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SPECTRAL ASYMPTOTICS OF SEMICLASSICAL
UNITARY OPERATORS

YOHANN LE FLOCH ÁLVARO PELAYO

Abstract. We introduce axiomatically a semiclassical quantiza-
tion for non necessarily self-adjoint operators. Then we focus on
unitary operators and prove that, in the semiclassical limit, the
convex hull of the joint spectrum of a finite commuting family
of semiclassical unitary operators converges to the convex hull of
the joint image of the principal symbols, which can be shown to
be a subset of a d-torus (S1)d. This result covers in particular
~-pseudodifferential and Berezin-Toeplitz operators. Part of the
paper is devoted to the definition of this notion of convex hull for
subsets of tori. The proof of our result builds on recent results for
semiclassical self-adjoint operators and involves the inverse Cayley
transform for unitary operators.

1. Introduction

We introduce axiomatically a semiclassical quantization for non-
necessarily self-adjoint operators. This extends the quantization given
by the second author, Polterovich and Vũ Ngo.c in [22] for self-adjoint
operators, and includes the case of pseudodifferential and Berezin-
Toeplitz operators. Then we focus on unitary operators. In this setting
our goal is to generalize to semiclassical unitary operators the quan-
tum mechanical principle that “the spectrum of a quantum mechanical
system converges to the classical spectrum in the semiclassical limit”.
Unlike self-adjoint operators which have spectrum in R, the spectrum
of a unitary operator is a subset of S1, and this implies that making
the above statement precise is more difficult.

One can show that semiclassical unitary operators must have circle
valued principal symbols, and hence the image of the joint map of prin-
cipal symbols of a family of commuting unitary operators is a subset
S of the d-dimensional torus Td = (S1)d. This paper shows that in the
semiclassical limit, the convex hull of the joint spectrum of a quantum
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system converges to the convex hull of the joint image of its principal
symbols (Theorem 4). This was known for self-adjoint Berezin-Toeplitz
operators on compact symplectic manifolds and pseudodifferential op-
erators on cotangent bundles (rigorous proofs of this appear in [22]),
and this paper provides the first proof of the principle in a non nec-
essarily self-adjoint case. A key ingredient of the proof is the inverse
Cayley transform of a unitary operator.

In order to prove the convergence result first we must give the “right
notion” of convex hull inside the torus Td, which is subtle to define as
trying to use a lift to Rd is too naive. The first part of the paper is
devoted to giving a notion of convex hull for subsets of d-dimensional
tori, which is well suited for the study of spectral convergence.

The axioms of semiclassical quantization in this paper (Section 4.2)
apply to pseudodifferential operators and Berezin-Toeplitz operators.
The study of pseudodifferential operators is now a classical subject
initiated about fifty years ago, and to which many have contributed,
see for instance Hörmander’s account of the subject in [17]. Berezin-
Toeplitz operators, which fit inside the framework of the well known
geometric quantization of Kostant [18] and Souriau [28], were intro-
duced by Berezin [1], and their microlocal analysis initiated by Boutet
de Monvel and Guillemin [5]. Non self-adjoint operators arise naturally
in partial differential equations, for instance in problems concerning
damped wave equations, scattering poles, and convection-diffusion.

After introducing the relevant notions and reviewing a result in [22]
by the second author, Polterovich and Vũ Ngo.c on which this paper
builds (Theorem 3), we will state our main result in Section 3. The rest
of the paper is devoted to its proof, generalizations, and an application
to semiclassical Berezin-Toeplitz quantization of symplectic actions.

2. Joint spectrum and Hausdorff distance

We start by reviewing the case of self-adjoint operators from [22], but
first let us recall the basic terminology used in the study of semiclassical
operators. A finite number of normal operators S1, . . . , Sd on a Hilbert
space are said to be mutually commuting if their corresponding spectral
measures µ1, . . . , µd pairwise commute. In this case we may define the
joint spectral measure µ := µ1 ⊗ · · · ⊗ µd on Cd.

In this paper we are concerned with semiclassical operators, that is,
the operator itself is given by a sequence of operators, labelled by the
Planck constant ~. Let I be a subset of (0, 1] that accumulates at 0.
Let

F =
(
T1 := (T1(~))~∈I , . . . , Td := (Td(~))~∈I

)



ASYMPTOTICS OF SEMICLASSICAL UNITARY OPERATORS 3

be a collection of pairwise commuting semiclassical normal operators.
These operators depend on the Planck constant ~ ∈ I and act on a
Hilbert space H~, ~ ∈ I. We assume that at each ~ ∈ I the opera-
tors have a common dense domain D~ ⊂ H~ such that the inclusion
Tj(~)(D~) ⊂ D~ holds for all j = 1, . . . , d.

For a fixed value of ~, the joint spectrum of (T1(~), . . . , Td(~)) is the
support of their joint spectral measure. It is denoted by

JointSpec(T1(~), . . . , Td(~)).

For instance, if the Hilbert space H~ is finite dimensional (eg. when the
manifold M is closed, that is, compact and with no boundary), then
JointSpec(T1(~), . . . , Td(~)) is the set{

(λ1, . . . , λd) ∈ Rd | ∃v 6= 0, Tj(~)v = λjv,∀j = 1, . . . , d
}
.

