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ABSTRACT6

This study addresses the sensitivity of short-term flow forecasting in the Seine River basin7

(43,800 km2, France) to the spatial distribution using a semi-distributed model (Transfer8

with GR, TGR). The basin was decomposed into intermediate basins depending on the9

gauging stations selected for this study. A lumped hydrological model was applied on each10

intermediate basin and a routing model was used to propagate the discharge through the11

river network. Discharge data at the gauging stations were assimilated using a Kalman filter12

and tests for flow forecasting were performed with a lead time up to 72 h. Several spatial13

configurations, defined by a selection of one or several gauging stations, were tested and14

the performances were compared to a reference lumped model currently used operationally15

by the regional flood forecasting centre. Results showed that the forecasting performance16

improves with an increase in the degree of spatialization. Nevertheless this improvement was17

not systematic and the integration of some particular gauging stations degraded the model18
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performance. In addition, it was shown that integrating some other stations (generally19

the most upstream) led to a negligible improvement. This suggests that in an operational20

context, where the model has to be robust and computationally efficient, some efforts should21

focus on finding the optimal spatial distribution, which is not necessarily the one using all22

the available stations.23

Keywords: flow forecasting, spatial distribution, semi-distributed model, hydrology, routing24

model, lumped model, Seine River25

INTRODUCTION26

Flood forecasting remains a difficult issue for hydrologists (see e.g., Young 2002; Todini27

2007; Liu et al. 2012). In spite of a variety of available models and tools (see Cloke and28

Pappenberger 2009, and references therein), the improvements in flood forecasting tools are29

slow and there is large margin of progress (Kealey 2007; Welles et al. 2007). Namely, the30

role of spatial distribution on model efficiency remains a matter of debate in the hydrological31

community. In a flood forecasting context, the sensitivity of model forecasts quality seems32

dependent on various physical factors and sources of uncertainty. The lumped approach,33

though simple, find limitations for events showing a large spatial variability (see e.g., Cole34

and Moore 2009). Similarly, fully distributed models do not appear to be the panacea35

given their complexity and their lack of overall superiority (Smith et al. 2012). Hence semi-36

distributed approaches are often considered as a good trade-off between complexity and37

efficiency (see e.g., Amengual et al. 2008). Indeed, they couple rainfall-runoff models on38

sub-catchments (here defined by gauging stations) and simple propagation tools like unit39

hydrographs or lag-and-route methods (see e.g., Lerat et al. 2012). In a forecasting context,40

one key issue is to simultaneously assimilate the information available in real-time. This may41

be spatially distributed data like snow cover in mountainous regions (see e.g., Nester et al.42

2012) or more classically the flow observations at the gauging stations within the catchment43

(Mendoza et al. 2012).44

This study focuses on a large catchment in France, the Seine River upper basin at Paris45
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(43,800 km2), where there are major socio-economic potential impacts in the capital city46

of Paris. The regional flood forecasting centre (FFC) based in Paris is in charge of rou-47

tinely issuing forecasts on the Seine and its tributaries to feed the national flood warning48

map (www.vigicrues.gouv.fr). In flood conditions, the exceedance of warning thresholds is49

forecasted to provide information for civilian security services, which ask for three-day an-50

ticipation at Paris to have sufficient time for evacuating people and installing protections51

against flooding (Lacaze et al. 2011). The FFC has implemented a forecasting system which52

uses several hydrological and hydraulic models that are fed by hydro-meteorological obser-53

vations and forecasts received in real-time. Among these models is a conceptual lumped54

hydrological model which only simulates the discharge at the basin outlet, at which it was55

calibrated. Due to its lumped structure (i.e. no explicit channel routing is made), it is not56

able to simulate the discharge at upstream gauging stations and to account for informa-57

tion available at these sites. However, it is likely that the information from these upstream58

stations spread over the basin can be useful to improve forecasts at the basin outlet.59

The objective of the study was to investigate the sensitivity of flood forecasts to the60

spatial distribution of inputs and outputs using a semi-distributed hydrological model and61

a Kalman-type real-time assimilation scheme. The Seine River basin was first decomposed62

into several intermediate basins based on the location of the gauging stations. Then several63

levels of spatial discretization were considered and the sensitivity of model performance at64

the basin outlet with increasing spatial resolution was analysed. The semi-distributed model65

has two main components: a hydrological module based on the lumped model and applied66

on each intermediate basin, and a flow routing module representing the flow propagation be-67

tween gauging stations. In order to check whether the semi-distributed model could provide68

improvement over the lumped model, which is currently used in an operational context by69

the French FFC, the performance of the semi-distributed model was benchmarked against70

the performance of the lumped model used as a reference.71

The next sections successively present the Seine River basin and the data used, the72
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forecasting model and the assimilation framework, and the testing methodology. Then results73

are presented and discussed in section 5.74

THE SEINE RIVER UPPER BASIN AND AVAILABLE DATA75

The Seine River basin drains an area of 43,800 km2 upstream of Paris, which is the outlet76

considered in this study. From upstream to downstream, three major tributaries contribute77

to the flow of the Seine River: the Yonne, Loing and Marne Rivers. The rivers mainly78

flow westwards. The relief is quite low over the basin with altitudes mainly below 500 m79

except in the upper Yonne basin with altitudes up to 900 m, which makes this tributary the80

most reactive within the basin (see e.g., Billen et al. 2009; Viennot et al. 2009 for a detailed81

description of the basin).82

Four large dams, with a total storage capacity of about 800 hm3 were built in the upper83

part of the basin, on the Marne, Seine, Aube and Yonne Rivers, respectively. They are man-84

aged to regulate downstream flows, especially for the Paris region, with the two objectives of85

low-flow augmentation (for domestic, industrial and agricultural water supply) and flood al-86

leviation (Villion 1997). Flooding is a major natural risk in the Paris region, as shown by the87

consequences of the major 1910 flood. This flood reached 2,400 m3/s, which corresponds to88

about a 100-year return period. It is estimated that such a flood would today directly impact89

