Spectral asymptotics of semiclassical unitary operators

Abstract : This paper establishes an aspect of Bohr's correspondence principle, i.e. that quantum mechanics converges in the high frequency limit to classical mechanics, for commuting semiclassical unitary operators. We prove, under minimal assumptions, that the semiclassical limit of the convex hulls of the quantum spectrum of a collection of commuting semiclassical unitary operators converges to the convex hull of the classical spectrum of the principal symbols of the operators.
Type de document :
Pré-publication, Document de travail
32 pages. Presentation substantially revised and reorganized for clarity. Main Theorem is now in .. 2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01161621
Contributeur : Yohann Le Floch <>
Soumis le : vendredi 6 avril 2018 - 19:05:46
Dernière modification le : mardi 10 avril 2018 - 01:31:21

Identifiants

  • HAL Id : hal-01161621, version 3
  • ARXIV : 1506.02873

Collections

Citation

Yohann Le Floch, Alvaro Pelayo. Spectral asymptotics of semiclassical unitary operators. 32 pages. Presentation substantially revised and reorganized for clarity. Main Theorem is now in .. 2018. 〈hal-01161621v3〉

Partager

Métriques

Consultations de la notice

98

Téléchargements de fichiers

45