ traits (in X ).

We assume that the birth rate of an individual with trait x is b(x) and that for a popula-
tion ν =

∑N
i=1 δxi , its death rate is given by d(x,C ∗ ν(x)) = d(x,

∑N
i=1C(x− xi)). This

death rate takes into account the intrinsic death rate of the individual, depending on its
phenotypic trait x but also on the competition pressure exerted by the other individuals
alive, modeled by the competition kernel C. Let p(x) and m(x, z)dz be respectively the
probability that an offspring produced by an individual with trait x carries a mutated
trait and the law of this mutant trait.
Thus, the population dynamics can be roughly summarized as follows. The initial pop-
ulation is characterized by a (possibly random) counting measure ν0 ∈ M at time 0,
and any individual with trait x at time t has two independent random exponentially dis-
tributed “clocks”: a birth clock with parameter b(x), and a death clock with parameter
d(x,C ∗ Yt(x)). If the death clock of an individual rings, this individual dies and disap-
pears. If the birth clock of an individual with trait x rings, this individual produces an
offspring. With probability 1−p(x) the offspring carries the same trait x; with probability
p(x) the trait is mutated. If a mutation occurs, the mutated offspring instantly acquires
a new trait z, picked randomly according to the mutation step measure m(x, z)dz. When
one of these events occurs, all individual’s clocks are reset to 0.

We are looking for a M-valued Markov process (Yt)t≥0 with infinitesimal generator L,
defined for all real bounded functions φ and ν ∈M by

Lφ(ν) =

N∑
i=1

b(xi)(1− p(xi))(φ(ν + δxi)− φ(ν))

+

N∑
i=1

b(xi)p(xi)

∫
X

(φ(ν + δz)− φ(ν))m(xi, z)dz

+
N∑
i=1

d(xi, C ∗ ν(xi))(φ(ν − δxi)− φ(ν)). (6.4)

The first term in (6.4) captures the effect of births without mutation, the second term
the effect of births with mutation and the last term the effect of deaths. The density-
dependence makes the third term nonlinear.

6.3 Pathwise construction of the process

Let us justify the existence of a Markov process admitting L as infinitesimal generator.
The explicit construction of (Yt)t≥0 also yields two side benefits: providing a rigorous and
efficient algorithm for numerical simulations (given hereafter) and establishing a general
method that will be used to derive some large population limits (Section 7).
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We make the biologically natural assumption that the trait dependency of birth param-
eters is “bounded”, and at most linear for the death rate. Specifically, we assume

Assumption 6.1. There exist constants b̄, d̄, C̄, and α and a probability density function
m̄ on Rd such that for each x, z ∈ X , ζ ∈ R+,

b(x) ≤ b̄, d(x, ζ) ≤ d̄(1 + ζ),

C(x) ≤ C̄,
m(x, z) ≤ α m̄(z − x).

These assumptions ensure that there exists a constant Ĉ, such that for a population
measure ν =

∑N
i=1 δxi , the total event rate, obtained as the sum of all event rates, is

bounded by ĈN(1 +N).

Let us now give a pathwise description of the population process (Yt)t≥0. We introduce
the following notation.

Notation 1. Let N∗ = N\{0}. Let H = (H1, ...,Hk, ...) : M 7→ (Rd)N∗ be defined by
H (
∑n

i=1 δxi) = (xσ(1), ..., xσ(n), 0, ..., 0, ...), where σ is a permutation such that xσ(1) 2
... 2 xσ(n), for some arbitrary order 2 on Rd (for example the lexicographic order).

This function H allows us to overcome the following (purely notational) problem. Choos-
ing a trait uniformly among all traits in a population ν ∈ M consists in choosing i
uniformly in {1, ..., 〈ν, 1〉}, and then in choosing the individual number i (from the arbi-
trary order point of view). The trait value of such an individual is thus H i(ν).

We now introduce the probabilistic objects we will need.

Definition 6.1. Let (Ω,F , P ) be a (sufficiently large) probability space. On this space,
we consider the following four independent random elements:

(i) an M-valued random variable Y0 (the initial distribution),

(ii) independent Poisson point measures N1(ds, di, dθ), and N3(ds, di, dθ) on R+ ×N∗ ×
R+, with the same intensity measure ds

(∑
k≥1 δk(di)

)
dθ (the ”clonal” birth and

the death Poisson measures),

(iii) a Poisson point measure N2(ds, di, dz, dθ) on R+ × N∗ × X × R+, with intensity

measure ds
(∑

k≥1 δk(di)
)
dzdθ (the mutation Poisson point measure).

Let us denote by (Ft)t≥0 the canonical filtration generated by these processes.

We finally define the population process in terms of these stochastic objects.

Definition 6.2. A (Ft)t≥0-adapted stochastic process Y = (Yt)t≥0 is called a population
process if a.s., for all t ≥ 0,

Yt = Y0 +

∫
[0,t]×N∗×R+

δHi(Ys−)1{i≤〈Ys−,1〉} 1{θ≤b(Hi(Ys−))(1−p(Hi(Ys−)))}N1(ds, di, dθ)

+

∫
[0,t]×N∗×X×R+

δz1{i≤〈Ys−,1〉} 1{θ≤b(Hi(Ys−))p(Hi(Ys−))m(Hi(Ys−),z)}N2(ds, di, dz, dθ)

−
∫

[0,t]×N∗×R+

δHi(Ys−)1{i≤〈Ys−,1〉}1{θ≤d(Hi(Ys−),C∗Ys−(Hi(Ys−)))}N3(ds, di, dθ) (6.5)
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Let us now show that if Y solves (6.5), then Y follows the Markovian dynamics we are
interested in.

Proposition 6.3. Assume Assumption 6.1 holds and consider a solution (Yt)t≥0 of
(6.5) such that E(supt≤T 〈Yt,1〉2) < +∞, ∀T > 0. Then (Yt)t≥0 is a Markov process. Its
infinitesimal generator L is defined by (6.4). In particular, the law of (Yt)t≥0 does not
depend on the chosen order 2.

Proof. The fact that (Yt)t≥0 is a Markov process is classical. Let us now consider a

measurable bounded function φ. With our notation, Y0 =
∑〈Y0,1〉

i=1 δHi(Y0). A simple
computation, using the fact that a.s., φ(Yt) = φ(Y0)+

∑
s≤t(φ(Ys−+(Ys−Ys−))−φ(Ys−)),

shows that

φ(Yt) = φ(Y0) +

∫
[0,t]×N∗×R+

(
φ(Ys− + δHi(Ys−))− φ(Ys−)

)
1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))(1−p(Hi(Ys−)))}N1(ds, di, dθ)

+

∫
[0,t]×N∗×X×R+

(φ(Ys− + δz)− φ(Ys−)) 1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))p(Hi(Ys−))m(Hi(Ys−),z)}N2(ds, di, dz, dθ)

+

∫
[0,t]×N∗×R+

(
φ(Ys− − δHi(Ys−))− φ(Ys−)

)
1{i≤〈Ys−,1〉}

1{θ≤d(Hi(Ys−),C∗Ys−(Hi(Ys−)))}N3(ds, di, dθ).

Taking expectations, we obtain

E(φ(Yt)) = E(φ(Y0))

+

∫ t

0
E
( 〈Ys,1〉∑

i=1

{(
φ(Ys + δHi(Ys))− φ(Ys)

)
b(H i(Ys))(1− p(H i(Ys)))

+

∫
X

(φ(Ys + δz)− φ(Ys)) b(H
i(Ys))p(H

i(Ys))m(H i(Ys), z)dz

+
(
φ(Ys − δHi(Ys))− φ(Ys)

)
d(H i(Ys), C ∗ Ys(H i(Ys)))

})
ds

Differentiating this expression at t = 0 leads to (6.4).

Let us show the existence and some moment properties for the population process.

Theorem 6.4. (i) Assume Assumption 6.1 holds and that E (〈Y0, 1〉) < ∞. Then the
process (Yt)t≥0 defined in Definition 6.2 is well defined on R+.

(ii) If furthermore for some p ≥ 1, E (〈Y0, 1〉p) <∞, then for any T <∞,

E( sup
t∈[0,T ]

〈Yt, 1〉p) < +∞. (6.6)

Proof. We first prove (ii). Consider the process (Yt)t≥0. We introduce for each n the stop-
ping time τn = inf {t ≥ 0, 〈Yt, 1〉 ≥ n}. Then a simple computation using Assumption
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6.1 shows that, dropping the non-positive death terms,

sup
s∈[0,t∧τn]

〈Ys, 1〉p ≤ 〈Y0, 1〉p +

∫
[0,t∧τn]×N∗×R+

((〈Ys−, 1〉+ 1)p − 〈Ys−, 1〉p) 1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))(1−p(Hi(Ys−)))}N1(ds, di, dθ)

+

∫
[0,t∧τn]×N∗×X×R+

((〈Ys−, 1〉+ 1)p − 〈Ys−, 1〉p) 1{i≤〈Ys−,1〉}

1{θ≤b(Hi(Ys−))p(Hi(Ys−))m(Hi(Ys−),z)}N2(ds, di, dz, dθ).

Using the inequality (1+x)p−xp ≤ Cp(1+xp−1) and taking expectations, we thus obtain,
the value of Cp changing from one line to the other,

E( sup
s∈[0,t∧τn]

〈Ys, 1〉p) ≤ CpE
(∫ t∧τn

0
(〈Ys−, 1〉+ 〈Ys−, 1〉p) ds

)
≤ Cp

(
1 + E

(∫ t

0
〈Ys∧τn , 1〉

p ds

))
.

The Gronwall Lemma allows us to conclude that for any T <∞, there exists a constant
Cp,T , not depending on n, such that

E( sup
t∈[0,T∧τn]

〈Yt, 1〉p) ≤ Cp,T . (6.7)

First, we deduce that τn tends a.s. to infinity. Indeed, if not, one may find T0 <∞ such

that εT0 = P (supn τn < T0) > 0. This would imply that E
(

supt∈[0,T0∧τn] 〈Yt, 1〉
p
)
≥

εT0n
p for all n, which contradicts (6.7). We may let n go to infinity in (6.7) thanks to

the Fatou Lemma. This leads to (6.6).

Point (i) is a consequence of point (ii). Indeed, one builds the solution (Yt)t≥0 step by
step. One only has to check that the sequence of jump instants Tn goes a.s. to infinity as
n tends to infinity. But this follows from (6.6) with p = 1.

6.4 Examples and simulations

Let us remark that Assumption 6.1 is satisfied in the case where

d(x,C ∗ ν(x)) = d(x) + α(x)

∫
X
C(x− y)ν(dy), (6.8)

and b, d and α are bounded functions.

In the case where moreover, p ≡ 1, this individual-based model can also be interpreted as a
model of “spatially structured population”, where the trait is viewed as a spatial location
and the mutation at each birth event is viewed as dispersal. This kind of models has been
introduced by Bolker and Pacala ([14, 15]) and Law et al. ([59]), and mathematically
studied by Fournier and Méléard [38]. The case C ≡ 1 corresponds to a density-
dependence in the total population size.

Later, we will consider the particular set of parameters leading to the logistic interaction
model, taken from Kisdi [53] and corresponding to a model of asymmetric competition:

X = [0, 4], d(x) = 0, α(x) = 1, p(x) = p,

b(x) = 4− x, C(x− y) =
2

K

(
1− 1

1 + 1.2 exp(−4(x− y))

)
(6.9)
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and m(x, z)dz is a Gaussian law with mean x and variance σ2 conditioned to stay in
[0, 4]. As we will see in Section 7, the constant K scaling the strength of competition
also scales the population size (when the initial population size is proportional to K). In
this model, the trait x can be interpreted as body size. Equation (6.9) means that body
size influences the birth rate negatively, and creates asymmetrical competition reflected
in the sigmoid shape of C (being larger is competitively advantageous).

Let us give now an algorithmic construction of the population process (in the general
case), giving the size Nt of the population and the trait vector Xt of all individuals alive
at time t.

At time t = 0, the initial population Y0 contains N0 individuals and the corresponding
trait vector is X0 = (Xi

0)1≤i≤N0 . We introduce the following sequences of independent
random variables, which will drive the algorithm.

• The type of birth or death events will be selected according to the values of a
sequence of random variables (Wk)k∈N∗ with uniform law on [0, 1].

• The times at which events may be realized will be described using a sequence of
random variables (τk)k∈N with exponential law with parameter Ĉ.

• The mutation steps will be driven by a sequence of random variables (Zk)k∈N with
law m̄(z)dz.

We set T0 = 0 and construct the process inductively for k ≥ 1 as follows.
At step k−1, the number of individuals is Nk−1, and the trait vector of these individuals
is XTk−1

.

Let Tk = Tk−1 +
τk

Nk−1(Nk−1 + 1)
. Notice that

τk
Nk−1(Nk−1 + 1)

represents the time be-

tween jumps for Nk−1 individuals, and Ĉ(Nk−1 + 1) gives an upper bound of the total
rate of events affecting each individual.

At time Tk, one chooses an individual ik = i uniformly at random among the Nk−1 alive in
the time interval [Tk−1, Tk); its trait is Xi

Tk−1
. (If Nk−1 = 0 then Yt = 0 for all t ≥ Tk−1.)

• If 0 ≤Wk ≤
d(Xi

Tk−1
,
∑Ik−1

j=1 C(Xi
Tk−1

−Xj
Tk−1

))

Ĉ(Nk−1 + 1)
= W i

1(XTk−1
), then the chosen in-

dividual dies, and Nk = Nk−1 − 1.

• If W i
1(XTk−1

) < Wk ≤W i
2(XTk−1

), where

W i
2(XTk−1

) = W i
1(XTk−1

) +
[1− p(Xi

Tk−1
)]b(Xi

Tk−1
)

Ĉ(Nk−1 + 1)
,

then the chosen individual gives birth to an offspring with trait Xi
Tk−1

, and Nk =
Nk−1 + 1.

• If W i
2(XTk−1

) < Wk ≤W i
3(XTk−1

, Zk), where

W i
3(XTk−1

, Zk) = W i
2(XTk−1

) +
p(Xi

Tk−1
)b(Xi

Tk−1
)m(Xi

Tk−1
, Xi

Tk−1
+ Zk)

Ĉm̄(Zk)(Nk−1 + 1)
,

then the chosen individual gives birth to a mutant offspring with trait Xi
Tk−1

+Zk,
and Nk = Nk−1 + 1.
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• If Wk > W i
3(XTk−1

, Zk), nothing happens, and Nk = Nk−1.