850,000 people who live in zones liable to flooding within the Paris region and cause direct90

damages estimated to more than 10 billion Euros (http://vertigo.revues.org/14339#ftn1).91

Hence the early anticipation of such events may help mitigating their catastrophic conse-92

quences.93

The basin is under an oceanic climate, with mean precipitations of 790 mm/yr, mean94

temperature of 11.1oC, and mean potential evapotranspiration (PE) of 690 mm using the95

Penman formula (average over the 1958-2011 period using the SAFRAN reanalysis, see96

Vidal et al. 2010). Precipitation is almost evenly distributed within the year. A network97

of 68 rain gauges were used in this study (see Fig. 1), as well as a network of 10 flow98

gauging stations distributed over the basin (see details in Table 1). These ten stations99
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are part of the stations considered by the FFC in their operational forecasting system.100

Four gauging stations (La Ferté-sous-Jouarre, Bazoches-lès-Bray, Courlon-sur-Yonne and101

Episy) control a large part of the basin upstream Paris, with a cumulated area of 33,520102

km2 (i.e. 77% of the basin). They are all situated downstream of the dams and therefore103

integrate the impact of dam management. Hence they are interesting to consider in a flood104

forecasting context. Within the Yonne basin, four additional stations (Dornecy, Arcy-sur-105

Cure, Dissangis and Aisy-sur-Armanon) were considered to better account for the upstream106

part, which receives the largest cumulated rainfall amounts on the basin. An additional107

upstream station (Châlon-sur-Marne) was also considered on the Marne River, given the108

elongated shape of this catchment.109

Hourly time series of rainfall, streamflow and PE were available over the 1991-2009 period.110

Since there are many missing data before 1995, the 1991-1994 period will be used only as a111

warm-up period. The percentage of missing values for the 1995-2009 is reasonable (see Table112

1 for the gauging stations), except for the Bazoches-lès-Bray station for which no data were113

available before 1999. Large flood events occurred in Paris in the years 1995, 1999, 2000114

and 2001. The selected periods are therefore interesting for analysing the behaviour of the115

model in high flow conditions.116

SEMI-DISTRIBUTED HYDROLOGY-ROUTING COUPLED MODEL117

This section details the semi-distributed model built in this study to investigate the118

impact of spatial discretization. We first detail the way the basin was spatially split. Then the119

structures of the hydrological and flow routing sub-models are described, before presenting120

the assimilation framework used to run the coupled model in forecasting mode.121

The semi-distributed modelling approach122

Modelling principle123

The coupled model simulates the discharge at each gauging station. Therefore it can124

assimilate discharge observations at these stations and propagate the improvements due125

to state corrections downstream. The semi-distributed approach adopted in this study is126
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intermediate between lumped and fully distributed approaches. It divides the basin into127

hydraulically connected sub-catchments.128

Here, we aim at representing the discharge at the gauging stations on the main streams.129

However we do not need to know the exact states of the system between these target points.130

Therefore the intermediate basins were defined between these stations. Here an intermediate131

basin is defined by an outlet (corresponding to a gauging station) and at least one (or possibly132

several) upstream catchment (also defined by gauging stations). Therefore the intermediate133

basin is the area that drains water to the river reach(es) between the downstream and the134

upstream station(s).135

For each intermediate basin, the model represents two types of water transfers (see Fig-136

ure 2): the hydrological transfer represents the transformation of rainfall over the basin into137

discharge that is injected into the main stream as lateral inflows, and the hydraulic transfer138

(flow routing) corresponds to the discharge propagation through the main streams to a down-139

stream station (see also Lerat et al. 2012). On upstream sub-basins, only the hydrological140

part of the model is applied.141

Spatial discretization142

Regarding flow propagation in the main streams, the contribution to streamflow due to143

rainfall on the intermediate basin may be considered as lateral inflows. The distribution of144

this lateral discharge along the river stretch has an impact on the downstream discharge145

(Fan and Li 2006; Munier 2009; Lerat et al. 2012). In the following, lateral flows will be146

decomposed into concentrated or uniformly distributed lateral discharges. As shown in Fig-147

ure 2, the flow routing module simulates the propagation of upstream and lateral discharges,148

whereas the hydrological module simulates the total discharge due to rainfall. The output149

of the hydrological module is injected into the routing module as lateral discharges following150

an established longitudinal distribution depending on the hydrographic configuration of the151

intermediate basin. As done by Lerat et al. (2012), we used the drained area curve to deter-152

mine the spatial distribution of hydrological inputs. This curve is obtained from a Digital153
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Elevation Model and represents the area drained by the river stretch with respect to the154

longitudinal abscissa (see Figure 2). It allows to locate the main tributaries which are con-155

sidered as concentrated lateral inflows. The remaining surface is considered as a uniformly156

distributed lateral inflow. The output of the hydrological model is then decomposed into157

one or several lateral inflows (concentrated and distributed) weighted by their respective158

draining areas. Munier (2009) showed that considering tributaries draining an area less than159

20 % of the total intermediate basin area as concentrated lateral inflows does not improve160

the simulation. The contribution of these tributaries are considered as distributed lateral161

inflows. This criterion is used to limit the number of concentrated lateral inflows.162