Definition 1. The joint spectrum JointSpec(T1, . . . , Td) of (T1, . . . , Td)
is the collection of all joint spectra of (T1(~), . . . , Td(~), ~ ∈ I.

Now suppose that (M,ω) is a connected quantizable manifold. Let
d > 1 and let (T1, . . . , Td) be a family of pairwise commuting semiclas-
sical operators on M . Following the physicists, we use the following
definition, which is the classical analogue of the previous one in virtue
of the classical-quantum correspondence.

Definition 2. The classical spectrum of (T1, . . . , Td) is the closure of
the image F (M) ⊂ Rd, where F = (f1, . . . , fd) is the map of principal
symbols of T1, . . . , Td.

The main result of this paper compares the Hausdorff distance be-
tween classical and quantum spectra, in the semiclassical limit, that is
when ~→ 0. Let us recall the meaning of this distance.

The Hausdorff distance (see e.g.[6, Definition 7.3.1]) between two
subsets A ⊂ X and B ⊂ X of a metric space (X, d) is the quantity
dXH(A, B) := inf {ε > 0 | A ⊆ Bε and B ⊆ Aε}, where for any subset
S of X, and any ε > 0, the set Sε is

Sε :=
⋃
s∈S

{x ∈ X | d(s, x) 6 ε}.

Recall that if dXH(A, B) = 0 and A,B are closed sets, then A = B.
When X = Rd with its Euclidean norm, we will simply use the no-
tation dH for the Hausdorff distance. Recently, Pelayo, Polterovich
and Vũ Ngo.c proved the following convergence result for semiclassical
self-adjoint operators.
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Theorem 3 ([22, Theorem 8]). Let (T1, . . . , Td) be a family of semi-
classical self-adjoint operators on a quantizable manifold M . Assume
that for every j ∈ J1, dK, the principal symbol of Tj is bounded. Let
S ⊂ Rd be the classical spectrum of (T1, . . . , Td). Then

Convex Hull (JointSpec(T1, . . . , Td)) −→
~→0

Convex Hull (S)

for the Hausdorff distance topology.

Given the background of this section, we are ready to state our main
result, which is a similar statement for unitary operators, in the up-
coming section.

3. Main theorem

Let (M,ω) be a connected quantizable manifold. Let d > 1 and
let F := (U1(~), . . . , Ud(~)) be a family of pairwise commuting unitary
semiclassical operators on M (necessarily their principal symbols are
S1-valued, as we will prove in Lemma 13). Let S ⊂ Td be the classical
spectrum of F . Assume in addition that f1(M), . . . , fd(M) are closed,
where fj is the principal symbol of Uj(~), that none of these principal
symbols is onto, and that F (M) is also closed, where F = (f1, . . . , fd) is
the joint principal symbol of the family. For a subset A of Td we denote
by Convex HullTd(A) its “convex hull” in the torus (the construction
of such convex hull is subtle and we carry it out in Section 5) For
a complete version of the following statement, where the “genericity
conditions” are spelled out, see Theorem 36.

Theorem 4. From the family of joint spectra{
Convex HullTd(JointSpec(U1(~), . . . , Ud(~))

}
~∈I
,

one can recover the convex hull of the classical spectrum S ⊆ Td. Fur-
thermore, under some genericity assumptions, this family of joint spec-
tra converges in the semiclassical limit to the convex hull of the classical
spectrum S ⊆ Td, in the Hausdorff metric, in other words,

lim
~→0

Convex HullTd
(

JointSpec(F)
)

= Convex HullTd S

where the limit convergence is in the Hausdorff metric.

We also state the following conjecture (see Conjecture 39 for a de-
tailed version).

Conjecture 5. The same statement holds even when we remove the
assumption that no principal symbol is onto.
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We provide with evidence in favor of the validity of this conjecture
in Section 7.3.

Next we give an application of Theorem 4. Closed symplectic 2n-
-dimensional manifolds (M,ω) that come endowed with an effective
symplectic Hamiltonian torus action of an n-dimensional torus with
momentum map µ : M → Rd are called symplectic toric manifolds (or
toric integrable systems). Even though a non-Hamiltonian symplectic
actions does not admit a momentum map with values in Rd, by a theo-
rem of McDuff ([20]) a symplectic manifold endowed with a symplectic
but non Hamiltonian torus action always admits a torus valued mo-
mentum map µ : M → Td, and its natural semiclassical quantization is
given by d semiclassical operators

U1, . . . , Ud,

whose principal symbols

µ1, . . . , µd

are precisely the components of µ. Hence the theorem above applies to
this case. As an immediate consequence of Theorem 4 we obtain the
following.

Corollary 6. Let (M,ω) be a prequantizable closed connected symplec-
tic manifold for which the cohomology class of ω is integral. Suppose
that M comes endowed with a symplectic Td-action which is not Hamil-
tonian, and let µ := (µ1, . . . , µd) : M → Td be the S1-valued momen-
tum map with image S. Suppose that F = (U1, . . . , Ud) is a family
of pairwise commuting unitary Berezin-Toeplitz operators on M whose
principal symbols are µ1, . . . , µd, and that none of the µj is onto. Then
from the data of the family of joint spectra of F , one can recover the
convex hull of S, and under some genericity assumptions,

lim
~→0

Convex HullTd
(

JointSpec(F)
)

= Convex HullTd S

where the limit convergence is in the Hausdorff metric.