Then, at any time t ≥ 0, the number of individuals and the population process are defined
by

Nt =
∑
k≥0

1{Tk≤t<Tk+1}Nk, Yt =
∑
k≥0

1{Tk≤t<Tk+1}

Nk∑
i=1

δXi
Tk

.

The simulation of Kisdi’s example (6.9) can be carried out following this algorithm. We
can show a very wide variety of qualitative behaviors depending on the value of the
parameters σ, p and K.
In the following figures (cf. Champagnat-Ferrière-Méléard [23]), the upper part gives the
distribution of the traits in the population at any time, using a grey scale code for the
number of individuals holding a given trait. The lower part of the simulation represents
the dynamics of the total population size Nt.
These simulations will serve to illustrate the different mathematical scalings described in
Section 7. In Fig. 1 (a)–( c), we see the qualitative and quantitative effects of increasing
scalings K, from a finite trait support process for small K to a wide population density
for large K. The simulations of Fig. 2 involve birth and death processes with large rates
(see Section 7.2) given by

b(x) = Kη + b(x) and d(x, ζ) = Kη + d(x) + α(x)ζ

and small mutation step σK . There is a noticeable qualitative difference between Fig.2 (a)
where η = 1/2, and Fig.2 (b) where η = 1. In the latter, we observe strong fluctuations in
the population size and a finely branched structure of the evolutionary pattern, revealing
a new form of stochasticity in the large population approximation.

6.5 Martingale Properties

We give some martingale properties of the process (Yt)t≥0, which are the key point of our
approach.

Theorem 6.5. Suppose Assumption 6.1 holds and that for some p ≥ 2, E (〈Y0, 1〉p) <∞.

(i) For all measurable functions φ from M into R such that for some constant C, for all
ν ∈M, |φ(ν)|+ |Lφ(ν)| ≤ C(1 + 〈ν, 1〉p), the process

φ(Yt)− φ(Y0)−
∫ t

0
Lφ(Ys)ds (6.10)

is a càdlàg (Ft)t≥0-martingale starting from 0.

(ii) Point (i) applies to any function φ(ν) = 〈ν, f〉q, with 0 ≤ q ≤ p − 1 and with f
bounded and measurable on X .

(iii) For such a function f , the process

Mf
t = 〈Yt, f〉 − 〈Y0, f〉 −

∫ t

0

∫
X

{(
(1− p(x))b(x)− d(x,C ∗ Ys(x))

)
f(x)

+ p(x)b(x)

∫
X
f(z)m(x, z)dz

}
Ys(dx)ds (6.11)
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(a) p = 0.03, K = 100, σ = 0.1. (b) p = 0.03, K = 3000, σ = 0.1.

(c) p = 0.03, K = 100000, σ = 0.1.

Figure 1: Numerical simulations of trait distributions (upper panels, darker means higher
frequency) and population size (lower panels). The initial population is monomorphic
with trait value 1.2 and contains K individuals. (a–c) Effect of increasing the system size
(measured by the parameter K).
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(a) p = 0.3, K = 10000, σ = 0.3/Kη/2, η = 0.5. (b) p = 0.3, K = 10000, σ = 0.3/Kη/2, η = 1.

Figure 2: Numerical simulations of trait distributions (upper panels, darker means higher
frequency) and population size (lower panels) for accelerated birth and death and concur-
rently increased parameter K. The parameter η (between 0 and 1) relates the acceleration
of demographic turnover to the increase of system size K. (a) Case η = 0.5. (b) Case
η = 1. The initial population is monomorphic with trait value 1.2 and contains K indi-
viduals.

44



is a càdlàg square integrable martingale starting from 0 with quadratic variation

〈Mf 〉t =

∫ t

0

∫
X

{(
(1− p(x))b(x) + d(x,C ∗ Ys(x))

)
f2(x)

+ p(x)b(x)

∫
X
f2(z)m(x, z)dz

}
Ys(dx)ds. (6.12)

Proof. The proof follows the proof of Theorem 2.8. First of all, note that point (i) is
immediate thanks to Proposition 6.3 and (6.6). Point (ii) follows from a straightforward

computation using (6.4). To prove (iii), we first assume that E
(
〈Y0, 1〉3

)
< ∞. We

apply (i) with φ(ν) = 〈ν, f〉. This gives us that Mf is a martingale. To compute its
bracket, we first apply (i) with φ(ν) = 〈ν, f〉2 and obtain that

〈Yt, f〉2 − 〈Y0, f〉2 −
∫ t

0

∫
X

{(
(1− p(x))b(x)(f2(x) + 2f(x) 〈Ys, f〉)

+ d(x,C ∗ Ys(x))(f2(x)− 2f(x) 〈Ys, f〉)
)

+ p(x)b(x)

∫
X

(f2(z) + 2f(z) 〈Ys, f〉)m(x, z)dz

}
Ys(dx)ds (6.13)

is a martingale. On the other hand, we apply the Itô formula to compute 〈Yt, f〉2
from (6.11). We deduce that

〈Yt, f〉2 − 〈Y0, f〉2 −
∫ t

0
2 〈Ys, f〉

∫
X

{(
(1− p(x))b(x)− d(x,C ∗ Ys(x))

)
f(x)

+ p(x)b(x)

∫
X
f(z)m(x, z)dz

}
Ys(dx)ds− 〈Mf 〉t (6.14)

is a martingale. Comparing (6.13) and (6.14) leads to (6.12). The extension to the case

where only E
(
〈Y0, 1〉2

)
<∞ is straightforward by a localization argument, since also in

this case, E(〈Mf 〉t) <∞ thanks to (6.6) with p = 2.

7 Scaling limits for the individual-based process

As in Section 2, we consider the case where the system size becomes very large. We scale
this size by the integer K and look for approximations of the conveniently renormalized
measure-valued population process, when K tends to infinity.

For any K, let the set of parameters CK , bK , dK , mK , pK satisfy Assumption 6.1. Let
Y K
t be the counting measure of the population at time t. We define the measure-valued

Markov process (XK
t )t≥0 by

XK
t =

1

K
Y K
t .

As the system size K goes to infinity, we need to assume the

Assumption 7.1. The parameters CK , bK , dK , mK and pK are continuous, ζ 7→
dK(x, ζ) is uniformly Lipschitz for x ∈ X and

CK(x) =
C(x)

K
.
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A biological interpretation of this renormalization is that larger systems are made up of
smaller individuals, which may be a consequence of a fixed amount of available resources
to be partitioned among individuals. Indeed, the biomass of each interacting individual
scales like 1/K, which may imply that the interaction effect of the global population on
a focal individual is of order 1. The parameter K may also be interpreted as scaling the
amount of resources available, so that the renormalization of CK reflects the decrease of
competition for resources.

The generator L̃K of (Y K
t )t≥0 is given by (6.4), with parameters CK , bK , dK , mK , pK .

The generator LK of (XK
t )t≥0 is obtained by writing, for any measurable function φ from

MF (X ) into R and any ν ∈MF (X ),

LKφ(ν) = ∂tEν(φ(XK
t ))t=0 = ∂tEKν(φ(Y K

t /K))t=0 = L̃KφK(Kν)

where φK(µ) = φ(µ/K). Then we get

LKφ(ν) = K

∫
X
bK(x)(1− pK(x))(φ(ν +

1

K
δx)− φ(ν))ν(dx)

+K

∫
X

∫
X
bK(x)pK(x)(φ(ν +

1

K
δz)− φ(ν))mK(x, z)dzν(dx)

+K

∫
X
dK(x,C ∗ ν(x))(φ(ν − 1

K
δx)− φ(ν))ν(dx). (7.1)

By a similar proof as that carried out in Section 6.5, we may summarize the moment and
martingale properties of XK .

Proposition 7.1. Assume that for some p ≥ 2, E(〈XK
0 , 1〉p) < +∞.

(1) For any T > 0, E
(

supt∈[0,T ]〈XK
t , 1〉p

)
< +∞.

(2) For any bounded and measurable function φ on MF such that |φ(ν)| + |LKφ(ν)| ≤
C(1+〈ν, 1〉p), the process φ(XK

t )−φ(XK
0 )−

∫ t
0 L

Kφ(XK
s )ds is a càdlàg martingale.

(3) For each measurable bounded function f , the process

MK,f
t = 〈XK

t , f〉 − 〈XK
0 , f〉

−
∫ t

0

∫
X

(bK(x)− dK(x,C ∗XK
s (x)))f(x)XK

s (dx)ds

−
∫ t

0

∫
X
pK(x)bK(x)

(∫
X
f(z)mK(x, z)dz − f(x)

)
XK
s (dx)ds

is a square integrable martingale with quadratic variation

〈MK,f 〉t =
1

K

{∫ t

0

∫
X
pK(x)bK(x)

(∫
X
f2(z)mK(x, z)dz − f2(x)

)
XK
s (dx)ds

+

∫ t

0

∫
X

(bK(x) + dK(x,C ∗XK
s (x)))f2(x)XK

s (dx)ds

}
. (7.2)

The search of tractable limits for the semimartingales 〈XK , f〉 yields different choices
of scalings for the parameters. In particular, we obtain a deterministic or stochastic
approximation, depending on the quadratic variation of the martingale term given in (7.2).
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7.1 Large-population limit

We assume here that bK = b, dK = d, pK = p, mK = m. We also assume that X is a
compact subset of Rd and we endow the measure space MF (X ) with the weak topology.

Theorem 7.2. Assume Assumptions 6.1 and 7.1 hold. Assume moreover that
supK E(〈XK

0 , 1〉3) < +∞ and that the initial conditions XK
0 converge in law and for

the weak topology on MF (X ) as K increases, to a finite deterministic measure ξ0.
Then for any T > 0, the process (XK

t )t≥0 converges in law, in the Skorohod space
D([0, T ],MF (X )), as K goes to infinity, to the unique deterministic continuous function
ξ ∈ C([0, T ],MF (X )) satisfying for any bounded f : X → R

〈ξt, f〉 = 〈ξ0, f〉+

∫ t

0

∫
X
f(x)[(1− p(x))b(x)− d(x,C ∗ ξs(x))]ξs(dx)ds

+

∫ t

0

∫
X
p(x)b(x)

(∫
X
f(z)m(x, z)dz

)
ξs(dx)ds (7.3)

The proof of Theorem 7.2 is left to the reader. It can be adapted from the proofs of
Theorem 7.4 and 7.6 below, or obtained as a generalization of Theorem 3.1. This result
is illustrated by the simulations of Figs. 1 (a)–(c).

Main Examples:

(1) A density case.

Proposition 7.3. Suppose that ξ0 is absolutely continuous with respect to Lebesgue
measure. Then for all t ≥ 0, ξt is absolutely continuous where respect to Lebesgue
measure and ξt(dx) = ξt(x)dx, where ξt(x) is the solution of the functional equation

∂tξt(x) = [(1− p(x))b(x)− d(x,C ∗ ξt(x))] ξt(x) +

∫
Rd

m(y, x)p(y)b(y)ξt(y)dy

(7.4)

for all x ∈ X and t ≥ 0.

Some people refer to ξt(.) as the population number density.

Proof. Consider a Borel set A of Rd with Lebesgue measure zero. A simple com-
putation allows us to obtain, for all t ≥ 0,

〈ξt,1A〉 ≤ 〈ξ0,1A〉+ b̄

∫ t

0

∫
X

1A(x)ξs(dx)ds+ b̄

∫ t

0

∫
X

∫
X

1A(z)m(x, z)dzξs(dx)ds.

By assumption, the first term on the RHS is zero. The third term is also zero, since
for any x ∈ X ,

∫
X 1A(z)m(x, z)dz = 0. Using Gronwall’s Lemma, we conclude that

〈ξt,1A〉 = 0 and then, the measure ξt(dx) is absolutely continuous w.r.t. Lebesgue
measure. One can easily prove from (7.3) that the density function ξt(.) is solution
of the functional equation (7.4).

(2) The mean field case. The case of structured populations with d(x,C ∗ ξ(x)) =
d + αC ∗ ξ(x) with constant rates b, d, α is meaningful, and has been developed
in a spatial context where the kernel C describes the resources available (see for
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example [53]). In this context, (7.3) leads to the following equation on the total
mass nt = 〈ξt, 1〉:

∂tnt = (b− d)nt − α
∫
X×X

C(x− y)ξt(dx)ξt(dy). (7.5)

This equation is not closed in (nt)t and presents an unresolved hierarchy of nonlin-
earities. In the very particular case of uniform competition where C ≡ 1 (usually
called ”mean-field case”), there is a ”decorrelative” effect and we recover the clas-
sical mean-field logistic equation of population growth:

∂tnt = (b− d)nt − αn2
t .

(3) Monomorphic and dimorphic cases with no mutation. We assume here that
the mutation probability is p = 0. Without mutation, the trait space is fixed at
time 0.

(a) Monomorphic case: All the individuals have the same trait x. Thus, we
can write XK

0 = nK0 (x)δx, and then XK
t = nKt (x)δx for any time t. In this case,

Theorem 7.2 recasts into nKt (x)→ nt(x) with ξt = nt(x)δx, and (7.3) reads

d

dt
nt(x) = nt(x)

(
b(x)− d(x,C(0)nt(x))

)
, (7.6)

When d(x,C ∗ ξ(x)) = d+ αC ∗ ξ(x), we recognize the logistic equation (3.9).

(b) Dimorphic case: The population consists in two subpopulations of individuals
with traits x and y, i.e. XK

0 = nK0 (x)δx + nK0 (y)δy and when K tends to infinity,
the limit of XK

t is given by ξt = nt(x)δx + nt(y)δy satisfying (7.3), which recasts
into the following system of coupled ordinary differential equations:

d

dt
nt(x)=nt(x)

(
b(x)−d(x,C(0)nt(x)+C(x−y)nt(y))

)
d

dt
nt(y)=nt(y)

(
b(y)−d(y, C(0)nt(y)+C(y−x)nt(x))

)
.

(7.7)

When d(x,C ∗ ξ(x)) = d + αC ∗ ξ(x), we obtain the competitive Lotka-Volterra system
(6.1).