Networking163

Considering the structure of the model, and especially the routing model, it is very simple164

to couple multiple models representing multiple intermediate basins. For each intermediate165

basin, the hydrological module computes the contribution due to rainfall, using rainfall and166

evapotranspiration data over the intermediate basin. Then the routing module propagates167

this lateral discharge as well as any observed upstream discharges (discharge at the outlet168

of upstream basins) to compute the downstream discharge. Figure 3 shows an example169

configuration: the discharge at station #5 results from the propagation of the discharge170

at the four upstream stations (#1 to 4) and the flow produced in the intermediate basin171

(between station #5 and stations #1 to 4); the discharge at the downstream station #6172

results from the propagation of the flow at the upstream station #5 and the flow produced173

on the intermediate basin (between stations #6 and 5).174

Model description175

Hydrological model176

We used a lumped approach representing the rainfall-runoff transformation at the sub-177

catchment (or intermediate catchment) scale. The hydrological model is derived from the178

GR (Génie Rural) model developed by Berthet et al. (2009). It is defined by a production179

store, a function representing surface-subsurface exchanges and a routing store. The GRP180
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model, an extension of the GR model, integrates a data assimilation procedure that allows181

to correct the model states by assimilating the discharge at the outlet (Berthet et al. 2009).182

The GRP (Génie Rural-Prévision) model is currently used in operational conditions by the183

FFC for real-time forecasting.184

In this study, the original GR model was coupled with a hydraulic linear model. The rout-185

ing reservoir was linearized. Hence a linear Kalman filter is applied to correct the hydraulic186

model states as well as the routing reservoir states. The linearised reservoir corresponds to187

a first order filter like those defined in the flow routing model (see next section). Figure 4188

presents the structure of the hydrological model. Three parameters must be calibrated for189

each intermediate or upstream catchment:190

• S (mm): the capacity of the production reservoir,191

• IGF (-): the intercatchment groundwater function coefficient,192

• KR (s): the time constant of the routing reservoir.193

Inputs of the hydrological model are the spatial average of precipitation P and potential194

evapotranspiration PE over the intermediate basin. For each intermediate basin, PE is195

computed from temperature and incoming radiation as done by Oudin et al. (2005) whereas196

P is obtained from raingauges inside the basin.197

Flow routing model198

The flow routing model represents the discharge propagation through the river stretch.199

It accounts for upstream and lateral (concentrated and uniformly distributed) discharges.200

Many propagation models have been proposed in the literature, such as unit hydrographs or201

Muskingum type models (e.g., Perumal et al. 2009). Nevertheless, such models are generally202

not adapted to multiple inflows (unless by adding new parameters) and to data assimilation.203

The model presented here is the propagation model developed by Munier (2009), hereafter204

called LLR (standing for Linear Lag-and-Route). It has been chosen for its ability to account205

for upstream as well as lateral inflows using a small number of parameters. Additionally, it206

8 Munier, July 9, 2014



is particularly well adapted to data assimilation such as the Kalman filter.207

The flow routing model is based on the Saint-Venant equations that describe the 1D free208

surface flow dynamics. These equations, classically used to represent the flow propagation209

in a river stretch, may be solved analytically after some simplifications. The main interest210

of using these equations is that they are described by the physical characteristics of the211

river stretch (geometry, roughness). Here, we used this property to describe the propagation212

of every input discharges (upstream and lateral) using only two parameters, which limits213

identifiability problems that may occur with over-parametrised models (see, e.g., Duan et al.214

1992).215

The Saint-Venant equations are first linearised around a uniform flow and transposed216

into the frequential domain using the Laplace transform. Under this form, it is possible to217

solve the equations analytically, leading to a linear transfer function between the upstream218

and downstream discharges (Munier et al. 2008). Under the assumption of negligible upward219

waves, transfer functions relating concentrated and uniformly distributed lateral flows to the220

downstream discharge can be derived.221

The river stretch is schematised as in Figure 5. In this section, the following notations222

are used: t is the time (s), x the abscissa along the river stretch (m), X the length of the223

river stretch (m), xPi the abscissa of the i-th concentrated lateral discharge (m), Q0 the224

upstream discharge (m3/s), QX the downstream discharge (m3/s), QPi the i-th concentrated225

lateral discharge (m3/s), QD the uniformly distributed lateral discharge (m3/s).226

The derivation of transfer functions from the linearised Saint-Venant equations trans-227

posed into the Laplace domain is given in Appendix S1 and leads to:228

QX(s) = TF0(s)Q0(s) +
∑
i

TFP (xPi, s)QPi(s) + TFD(s)QD(s) (1)229

where s denotes the Laplace variable, TF0, TFP and TFD the transfer functions related to230

the upstream discharge and the concentrated and uniformly distributed lateral discharges,231
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respectively.232

To compute the downstream discharge QX , Equation 1 has to be transposed back into233

the time domain. In order to avoid high computation costs due to convolution algorithm,234

the previous transfer functions are approximated by first order with delay transfer functions235

using the Moment Matching Method, as done for example by Munier et al. (2008). Such236

transfer functions have three main advantages: (1) they simulate the delay and attenuation237

phenomena which characterise flow propagation, (2) they are easily transposed into the time238

domain since they represent simple Ordinary Differential Equations (ODE) and (3) they are239

particularly well suited to simple data assimilation techniques due to their linearity. The240

three approximate transfer functions can then be written as:241

TF0(s) ≈
e−τ0s

1 +K0s
(2)242

TFP (xPi, s) ≈
e−τP (xPi)s

1 +KP (xPi)s
(3)243

TFD(s) ≈ 1

1 +KDs
(4)244

where τ0 and τP are the delay values, K0, KP and KD the first order time constants. One245

may note that TFD has no delay, which can be explained by the fact that the distributed246

lateral inflow is injected all along the river reach, and then right upstream the downstream247

end.248

Using analytical transformations (Laplace transform and Moment Matching Method),249

the parameters of the approximate transfer functions can be expressed as functions of the250

physical characteristics of the river stretch (see Appendix S2). These expressions can be251

simplified in order to reduce the number of parameters. Indeed, τP (xPi), KP (xPi) and KD252
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can be expressed as functions of xPi/X, τ0 and K0.253