4. Semiclassical operators and semiclassical quantization

4.1. Operators on Hilbert spaces. Let H be a Hilbert space, with
scalar product 〈·, ·〉; we use the notation ‖ · ‖ for the associated norm.
We will need to work with possibly unbounded linear operators acting
on H, hence we introduce some standard terminology (for more details,
we refer the reader to standard material, as [24, Chapter VIII] or [16,
Appendix 3] for instance). A linear operator acting on H is the data
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of a linear subspace D(T ) ⊂ H, called the domain of T , and a linear
map

T : D(T )→ H.
Throughout the paper, L(H) will denote the set of densely defined
(that is with dense domain) linear operators on H. The range R(T ) of
a linear operator T is the set of all values Tu, u ∈ D(T ).

We say that the operator T is bounded if there exists a constant
C > 0 such that for every u ∈ D(T ), ‖Tu‖ 6 C‖u‖. If this is the case,
by a slight abuse of notation, we will write ‖T‖ for its operator norm,
defined as

‖T‖ = sup
u∈D(T )
u6=0

‖Tu‖
‖u‖ .

Let us recall that if T is a bounded operator, it admits a bounded
extension with domain H (see [16, Proposition A.3.9] for example).

If T is a densely defined linear operator acting on H, its adjoint is
defined as follows: let D(T ∗) be the set of u ∈ H such that there exists
vu ∈ H such that

∀w ∈ D(T ) 〈Tw, u〉 = 〈w, vu〉 .
Then for u ∈ D(T ∗), this vu is unique and we set T ∗u = vu. This
defines a linear operator acting on H, with domain D(T ∗) not neces-
sarily dense; T ∗ is called the adjoint of T . A densely defined closed
operator is said to be normal when TT ∗ = T ∗T (this equality includes
the fact that the domains of these operators agree). Normal operators
are of particular interest because they satisfy the spectral theorem [11,
Chapter X, Theorem 4.11] which associates to the operator a spectral
measure and spectral projections. Two normal operators A,B ∈ L(H)
are said to commute if and only if all their spectral projections commute
(cf. for instance [26, Proposition 5.27]). A densely defined operator T
is said to be self-adjoint when T ∗ = T .

An operator T ∈ L(H) is said to be positive, in which case we will
write T > 0, when 〈Tu, u〉 > 0 for every u ∈ D(T ); if there exists some
constant c ∈ R such that T − c Id > 0, then we write T > c Id.

We say that T ∈ L(H) is invertible if it admits a bounded inverse,
that is a bounded operator

T−1 : R(T )→ D(T )

such that TT−1 = IdR(T ) and T−1T = IdD(T ). In this case, T−1 is
unique. A bounded operator U acting on H is said to be unitary if it
is invertible and U−1 = U∗. Now, we define the spectrum Sp(T ) ⊂ C
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of a given T ∈ L(H) as follows:

λ ∈ Sp(T ) ⇐⇒ λId− T is not invertible.

It can be proved that the spectrum of a self-adjoint (respectively uni-
tary) operator is a subset of R (respectively the unit circle S1).

Finally, recall the following useful result about the norm of a self-
adjoint operator. If A is self-adjoint, then

(1) sup
λ∈Sp(A)

|λ| = sup
u∈D(A)
u6=0

| 〈Au, u〉 |
‖u‖2

= sup
u∈D(A)
u6=0

‖Au‖
‖u‖ 6 +∞.

This result is standard but very often stated for bounded operators
only; a concise proof can be found in [22, Section 3].

4.2. Semiclassical quantization. Let M be a connected manifold.
Let A0 be a subalgebra of C∞(M,C) containing the constants and the
compactly supported functions, and stable by complex conjugation.
Assume also that if f ∈ A0 never vanishes, then 1/f also belongs to
A0. Let I ⊂ (0, 1] be a set accumulating at zero. Given a bounded
function f ∈ A0, its uniform norm will be denoted by ‖f‖∞.

Definition 7. A semiclassical quantization of (M,A0) consists of a
family of complex Hilbert spaces (H~)~∈I together with a family of
C-linear maps

Op~ : A0 → L(H~)

satisfying the following properties (in the statement of which f, g ∈
A0):

(Q1) if f and g are bounded, then the composition Op~ (f) Op~ (g)
is well-defined and

‖Op~(f)Op~(g)−Op~(fg)‖ = O(~)

(composition);
(Q2) for every ~ ∈ I, Op~(f)∗ = Op~

(
f̄
)

(reality);
(Q3) Op~(1) = Id (normalization);
(Q4) if f > 0, then there exists a constant C > 0 such that for every

~ ∈ I, Op~(f) > −C~ Id, (quasi-positivity);
(Q5) if f 6= 0 has compact support, then Op~(f) is bounded for every

~ ∈ I and

lim inf
~→0

‖Op~(f)‖ > 0

(non-degeneracy);
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(Q6) if g has compact support, then for every f ∈ A0, Op~(f)Op~(g)
is bounded and

‖Op~(f)Op~(g)−Op~(fg)‖ = O(~)

(product formula);

If such a semiclassical quantization exists, we say that M is quanti-
zable. Let us make a few comments regarding these axioms. Axioms
(Q3), (Q4), (Q5) and (Q6) were introduced in [22] in order to work
with self-adjoint semiclassical operators1. We introduce axioms (Q1)
and (Q2) in order to extend this setting to include operators that are
not necessarily self-adjoint. One can argue that there is some redun-
dancy between axioms (Q1) and (Q6), but for the sake of clarity, we
prefer to keep them both instead of stating some single axiom implying
them both.