7.2 Large-population limit with accelerated births and deaths

We consider here an alternative limit of large population, combined with accelerated birth
and death. This may be useful to investigate the qualitative differences of evolutionary
dynamics across populations with allometric demographies (larger populations made up
of smaller individuals who reproduce and die faster, see [21], [25]).
Here, we assume that X = Rd. Let us denote by MF the space MF (Rd). It will be
endowed with the weak topology (the test functions are continuous and bounded). We
will also consider the vague topology (the test functions are compactly supported). We
assume that the dominant terms of the birth and death rates are proportional to Kη

while preserving the demographic balance. That is, the birth and death rates satisfy
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Assumption 7.2. There exists a bounded continuous function γ such that

bK(x) = Kηγ(x) + b(x), dK(x, ζ) = Kηγ(x) + d(x, ζ).

The functions b and d are continuous and satisfy the properties stated in Assumptions
6.1 and 7.1.

The allometric effect (smaller individuals reproduce and die faster) is parametrized by a
positive and bounded function γ and by a real number η ∈ (0, 1]. A detailed discussion of
the biological meaning of these parameters in terms of allometry and life-history can be
found in [23]. Observe that η is a parameter scaling the speed of acceleration of the birth
and death rates when K →∞ (births and deaths occur faster for larger η) and that the
individual growth rate bK − dK stays bounded from above. In other words, the timescale
of population growth is assumed to be slower than the timescale of individuals’ births
and deaths. As in Section 7.1, the interaction kernel C is renormalized by K. Using
similar arguments as in Section 7.1, the process XK = 1

K Y K is now a Markov process
with generator

LKφ(ν) = K

∫
Rd

(Kηγ(x) + b(x))(1− pK(x))(φ(ν +
1

K
δx)− φ(ν))ν(dx)

+K

∫
Rd

(Kηγ(x) + b(x))pK(x)

∫
Rd

(φ(ν +
1

K
δz)− φ(ν))mK(x, z)dzν(dx)

+K

∫
Rd

(Kηγ(x) + d(x,C ∗ ν(x)))(φ(ν − 1

K
δx)− φ(ν))ν(dx).

As before, for any measurable functions φ on MF such that |φ(ν)| + |LKφ(ν)| ≤ C(1 +
〈ν, 1〉3), the process

φ(XK
t )− φ(XK

0 )−
∫ t

0
LKφ(XK

s )ds (7.8)

is a martingale. In particular, for each measurable bounded function f , we obtain

MK,f
t = 〈XK

t , f〉 − 〈XK
0 , f〉

−
∫ t

0

∫
Rd

(b(x)− d(x,C ∗XK
s (x)))f(x)XK

s (dx)ds (7.9)

−
∫ t

0

∫
Rd
pK(x)(Kηγ(x) + b(x))

(∫
Rd
f(z)mK(x, z)dz − f(x)

)
XK
s (dx)ds

is a square integrable martingale with quadratic variation

〈MK,f 〉t =
1

K

{∫ t

0

∫
Rd

(2Kηγ(x) + b(x) + d(x,C ∗XK
s (x)))f2(x)XK

s (dx)ds

+

∫ t

0

∫
Rd
pK(x)(Kηγ(x) + b(x))

(∫
Rd
f2(z)mK(x, z)dz − f2(x)

)
XK
s (dx)ds

}
. (7.10)

In what follows, the variance of the mutation distribution mK is of order 1/Kη. That
will ensure that the deterministic part in (7.9) converges. In the large-population renor-
malization (Section 7.1), the quadratic variation of the martingale part was of order 1/K.
Here, it is of order Kη×1/K. This quadratic variation will thus stay finite provided that

49



η ∈ (0, 1], in which case tractable limits will result. Moreover, this limit will be zero if
η < 1 and nonzero if η = 1, which will lead to deterministic or random limit models, as
stated in the two following theorems.

We assume here that the mutation rate is fixed, so that mutation events appear more
often as a consequence of accelerated births. We assume

Assumption 7.3. (1) pK = p.

(2) The mutation step density mK(x, z) is the density of a random variable with mean
x, variance-covariance matrix Σ(x)/Kη (where Σ(x) = (Σij(x))1≤i,j≤d) and with
third centered moment of order 1/Kη+ε uniformly in x (ε > 0). (Thus, as K goes
to infinity, mutant traits become more concentrated around their progenitors).

(3)
√

Σ denotes the symmetric square root matrix of Σ and the function
√

Σ γ p is Lips-
chitz continuous and bounded.

The main example is when the mutation density is the vector density of independent
Gaussian variables with mean x and variance σ2(x)/Kη:

mK(x, z) =

(
Kη

2πσ2(x)

)d/2
exp

(
−Kη|z − x|2/2σ2(x)

)
(7.11)

where σ2(x) is positive and bounded over Rd.

Then the convergence results of this section can be stated as follows.

Theorem 7.4. (1) Assume that Assumptions 6.1–7.3 hold and that 0 < η < 1. Assume
also that the initial conditions XK

0 converge in law and for the weak topology on
MF as K increases, to a finite deterministic measure ξ0 and that

sup
K

E(〈XK
0 , 1〉3) < +∞. (7.12)

Then, for each T > 0, the sequence of processes (XK) belonging to D([0, T ],MF )
converges (in law) to the unique deterministic function (ξt)t≥0 ∈ C([0, T ],MF ) sat-
isfying: for each function f ∈ C2

b (Rd),

〈ξt, f〉 = 〈ξ0, f〉+

∫ t

0

∫
Rd

(b(x)− d(x,C ∗ ξs(x)))f(x)ξs(dx)ds

+

∫ t

0

∫
Rd

1

2
p(x)γ(x)

∑
1≤i,j≤d

Σij(x)∂2
ijf(x)ξs(dx)ds, (7.13)

where ∂2
ijf denotes the second-order partial derivative of f with respect to xi and

xj (x = (x1, . . . , xd)).

(2) Assume moreover that there exists c > 0 such that γ(x)p(x)s∗Σ(x)s ≥ c||s||2 for any
x and s in Rd. Then for each t > 0, the measure ξt has a density with respect to
Lebesgue measure.
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Observe that the limit (7.13) is independent of η ∈ (0, 1). As will appear in the proof,
this comes from the fact that the growth rate bK − dK is independent of η and that the
mutation kernel mK(x, z) compensates exactly the dispersion in the trait space induced
by the acceleration of the births with mutations.

Remark 7.5. In case (2), Eq. (7.13) may be written as

∂tξt(x) =
(
b(x)− d(x,C ∗ ξt(x))

)
ξt(x) +

1

2

∑
1≤i,j≤d

∂2
ij(γ pΣijξt)(x). (7.14)

Observe that for the example (7.11), this equation writes

∂tξt(x) =
(
b(x)− d(x,C ∗ ξt(x))

)
ξt(x) +

1

2
∆(σ2γ p ξt)(x). (7.15)

Therefore, Eq. (7.15) generalizes the Fisher reaction-diffusion equation known from clas-
sical population genetics (see e.g. [18]).

Theorem 7.6. Assume that Assumptions 6.1–7.3 hold and that η = 1. Assume also
that the initial conditions XK

0 converge in law and for the weak topology on MF as K
increases, to a finite (possibly random) measure X0, and that supK E(〈XK

0 , 1〉3) < +∞.
Then, for each T > 0, the sequence of processes (XK) converges in law in D([0, T ],MF ) to
the unique (in law) continuous superprocess X ∈ C([0, T ],MF ), defined by the following
equations :

sup
t∈[0,T ]

E
(
〈Xt, 1〉3

)
<∞, (7.16)

and for any f ∈ C2
b (Rd),

M̄f
t = 〈Xt, f〉 − 〈X0, f〉 −

1

2

∫ t

0

∫
Rd
p(x)γ(x)

∑
1≤i,j≤d

Σij(x)∂2
ijf(x)Xs(dx)ds

−
∫ t

0

∫
Rd
f(x) (b(x)− d(x,C ∗Xs(x)))Xs(dx)ds (7.17)

is a continuous martingale with quadratic variation

〈M̄f 〉t = 2

∫ t

0

∫
Rd
γ(x)f2(x)Xs(dx)ds. (7.18)

Remark 7.7. (1) The limiting measure-valued process X appears as a generalization of
the one proposed by Etheridge [32] to model spatially structured populations.

(2) The conditions characterizing the above process X can be formally rewritten as

∂tXt(x) =

(
b(x)− d(x,C ∗Xt(x))

)
Xt(x) +

1

2

∑
1≤i,j≤d

∂2
ij(γ pΣijXt)(x) + Ṁt

where Ṁt is a random fluctuation term, which reflects the demographic stochasticity
of this fast birth and death process, that is, faster than the accelerated birth and
death process which led to the deterministic reaction-diffusion approximation (7.15).

(3) As developed in Step 1 of the proof of Theorem 7.6 below, a Girsanov’s theorem relates
the law of Xt and the one of a standard super-Brownian motion, which leads us
to conjecture that a density for Xt exists only when d = 1, as for super-Brownian
motion.

These two theorems are illustrated by the simulations of Figs. 2 (a) and (b).
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Proof of Theorem 7.4 (1) We divide the proof in six steps. Let us fix T > 0.

Step 1 Let us first show the uniqueness of a solution of the equation (7.13).
To this aim, we define the evolution equation associated with (7.13). It is easy to prove
that if ξ is a solution of (7.13) satisfying supt∈[0,T ]〈ξt, 1〉 <∞, then for each test function

ψt(x) = ψ(t, x) ∈ C1,2
b (R+ × Rd), one has

〈ξt, ψt〉 = 〈ξ0, ψ0〉+

∫ t

0

∫
Rd

(b(x)− d(x,C ∗ ξs(x)))ψ(s, x)ξs(dx)ds

+

∫ t

0

∫
Rd

(∂sψ(s, x) +
1

2
γ(x)p(x)

∑
i,j

Σij(x)∂2
ijψs(x))ξs(dx)ds. (7.19)

Now, since the function
√

Σ γ p is Lipschitz continuous, we may define the transition

semigroup (Pt) with infinitesimal generator f 7→ γ p

2

∑
i,j

Σij∂
2
ijf . Then, for each function

f ∈ C2
b (Rd) and fixed t > 0, choosing ψs(x) = Pt−sf(x) yields

〈ξt, f〉 = 〈ξ0, Ptf〉+

∫ t

0

∫
Rd

(b(x)− d(x,C ∗ ξs(x)))Pt−sf(x)ξs(dx)ds, (7.20)

since ∂sψs(x) + 1
2γ(x)p(x)

∑
i,j Σij(x)∂2

ijψs(x) = 0 for this choice.

We now prove the uniqueness of a solution of (7.20).
Let us consider two solutions (ξt)t≥0 and (ξ̄t)t≥0 of (7.20) satisfying supt∈[0,T ]

〈
ξt + ξ̄t, 1

〉
=

AT < +∞. We consider the variation norm defined for µ1 and µ2 in MF by

||µ1 − µ2|| = sup
f∈L∞(Rd), ||f ||∞≤1

| 〈µ1 − µ2, f〉 |. (7.21)

Then, we consider some bounded and measurable function f defined on X such that
||f ||∞ ≤ 1 and obtain

|
〈
ξt − ξ̄t, f

〉
| ≤

∫ t

0

∣∣∣∣∫
Rd

[ξs(dx)− ξ̄s(dx)] (b(x)− d(x,C ∗ ξs(x)))Pt−sf(x)

∣∣∣∣ ds
+

∫ t

0

∣∣∣∣∫
Rd
ξ̄s(dx)(d(x,C ∗ ξs(x))− d(x,C ∗ ξ̄s(x)))Pt−sf(x)

∣∣∣∣ ds. (7.22)

Since ||f ||∞ ≤ 1, then ||Pt−sf ||∞ ≤ 1 and for all x ∈ Rd,

|(b(x)− d(x,C ∗ ξs(x)))Pt−sf(x)| ≤ b̄+ d̄(1 + C̄AT ).

Moreover, d is Lipschitz continuous in its second variable with Lipschitz constant Kd.
Thus we obtain from (7.22) that

|
〈
ξt − ξ̄t, f

〉
| ≤

[
b̄+ d̄(1 + C̄AT ) +KdAT C̄

] ∫ t

0
||ξs − ξ̄s||ds. (7.23)

Taking the supremum over all functions f such that ||f ||∞ ≤ 1, and using Gronwall’s
Lemma, we finally deduce that for all t ≤ T , ||ξt − ξ̄t|| = 0. Uniqueness holds.
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Step 2 Next, we would like to obtain some moment estimates. First, we check that for
any T > 0,

sup
K

sup
t∈[0,T ]

E
(
〈XK

t , 1〉3
)
<∞. (7.24)

To this end, we use (7.8) with φ(ν) = 〈ν, 1〉3. (To be completely rigorous, one should first
use φ(ν) = 〈ν, 1〉3 ∧A and let A tend to infinity). Taking expectation, we obtain that for
all t ≥ 0, all K,

E
(
〈XK

t , 1〉3
)

= E
(
〈XK

0 , 1〉3
)

+

∫ t

0
E
(∫

Rd

(
[Kη+1γ(x) +Kb(x)]

{
[〈XK

s , 1〉+
1

K
]3 − 〈XK

s , 1〉3
}

+
{
Kη+1γ(x) +Kd(x,C ∗XK

s (x))
}{

[〈XK
s , 1〉 −

1

K
]3 − 〈XK

s , 1〉3
})

XK
s (dx)

)
ds.

Dropping the non-positive death term involving d, we get

E
(
〈XK

t , 1〉3
)
≤ E

(
〈XK

0 , 1〉3
)

+

∫ t

0
E
(∫

Rd

(
Kη+1γ(x)

{
[〈XK

s , 1〉+
1

K
]3 + [〈XK

s , 1〉 −
1

K
]3 − 2〈XK

s , 1〉3
}

+Kb(x)

{
[〈XK

s , 1〉+
1

K
]3 − 〈XK

s , 1〉3
})

XK
s (dx)

)
ds.

But for all x ≥ 0, all ε ∈ (0, 1], (x+ε)3−x3 ≤ 6ε(1+x2) and |(x+ε)3+(x−ε)3−2x3| = 6ε2x.
We finally obtain

E
(
〈XK

t , 1〉3
)
≤ E

(
〈XK

0 , 1〉3
)

+ C

∫ t

0
E
(
〈XK

s , 1〉+ 〈XK
s , 1〉2 + 〈XK

s , 1〉3
)
ds.