τP (xPi) =

(
1− xPi

X

)
(τ0 +K0)−

√
1− xPi

X
K0

KP (xPi) =
√

1− xPi

X
K0

KD = τ0+K0

2

(5)254

Note that the delay parameter τP may reach negative values. Since such a case is physi-255

cally unrealistic, the lower bound for τP was set to 0 and parameter KP is computed conse-256

quently:257

If τP (xPi) < 0, then τP (xPi) = 0 and KP (xPi) =
(

1− xPi
X

)
K0 (6)258

Last, the flow routing model is described by three types of transfer functions related259

to upstream, concentrated and uniformly distributed lateral discharges (Equations (2-4)).260

The discretized form of such transfer functions is described in Appendix S3. If the relative261

positions of the concentrated lateral discharges are known (xpi/X), only two parameter262

are necessary to define the model: the time delay τ0 and the first order time constant K0263

related to the transfer of the upstream discharge. As stated earlier, these parameters can264

be computed analytically from the physical characteristics of the river reach. Nevertheless,265

simulation results may be improved if they are calibrated, which is done in this study.266

The TGR coupled model267

For an intermediate basin, the integrated model, named TGR for Transfer with GR (the268

selected hydrological model), is obtained by coupling the two sub-models (flow routing and269

hydrology). The flow routing part and the routing reservoir of the hydrology part are linear.270

This linear part of TGR is named LRK. The remaining part of the hydrological model271

(production reservoir and exchange function) is named GRK. Figure 6 presents the scheme272

of the TGR model for an intermediate basin. For each intermediate basin, five parameters273

must be identified (τ0, K0, KR, S and IGF ) using P , PE and Q0 as inputs and QX as274

output. The relative positions xPi/X are determined from the drained area curve. For275
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an intermediate basin with several upstream basins, the relative position of each upstream276

discharge is also known, and the transfer of the upstream discharges is done consequently, as277

for concentrated lateral inflows. For a sub-catchment basin with no upstream station, only278

the hydrological model is applied and thus only the parameters related to the transformation279

of rainfall into downstream discharge are identified. Several networks of possibly multiple280

intermediate basins are presented in section 5 through the example of the Seine River upper281

basin.282

Data assimilation for flood forecasting283

As pointed out by Liu et al. (2012), the manual correction of the model states by hu-284

man forecasters, based on their expert interpretation of the discrepancies between model285

simulations and observed discharges, is still widely practiced in operational forecasting. In286

an operational context, data assimilation techniques allow to use observations received in287

real-time to automatically correct the model outputs and refine the forecasts at each time-288

step. Various assimilation techniques proposed in the literature can be applied for hydro-289

logical forecasting (see e.g., Refsgaard 1997). Here we chose the widely used Kalman filter290

(Kalman 1960). Indeed the coupled model presented in the previous section is particularly291

well adapted to the Kalman filter, because of its linear part and the simplicity of the state292

equations. The Kalman filter, which is applied on the linear part (LRK) of the TGR model,293

is briefly described in the following.294

Note that another Kalman filter, such as the Ensemble Kalman Filter (EnKF), could295

have been used in order to correct not only the state variables of LRK, but also the state296

variables of the non-linear part (GRK). Examples of existing ensemble flood forecasting297

systems can be found in Cloke and Pappenberger (2009) and in McMillan et al. (2013).298

However, as pointed out by Cloke and Pappenberger (2009) and Rabuffetti and Barbero299

(2005), the characterization of meteorological input uncertainties, which have an important300

impact in ensemble data assimilation procedures, remain a key challenge. In this paper,301

the effect of including one or several upstream stations is investigated; the main physical302
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process involved is thus the flow routing between stations. As stated by Young (1974), most303

of the non linearities come from the hydrological processes, the routing processes being more304

linear, all the more so as only high flows are considered in the flood forecasting context.305

Considering the robustness of the linear Kalman filter, it has been preferred here to more306

sophisticated extensions.307

The Kalman filter is applied to a discretized Linear Time-Invariant (LTI) model described308

by the following equations:309

x(k) = A x(k − 1) +B u(k) + w(k) (7)310

y(k) = C x(k) +D u(k) + v(k) (8)311

where k is the discretized time, x the state of the system, u the input and y the output.312

The input vector gathers the outputs of the GRK model applied on every upstream and313

intermediate basins. The output vector represents the simulated discharges at every gauging314

stations. In the LRK model, the output only depends on the state, so that the matrix D315

is null. The random variables w and v represent the process noise and measurement noise,316

respectively. They are supposed to be independent and described by a normal probability317

law with covariance matrices Q for w and R for v. Both matrices are then diagonal. In318

practice, process and measurement noise covariances are hardly quantifiable and are chosen319

empirically. In this study the measurement noise is supposed to be lower than the process320

noise, and values of R are consequently lower than those of Q. Besides, different tests321

have been conducted to estimate the sensitivity of the forecast performances against values322

of Q (presented in Munier 2009). Results showed that although the hydrological states323