It was checked in [22] that the axioms (Q3), (Q4), (Q5) and (Q6)
are satisfied by pseudodifferential and Berezin-Toeplitz operators. For
pseudodifferential operators, axiom (Q1) is a consequence of the prod-
uct formula for the Weyl quantization, which can be found in [12,
Theorem 7.9] for example, while axiom (Q2) is given by Formula (7.3)
in the same reference. The fact that axioms (Q1) and (Q2) hold for
Berezin-Toeplitz quantization will be checked in Lemma 41.

Let us now derive a few consequences of these axioms. Firstly, note
that axiom (Q2) implies in particular that Op~ maps real-valued func-
tions to self-adjoint operators. Similarly, axioms (Q1), (Q2) and (Q3)
together imply that Op~ maps S1-valued functions to “quasi-unitary”
operators, that is to say operators U~ ∈ L(H) such that

‖U∗~U~ − Id‖ = O(~) and ‖U~U
∗
~ − Id‖ = O(~).

Secondly, our axioms show the following.

Corollary 8. If f ∈ A0 is bounded, then the operator Op~(f) is
bounded and

(2) ‖Op~(f)‖ 6 ‖f‖∞ +O(~).

Proof. Axioms (Q3) and (Q4) yield that

Op~
(
|f |2
)
6 ‖f‖2

∞ Id +O(~).

1Actually, axiom (Q3) was stated in the weaker form ‖Op~(1) − Id‖ = O(~),
but our formulation does not seem too restrictive, since it is still true for both
Berezin-Toeplitz and pseudodifferential quantizations.
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Since Op~(|f |2) is self-adjoint, this implies, by formula (1), that its
norm satisfies ∥∥Op~(|f |2)

∥∥ 6 ‖f‖2
∞ +O(~);

using axioms (Q1) and (Q2), this means that

‖Op~(f)∗Op~(f)‖ 6 ‖f‖2
∞ +O(~).

But this, in turn, yields the boundedness of Op~(f); indeed, if u ∈ H
belongs to the domain of Op~(f), then we get by the Cauchy-Schwarz
inequality that

| 〈Op~(f)u,Op~(f)u〉 | = | 〈Op~(f)∗Op~(f)u, u〉 |
6 ‖Op~(f)∗Op~(f)u‖ ‖u‖.

Therefore, we obtain that

‖Op~(f)u‖ 6
√
‖Op~(f)∗Op~(f)‖ ‖u‖,

which implies that Op~(f) is bounded and that its norm satisfies the
inequality (2).

�

We state another useful corollary of our axioms regarding the invert-
ibility of our operators.

Corollary 9. Let f ∈ A0 be bounded. Then there exists ~0 ∈ I such
that Op~(f) is invertible for every ~ 6 ~0 with inverse having norm
uniformly bounded in ~ if and only if there exists c > 0 such that
|f | > c.

Proof. Note that since f is bounded, the previous corollary yields that
Op~(f) is bounded with norm smaller than

‖f‖∞ +O(~).

Assume that Op~(f) is invertible for ~ 6 ~0 with

‖Op~(f)−1‖ 6 1/c

for every ~ 6 ~0, for some constant c > 0. Then from the equality
Op~(f)−1Op~(f) = Id we derive the following:

(3) ∀u ∈ H~ ‖Op~(f)u‖ > ‖u‖
‖Op~(f)−1‖ > c‖u‖.

Let m ∈ M and let χ > 0 be a compactly supported smooth function
identically 1 in a compact set K containing m. We claim that there
exists u~ ∈ H~ of norm 1 such that

(4) u~ = Op~(χ)u~ +O(~).
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This claim is established in Step 3 of the proof of Lemma 11 in [22],
but we present a sketch of its proof for the sake of completeness. Let
η be a smooth, not identically vanishing function supported on K. By
axiom (Q5), there exists γ > 0 such that

‖Op~(η)‖ > γ

for every ~ 6 ~0, so there exists some v~ ∈ H~ of norm 1 and such that

‖Op~(η)v~‖ > γ/2.

Choose u~ as follows:

u~ =
1

‖Op~(η)v~‖
Op~(η)v~.

Thanks to axiom (Q6), we obtain

Op~(χ)u~ =
1

‖Op~(η)v~‖
Op~(χη)v~ +O(~)

which allows us to conclude that u~ satisfies formula (4), since χη = η.
We choose such a u~. By axiom (Q6), we get that

‖Op~(χf)u~ −Op~(f)Op~(χ)u~‖ = O(~).

Combining this estimate with the fact that u~ satisfies equation (4)
yields

‖Op~(χf)u~ −Op~(f)u~‖ = O(~)

and using equations (2) and (3), this gives

‖χf‖∞ +O(~) > ‖Op~(χf)u~‖ > ‖Op~(f)u~‖+O(~) > c+O(~).

By choosing ~ sufficiently small, this yields

‖χf‖∞ > c/2.

Since we can choose the support K of χ arbitrarily, the previous in-
equality implies that |f(m)| > c/2.