Assumption (7.12) and Gronwall’s Lemma allow us to conclude that (7.24) holds.
Next, we wish to check that

sup
K

E
(

sup
t∈[0,T ]

〈XK
t , 1〉2

)
<∞. (7.25)

Applying (7.9) with f ≡ 1, we obtain

〈XK
t , 1〉 = 〈XK

0 , 1〉+

∫ t

0

∫
X

(
b(x)− d(x,C ∗XK

s (x))
)
XK
s (dx)ds+MK,1

t .

Hence

sup
s∈[0,t]

〈XK
s , 1〉2 ≤ C

(
〈XK

0 , 1〉2 + b̄

∫ t

0
〈XK

s , 1〉2ds+ sup
s∈[0,t]

|MK,1
s |2

)
.

Thanks to (7.12), the Doob inequality and Gronwall’s Lemma, there exists a constant Ct
not depending on K such that

E
(

sup
s∈[0,t]

〈XK
s , 1〉2

)
≤ Ct

(
1 + E

(
〈MK,1〉t

))
.

Using now (7.10), we obtain, for some other constant Ct not depending on K,

E
(
〈MK,1〉t

)
≤ C

∫ t

0

(
E
(
〈XK

s , 1〉+ 〈XK
s , 1〉2

) )
ds ≤ Ct
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thanks to (7.24). This concludes the proof of (7.25).

Step 3 We first endow MF with the vague topology, the extension to the weak topology
being handled in Step 6 below. To show the tightness of the sequence of laws QK =
L(XK) in P(D([0, T ], (MF , v))), it suffices, following Roelly [66], to show that for any
continuous bounded function f on Rd, the sequence of laws of the processes 〈XK , f〉
is tight in D([0, T ],R). To this end, we use the Aldous criterion [1] and the Rebolledo
criterion (see [47]). We have to show that

sup
K

E
(

sup
t∈[0,T ]

|〈XK
t , f〉|

)
<∞, (7.26)

and the Aldous condition respectively for the predictable quadratic variation of the mar-
tingale part and for the drift part of the semimartingales 〈XK , f〉.
Since f is bounded, (7.26) is a consequence of (7.25): let us thus consider a couple (S, S′)
of stopping times satisfying a.s. 0 ≤ S ≤ S′ ≤ S+ δ ≤ T . Using (7.10) and (7.25), we get
for constants C,C ′

E
(
〈MK,f 〉S′ − 〈MK,f 〉S

)
≤ CE

(∫ S+δ

S

(
〈XK

s , 1〉+ 〈XK
s , 1〉2

)
ds

)
≤ C ′δ.

In a similar way, the expectation of the finite variation part of 〈XK
S′ , f〉 − 〈XK

S , f〉 is
bounded by C ′δ.
Hence, the sequence (QK = L(XK)) is tight in P(D([0, T ], (MF , v))).

Step 4 We want to get a convergence result with MF endowed with the weak topology.
To this aim, as in [48] Lemmas 4.2 and 4.3, we use a sequence of functions which will
help to control the measures outside the compact sets.

Lemma 7.8. There exists a sequence (fn)n of elements of C2
b (Rd, [0, 1]) such that

fn = 0 on B(0, n− 1) ; fn = 1 on B(0, n)c,

where B(0, r) is the euclidian ball centered in 0 with radius r, which satisfies

lim
n→∞

lim sup
K→∞

E

(
sup
t≤T
〈XK

t , fn〉

)
= 0. (7.27)

We refer to [48] for the proof of Lemma 7.8.

Step 5 Let us now denote by Q the weak limit in P(D([0, T ], (MF , v))) of a subsequence
of (QK) which we also denote by (QK). LetX = (Xt)t≥0 a process with lawQ. We remark
that by construction, almost surely,

sup
t∈[0,T ]

sup
f∈L∞(Rd),||f ||∞≤1

|〈XK
t , f〉 − 〈XK

t− , f〉| ≤ 1/K.

Since, for each f in a countable measure-determining set of continuous and compactly
supported functions on R, the mapping ν 7→ supt≤T |〈νt, f〉 − 〈νt−, f〉| is continuous on
D([0, T ], (MF , v)), one deduces that Q only charges the continuous processes from [0, T ]
into (MF , v). Let us now endow MF with the weak convergence topology and check that
Q only charges the continuous processes from [0, T ] into (MF , w), and that the sequence
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(QK) in P(D([0, T ], (MF , w))) converges weakly to Q. For this purpose, we need to control
the behavior of the total mass of the measures. We employ the sequence (fn) of smooth
functions introduced in Lemma 7.8 which approximate the functions 1{|x|≥n}. For each
n ∈ N, the continuous and compactly supported functions (fn,l := fn(1− fl))l∈N increase
to fn, as l → ∞. Continuity of the mapping ν 7→ supt≤T 〈νt, fn,l〉 on D([0, T ], (MF , v)),
and its uniform integrability deduced from (7.25), imply the bound

E

(
sup
t≤T
〈Xt, fn,l〉

)
= lim

K→∞
E

(
sup
t≤T
〈XK

t , fn,l〉

)
≤ lim inf

K→∞
E

(
sup
t≤T
〈XK

t , fn〉

)
.

Taking the limit, l → ∞, in the left-hand-side, in view of the monotone convergence
theorem and respectively (7.25) and Lemma 7.8, one concludes that for n = 0,

E

(
sup
t≤T
〈Xt, 1〉

)
= E

(
sup
t≤T
〈Xt, f0〉

)
< +∞ (7.28)

and for general n,

lim
n→∞

E

(
sup
t≤T
〈Xt, fn〉

)
= 0. (7.29)

As a consequence one may extract a subsequence of the sequence (supt≤T 〈Xt, fn〉)n that
converges a.s. to 0 under Q, and the set of measures (Xt)t≤T is tight Q-a.s. Thus (Xsn)
is relatively compact for any sn → t. Moreover the unique limiting measure is Xt since
Q also only charges the continuous processes from [0, T ] into (MF , v). One deduces that
Q also only charges the continuous processes from [0, T ] into (MF , w).
According to Méléard and Roelly [61], to prove that the sequence (QK) converges weakly
to Q in P(D([0, T ], (MF , w))), it is sufficient to check that the processes (〈XK , 1〉 =

(〈XK
t , 1〉)t≤T )K converge in law to 〈X, 1〉 def

= (〈Xt, 1〉)t≤T in D([0, T ],R). For a Lipschitz
continuous and bounded function F from D([0, T ],R) to R, we have

lim sup
K→∞

|E(F (〈νK , 1〉)− F (〈X, 1〉)| ≤ lim sup
n→∞

lim sup
K→∞

|E(F (〈XK , 1〉)− F (〈XK , 1− fn〉))|

+ lim sup
n→∞

lim sup
K→∞

|E(F (〈XK , 1− fn〉)− F (〈X, 1− fn〉))|

+ lim sup
n→∞

|E(F (〈X, 1− fn〉)− F (〈X, 1〉))|.

Since |F (〈X, 1−fn〉)−F (〈X, 1〉)| ≤ C supt≤T 〈Xt, fn〉, Lemma 7.8 and (7.29) respectively
imply that the first and the third terms in the r.h.s. are equal to 0. The second term is
0 in view of the continuity of the mapping ν 7→ 〈ν, 1− fn〉 in D([0, T ], (MF , v)).

Step 6 The time T > 0 is fixed. Let us now check that almost surely, the process X
is the unique solution of (7.13). Thanks to (7.28), it satisfies supt∈[0,T ]〈Xt, 1〉 < +∞ a.s.,

for each T . We fix now a function f ∈ C3
b (Rd) (the extension of (7.13) to any function f

in C2
b is not hard) and some t ≤ T .

For ν ∈ C([0, T ],MF ), denote

Ψ1
t (ν) = 〈νt, f〉 − 〈ν0, f〉 −

∫ t

0

∫
Rd

(b(x)− d(x,C ∗ νs(x)))f(x)νs(dx)ds,

Ψ2
t (ν) = −

∫ t

0

∫
Rd

1

2
p(x)γ(x)

∑
i,j

Σij(x)∂2
ijf(x)νs(dx)ds. (7.30)
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Our aim is to show that
E
(
|Ψ1

t (X) + Ψ2
t (X)|

)
= 0, (7.31)

implying that X is solution of (7.19).
By (7.9), we know that for each K,

MK,f
t = Ψ1

t (X
K) + Ψ2,K

t (XK),

where

Ψ2,K
t (XK) = −

∫ t

0

∫
Rd
p(x)(Kηγ(x) + b(x))

×
(∫

Rd
f(z)mK(x, z)dz − f(x)

)
XK
s (dx)ds. (7.32)

Moreover, (7.25) implies that for each K,

E
(
|MK,f

t |2
)

= E
(
〈MK,f 〉t

)
≤
CfK

η

K
E
(∫ t

0

{
〈XK

s , 1〉+ 〈XK
s , 1〉2

}
ds

)
≤
Cf,TK

η

K
,

(7.33)
which goes to 0 as K tends to infinity, since 0 < η < 1. Therefore,

lim
K

E(|Ψ1
t (X

K) + Ψ2,K
t (XK)|) = 0.

Since X is a.s. strongly continuous (for the weak topology) and since f ∈ C3
b (Rd) and

thanks to the continuity of the parameters, the functions Ψ1
t and Ψ2

t are a.s. continuous
at X. Furthermore, for any ν ∈ D([0, T ],MF ),

|Ψ1
t (ν) + Ψ2

t (ν)| ≤ Cf
∫ T

0

(
1 + 〈νs, 1〉2

)
ds. (7.34)

Hence using (7.24), we see that the sequence (Ψ1
t (X

K) + Ψ2
t (X

K))K is uniformly inte-
grable, and thus

lim
K

E
(
|Ψ1

t (X
K) + Ψ2

t (X
K)|
)

= E
(
|Ψ1

t (X) + Ψ2
t (X)|

)
. (7.35)

We have now to deal with Ψ2,K
t (XK)−Ψ2

t (X
K). The convergence of this term is due to

the fact that the measure mK(x, z)dz has mean x, variance Σ(x)/Kη, and third moment
bounded by C/Kη+ε (ε > 0) uniformly in x. Indeed, if Hf(x) denotes the Hessian matrix
of f at x,∫

Rd
f(z)mK(x, z)dz

=

∫
Rd

(
f(x) + (z − x) · ∇f(x) +

1

2
(z − x)∗Hf(x)(z − x) +O((z − x)3)

)
mK(x, z)dz

= f(x) +
1

2

∑
i,j

Σij(x)

Kη
∂2
ijf(x) + o(

1

Kη
). (7.36)

56



where Kηo( 1
Kη ) tends to 0 uniformly in x (since f is in C3

b ), as K tends to infinity. Then,

Ψ2,K
t (XK) = −

∫ t

0

∫
Rd
p(x)(Kηγ(x) + b(x))×

×
(

1

2

∑
i,j

Σij(x)

Kη
∂2
ijf(x) + o(

1

Kη
)

)
XK
s (dx)ds,

and

|Ψ2,K
t (XK)−Ψ2

t (X
K)| ≤ Cf

(
sup
s≤T

< XK
s , 1 >

)( 1

Kη
+Kηo(

1

Kη
)

)
.

Using (7.25), we conclude the proof of (7.31) and Theorem 7.4 (1).

Let us now prove the point (2). The non-degeneracy property γ(x)p(x)s∗Σ(x)s ≥ c‖s‖2
for each x, s ∈ Rd implies that for each time t > 0, the transition semigroup Pt(x, dy)
introduced in Step 1 of this proof has for each x a density function pt(x, y) with respect
to Lebesgue measure. Then if we come back to the evolution equation (7.20), we can
write∫

Rd
f(x)ξt(dx) =

∫
Rd

(∫
Rd
f(y)pt(x, y)dy

)
ξ0(dx)

+

∫ t

0

∫
Rd

(b(x)− d(x,C ∗ ξs(x)))

(∫
Rd
f(y)pt−s(x, y)dy

)
ξs(dx)ds.

Using the fact that the parameters are bounded, that supt≤T 〈ξt, 1〉 < +∞ and that f
is bounded, we can apply Fubini’s theorem and deduce that∫

Rd
f(x)ξt(dx) =

∫
Rd
Ht(y)f(y)dy

with H ∈ L∞([0, T ], L1(Rd)), which implies that ξt has a density with respect to Lebesgue
measure for each time t ≤ T .
Equation (7.14) is then the dual form of (7.13). �

Proof of Theorem 7.6 We use a similar method as the one of the previous theorem.
Steps 2, 3, 4 and 6 of this proof can be achieved exactly in the same way. Therefore,
we only have to prove the uniqueness (in law) of the solution to the martingale prob-
lem (7.16)–(7.18) (Step 1), and that any accumulation point of the sequence of laws of
XK is solution to (7.16)–(7.18) (Step 6).

Step 1 This uniqueness result is well-known for the super-Brownian process (defined
by a similar martingale problem, but with b = d = 0, γ = p = 1 and Σ = Id, cf. [66]).
Following [32], we may use the version of Dawson’s Girsanov transform obtained in Evans
and Perkins [34] (Theorem 2.3), to deduce the uniqueness in our situation, provided the
condition

E
(∫ t

0

∫
Rd

[b(x)− d(x,C ∗Xs(x))]2Xs(dx)ds

)
< +∞

is satisfied. This is easily obtained from the assumption that supt∈[0,T ] E[〈Xt, 1〉3] < ∞
since the coefficients are bounded.
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Step 6 Let us now identify the limit. Let us call QK = L(XK) and denote by Q
a limiting value of the tight sequence QK , and by X = (Xt)t≥0 a process with law
Q. Because of Step 5, X belongs a.s. to C([0, T ], (MF , w)). We want to show that X
satisfies the conditions (7.16), (7.17) and (7.18). First note that (7.16) is straightforward

from (7.25). Then, we show that for any function f in C3
b (Rd), the process M̄f

t defined
by (7.17) is a martingale (the extension to every function in C2

b is not hard). We consider
0 ≤ s1 ≤ ... ≤ sn < s < t, some continuous bounded maps φ1, ...φn on MF , and our aim
is to prove that, if the function Ψ from D([0, T ],MF ) into R is defined by

Ψ(ν) = φ1(νs1)...φn(νsn)
{
〈νt, f〉 − 〈νs, f〉

−
∫ t

s

∫
Rd

(
1

2
p(x)γ(x)

∑
i,j

Σij∂
2
ijf(x) + f(x) [b(x)− d(x,C ∗ νu(x))]

)
νu(dx)du

}
, (7.37)

then
E (|Ψ(X)|) = 0. (7.38)

It follows from (7.9) that

0 = E
(
φ1(XK

s1 )...φn(XK
sn)
{
MK,f
t −MK,f

s

})
= E

(
Ψ(XK)

)
−AK , (7.39)

where AK is defined by

AK = E
(
φ1(XK

s1 )...φn(XK
sn)

∫ t

s

∫
Rd
p(x)

{
b(x)

[∫
Rd

(f(z)− f(x))mK(x, z)dz
]

+ γ(x)K
[∫

Rd
(f(z)− f(x)−

∑
i,j

Σij(x)

2K
∂2
ijf(x))mK(x, z)dz

]}
XK
u (dx)du

)
.