(those relative to the routing reservoir) are the most uncertain, little impact on the forecast324

performances has been observed. Here, we chose a value of 1 for the process noise and 0.1325

for the measurement noise.326
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The Kalman filter is described by the following equations:327

x̂(k|k − 1) = A x̂(k − 1|k − 1) +B u(k) (9)328

ỹ(k) = y(k)− C x̂(k|k − 1) (10)329

x̂(k|k) = x̂(k|k − 1) +K(k) ỹ(k) (11)330

where x̂(k|k−1) and x̂(k|k) are the prediction and the update states at time k, respectively,331

y the measurements, ỹ(k) the measurement error (or innovation) and K(k) a matrix called332

the Kalman Gain. The corrected output is then given by:333

ŷ(k) = C x̂(k|k) (12)334

Missing values are replaced by model prediction output given by Cx̂(k|k − 1). For in-335

stance, if the i-th line of vector y is missing, then this line is replaced by the i-th line of the336

model prediction output vector. This is equivalent to considering that the model is perfect337

at this station.338

The Kalman gain is computed so as to minimise the covariance P (k|k) of the state error339

e(k|k) = x(k)− x̂(k|k). The optimal Kalman gain is obtained from (e.g., Brown and Hwang340

1992):341

K(k) = P (k|k − 1)CT
(
CP (k|k − 1)CT +R

)−1
(13)342

where P (k|k−1) = E
[
e(k|k − 1)e(k|k − 1)T

]
is the covariance matrix of the prediction error343

e(k|k − 1) = x(k)− x̂(k|k − 1).344

Note that the LRK model, on which the Kalman filter is applied, represents the ensemble345

of intermediate basins for a specific configuration. The Kalman Filter algorithm will then346

assimilate the discharge at every considered gauging stations and simultaneously correct all347

the states of the system.348

TESTING METHODOLOGY349
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Split sample testing350

The model was tested using the split-sample test proposed by Klemes (1986). It consists351

in splitting the available time series into two sub-periods (here, P1: 1994-2001 and P2: 2001-352

2009, including a 1-year warm-up period). The identification procedure is performed on P1353

and the validation on P2, and then the role of the two periods is reversed (calibration on P2354

and validation on P1). Thus the model can be evaluated in validation mode on the whole355

time span.356

Parameter identification was done using the Levenberg-Marquardt algorithm with the357

root mean square errors (RMSE) criterion on the discharge at the outlet. For the application358

on the Seine River basin, the identification is done for each tested configuration and for each359

intermediate or upstream basin independently, i.e. using observed upstream flow data in360

the case of an intermediate basin. This procedure has two main advantages: it prevents the361

propagation of modelling errors from the upstream to the downstream basins and it reduces362

the amount of parameters to be identified simultaneously. Model parameters were calibrated363

in simulation mode, i.e. without considering the assimilation scheme.364

In validation, the model was applied in hindcasting mode, i.e. applying the model ret-365

rospectively at each time-step of the test period as if it was in real-time conditions. At366

each time-step, the system states are corrected using the new observations and the data367

assimilation scheme, and the model produces forecasts with the corrected states as initial368

conditions and scenarios of future rainfall as inputs. In an operational context, such scenar-369

ios are produced by weather forecast centres (e.g., MétéoFrance or the European Centre for370

Medium-range Weather Forecast, ECMWF). The quality of rainfall forecasts impacts the371

performances of flood forecasting models (see e.g., Cloke and Pappenberger 2009; Rabuf-372

fetti and Barbero 2005), but archives of past precipitation forecasts were not available and373

this question is out of the scope of this study. Here two simple forecasting scenarios were374

considered:375

• Scenario P0 : zero future rainfall. This assumption represents an unfavourable sce-376
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nario in the context of flood forecasting but is the default option when no rainfall377

forecast is available.378

• Scenario PP : perfect rainfall forecast corresponding to the a posteriori observations,379

i.e. the best available precipitation estimates.380

Using the rainfall observed a posteriori as future scenario (PP) put the model in an ideal381

situation, i.e. with limited rainfall uncertainty, and gives very optimistic results on model382

performances compared to what it could be in real time. The P0 scenario is investigated to383

test the model in more difficult conditions, i.e. without any information on future rainfall,384

which is very pessimistic in the perspective of flood forecasting.385

Evaluation criteria386

As mentioned in the introduction section, three days of anticipation are requested in387

Paris to organize evacuation and rescue. The maximum lead time considered in this study388

was then 72 hours. Model performance analysis was evaluated using the RMSE between389

discharge observations and forecasts for different lead times L ranging from 1 to 72 hours:390

RMSE(L) =

√
1

NF

∑
k+L∈F

(Qobs(k + L)−Qfor(k + L))2 (14)391

where Qobs(k + L) and Qfor(k + L) are the observed and forecast downstream discharges at392

time k+L, respectively, F a set of time-steps of the test period when the model is evaluated393

and NF the number of time-steps in F . The computation was restricted to high-flow periods,394

here defined above a flood threshold equal to the 0.95 (non-exceedance) quantile Q95 of the395

flow duration curve:396

F = {k|Qobs(k) ≥ Q95} (15)397

This flood threshold was chosen to uniformly treat all the stations. As a benchmark,398

we also computed the RMSE for the persistence model which assumes that forecast flows399

equal the observed flow at the time of issuing the forecast, i.e. flows remain unchanged in400
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the future. Note that other evaluation scores and criteria could have been considered, some401

measuring the modelling error at each time step and others measuring the capacity of the402

model to forecast the exceedance of a threshold. RMSE was chosen here because it integrates403

all the model errors over the time series, and put more weight (due to the square) to large404

errors that generally occur in high flow conditions. Also this is a very common criterion,405

which appears in widely used efficiency measures (like the Nash-Sutcliffe criterion or the406

persistence index).407

To compare the performance of the various tested configurations, we introduced another408

criterion called Forecast Performance Index (FPI), that accounts for the improvement for409

leading horizons ranging from 1 to 72 h, compared to the persistence model:410

FPI =
1

72

72∑
L=1

1

2

(
RMSEPP (L)