Conversely, assume that |f | > c for some constant c > 0. Then 1/f is
bounded, thus axiom (Q1) implies that

Op~(f)Op~

(
1

f

)
= Id +R~

where R~ is bounded with norm O(~). By a standard result (see for
instance [16, Theorem A.3.30]), there exists ~1 ∈ I such that Id + R~
is invertible whenever ~ 6 ~1, thus for such ~

Op~(f)Op~

(
1

f

)
(Id +R~)

−1 = Id,
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therefore Op~(f) is surjective. Similarly, there exists a bounded oper-
ator S~ with norm O(~) such that

Op~

(
1

f

)
Op~(f) = Id + S~

and there exists ~2 ∈ I such that for every ~ 6 ~2, Id +S~ is invertible,
so

(Id + S~)
−1Op~

(
1

f

)
Op~(f) = Id

and hence Op~(f) is injective. Consequently, Op~(f) is bijective for
every ~ 6 ~0 := min(~1, ~2). Since Op~(f) is a bounded operator,
the inverse mapping theorem [24, Theorem III.11] implies that it is
invertible for every ~ 6 ~0. It remains to show that the norm of its
inverse is uniformly bounded in ~. For this we notice that Op~(1/f) is
bounded since 1/f is bounded, thus∥∥Op~(f)−1

∥∥ 6 ‖Id + S~‖−1

∥∥∥∥Op~

(
1

f

)∥∥∥∥ 6 ∥∥∥∥ 1

f

∥∥∥∥
∞

+O(~).

Taking a smaller ~0 if necessary, this yields the result. �

Remark 10. Note that as a byproduct of the proof of the second
point of the corollary, we have that if f is bounded and |f | > c for
some c > 0, then ∥∥∥∥Op~(f)−1 −Op~

(
1

f

)∥∥∥∥ = O(~).

�

4.3. Semiclassical operators. We now introduce an algebraAI whose
elements are families fI = (f~)~∈I of elements of A0 of the form

f~ = f0 + ~f1,~

with f0 ∈ A0 and where the family (f1,~)~∈I is uniformly bounded in
~ and supported in a compact set K ⊂ M independent of ~. If f0 is
also compactly supported, we say that fI is compactly supported. We
have a map

Op : AI →
∏
~∈I

L(H~), fI = (f~)~∈I 7→ (Op~(f~))~∈I .

Definition 11. A semiclassical operator is an element of the image
Ψ := Op(AI) of this map.
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We want to define a map σ : Ψ → A0 which associates to Op~(fI)
the function f0 ∈ A0. However, we need to check that the latter is
unique.

Lemma 12. The map σ is well-defined. Given T = (T~)~∈I ∈ Ψ, we
call σ(T ) the principal symbol of T .

Proof. This proof already appeared in [22, Section 4] but we recall it
here for the sake of completeness. Let fI ∈ AI be such that Op(fI) = 0.
Since all the functions f1,~ are supported in the same compact set, we
deduce from Corollary 8 that

(5) ‖Op~(f~)−Op~(f0)‖ = O(~).

Let χ be any compactly supported smooth function. Using the previous
estimate and axiom (Q6), we obtain that for every compactly supported
gI ∈ AI

‖Op~(f~)Op~(χ)−Op~(f~χ))‖ = O(~),

hence ‖Op~(f~χ))‖ = O(~). Applying (5) to f~χ then yields

‖Op~(f0χ))‖ = O(~).

Therefore, by axiom (Q5), we conclude that f0χ = 0. Since χ was
arbitrary, this means that f0 = 0. �

By axiom (Q3), the principal symbol of the identity is σ(Id) = 1.
Axiom (Q2) implies that the principal symbol of a self-adjoint semi-
classical operator is real-valued. We can also draw conclusions about
the principal symbol of a unitary operator.

Lemma 13. The principal symbol of a unitary semiclassical operator
is S1-valued.

Proof. Let U~ be a unitary semiclassical operator. Since we are only
interested in the principal symbol, we can assume that U~ = Op~(f)
for some f ∈ A0. Let m ∈ M and let χ > 0 be a smooth compactly
supported function such that χ(m) = 1. By axiom (Q6), we get

(6)
∥∥Op~(χ

2|f |2)−Op~(χf̄ )Op~(χf)
∥∥ = O(~).

But, still because of axiom (Q6), we have that

‖Op~(χf)−Op~(f)Op~(χ)‖ = O(~),

which yields thanks to Corollary 8 applied to χf̄ :∥∥Op~(χf̄ )Op~(χf)−Op~(χf̄ )Op~(f)Op~(χ)
∥∥ = O(~).

Therefore we obtain by using (6) and the triangle inequality:∥∥Op~(χ
2|f |2)−Op~(χf̄ )Op~(f)Op~(χ)

∥∥ = O(~).
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By iterating the same method, we eventually get∥∥Op~(χ
2|f |2)−Op~(χ)Op~(f̄ )Op~(f)Op~(χ)

∥∥ = O(~).

Now, using axiom (Q2) and the fact that Op~(f) is unitary, this yields∥∥Op~(χ
2|f |2)−Op~(χ)2

∥∥ = O(~).