Using (7.36), we see that AK tends to zero as K grows to infinity and using (7.25), that
the sequence (|Ψ(XK)|)K is uniformly integrable, so

lim
K

E
(
|Ψ(XK)|

)
= E (|Ψ(X)|) . (7.40)

Collecting the previous results allows us to conclude that (7.38) holds, and thus M̄f is a
martingale.
We finally have to show that the bracket of M̄f is given by (7.18). To this end, we first
check that

N̄f
t = 〈Xt, f〉2 − 〈X0, f〉2 −

∫ t

0

∫
Rd

2γ(x)f2(x)Xs(dx)ds

− 2

∫ t

0
〈Xs, f〉

∫
Rd
f(x) [b(x)− d(x,C ∗Xs(x))]Xs(dx)ds

−
∫ t

0
〈Xs, f〉

∫
Rd
p(x)γ(x)

∑
i,j

Σij(x)∂2
ijf(x)Xs(dx)ds (7.41)

is a martingale. This can be done exactly as for M̄f
t , using the semimartingale decompo-

sition of 〈XK
t , f〉2, given by (7.8) with φ(ν) = 〈ν, f〉2. On the other hand, Itô’s formula

58



implies that

〈Xt, f〉2 − 〈X0, f〉2 − 〈M̄f 〉t −
∫ t

0
〈Xs, f〉

∫
Rd
γ(x)p(x)

∑
i,j

Σij(x)∂2
ijf(x)Xs(dx)ds

− 2

∫ t

0
〈Xs, f〉

∫
Rd
f(x)

[
b(x)− d(x,C ∗Xs(x))

]
Xs(dx)ds

is a martingale. Comparing this formula with (7.41), we obtain (7.18). �

8 Splitting Feller Diffusion for Cell Division with Parasite
Infection

We now deal with a continuous time model for dividing cells which are infected by para-
sites. We assume that parasites proliferate in the cells and that their life times are much
shorter than the cell life times. The quantity of parasites (Xt : t ≥ 0) in a cell is modeled
by a Feller diffusion (See Sections 3 and 4.1). The cells divide in continuous time at
rate τ(x) which may depend on the quantity of parasites x that they contain. When a
cell divides, a random fraction F of the parasites goes in the first daughter cell and a
fraction (1 − F ) in the second one. More generally, splitting Feller diffusion may model
the quantity of some biological content which grows (without ressource limitation) in the
cells and is shared randomly when the cells divide (for example proteins, nutriments,
energy or extrachromosomal rDNA circles in yeast).

Let us give some details about the biological motivations. The modeling of parasites
sharing is inspired by experiments conducted in Tamara’s Laboratory where bacteria
E-Coli have been infected with bacteriophages. These experiments show that a heavily
infected cell often shares in a heavily infected cell and a lightly infected cell. Thus we are
interested in taking into account unequal parasite splitting and we do not make restrictive
(symmetry) assumptions about the sharing of parasites. We aim at quantifying the role
of asymmetry in the infection. Without loss of generality, we assume that F is distributed
as 1 − F and we say that the sharing is asymmetric when its distribution is not closely
concentrated around 1/2.
This splitting diffusion is a ”branching within branching” process, in the same vein as the
multilevel model for plasmids considered by Kimmel [52]. In the latter model, the cells
divide in continuous time at a constant rate and the number of parasites is a discrete
quantity which is fixed at the birth of the cell: the parasites reproduce ’only when the
cells divide’. Moreover the parasites sharing is symmetric.

Let us first describe briefly our process. We denote by I := ∪n≥0{1, 2}n the usual labeling
of a binary tree and by n(di) the counting measure on I. We define Vt ⊂ I as the set of
cells alive at time t and Nt the number of cells alive at time t: Nt = #Vt. For i ∈ Vt, we
denote by Xi

t ∈ R+ the quantity of parasites in the cell i at time t.
The population of cells at time t including their parasite loads is modeled by the random
point measure on R+ :

Zt(dx) =
∑
i∈Vt

δXi
t
(dx), (8.1)

and the dynamics of Z is described as follows.
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1. A cell with load x of parasites divides into two daughters at rate τ(x), where for
some p ≥ 1 and any x ≥ 0, τ(x) ≤ τ̄(1 + xp).

2. During the division, the parasites are shared between the two daughters: Fx para-
sites in one cell (chosen at random) and (1− F )x.

3. Between two divisions, the quantity of parasites in a cell follows a Feller diffusion
process (see (3.12)), with diffusion coefficient

√
2γx and drift coefficient rx, r and

γ being two real numbers, γ > 0.

Let us give a pathwise representation of the Markov process (Zt, t ≥ 0). Let (Bi, i ∈
I) be a family of independent Brownian motions (BMs) and let N(ds, du, di, dθ) be a
Poisson point measure (PPM) on R+ × R+ × I × [0, 1] with intensity q(ds, dv, di, dθ) =
ds dv n(di)P(F ∈ dθ) independent of the BMs. We denote by (Ft : t ≥ 0) the canonical
filtration associated with the BMs and the PPM. Then, for every (t, x) 7→ f(t, x) ∈
C1,2
b (R+ × R+,R) (the space of bounded functions of class C1 in t and C2 in x with

bounded derivatives),

〈Zt, f〉 =f(0, x0) +

∫ t

0

∫
R+

(
∂sf(s, x) + rx∂xf(s, x) + γx∂2

xxf(s, x)
)
Zs(dx) ds

+Mf
t +

∫ t

0

∫
R+×I×[0,1]

1li∈Vs− , u≤τ(Xi
s− )

(
f(s, θXi

s−)

+ f(s, (1− θ)Xi
s−)− f(s,Xi

s−)
)
N(ds, du, di, dθ), (8.2)

where x0 is the load of parasites in the ancestor cell ∅ at t = 0 and

Mf
t =

∫ t

0

∑
i∈Vs

√
2γXi

s∂xf(s,Xi
s)dB

i
s (8.3)

is a continuous square integrable martingale with quadratic variation:

〈Mf 〉t =

∫ t

0

∫
R+

2γx(∂xf(s, x))2 dsZs(dx). (8.4)

Remark 8.1. The existence and uniqueness of a solution of (8.2) are obtained from an
adaptation of Subsection 5.3. See also the next subsection for an approximation proof of
the existence and [5] for details.
Notice that between two jumps, 〈Zt, f〉 =

∑
i∈Vt f(Xi

t) and Itô’s formula explains the
second and third terms of (8.2). The fourth term (driven by the PPM) models the
division events with the random sharing of parasites.

Proposition 8.2. The total quantity of parasites Xt =
∫
R+
xZt(dx) is a Feller diffusion

(defined in (3.12)) with drift rx and diffusion coefficient
√

2γx starting from x0. As a
consequence,

∀t ∈ R+, Ex0(Xt) = x0e
rt < +∞ , Px0(∃t ≥ 0 : Xt = 0) = exp(−rx0/γ). (8.5)

Proof. We remark that Xt can be written Xt = x0 +
∫ t

0 rXsds+Mt where M is a continu-

ous square integrable martingale with quadratic variation
∫ t

0 2γXsds. The representation
theorem explained in the proof of Theorem 3.2 allows us to conclude. The properties
(8.5) follow by classical arguments.
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8.1 Approximation by scaling limit

Inspired by the previous sections, we are looking for discrete approximations of the con-
tinuous model defined in (8.2), where each cell hosts a discrete parasite population. Let
us introduce, as previously, the scaling parameter K. Let us describe the approximating
model. The initial cell contains [Kx0] parasites. The parasites reproduce asexually with
the individual birth and death rates Kγ+λ, Kγ+µ, where λ, µ > 0 satisfy λ−µ = r > 0.
The cell population is fully described by the point measure

Z̄Kt (du, dx) =
∑
i∈Vt

δ
(i,XK,i

t )
(du, dx)

where XK,i
t is the number of parasites renormalized by K in the cell i at time t. This

representation allows to keep a record of the underlying genealogy, which is useful in
the forthcoming proofs. It also provides a closed equation to characterize the process Z̄
(and derive Z). Notice that an alternative representation has been given in Section 7 by
ordering the atoms XK,i

t for i ∈ Vt.

Let N0 and N1 be two independent PPMs on R+ ×X0 := R+ × I×R+ and R+ ×X1 :=
R+ × I × R+ × [0, 1] with intensity measures dsn(di)du and ds n(di)duP(F ∈ dθ). We
associate N1 to to the births and deaths of parasites, while N2 corresponds to the cell
divisions. The discrete space process is the unique strong solution of

Z̄Kt = δ(∅,[Kx0]/K) (8.6)

+

∫ t

0

∫
X0

N0(ds, di, du)1li∈Vs−

[(
δ

(i,XK,i
s− +1/K)

− δ
(i,XK,i

s− )

)
1l
u≤λKXK,i

s−

+
(
δ

(i,XK,i
s− −1/K)

− δ
(i,XK,i

s− )

)
1l
λKX

K,i
s− <u≤(λK+µK)XK,i

s−

]
.

+

∫ t

0

∫
X1

N1(ds, di, du, dθ)1li∈Vs−1l
u≤τ(XK,i

s− )

(
δ

(i1,[θKXK,i
s− ]/K)

+ δ
(i2,XK,i

s− −[θKXK,i
s− ]/K)

− δ
(i,XK,i

s− )

)
,

where we set λK = K(λ + Kγ), µK = K(µ + Kγ). We recall from Sections 4.5 and
5.1 that other discrete models would lead to the same continuous limiting object. For
example, the parasites could be shared following a binomial distribution whose parameter
is picked according to P(F ∈ dθ).
Proposition 8.3. Assume that there exists an integer p ≥ 1 and a positive τ̄ > 0 such
that for all x ∈ R+, 0 ≤ τ(x) ≤ τ̄(1 + xp). Then, the sequence (ZK : n ∈ N∗) defined in
(8.6) converges in distribution in D(R+,MF (R+)) as K → +∞ to the process Z defined
in (8.2)-(8.4).

The proof can be found in the Appendix of [5]. It follows the scheme of proof developed
in the previous section, namely control of the moments and tightness and identification
of the limit via the martingale problem for < Z̄Kt , f >. The additional regularities on
the division rate τ are required to control the difference between the microscopic process
(8.6) and its approximation (8.2)-(8.4).

Exercise. Write the measure-valued equation which characterizes the limiting process
Z̄t(du, dx) =

∑
i∈Vt δ(i,Xi

t)
(du, dx).
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8.2 Recovery criterion when the division rate is constant

We now consider the case where the infection does not influence the division rate and
τ(.) = τ . We say that the organism recovers when the proportion of infected cells becomes
negligible compared to the population of cells.

Theorem 8.4. (i) If r ≤ 2τE(log(1/F )), then the organism recovers a.s.:

lim
t→+∞

#{i ∈ Vt : Xi
t > 0}

Nt
= 0 a.s.

(ii) If r > 2τE(log(1/F )) then the parasites proliferate in the cells as soon as the parasites
do not become extinct in the sense that{

lim sup
t→+∞

#{i ∈ Vt : Xi
t ≥ eκt}

Nt
> 0
}

= {∀t > 0 : Xt > 0} a.s. (8.7)

for every κ < r − 2τE(log(1/Θ)). The probability of this event is 1− exp(−rx0/γ).

The factor 2 in the criterion comes from a bias phenomenon in continuous time. It
appears in the following result shedding light on an auxiliary Markov process, namely
the infection process X with catastrophes occurring at the accelerated rate 2τ . This
factor 2 ’increases the probability of recovery’ in the sense that the amount of parasites
in a random cell lineage (which can be obtained by keeping one cell at random at each
division) may go to infinity with positive probability whereas the organism recovers a.s.

Since the division rate is constant, the process (Nt, t ≥ 0) is a simple linear (branching)
birth process (called Yule process). Then E(Nt) = exp(τt) and we define

γt(dx) := E(Zt(dx))/E(Nt) = e−τtE(Zt(dx)).

The evolution of γt is given by the following result.

Lemma 8.5. The family of probability measures (γt, t ≥ 0) is the unique solution of the
following equation: for f ∈ C1,2

b (R2
+,R) and t ∈ R+ (and ft(.) = f(t, .)):

〈νt, ft〉 = f0(x0) +

∫ t

0

∫
R+

(
∂sfs(x) + rx∂xfs(x) + γx∂2

xxfs(x)
)
νs(dx)ds.