RMSEPERS(L)
+

RMSEP0(L)

RMSEPERS(L)

)
(16)411

where RMSEPP and RMSEPP are the RMSE criteria for the PP and P0 scenarios for a given412

configuration, while RMSEPERS corresponds to the persistence model. FPI is lower than 1413

for a configuration that has better performances than the persistence model. Note that FPI414

only gives an overview of the overall performances, since it does not inform on performance415

differences between small and large lead times or between P0 and PP scenarios.416

The objective function used for parameter calibration is the RMSE computed in simu-417

lation mode. To give an overview of model performance in simulation mode, an evaluation418

of model performance was also made in calibration and validation using the Nash-Sutcliffe419

efficiency (NSE, Nash and Sutcliffe 1970).420

Tested configurations421

The main objective was to evaluate model sensitivity at the outlet (Paris-Austerlitz sta-422

tion) using various upstream configurations. The simplest configuration is to apply the423

model in a lumped mode, i.e. only considering the Paris-Austerlitz station. This configura-424

tion serves as a reference and is noted A0 in the following.425
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The performance analysis was done in two steps. First, only one station upstream of426

Paris-Austerlitz among the four closest stations (Bazoches-lès-Bray, Courlon-sur-Yonne, Lo-427

ing at Episy, La Ferté-sous-Jouarre) is considered. The four corresponding configurations428

are noted A1 to A4 respectively. Two additional configurations were considered by including429

the four upstream stations within the Yonne basin (Dornecy, Arcy-sur-Cure, Dissangis and430

Aisy-sur-Armanon, noted A2’) or the second upstream station on the Marne basin (Châlon-431

sur-Marne, noted A4’). This aimed at evaluating the usefulness of these upstream stations.432

It can be expected that discharge forecasts be improved at the Courlon-sur-Yonne station in433

the case of A2’ and at the Ferté-sous-Jouarre station in the case of A4’. A summary of the434

six A configurations is given in Table 2.435

The four configurations with a single upstream station were ranked by increasing perfor-436

mance for flow forecasting at Paris-Austerlitz station using the RMSE(L) criterion. Then we437

tested several configurations with an increasing number of upstream stations, first including438

the station that provided the most successful results among the A1-A4 configurations, then439

the second most successful station, etc. These configurations will be noted B1 to B4.440

RESULTS AND DISCUSSION441

Results with only one upstream station442

Calibration/validation results in simulation mode443

For each configuration A1 to A4, models were first evaluated in simulation mode by444

applying the split-sample test previously described. Fig. 7 shows the NSE values at Paris-445

Austerlitz station obtained in simulation mode for periods P1 and P2 and for both calibration446

and validation steps. First, all the NSE values are larger than 0.70 which is a quite good score447

(see e.g., Chiew and McMahon 1993). Second, adding one upstream station in the model448

always improved the NSE at Paris-Austerlitz station, except for the A1 configuration (i.e.449

considering the Marne basin) on the P1 period (for identification as well as for the validation)450

which is due to the fact that no data are available before 1999 at Bazoches-lès-Bray (station451
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considered in A1). Moreover, for each period, NSE values are very close for identification452

and validation, which is an indication of the consistency of the optimised parameter sets.453

In spite of good NSE values for the different configurations, assimilating discharge data454

proves of high added value. Indeed, whatever the configuration, the NSE is very close to455

1 when the Kalman filter is applied. This shows that assimilating discharge data allows to456

efficiently correct the model state that is then used as the initial state in the forecast step.457

Comparison of results in forecasting mode458

Forecast performances of each configuration A1 to A4 (including A2’ and A4’) are com-459

pared to those of A0 for both scenarios PP (perfect rainfall foreknowledge) and P0 (zero460

future rainfall). Figure 8 shows the evolution of RMSE(L) averaged over P1 and P2 periods461

in validation mode. The performance of the persistence model is also plotted.462

First it can be mentioned that performance curves are almost similar between the PP463

and P0 scenarios up to a certain lead time (between ten and 20 hours in most cases). This464

corresponds to the time response of the catchment: before this limit, the catchment response465

only depends on the rainfall fallen before the time of issuing the forecast and is therefore466

insensitive to future rainfall hypothesis. Second, as expected, the performance with the467

P0 scenario is always worse than with the PP scenario and the longer the lead time, the468

larger the difference. Model performance with P0 scenario becomes even worse than for the469

persistence model for lead times longer than 50 hours, whatever the configuration.470

The comparison between A0 and A1 (first line in Figure 8) shows that including the471

Bazoches-lès-Bray station (Seine) does not improve the performance of the downstream472

discharge forecast. As stated before, this is explained by the fact that no data are available473

at this station before 1999. Indeed, on the 1994-1998 period, the discharge estimated at this474

station is not corrected during the assimilation process, which impacts the results.475

The A2 configuration (second line), in which the gauging station at the outlet of the476

Yonne basin is considered, presents significantly better results than A0. This means that477

the Yonne tributary provides a significant part of the variability of the Seine streamflow478
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and that the TGR model with the Kalman Filter is able to well reproduce the discharge479

at the outlet of the Yonne basin. Including the four stations within the Yonne basin (i.e.480

A2’ configuration) leads to an notable improved forecast at Courlon-sur-Yonne (Figure 9)481

that results in a better prediction for Paris-Austerlitz (3rd line, Figure 8), namely for the482

P0 scenario.483

The A0-A3 comparison (fourth line) shows a very small improvement for the P0 scenario484

and for large lead times when the downstream station of the Loing basin is taken into account.485

This is explained by the fact that this basin only makes a limited contribution to floods on486

the downstream part of the Seine (the Loing represents only 9 % of the Seine basin area).487