Finally, thanks to axiom (Q6) and the linearity of Op~, we infer from
this equality that ∥∥Op~

(
χ2(|f |2 − 1)

)∥∥ = O(~),

thus as a consequence of axiom (Q5) we have that χ2(|f |2 − 1) = 0,
hence |f(m)|2 = 1. �

4.4. Further assumptions. Let T~ ∈ Ψ be a semiclassical operator
with bounded principal symbol f , and such that |f | > c for some c > 0.
Then as a consequence of Corollary 9, T~ is invertible. Indeed, Op~(f)
is invertible and

T~ = Op~(f) +O(~);

thus our claim comes from an application of Theorem A.3.30 in [16].
We now add one axiom for semiclassical operators, namely:

(Q7) if S~, T~ ∈ Ψ have bounded principal symbols, then S~T~ be-
longs to Ψ. Furthermore, if |σ(T~)| > c for some c > 0, then
T−1
~ belongs to Ψ. (stability)

Note that in the first situation, it follows from axiom (Q1) that the
principal symbol of S~T~ is equal to the products of the principal sym-
bols of S~ and T~. Moreover, in the second situation, as a consequence
of Remark 10, we have that σ(T−1

~ ) = 1/σ(T~).

Remark 14. We will need this axiom in our proof of Theorem 36.
However, we will apply it to a very specific case, and we could have
stated a weaker version of it. Nonetheless, we keep it in this form be-
cause it is a very natural property to require for a semiclassical quanti-
zation. In particular, it is satisfied by pseudodifferential operators (see
for instance the lines below the proof of Proposition 8.4 in [12]) and
by Berezin-Toeplitz operators (e.g. as a consequence of Theorem 1 in
[7]–see also the references therein). �
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5. The convex hull of a subset of Td

5.1. Preliminaries about Td. We consider Td = (S1)d as the product
of d copies of the unit circle. If z belongs to the unit circle, we will
denote by arg(z) its argument in (−π, π]. We denote by

arg : Td = (S1)d → (−π, π]d

the function assigning its argument to each component of z ∈ Td:

arg(z1, . . . , zd) = (arg(z1), . . . , arg(zd)) .

Similarly, we will consider the function exp : Cd → Cd given by

exp(w) = (exp(w1), . . . , exp(wd))

for w = (w1, . . . , wd) ∈ Cd.
We endow Td with the following distance: for z, w ∈ Td

dT
d

(z, w) = min
θ∈(2πZ)d

‖ arg(z)− arg(w) + θ‖Rd .

The Hausdorff distance induced by this distance (cf Section 2) will be

denoted by dT
d

H .

5.2. Multiplication in Td. Let a = (a1, . . . , ad), b = (b1, . . . , bd) be
two points in Td = (S1)d. Then we use the following notation for the
product of a and b in Td: a · b = (a1b1, . . . , adbd). Now, given a subset
E of the torus Td and a point a ∈ Td, we define the set a.E as the set
of all points of the form a · z, z ∈ E. Moreover, we use the notation
a−1 ∈ Td to denote the point (a−1

1 , . . . , a−1
d ). The following lemma is

an easy consequence of our choice of distance on Td.

Lemma 15. Let E,F ⊂ Td. Then

dT
d

H (a · E, a · F ) = dT
d

H (E,F )

for every a ∈ Td.

5.3. Convex hulls for simple subsets of Td. Let us define the no-
tion of convex hull for subsets of Td. Because the topology of the torus
is more complicated than the one of Rd, we need to be careful. We be-
gin by defining it in the case where we can lift everything to Rd without
any trouble.

Definition 16. A subset E ⊂ Td is called very simple if it has no
point having a component equal to −1:

∀z = (z1, . . . , zd) ∈ E, ∀j ∈ J1, dK, zj 6= −1.
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For j ∈ J1, dK, let pj : Td → S1 be the natural projection on the j-th
factor:

∀z = (z1, . . . , zd) ∈ Td, pj(z) = zj.

Definition 17. A subset E ⊂ Td is called simple if none of the func-
tions pj |E is onto.

Remark 18. Note that if E is simple, then there exists a ∈ Td such
that a · E is very simple. Note also that a set consisting of a finite
number of points is always simple. �

Recall that for a subset E of the torus Td and a point a ∈ Td, we
define the set a · E as the set of points of the form a · z, z ∈ E.

Lemma 19. Let E ⊂ Td be simple and compact, with finitely many
connected components E1, . . . , En. Let b, c ∈ Td be such that b · E and
c ·E are very simple. Then for every j ∈ J1, NK, there exists a constant

θ
(b,c)
j ∈ (2πZ)d such that

∀z ∈ Ej, arg(c · z) = arg(b · z) + arg(c · b−1) + θ
(b,c)
j .

We call θ
(b,c)
j the phase shift of Ej with respect to (b, c).