+ 2τ

∫ t

0

∫
R+

∫ 1

0
[fs(θx)− fs(x)]P(F ∈ dθ)νs(dx)ds (8.8)

Proof of Lemma 8.5. Let t ∈ R+ and (f : (s, x) 7→ fs(x)) ∈ C1,2
b (R2

+,R). Using (8.2)
with (s, x) 7→ fs(x)e−τs entails:

〈e−τtZt(dx), ft〉 = 〈Zt(dx), e−τtft〉

= f0(x0) +

∫ t

0

∫
R+

(
rx∂xfs(x) + γx∂2

xxfs(x)− τfs(x) + ∂sfs(x)
)
e−τsZs(dx) ds

+

∫ t

0

∫
R+×I×[0,1]

1li∈Vs−1lu≤τ

[
fs(θX

i
s−) + fs((1− θ)Xi

s−)− fs(Xi
s−)
]
e−τsN(ds, du, di, dθ)

+Mf
t
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where Mf
t is a continuous square integrable martingale started at 0. Taking the expec-

tation and using the symmetry of the distribution of F with respect to 1/2:

〈γt, ft〉 =f0(x0) +

∫ t

0

∫ (
rx ∂xfs(x) + γx ∂2

xxfs(x) + ∂sfs(x)
)
γs(dx)ds

+

∫ t

0

∫
R+×[0,1]

2τ [fs(θx)− fs(x)]P(F ∈ dθ)γs(dx)ds. (8.9)

Let us prove that there is a unique solution to (8.8). We follow Step 1 of the proof of
Theorem 7.4 and let (ν1

t , t ≥ 0) and (ν2
t , t ≥ 0) be two probability measures solution of

(8.8). The total variation distance between ν1
t and ν2

t is

‖ν1
t − ν2

t ‖TV = sup
φ∈Cb(R+,R)
‖φ‖∞≤1

|〈ν1
t , φ〉 − 〈ν2

t , φ〉|. (8.10)

Let t ∈ R+ and ϕ ∈ C2
b (R+,R) with ‖ϕ‖∞ ≤ 1. We denote by (Ps : s ≥ 0) the semi-group

associated with the Feller diffusion started at x ∈ R+: Psϕ(x) = Ex(ϕ(Xs)). Notice that
‖Pt−sϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1. By (8.9) with fs(x) = Pt−sϕ(x), the first term equals 0 and

∣∣〈ν1
t − ν2

t , ϕ〉
∣∣ =

∣∣∣∣2τ ∫ t

0

∫
R+

∫ 1

0

(
Pt−sϕ(θx)− Pt−sϕ(x)

)
P(F ∈ dθ)(ν1

s − ν2
s )(dx) ds

∣∣∣∣
≤4τ

∫ t

0
‖ν1
s − ν2

s‖TV ds.

Since C2
b (R+,R) is dense in Cb(R+,R) for the bounded pointwise topology, taking the

supremum in the l.h.s. implies that: ‖ν1
t − ν2

t ‖TV ≤ 4τ
∫ t

0 ‖ν
1
s − ν2

s‖TV ds. Gronwall’s
Lemma ensures that ‖ν1

t − ν2
t ‖TV = 0, which ends up the proof.

We can then interpret γt as the marginal distribution (at time t) of an auxiliary process
(Yt, t ≥ 0).

Proposition 8.6. For all f ∈ C2
b (R+,R) and t ∈ R+,

〈γt, f〉 = e−τtE
(∑
i∈Vt

f(Xi
t)
)

= E(f(Yt)), (8.11)

where (Yt, t ≥ 0) is a Feller branching diffusion with parameters (r, γ) and catastrophes
with rate 2τ and distribution given by F . Moreover,

E
(
#{i ∈ Vt : Xi

t > 0}
)

= eτtP(Yt > 0). (8.12)

Proof. One can describe the dynamics of t→ νt(ft) where νt(dx) = P(Yt ∈ dx) thanks to
Itô’s formula and check that it satisfies (8.8). Uniqueness of the solution of this equation
yields (8.11). We can then apply (8.11) with f(x) = 1lx>0 by taking a monotone limit of
C2
b functions to get (8.12).
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Proof of Theorem 8.4. Let us first prove the convergence in probability in (i). We denote
by V ∗t = {i ∈ Vt : Xi

t > 0} the set of infected cells and by N∗t = #V ∗t its cardinality.
By Theorem 5.2, under the assumption of (i), (Yt, t ≥ 0) dies in finite time a.s. Thus,
Proposition 8.6 ensures that N∗t / exp(τt) converges in L1 and hence in probability to 0.
Moreover the nonnegative martingale Nt/ exp(τt) tends a.s. to a nonnegative random
variable W . In addition, the L2-convergence can be easily obtained and is left to the
reader. Therefore, P(W > 0) > 0 and then W > 0 a.s. using the branching property and
P(∀t > 0 : Nt > 0) = 1. One could actually even show that W is an exponential random
variable with mean 1. Then

lim
t→+∞

N∗t
Nt

= lim
t→+∞

N∗t
eτt

eτt

Nt
= 0 in probability. (8.13)

It remains to show that the convergence holds a.s, which is achieved by checking that

sup
s≥0

N∗t+s/Nt+s
t→∞−→ 0 in probability. (8.14)

Indeed, let us denote by Vt,s(i) the set of cells alive at time t+ s and whose ancestor at
time t is the cell i ∈ Vt. Then (#Vt,s(i), s ≥ 0) are i.i.d. random processes for i ∈ Vt
distributed as (Ns, s ≥ 0). We have

N∗t+s ≤
∑
i∈V ∗t

#Vt,s(i) ≤ eτs
∑
i∈V ∗t

Mt(i) a.s.

where Mt(i) are i.i.d random variables distributed like M := sup{e−τsNs, s ≥ 0}. Simi-
larly,

Nt+s ≥
∑
i∈Vt

#Vt,s(i) ≥ eτs
∑
i∈Vt

It(i) a.s.,

where It(i) are i.i.d. random variables distributed like I := inf{e−τsNs, s ≥ 0}. We add
that E(M) <∞ since the martingale e−τsNs is bounded in L2. Moreover E(I) ∈ (0,∞)
so that

N∗−1
t

∑
i∈V ∗t

Mt(i)

N−1
t

∑
i∈Vt It(i)

is stochastically bounded (or tight) for t ≥ 0. Using that N∗t /Nt → 0 when t → +∞ in
probability yields (8.14). This ensures the a.s. convergence of Rt = N∗t /Nt to 0, using
that P(lim supt→∞Rt ≥ ε) ≤ limt→∞ P(sups≥0Rt+s ≥ ε) = 0.

The proof of (ii) is similar. One can first note thanks to Section 5.2 that P(Yt ≥ exp(κt))
has a positive limit and prove that{

lim sup
t→+∞

#{i ∈ Vt : Xi
t ≥ eκt}

Nt
> 0

}
has a positive probability. To check that this latter event coincides with {∀t > 0 :
Xt > 0}, a zero-one law is involved, which is inherited from the branching property by a
standard argument.
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Figure 3: Asymptotic regimes for the mean number of infected cells when P(F = θ) =
P(F = 1− θ) = 1/2 and θ ∈ (0, 1).

Asymptotic regimes for the speed of infection. Combining Theorem 5.5 and
Proposition 8.11 yield different asymptotic regimes for the mean number of infected cells
E(N∗t ). They are plotted in Figure 3 when the sharing of parasites is deterministic. We
stress that it differs from the discrete analogous model [4]. In the supercritical regime,
the number of infected cells and the number of cells are of the same order. In the strongly
subcritical regime, the number of infected cells and the parasite loads are of the same or-
der. In the weakly subcritical regime, the number of infected cells is negligible compared
to the number of cells and the amount of parasites.

8.3 Some first results for a monotonic rate of division

The asymptotic study of such processes with a non constant rate of division is the object
of recent works (see [26, 28, 10] and works in progress). Let us simply mention some
relevant consequences of the previous results for non-decreasing rate τ .

8.3.1 A sufficient condition for recovery

We assume either that τ is non-decreasing and there exists x1 > 0 such that τ(x1) < τ(0)
or that τ(0) > τ(x) for any x > 0. The second case means that the non-infected cells
divide faster than the infected ones. Let us recall from Proposition 5.6 in Section 5.3 the
notation

τ∗ := inf{τ(x) : x ≥ 0}.

Proposition 8.7. If r ≤ τ∗E(log 1/(min(F, 1− F ))), the organism recovers a.s.

We only give the idea of the proof and refer to [5] for more details. Let us follow a cell
lineage by starting from the initial cell and choosing the less infected cell at each division.
The infection along this lineage is a Feller diffusion with catastrophes whose distribution
is min(F, 1 − F ) and the catastrophe rate is τ . We know from Section 5.3 when the
infection in such a cell line becomes extinct a.s. Then one uses that the population of
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non-infected cells is growing faster than the population of cells infected by more than x1

parasites.

8.3.2 An example of moderate infection

We assume here that τ(x) is an increasing function of the parasite load. This means that
the more the cell is infected, the faster it divides. Low infected cells divide slower and may
even stop dividing if τ(0) = 0. That’s why a new regime appears here, between recovery
and proliferation of the parasites, where a positive fraction of cells is infected but the
quantity of parasites inside remains bounded. We then say that the infection is moderate.
Let us provide an example where the infection is indeed moderate: the organism does
not recover but the parasites do not proliferate in the cells.

F = 1/2 a.s., τ(x) = 0 if x < 2 and τ(x) =∞ if x ≥ 2.

Indeed, as soon as the quantity of parasites in a cell reaches 2, the cell divides and
the quantity of parasites in each daughter cell is equal to one. The parasites do not
proliferate in the cells since the parasite load in each cell is less than 2.
We now fix the growth rate of parasites r such that the probability that the Feller
diffusion (Xt, t ≥ 0) reaches 0 before 2 is strictly less than 1/2. Then the number of
infected cells follows a supercritical branching process and grows exponentially with
positive probability. Conditionally on this event, the proportion of infected cells doesn’t
tend to zero since the non-infected cells do not divide. Thus the organism doesn’t recover.

9 Markov Processes along Continuous Time Galton-
Watson Trees

In this section, we consider measure-valued processes associated with a discrete genealogy
given by a branching process. These processes describe a structured population where
individuals are characterized by a trait. We focus on the case where the branching rate
is constant and the number of offspring belongs to N. During the life of an individual, its
trait dynamics is modeled by a general Markov process. More precisely, the individuals
behave independently and

1. Each individual lives during an independent exponential time of parameter τ and
then gives birth to a random number of offspring whose distribution is given by
(pk, k ≥ 0).

2. Between two branching events, the trait dynamics of an individual follows a càdlàg
strong Markov process (Xt)t≥0 with values in a Polish space X and infinitesimal
generator L with domain D(L). Here again, we can assume that X ⊂ Rd.

3. When an individual with trait x dies, the distribution of the traits of its offspring
is given by (P (k)(x, dx1, . . . , dxk) : k ≥ 1), where k is the number of offspring.

Let us note that an individual may die without descendance when p0 > 0. Moreover, when
X is a Feller diffusion and p2 = 1, we recover the splitting Feller diffusion of Section 8. In
the general case, the process X is no longer a branching process and the key property for
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the long time study of the measure-valued process will be the ergodicity of a well chosen
auxiliary Markov process.

A vast literature can be found concerning branching Markov processes and special atten-
tion has been payed to Branching Brownian Motion from the pioneering work of Biggins
[11] about branching random walks, see e.g. [31, 67] and references therein. More re-
cently, non-local branching events (with jumps occurring at the branching times) and
superprocesses limits corresponding to small and rapidly branching particles have been
considered and we refer e.g. to the works of Dawson et al. and Dynkin [29].

9.1 Continuous Time Galton-Watson Genealogy

The genealogy of the population is a branching process with reproduction at rate τ
and offspring distribution given by (pk, k ≥ 0). We assume that the population arises
from a single ancestor {∅}. Roughly speaking, the genealogy is obtained by adding i.i.d.
exponential life lengths (with parameter τ) to a (discrete) Galton-Watson tree. Let us
give some details on this construction, which will be useful in the sequel. We define
I := {∅} ∪

⋃
n≥1(N∗)n, which we endow with the order relation � : u � v if there exists

w ∈ I such that v = (u,w). For example, the individual (2, 3, 4) is the fourth child of
the third child of the second child of the root ∅. We denote by (A(i), i ∈ I) i.i.d. random
variables with distribution p. The discrete genealogy I is the random subset of I obtained
by keeping the individuals which are indeed born:

I := ∪q≥0{(i1, . . . , iq) : ∀k = 1, . . . , q, ik ≤ A((i1, . . . , ik−1))},

where by convention the first set in the right hand side is {∅}. We consider now a sequence
(li, i ∈ I) of exponential random variables, so that li is the life time of the individual i ∈ I
and

α(i) =
∑
j≺i

lj and β(i) =
∑
j�i

lj = α(i) + li, (9.1)

with the convention α(∅) = 0, are the birth and death times of i ∈ I. We assume that
the offspring distribution p has a finite second moment and that

m =
∑
k≥0

k pk > 1 (supercriticality).

Let us denote by Vt ⊂ I the set of individuals alive at time t :

Vt := {i ∈ I : α(i) ≤ t < β(i)}, and as before Nt = #Vt.

The supercriticality assumption on the reproduction law implies the possible persistence
of the process.

Proposition 9.1. The population size process (Nt, t ≥ 0) survives with positive probabil-
ity. Moreover, for any t ≥ 0,

E(Nt) = exp(τ(m− 1)t) (9.2)

and
Nt

E(Nt)

t→∞−→ W a.s. and in L2,

where W ∈ R+ is positive on the survival event.
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The proof uses the generator of N and the martingale Nt/E(Nt). It is left to the reader.

The continuous time Galton-Watson genealogy T is defined as the (random) subset of
I × R+ such that (i, t) ∈ T if and only if i ∈ Vt.

We define now the branching Markov process along this genealogy T . We use the shift
operator θ for such trees and θ(i,t)T is the subtree of T rooted in (i, t).

Definition 9.2. Let X = (Xt, t ≥ 0) be a càdlàg X -valued strong Markov process and
µ ∈ P(X ). Let (P (k)(x, dx1 . . . dxk), k ≥ 1) be a family of transitions probabilities from
X to X k.
The continuous time branching Markov process XT = (Xi

t , (i, t) ∈ T ) indexed by T , the
underlying trait dynamics X and starting distribution µ, is defined conditionally on T
recursively as follows:

(i) X∅ = (X∅t , t ∈ [0, β(∅))) is distributed as (Xt, t ∈ [0, β(∅))) with X0 distributed
according µ.

(ii) Conditionally on X∅, the initial traits of the first generation of offspring (Xi
α(i), 1 ≤

i ≤ A(∅)) are distributed as P (A(∅))(x, dx1 . . . dxA(∅)).

(iii) Conditionally on X∅, A(∅), β∅ and (Xi
α(i), 1 ≤ i ≤ A(∅)), the tree-indexed Markov

processes (Xij
α(i)+t, (j, t) ∈ θ(i,α(i))T ) for 1 ≤ i ≤ A(∅) are independent and respec-

tively distributed as X with starting distribution δXi
α(i)

.

There is no spatial structure on the genealogical tree and without loss of generality, we
assume that the marginal measures of P (k)(x, dx1 . . . dxk) are identical. It can be achieved
simply by a uniform permutation of the traits of the offspring.