Finally, forecast performances of A0 and A4 configurations (fifth line) are quite similar.488

This result seems surprising since the Marne basin is a quite large contributor to the down-489

stream flow. The difficulty for the hydrological model to satisfactorily simulate the behaviour490

of this basin may partly explain this result. The integration of the Châlons-sur-Marne sta-491

tion (configuration A4’) yielded substantially better results at the Ferté-sous-Jouarre (see492

Figure 10), hence indicating the benefit of upstream observations. However benefits at493

Paris-Austerlitz remained modest (last line in Figure 8). The quality of data at the Ferté-494

sous-Jouarre station is also potentially responsible for limited performances. Indeed poor495

data quality could lead to corrected system states far from the reality. This assumption is496

explored in the next section.497

As expected, the lowest FPI value is obtained with configuration A2, which has the high-498

est upstream catchment area and mean discharge (Table 1). On the other hand, configuration499

A3 which obtained the second performance results, has the lowest upstream catchment area500

and mean discharge. This shows that best performances are not necessarily obtained when501

considering the most contributing upstream basins, in terms of both catchment area and502

mean discharge.503
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Results with several upstream stations504

Configurations505

In this section, the successive inclusion of several upstream stations is considered. Given506

the previous results, the upstream stations were sorted by decreasing gain in forecast ef-507

ficiency (FPI) and the following order was chosen to successively include stations in the508

semi-distributed model: (1) Courlon-sur-Yonne, (2) Episy, (3) Bazoches-lès-Bray and (4) La509

Ferté-sous-Jouarre. These four new configurations will be named B1 to B4 hereafter and510

will also be compared to the reference configuration, noted B0, representing the entire basin511

without upstream stations. Note that configurations B0 and B1 are identical to A0 and A2,512

respectively.513

Calibration/validation results in simulation mode514

As for configurations A, Fig. 11 shows the NSE efficiency at Paris-Austerlitz station515

for configurations B. For period P2, the NSE always increase when new stations are added,516

leading to very high values (up to 0.95). The only exception is for the validation step for517

configuration B4. This case is discussed in the next section. Concerning period P1, there is a518

loss of efficiency from B1 to B2, which is probably due to the lack of data at Bazoches-lès-Bray519

before 1999. Besides, the parameter values seem to be still consistent since identification520

and validation NSE values remain close for each period.521

Comparison of results in forecasting mode522

Each configuration (including n upstream stations) was compared with the previous one523

(including n-1 stations) through the RMSE(L) and FPI criteria to visualize the improve-524

ments due to the successive addition of gauging station flows for use in data assimilation.525

Results are presented in Figure 12.526

The B0-B1 comparison (first line) is identical to the A0-A2 comparison, showing the527

results of including the station Courlon-sur-Yonne. The integration of the Loing basin only528

marginally improves performance (second line). The B2-B3 comparison (thrid line) also529

shows that the integration of the upstream station on the Seine only slightly improves per-530
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formances. Remember that for this station, the performance is further enhanced when one531

considers only the period after 1999 without any gap. Finally, as shown by comparing B3-B4532

(fourth line), the inclusion of the station at La Ferté-sous-Jouarre (Marne) deteriorates the533

forecast performance, even when the station of Châlons-sur-Marne is integrated (configura-534

tion B4’). This result is quite surprising as one might expect a priori that the integration535

of additional data in the data assimilation algorithm should lead to a better simulation of536

the downstream discharge.537

As stated previously, a possible cause of this degradation is the quality of data at La538

Ferté-sous-Jouarre station. Unfortunately, no information on the data quality is available539

that could support this assumption. As a workaround, we increased the value related to540

the observations at this station in the measurement noise covariance matrix (R), which541

is equivalent to considering that measurements from this station are more uncertain. By542

doing this, the Kalman Filter gives less weight to this observation in the update step. The543

resulting configuration is called B4R. Figure 13 compares the performances for configuration544

B4 and B4R. Increasing the measurement noise correlation of this station highly increased545

the forecast performances. The value of FPI decreased from 0.988 to 0.754. This result546

clearly supports the assumption of poor data quality. It also shows how information about547

data quality, when available, can be taken into account in the data assimilation procedure.548

Finally, Figure 14 shows the FPI values for all the tested configurations and for the GRP549

model. These results show that configuration B3 provides the best performance according550

to the FPI criterion. The forecast performance comparison between this configuration and551

the GRP model (currently used in operational conditions by the FFC) is presented in Figure552

15, whereas Figure 16 shows an example of discharge forecast with GRP and B3 during553

the major flood of 1995. The TGR semi-distributed model with configuration B3 clearly554

outperformed the GRP lumped model (FPI of 0.722 and 0.810, respectively), namely for555

small lead times and with the PP scenario.556
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CONCLUSION557

The objective of this study was to investigate the sensitivity of flood forecasts to the558

spatial distribution of inputs using a semi-distributed hydrological model (TGR). The semi-559

distributed approach was chosen to test different degrees of spatialization. Here the spatial560

distribution was defined by a subset of available gauging stations and related intermediate561

basins. Forecast performances of different spatial distribution are analyzed and compared562

to a reference lumped model (GRP) currently used operationally by the regional flood fore-563

casting centre.564

It is shown that the TGR model provides better forecast performance than the GRP565

lumped model. This result was expected since, despite the linearization of the routing566

reservoir, the TGR model uses observed upstream flow data not used by the GRP model.567