Proof. Let z ∈ E; then c · z = (c · b−1) · (b · z), therefore

arg(c · z) = arg(b · z) + arg(c · b−1) + θ(z)

for some θ(z) ∈ (2πZ)d. But the function z 7→ arg(c · z)− arg(b · z) is
continuous, since b · E and c · E are very simple; indeed, if a compact
set H ⊂ Td is very simple, then H is contained in some compact subset
K of (S1 \ {−1})d, and the function arg : K → (−π, π)d is continuous.
Hence the same holds for z 7→ θ(z), and thus θ(z) = θ(w) whenever z
and w belong to the same connected component of E. Consequently,

for every j ∈ J1, dK, there exists a constant θ
(b,c)
j ∈ (2πZ)d such that for

every z ∈ Ej, θ(z) = θ
(b,c)
j , which was to be proved. �

Given a compact subset I of R, we use the notation diam(I) for the
diameter of I:

diam(I) = max {|x− y|, x, y ∈ I} ,
with the convention that diam(∅) = 0. Furthermore, let ηj, 1 6 j 6 d
denote the natural projection Rd → R, (x1, . . . , xd) 7→ xj.
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Lemma 20. Let E ⊂ Td be simple and compact, with finitely many
connected components. Then there exists b ∈ Td such that b ·E is very
simple and

∀j ∈ J1, dK, diam(ηj (arg(b · E))) = min Λj

where

Λj =
{

diam(ηj (arg(c · E))), c ∈ Td, c · E very simple
}
.

We say that such a point b ∈ Td is admissible.

Proof. We start by proving that the sets Λj do admit minima. So fix
j ∈ J1, dK; since E is simple, Λj is not empty. We will prove that the set
Λj consists of a finite number of values, which will yield the existence
of its minimum. We now make the following simple observation: if
G = arg(c · E) ⊂ (−π, π]d with c · E very simple is the image of
F = arg(b · E) ⊂ (−π, π]d, b · E very simple, by a translation, then

diam(ηj(F )) = diam(ηj(G)).

Let θ
(b,c)
1 , . . . θ

(b,c)
N be the phase shifts of E1, . . . , EN with respect to

(b, c) as introduced in Lemma 19. If G is not the image of F by a
translation, then necessarily there exists i 6= k ∈ J1, NK such that

θ
(b,c)
i 6= θ

(b,c)
k . But each θ

(b,c)
i is an element of (2πZ)d∩ [−2π, 2π]d, hence

we can only get a finite number of different values for θ
(b,c)
i by changing

b and c. Consequently, there is only a finite number of ways to make
G not be the image of F by a translation, hence Λj is finite.

It remains to prove that there exists a common b ∈ Td minimizing
all the Λj, 1 6 j 6 d. If d = 1, this is obvious, thus let us assume that
d > 2. Obviously we can pick some b ∈ Td which is a minimizer for
Λ1. Now let j ∈ J1, d−1K and assume that we have found bj ∈ Td such
that

∀i ∈ J1, jK, diam(ηi
(
arg(bj · E)

)
) = min Λi.

Consider the set Cj ⊂ Td of points of the form (1, c̃) · bj, c̃ ∈ Td−j.
Then clearly, for every c ∈ Cj with c · E very simple,

∀i ∈ J1, jK, diam(ηi (arg(c · E))) = min Λi.

Now, let Ξj+1 = {diam(ηj+1 (arg(c · E))) , c ∈ Cj, c · E very simple}.
We want to prove that min Ξj+1 = min Λj+1; this follows from the
fact that the map

ϕj : Tj × Cj → Td, (a, (1, c̃) · bj) 7→ (a, c̃) · bj
is a bijection satisfying ηj+1(arg(ϕj(a, c) ·z)) = ηj+1(arg(c ·z)) for every
(a, c) ∈ Tj × Cj and z ∈ E. We conclude by (finite) induction. �
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We would now like to define the convex hull of E ⊂ Td simple,
compact, with finitely many connected components, as the set

b−1 · exp (iConvex Hull(arg(b · E)))

where b ∈ Td is given by Lemma 20 and for any set F ⊂ Rd

exp (iF ) = {exp(iθ), θ ∈ F} .
The problem is that the point b ∈ Td is, in general, far from being
unique. Hence, in order to use this definition, we would need this set
to not depend on the choice of b. But it can depend on this choice if E
displays some symmetries; this is why we use the following definition.

Definition 21. Let E ⊂ Td be simple, compact, and with finitely
many connected components E1, . . . , EN . We define the convex hull of
E as follows:

(1) if for every admissible b, c ∈ Td, all the phase shifts θ
(b,c)
1 , . . . , θ

(b,c)
N

are equal, then

Convex HullTd(E) := b−1 · exp (i Convex Hull(arg(b · E))) ;

(2) otherwise, Convex HullTd(E) := Td.

Remark 22. In view of this definition, we see that if E ⊂ Td is simple,
compact and connected, its convex hull is simply defined as

Convex HullTd(E) := b−1 · exp (i Convex Hull(arg(b · E)))

for any b ∈ Td such that b · E is very simple. �

Definition 21 makes sense because of the following lemma.

Lemma 23. Let b, c ∈ Td be two admissible points such that the equal-

ity θ
(b,c)
1 = . . . = θ

(b,c)
N holds. Then

c−1·exp (i Convex Hull(arg(c · E))) = b−1·exp (i Convex Hull(arg(b · E))) .

Proof. Because of the assumption, we have that for every z ∈ E
arg(c · z) = arg(b · z) + arg(c · b−1) + θ

where θ is the common value of the θ
(b,c)
j . Hence

Convex Hull(arg(c · E)) = arg(c · b−1) + θ + Convex Hull(arg(b · E))

which implies, since θ belongs to (2πZ)d, that

exp (i Convex Hull(arg(c · E))) = c·b−1·exp (i Convex Hull(arg(b · E)))

and the result follows. �
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A simple compact subset E ⊂ Td with finitely many connected com-
ponents and satisfying the first condition in the above definition will
be called generic. This terminology makes sense because such sets are,
indeed, generic in the following sense.