Following the previous sections, we give a pathwise representation of the point measure-
valued process defined at time t by

Zt =
∑
i∈Vt

δXi
t
. (9.3)

The dynamics of Z is given by the following stochastic differential equation. Let
N(ds, di, dk, dθ) be a Poisson point measure on R+ × I × N × [0, 1] with intensity
τdsn(di)p(dk)dθ where n(di) is the counting measure on I and p(dk) =

∑
l∈N plδl(dk)

is the offspring distribution. Let L be the infinitesimal generator of X. Then for test
functions f : (t, x) 7→ ft(x) in C1,0

b (R+ ×X ,R) such that ∀t ∈ R+, ft ∈ D(L), we have

〈Zt, ft〉 =f0(X∅0 ) +

∫ t

0

∫
R+

(Lfs(x) + ∂sfs(x)) dsZs(dx) +Mf
t (9.4)

+

∫ t

0

∫
I×N×[0,1]

1{i∈Vs−}

 k∑
j=1

fs(F
(k)
j (Xi

s− , θ))− fs(X
i
s−)

N(ds, di, dk, dθ),

where Mf
t is a martingale and (F

(k)
j (x,Θ) : j = 1 . . . k) is a random vector distributed

like P (k)(x, dx1 . . . dxk) when Θ is uniform in [0, 1].
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9.2 Long time behavior

We are now interested in studying the long time behavior of the branching Markov process
Z. We will show that it is deduced from the knowledge of the long time behavior of a
well-chosen one-dimensional auxiliary Markov process. In particular, the irreducibility of
the auxiliary process will give a sufficient condition in the applications, to obtain a limit
as time goes to infinity.

Let us recall from Proposition 9.1 that the expectation at time t and the long time
behavior of the population size process N are known.

9.2.1 Many-to-one formula

We introduce the auxiliary Markov process Y with infinitesimal generator given by

Af(x) = Lf(x) + τm

∫
X

(
f(y)− f(x)

)
Q(x, dy)

for f ∈ D(L) and

Q(x, dy) :=
1

m

∑
k≥0

kpkP
(k)(x, dyX k−1).

In words, Y follows the dynamics of X with additional jumps at rate τm whose distribu-
tion is given by the size biased transition probability measure Q.

Proposition 9.3. For t ≥ 0 and for any non-negative measurable function f ∈
B(D([0, t],X )) and t ≥ 0, we have

Eµ

(∑
i∈Vt

f(Xi
s, s ≤ t)

)
= E(Nt)Eµ(f(Ys, s ≤ t)) = eτ(m−1)t Eµ(f(Ys, s ≤ t)), (9.5)

where (with a slight abuse) Xi
s is the trait of the ancestor of i ∈ Vt living at time s.

To prove such a formula in the particular case f(xs, s ≤ t) = f(xt), one can use Itô’s
calculus and follow Section 8.2 and conclude with a monotone class argument. Here we
prove the general statement using the following Girsanov type formula. In the rest of
this section, the random jumps T̃k and Tk of the Poisson point processes on R+ that we
consider, are ranked in increasing order.

Lemma 9.4. Let {(T̃k, Ãk) : k ≥ 0} be a Poisson point process with intensity τmds p̃(dk)
on R+ × N, where

p̃({k}) = kpk/m.

Then, for any t ≥ 0 and q ≥ 0 and any non-negative measurable function g on (R+ ×
N)q+1:

E
(
g((T̃k, Ãk) : k ≤ q)1l

T̃q≤t<T̃q+1

)
= e−τ(m−1)t E

g((Tk, Ak) : k ≤ q)1{Tq≤t<Tq+1}
∏
k≤q

Ak

 ,

69



where {(Tk, Ak) : k ≥ 0} is a Poisson point process on R+ × N with intensity τ ds p(dk).
Thus, for any measurable non-negative function h,

E
(
h((T̃k, Ãk) : k ≥ 0, T̃k ≤ t)

)
= e−τ(m−1)t E

h((Tk, Ak) : k ≥ 0, Tk ≤ t)
∏
Tk≤t

Ak

 .

(9.6)

Proof. Let q ≥ 0 and remark that

g((T̃k, Ãk) : k ≤ q) =Gq(T̃0, T̃1 − T̃0, . . . , T̃q − T̃q−1, Ã0, Ã1, . . . , Ãq),

for some non-negative functions (Gq, q ∈ N). Using that T̃0 and (T̃k+1 − T̃k : k ≥ 0) are
i.i.d. exponential random variables with parameter τm, we deduce that

E[g((T̃k, Ãk) : k ≤ q)1l
T̃q≤t<T̃q+1

]

=

∫
Rq+2
+

∑
n0,...,nq

(τm)q+2 e−τm(t0+...+tq+1)Gq(t0, . . . , tq, n0, . . . , nq)

×
q∏

k=0

pnknk
m

1l{
∑q
k=0 tk≤t<

∑q+1
k=0 tk}

dt0 . . . dtq+1

=

∫
Rq+1
+

∑
n0,...,nq

τ q+1 e−τtGq(t0, . . . , tq, n0, . . . , nq) e−τ(m−1)t

×
q∏

k=0

nk pnk 1l{
∑q
k=0 tk≤t}

dt0 . . . dtq,

which yields the first result.

Proof of Proposition 9.3. We give here the main steps of the proof. We recall that the
random variables (A(i), l(i)) have been defined for i ∈ I. Let us now introduce the point
process describing the birth times and number of offspring of the ancestral lineage of i:

Λi := {(β(j), A(j)) : j � i} (i ∈ I).

We stress that for any q ≥ 0, the processes (Λi, i ∈ (N∗)q) corresponding to individual
labels with length q, are identically distributed (but dependent). We introduce now
(X ′,Λ) and Λq , where

• Λ = {(Tk, Ak) : k ≥ 0} is a Poisson point process on R+×N with intensity τdsp(dk)
(with Tk ranked in increasing order). Λq = {(Tk, Ak) : k ≤ q}.

• Conditionally on Λ = {(tk, nk) : k ≥ 0} for nk ≥ 1, X ′ is the time non-homogeneous
Markov process such that

– at time ti, X ′ jumps and the transition probability is given by
P (ni)(x, dyX ni−1).

– during the time intervals [ti, ti+1), the infinitesimal generator of X ′ is L;
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We denote by |i| the length of the label i. We can now compute for any t ≥ 0 and i ∈ I
such that |i| = q,

Eµ
(
f(Xi

s : s ≤ t)1{i∈Vt}|Λ
i
)

= 1{α(i)≤t<β(i); ∀k=1,...,q: A(i1,...,ik−1)≥ik}Ft(Λ
i)

where Ft(λ) = Eµ(f(X ′s : s ≤ t)|Λ ∩ ([0, t]× N) = λ ∩ ([0, t]× N)). Since Λi is distribued
as Λq, we get ∑

i∈I
Eµ
(
f(Xi

s : s ≤ t)1{i∈Vt}
)

=
∑
i∈I

∑
q∈N

1{|i|=q}Eµ
(
Ft(Λ

i)1{α(i)≤t<β(i); ∀k=1,...,q: A(i1,...,ik−1)≥ik}
)

=
∑
i∈I

∑
q∈N

1{|i|=q}Eµ
(
Ft(Λq)1{Tq−1≤t<Tq ; ∀k=0,...,q−1: Ak≥ik+1}

)
where we have used the convention T−1 = 0. Adding that∑

q∈N

∑
i∈I

1{|i|=q}Ft(Λq)1l{Tq−1≤t<Tq ; ∀k=0,...,q−1: Ak≥ik+1}

=
∑
q∈N

Ft(Λq)#{i ∈ I : |i| = q, ∀k = 0, . . . , q − 1 : ik+1 ≤ Ak}1lTq−1≤t<Tq

= Ft((Tk, Ak) : k ≥ 0, Tk ≤ t)
∏
Tk≤t

Ak

and using (9.6), we get

∑
i∈I

Eµ
(
f(Xi

s : s ≤ t)1{i∈Vt}
)

= Eµ

Ft((Tk, Ak) : k ≥ 0, Tk ≤ t)
∏
Tk≤t

Ak


= eτ(m−1)tEµ

(
Ft((T̃k, Ãk) : k ≥ 0, T̃k ≤ t)

)
.

Finally, we combine the definitions of X ′ and Y to conclude, recalling that {(T̃k, Ãk) :
k ≥ 0} is a Poisson point process with intensity τmdsp̃(dk) and (9.2).

9.2.2 Law of large numbers

Let us now describe the asymptotic distribution of traits within the population (see [6]
for details).

Theorem 9.5. Assume that for some bounded measurable function f , the auxiliary pro-
cess satisfies

Ex(f(Yt))
t→∞−→ π(f) (9.7)

for every x ∈ X and π a probability measure on X .
Then, for every probability distribution µ on X ,

lim
t→∞

1l{Nt>0}

Nt

∑
i∈Vt

f
(
Xi
t

)
= 1l{W>0}π(f) (9.8)

in Pµ probability.
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This result implies in particular that for such a function f ,

lim
t→+∞

E
[
f(X

U(t)
t ) |Nt > 0

]
= π(f), (9.9)

where U(t) stands for an individual chosen at random in the set Vt of individuals alive
at time t.
Condition (9.7) deals with the ergodic behavior of Y and will be obtained for regular
classes of functions f , see below for an example.

Main ideas of the proof. Let f be a non negative function bounded by 1 and define

Git := f(Xi
t)− π(f)

and let us prove that

At := E

(∑
i∈Vt

Git

)2
� E(Nt)

2

Indeed we can write At = Bt + Ct, where

Bt := E

(∑
i∈Vt

(Git)
2

)
and Ct := E

 ∑
i 6=j∈Vt

GitG
j
t

 .

We easily remark from (9.2) that Bt ≤ E(Nt) � E(Nt)
2. Let us now deal with Ct and

use the most recent common ancestor of i and j:

Ct = E

 ∑
u,(u,k1),(u,k2)∈I,

k1 6=k2

1{β(u)<t} E

 ∑
i∈Vt:i�(u,k1)

∑
j∈Vt:j�(u,k2)

E
(
GitG

j
t

∣∣β(u), X
(u,k1)
β(u) , X

(u,k2)
β(u)

)


The key point is that on the event {β(u) < t, (u, k1) ∈ I, (u, k2) ∈ I},∑
i∈Vt:i�(u,k1)

∑
j∈Vt:j�(u,k2)

E
(
GitG

j
t

∣∣β(u), X
(u,k1)
β(u) , X

(u,k2)
β(u)

)
=

∑
i∈Vt:i�(u,k1)

E
(
Git
∣∣β(u), X

(u,k1)
β(u)

)
×

∑
j∈Vt:j�(u,k2)

E
(
Gjt
∣∣β(u), X

(u,k2)
β(u)

)
by the branching property. Moreover the many-to-one formula (9.5) ensures that∑

i∈Vt:i�uk1

E
(
Git
∣∣β(u), X

(u,k1)
β(u)

)
= E(Nt)EX(u,k1)

β(u)

(
f(Yt−β(u))− µ(f)

)
on the event {β(u) < t, (u, k1) ∈ I, (u, k2) ∈ I}. The convergence (9.7) ensures that
the second term in the right-hand side tends to zero for β(u) fixed. This convergence
depends on the initial condition. Nevertheless this difficulty can be overcome by proving
(see [6]) that the common ancestor of two individuals lives almost-surely at the begin-
ning of the continuous time Galton-Watson tree. This fact also allows to sum over
(u, k1) ∈ I, (u, k2) ∈ I and obtain that Ct � E(Nt)

2 by dominated convergence argu-
ments. Recalling that Nt/E(Nt) converges to W in L2 yields the result.
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9.3 Application to splitting diffusions

For the sake of simplicity, we assume in this section that the branching events are binary
(p(dk) = δ2(dk)), so that the genealogical tree is the Yule tree. We describe a population
of infected cells undergoing a binary division, as in the previous section for constant
division rates. When a division occurs, a random fraction F is inherited by a daughter
cell and the rest by the other daughter cell. But in contrast with the previous section,
the process X may not be a branching process, which allows for example to take into
account ressources limitation for the parasites living in the cell. Here, X is a diffusion
with infinitesimal generator

Lf(x) = r(x)f ′(x) +
σ(x)2

2
f ′′(x)

and we require the ergodicity of the auxiliary process Y . We refer to [6] for other appli-
cations, such as cellular aging.

The infinitesimal generator of the auxiliary process Y is characterized for f ∈ C2
b (R,R)

by:

Af(x) =r(x)f ′(x) +
σ(x)2

2
f ′′(x) + 2τ

∫ 1

0

(
f(θx)− f(x)

)
P(F ∈ dθ). (9.10)

Proposition 9.6. Assume that Y is a Feller process which is irreducible, i.e. there exists
a probability measure ν on R such that for any measurable set B and x ∈ R,

ν(B) > 0⇒
∫ ∞

0
Px(Yt ∈ B)dt > 0.

Assume also that there exists K ≥ 0, such that for every |x| > K, r(x) < τ ′|x| for some
τ ′ < τ .
Then, Y is ergodic with stationary probability π and we have

1l{Nt>0}

Nt
#{i ∈ Vt : Xi

t ∈ A}
t→∞−→ π(A)

for every Borelian set A such that π(∂A) = 0 and ∂A is the boundary of A.

Proof. Once we check that Y is ergodic, the second part comes from Theorem 9.5. The
ergodicity of Y is based on Theorems 4.1 of [64] and 6.1 of [65]. Since Y is Feller
and irreducible, the process Y admits a unique invariant probability measure π and is
exponentially ergodic provided there exists a positive measurable function V such that
limx→±∞ V (x) = +∞ and for which:

∃c > 0, d ∈ R, ∀x ∈ R, AV (x) ≤ −cV (x) + d. (9.11)

For V (x) = |x| regularized on an ε-neighborhood of 0 (0 < ε < 1), we have:

∀|x| > ε, AV (x) =sign(x)r(x) + 2τ |x|E(F − 1) = sign(x)r(x)− τ |x|, (9.12)

as the distribution of F is symmetric with respect to 1/2. Then, by assumption, there
exist η > 0 and K > ε such that

∀x ∈ R, AV (x) ≤ −ηV (x) +
(

sup
|x|≤K

|r(x)|+ τK
)
1l{|x|≤K}. (9.13)

73



This implies (9.11) and the geometric ergodicity gives us that

∃β > 0, B < +∞, ∀t ∈ R+, ∀x ∈ R, sup
g / |g(u)|≤1+|u|

∣∣Ex(g(Yt))− 〈π, g〉
∣∣ ≤ B(1 + |x|) e−βt .

The proof is complete.