Nevertheless, results obtained when increasing the degree of spatialization shows that568

including more gauging stations in the model does not systematically improve its perfor-569

mance. In an operational context, the model used has to be robust and computationally570

efficient, and it could be of prior importance to find the optimal spatial distribution which571

is not necessarily the one using all the available observed data. In addition, the case of572

the Marne river shows that considering some particular stations could even deteriorate the573

forecast performances. For such stations, we showed that increasing the measurement noise574

covariance can highly improve the forecast performances.575

Another important advantage of the semi-distributed approach is that it is possible to576

handle parts of the basin with large human influences like regulated dams, especially when577

little information on the management rules is available. Considering a station downstream578

of the dam is a way to isolate its influence. Some current work focuses on the integration of579

a simple reservoir module into the TGR model (Ficchi et al. 2013).580

Finally, Lerat et al. (2012) showed that decomposing the inflows into localized and dis-581

tributed lateral inflows improves the discharge simulation inside the basin (anywhere in the582

main stream). Such a decomposition is possible with the routing model developed in this583

23 Munier, July 9, 2014



study. Potential applications thus include the reconstruction and forecasting of the dis-584

charge at ungauged sites and using it as input for a 2D flooding model in order to elaborate585

prevention plans.586
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TABLE 1. List of the flow gauging stations. The mean discharge and the percentage
of missing values are given for the 1995-2009 period.

Station Station name River Area Mean Missing
code (km2) discharge values

(m3/s) (%)
H1940020 Bazoches-lès-Bray Seine 10100 85.2 35.6
H2051010 Dornecy Yonne 754 10.0 7.8
H2182010 Arcy-sur-Cure Cure 1182 16.4 9.6
H2332020 Dissangis Serein 636 4.5 6.1
H2452020 Aisy-sur-Armanon Armanon 1350 13.1 7.5
H2721010 Courlon-sur-Yonne Yonne 10700 99.8 7.3
H3621010 Episy Loing 3900 20.5 7.4
H5201010 Châlon-sur-Marne Marne 6280 75.7 7.0
H5321010 La Ferté-sous-Jouarre Marne 8818 97.9 12.8
H5920010 Paris-Austerlitz Seine 43800 343.7 11.1
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TABLE 2. List of tested configurations A0 to A4, and gauging stations considered.

Configuration Station names
A0 Paris-Austerlitz
A1 Paris-Austerlitz, Bazoches-lès-Bray
A2 Paris-Austerlitz, Courlon-sur-Yonne
A2’ Paris-Austerlitz, Courlon-sur-Yonne, Dornecy,

Arcy-sur-Cure, Dissangis and Aisy-sur-Armanon
A3 Paris-Austerlitz, Episy
A4 Paris-Austerlitz, La Ferté-sous-Jouarre
A4’ Paris-Austerlitz, La Ferté-sous-Jouarre, Châlon-sur-Marne
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FIG. 1. The Seine River basin at Paris (43,800 km2), and the networks of raingauges
and flow gauging stations used in the study. The station details corresponding to the
codes shown on the map are given in Table 1.
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FIG. 2. Schematic representation of the hydrology-routing coupled model (PE and P
are the potential evapotranspiration and rainfall inputs to the model, Q stands for
streamflow). The drained area curve is used for the spatial discretization inside the
intermediate basin.
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FIG. 3. (a) Example of hydrological discretization based on the gauging station network
and (b) corresponding modelling scheme.
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FIG. 7. Nash-Sutcliffe efficiency obtained at Paris-Austerlitz station in simulation mode
for A0 to A4 configuration in identification and validation for the two test periods P1
and P2.
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FIG. 8. Forecast performance obtained in validation by the TGR model and the per-
sistence model (PERS) at the Paris-Austerlitz station for the six configurations (see
Table 2) using PP and P0 rainfall scenarios. Lead times range from 1 to 72 hours.
Two configurations are compared in each case, illustrated on the left and right hand
sides of the graph.
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FIG. 9. Forecast performance obtained in validation by the TGR model and the per-
sistence model (PERS) at the Courlon-sur-Yonne station for the A2 and A2’ configu-
rations using PP and P0 rainfall scenarios. Lead times range from 1 to 72 hours.
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FIG. 10. Forecast performance obtained in validation by the TGR model and the per-
sistence model (PERS) at the La Ferté-sous-Jouarre station for the A4 and A4’ con-
figurations using PP and P0 rainfall scenarios. Lead times range from 1 to 72 hours.
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FIG. 11. Nash-Sutcliffe efficiency obtained at Paris-Austerlitz station in simulation
mode for B0 to B4 configuration in identification and validation for the two test
periods P1 and P2.
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FIG. 12. Forecast performance obtained in validation by the TGR model and the per-
sistence model (PERS) at the Paris-Austerlitz station for the B configurations using
PP and P0 rainfall scenarios. Lead times range from 1 to 72 hours. Two configurations
are compared in each case, illustrated on the left and right hand sides of the graph.
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FIG. 13. Forecast performance obtained in validation by the TGR model with configu-
rations B4 and B4R, and the persistence model (PERS) at the Paris-Austerlitz station
using PP and P0 rainfall scenarios. Lead times range from 1 to 72 hours.
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FIG. 14. Forecast Performance Index for all the tested configurations and for the GRP
model.
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FIG. 15. Forecast performance obtained in validation by the TGR model (configuration
B3), the GRP model and the persistence model (PERS) at the Paris-Austerlitz station
using PP and P0 rainfall scenarios. Lead times range from 1 to 72 hours.

47 Munier, July 9, 2014



17−01−1995 24−01−1995 31−01−1995 07−02−1995 14−02−1995
400

600

800

1000

1200

1400

1600

D
is

ch
ar

ge
 (

m
3 /s

)

 

 
OBS
GRP
B3
Q

95

FIG. 16. Example of discharge forecast by the TGR model (configuration B3) and the
GRP operational model during the 1995 main flood event with a 72-hour lead time
and for PP and P0 scenarios.
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