9.4 Some extensions

Following Section 3, we could consider a model for cell division with parasites where the
growth of parasites is limited by the resources for the cells. The Markovian dynamics of
the parasite population size could be described by a logistic Feller diffusion process. Since
this process goes to extinction almost surely (or to a finite positive limit if the process is
deterministic), Proposition 9.6 may be applied to derive the asymptotic distribution of
the infection among the cell population. The construction of the model and the proofs
are left to the reader.

In the other hand, let us note that the many-to-one formula (9.5) holds for f depending
on time. Therefore the large numbers law (Theorem 9.5) can be extended to the case
where Y isn’t ergodic as soon as we can find some renormalization gt such gt(Yt) satisfies
(9.7). We refer to [6] for an application when X is a branching Lévy process and in
particular we recover the classical central limit theorem for branching Brownian motions.

10 Appendix : Poisson point measures

In this appendix, we summarize the main definitions and results concerning the Poisson
point measures. The reader can consult the two main books by Ikeda-Watanabe [45] and
by Jacod-Shiryaev [46] for more details.

Definition 10.1. Let (E, E) be a measurable space and µ a σ-finite measure on this
space. A (homogeneous) Poisson point measure N with intensity µ(dh)dt on R+ × E is
a (R+ × E,B(R+) ⊗ E)-random measure defined on a probability space (Ω,F ,P) which
satisfies the following properties:

1. N is a counting measure: ∀Â ∈ B(R+)⊗ E, ∀ω ∈ Ω, N(ω, Â) ∈ N ∪ {+∞}.

2. ∀ω ∈ Ω, N(ω, {0} × E) = 0: no jump at time 0.

3. ∀Â ∈ B(R+)⊗ E, E(N(Â)) = ν(Â), where ν(dt, dh) = µ(dh)dt .

4. If Â and B̂ are disjoint in B(R+) ⊗ E and if ν(Â) < +∞, ν(B̂) < +∞, then the
random variables N(Â) and N(B̂) are independent.

The existence of such a Poisson point measure with intensity µ(dh)dt is proven in [46],
for any σ-finite measure µ on (E, E).

Let us remark that for any A ∈ E with µ(A) <∞ the process defined by

Nt(A) = N((0, t]×A)

is a Poisson process with intensity µ(A).
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Definition 10.2. The filtration (Ft)t generated by N is given by

Ft = σ(N((0, s]×A), ∀s ≤ t,∀A ∈ E).

If Â ∈ (s, t]× E and ν(Â) <∞, then N(Â) is independent of Fs.

Let us first assume that the measure µ is finite on (E, E). Then (Nt(E), t ≥ 0) is a Poisson
process with intensity µ(E). The point measure is associated with a compound Poisson
process. Indeed, let us write

µ(dh) = µ(E)
µ(dh)

µ(E)
,

the decomposition of the measure µ as the product of the jump rate µ(E) and the jump

amplitude law µ(dh)
µ(E) . Let us fix T > 0 and introduce T1, . . . , Tγ the jump times of the

process (Nt(E), t ≥ 0) between 0 and T . We know that the jump number γ is a Poisson
variable with parameter Tµ(E). Moreover, conditionally on γ, T1, . . . , Tγ , the jumps

(Un)n=1,...,γ are independent with the same law µ(dh)
µ(E) . We can write in this case

N(dt, dh) =

γ∑
n=1

δ(Tn,Un).

Therefore, one can define for any measurable function G(ω, s, h) defined on Ω× R+ × E
the random variable∫ T

0

∫
E
G(ω, s, h)N(ω, ds, dh) =

γ∑
n=1

G(ω, Tn, Un).

In the following, we will forget the ω. Let us remark that T −→
∫ T

0

∫
E G(s, h)N(ds, dh)

is a finite variation process which is increasing if G is positive. A main example is the
case where G(ω, s, h) = h. Then

XT =

∫ T

0

∫
E
hN(ds, dh) =

γ∑
n=1

Un =
∑
s≤T

∆Xs

is the sum of the jumps between 0 and T .

Our aim now is to generalize the definition of the integral of G with respect to N when
µ(E) = +∞. In this case, one can have an accumulation of jumps during the finite time
interval [0, T ] and the counting measure N is associated with a countable set of points:

N =
∑
n≥1

δ(Tn,Un).

We need additional properties on the process G.
Since µ is σ-finite, there exists an increasing sequence (Ep)p∈N of subsets of E such that

µ(Ep) < ∞ for each p and E = ∪pEp. As before we can define
∫ T

0

∫
Ep
G(s, h)N(ds, dh)

for any p.

We introduce the predictable σ-field P on Ω×R+ (generated by all left-continuous adapted
processes) and define a predictable process (G(s, h), s ∈ R+, h ∈ E) as a P⊗E measurable
process.
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Theorem 10.3. Let us consider a predictable process G(s, h) and assume that

E
(∫ T

0

∫
E
|G(s, h)|µ(dh)ds

)
< +∞. (10.1)

1) The sequence of random variables
(∫ T

0

∫
Ep
G(s, h)N(ds, dh)

)
p

is Cauchy in L1 and

converges to a L1-random variable that we denote by
∫ T

0

∫
E G(s, h)N(ds, dh). It’s an

increasing process if G is non-negative. Moreover, we get

E
(∫ T

0

∫
E
G(s, h)N(ds, dh)

)
= E

(∫ T

0

∫
E
G(s, h)µ(dh)ds

)

2) The process M = (
∫ t

0

∫
E G(s, h)N(ds, dh) −

∫ t
0

∫
E G(s, h)µ(dh)ds, t ≤ T ) is a martin-

gale.
The random measure

Ñ(ds, dh) = N(ds, dh)− µ(dh)ds

is called the compensated martingale-measure of N .

3) If we assume moreover that

E
(∫ T

0

∫
E
G2(s, h)µ(dh)ds

)
< +∞, (10.2)

then the martingale M is square-integrable with quadratic variation

〈M〉t =

∫ t

0

∫
E
G2(s, h)µ(dh)ds.

Let us remark that when (10.1) holds, the random integral
∫ t

0

∫
E G(s, h)N(ds, dh) can be

defined without the predictability assumption on H but the martingale property of the
stochastic integral

∫ t
0

∫
E G(s, h)Ñ(ds, dh) is only true under this assumption.

We can improve the condition under which the martingale (Mt) can be defined. The
proof of the next theorem is tricky and consists in studying the L2-limit of the sequence
of martingales

∫ t
0

∫
Ep
G(s, h)Ñ(ds, dh) as p tends to infinity. Once again, this sequence

is Cauchy in L2 and converges to a limit which is a square-integrable martingale. Let
us recall that the quadratic variation of a square-integrable martingale M is the unique
predictable process 〈M〉 such that M2 − 〈M〉 is a martingale.

Theorem 10.4. Let us consider a predictable process G(s, h) satisfying (10.2). Then
the process M = (

∫ t
0

∫
E G(s, h)Ñ(ds, dh), t ≤ T ) is a square-integrable martingale with

quadratic variation

〈M〉t =

∫ t

0

∫
E
G2(s, h)µ(dh)ds.

If (10.2) is satisfied but not (10.1), the definition of M comes from a L2- limiting argu-
ment, as for the usual stochastic integrals. In this case the quantity

∫ t
0

∫
E G(s, h)N(ds, dh)

isn’t always well defined and we are obliged to compensate.
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Example: Let α ∈ (0, 2). A symmetric α-stable process S can be written

St =

∫ t

0

∫
R
h1{0<|h|<1}Ñ(ds, dh) +

∫ t

0

∫
R
h1{|h|≥1}N(ds, dh), (10.3)

where N(ds, dh) is a Poisson point measure with intensity µ(dh)ds = 1
|h|1+αdhds. There

is an accumulation of small jumps and the first term in the r.h.s. of (10.3) is defined as
a compensated martingale. The second term corresponds to the big jumps, which are in
finite number on any finite time interval.
If α ∈ (1, 2), then

∫
h∧ h2µ(dh) <∞ and the process is integrable. If α ∈ (0, 1), we only

have that
∫

1 ∧ h2µ(dh) <∞ and the integrability of the process can fail.

Let us now consider a stochastic differential equation driven both by a Brownian term
and a Poisson point measure. We consider a random variable X0, a Brownian motion
B and a Poisson point measure N(ds, dh) on R+ × R with intensity µ(dh)ds. Let us fix
some measurable functions b and σ on R and G(x, h) and K(x, h) on R× R.

We consider a process X ∈ D(R+,R) such that for any t > 0,

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs

+

∫ t

0

∫
R
G(Xs−, h)N(ds, dh) +

∫ t

0

∫
R
K(Xs−, h)Ñ(ds, dh). (10.4)

To give a sense to the equation, one expects that for any T > 0,

E
(∫ T

0

∫
R
|G(Xs, h)|µ(dh)ds

)
< +∞ ; E

(∫ T

0

∫
R
K2(Xs, h)µ(dh)ds

)
< +∞.

We refer to [45] Chapter IV-9 for general existence and uniqueness assumptions (gener-
alizing the Lipschitz continuity assumptions asked in the case without jump).

Let us assume that a solution of (10.4) exists. The process X is a left-limited and right-
continuous semimartingale. A standard question is to ask when the process f(Xt) is a
semimartingale and to know its Doob-Meyer decomposition. For a smooth function f ,
there is an Itô’s formula generalizing the usual one stated for continuous semimartingales.

Recall (cf. Dellacherie-Meyer VIII-25 [27]) that for a function a(t) with bounded variation,
the change of variable formula gives that for a C1-function f ,

f(a(t)) = f(a(0)) +

∫
(0,t]

f ′(a(s))da(s) +
∑

0<s≤t
(f(a(s)− f(a(s−)−∆a(s)f ′(a(s−)).

We wish to replace a by a semimartingale. We have to add smoothness to f and we will
get two additional terms in the formula because of the two martingale terms. As in the
continuous case, we assume that the function f is C2.
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Theorem 10.5. (see [45] Theorem 5.1 in Chapter II). Let f a C2-function. Then f(X)
is a semimartingale and for any t,

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)b(Xs)ds+

∫ t

0
f ′(Xs)σ(Xs)dBs +

1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

+

∫ t

0

∫
R

(f(Xs− +G(Xs−, h))− f(Xs−))N(ds, dh)

+

∫ t

0

∫
R

(f(Xs− +K(Xs−, h))− f(Xs−))Ñ(ds, dh)

+

∫ t

0

∫
R

(
f(Xs +K(Xs, h))− f(Xs)−K(Xs, h)f ′(Xs)

)
µ(dh)ds. (10.5)

Corollary 10.6. Under suitable integrability and regularity conditions on b, σ, G, K
and µ, the process X is a Markov process with extended generator: for any C2-function
f , for x ∈ R,

Lf(x) = b(x)f ′(x) +
1

2
σ2(x)F ′′(x) +

∫
R

(f(x+G(x, h))− f(x))µ(dh)

+

∫
R

(
f(x+K(x, h))− f(x)−K(x, h)f ′(x)

)
µ(dh). (10.6)

Example: let us study the case where

Xt = X0 +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs + St,

where S is the stable process introduced in (10.3). Let us consider a C2-function f . Then
f(X) is a semimartingale and writes

f(Xt) = f(X0) +Mt +

∫ t

0
f ′(Xs)b(Xs)ds+

1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

+

∫ t

0

∫
R

(f(Xs− + h1{|h|>1})− f(Xs−))
1

|h|1+α
dhds

+

∫ t

0

∫
R

(
f(Xs− + h1{|h|≤1})− f(Xs−)− h1{|h|≤1}f

′(Xs−)
) 1

|h|1+α
dhds

= f(X0) +Mt +

∫ t

0
f ′(Xs)b(Xs)ds+

1

2

∫ t

0
f ′′(Xs)σ

2(Xs)ds

+

∫ t

0

∫
R

(
f(Xs− + h)− f(Xs−)− h1{|h|≤1}f

′(Xs−)
) 1

|h|1+α
dhds,

where M is a martingale.
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Let us come back to the general case and apply Itô’s formula (10.7) to f(x) = x2:

X2
t = X2

0 +

∫ t

0
2Xsb(Xs)ds+

∫ t

0
2Xs−σ(Xs−)dBs +

∫ t

0
σ2(Xs)ds

+

∫ t

0

∫
R

(2Xs−G(Xs−, h) + (G(Xs−, h))2)N(ds, dh)

+

∫ t

0

∫
R

(2Xs−K(Xs−, h) + (K(Xs−, h))2)Ñ(ds, dh)

+

∫ t

0

∫
R

(K(Xs−, h))2µ(dh)ds. (10.7)

In the other hand, since
Xt = X0 +Mt +At,

where M is square-integrable and A has finite variation, then

X2
t = X2

0 +Nt +

∫ t

0
2Xs−dAs + 〈M〉t.

Doob-Meyer’s decomposition allows us to identify the martingale parts and the finite
variation parts in the two previous decompositions and therefore

〈M〉t =

∫ t

0
σ2(Xs)ds+

∫ t

0

∫
R

(G2(Xs−, h) +K2(Xs−, h))µ(dh)ds.
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individual stochastic processes to macroscopic models. Theor. Pop. Biol. 69, 297–
321, 2006.
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Processes. Monograph available via http://arxiv.org/abs/math/0509558.

[31] J. Engländer Branching diffusions, superdiffusions and random media. Probab. Sur-
veys. Volume 4, 2007, 303-364.

[32] A. Etheridge : Survival and extinction in a locally regulated population. Ann. Appl.
Probab. 14, 188–214, 2004.

[33] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence.
Wiley, 1986.

[34] S. N. Evans and E. A. Perkins. Measure-valued branching diffusions with singular
interactions. Canad. J. Math. 46, 120–168 (1994).

[35] S.N. Evans and D. Steinsaltz (2007). Damage segregation at fissioning may increase
growth rates: A superprocess model. Theor. Pop. Bio. 71, 473–490.

[36] S. N. Evans, S. Schreiber and Sen A. Stochastic population growth in spatially het-
erogeneous environments. Journal of Mathematical Biology. Vol. 66, 423–476, 2013.

[37] S. N. Evans, A. Hening & S. Schreiber. Protected polymorphisms and evolutionary
stability of patch-selection strategies in stochastic environments. In press, Journal
of Mathematical Biology.
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and Rd. Ann. Inst. H. Poincaré Probab. Statist., 1997, Vol. 33, 223-252.
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