Lemma 24. Let E ⊂ Td be simple, compact, with finitely many con-
nected components, and such that there exists b, c ∈ Td admissible such

that not all the phase shifts θ
(b,c)
j are equal. Then there exists ε0 > 0

such that for every ε 6 ε0, there exists a compact simple subset Eε ⊂ Td
such that Eε is generic and dT

d

H (E,Eε) 6 ε.

This result, of which we will give a proof later, is a corollary of the
next two lemmas.

Lemma 25. Let E = {z1, . . . , zN} ⊂ Td be such that there exists

b, c ∈ Td admissible such that not all the phase shifts θ
(b,c)
j are equal.

Then

• either there exist p, q, r, s ∈ J1, NK, j ∈ J1, dK and θ ∈ 2πZ such
that {p, q} 6= {r, s} and

|ηj (arg(b · zr))− ηj (arg(b · zs)) + θ| = |ηj (arg(b · zp))− ηj (arg(b · zq))| ,
• or there exist p, q ∈ J1, NK and j ∈ J1, dK such that

|ηj (arg(b · zp))− ηj (arg(b · zq))| = π.

It would be interesting to give a simpler characterization of non
generic sets. An example of non generic set when d = 1 is E consisting
of a finite number of points uniformly distributed on S1, but there are
also sets with weaker symmetries which are not generic, for example

E = {exp(iφ1), exp(iφ2), exp(iφ3)} ⊂ S1

where φ3 = π + (φ1 + φ2)/2 (see Figure 1).

Proof. Firstly, note that the existence of the pair (b, c) satisfying the
assumptions of the lemma implies that N > 1. Moreover, replacing E
by b · E and c by c · b−1 if necessary, we can assume that b = 1. To

simplify the notation, we will set θ` := θ
(1,c)
` , 1 6 ` 6 N .

Let us start with some considerations for fixed j ∈ J1, dK. Let p, q ∈
J1, NK be such that

diam (ηj(arg(E))) = |ηj(arg(zp))− ηj(arg(zq))| .
If there exist r, s ∈ J1, NK with {p, q} 6= {r, s} such that this diameter is
also equal to |ηj(arg(zr))− ηj(arg(zs))|, then we are done. So from now
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z4

z1

z3

z2

(a)
{

exp
(
i`π
2

)}
, 0 6 ` 6 3

z1

z3

z2

(b)
{

exp
(−iπ

2

)
, 1, exp

(
3iπ
4

)}
Figure 1. Two examples of non generic subsets of S1.

on we assume that it is not the case. We choose indices r, s ∈ J1, NK
such that

diam (ηj(arg(c · E))) = |ηj(arg(c · zr))− ηj(arg(c · zs))| .
Since 1 and c are admissible, the equality

|ηj(arg(zp))− ηj(arg(zq))| = |ηj(arg(c · zr))− ηj(arg(c · zs))|
holds; it can be rewritten as

|ηj(arg(zp))− ηj(arg(zq))| = |ηj(arg(zr))− ηj(arg(zs)) + ηj(θr)− ηj(θs)| .
If {p, q} 6= {r, s}, then we are done. If {p, q} = {r, s} and ηj(θp) 6=
ηj(θq), then we are also done. Indeed, this means that

|ηj(arg(zp))− ηj(arg(zq))| = |ηj(arg(zp))− ηj(arg(zq)) + θ| ,
where θ = ±2π. Assuming for instance that ηj(arg(zp)) > ηj(arg(zq)),
this yields

2(ηj(arg(zp))− ηj(arg(zq))) = ±2π.

Therefore, let us consider the case where {p, q} = {r, s} and ηj(θp) =
ηj(θq) = µ; we will call this case the exceptional case. Exchanging
the roles of p and q if necessary, we can assume that ηj(arg(zp)) >
ηj(arg(zq)). Then for every ` /∈ {p, q}, we have that

(7) ηj(arg(zq)) < ηj(arg(z`)) < ηj(arg(zp)).

But we also know that ηj(arg(c · zp)) > ηj(arg(c · zq)), because

ηj(arg(c · zp)) = ηj(arg(zp)) + ηj(arg(c)) + µ

and
ηj(arg(c · zq)) = ηj(arg(zq)) + ηj(arg(c)) + µ.
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Therefore, we also have that for every ` /∈ {p, q},
ηj(arg(c · zq)) < ηj(arg(c · z`)) < ηj(arg(c · zp)),

which implies that

ηj(arg(zq)) + µ < ηj(arg(z`)) + ηj(θ`) < ηj(arg(c · zp)) + µ.

Combining this with inequality (7), we get that for every ` ∈ J1, NK,
ηj(θ`) = µ.

Let us sum up the situation. If for some j ∈ J1, dK, we are not in
the exceptional case, then we are done. But there must exist such a j,
because otherwise we would have that

ηj(θ1) = . . . = ηj(θN)

for every j, that is to say θ1 = . . . = θN .
�

Lemma 26. Let E be a compact simple subset of Td, with finitely many
connected components E1, . . . , EN , and such that for every j ∈ J1, dK
and p ∈ J1, NK, there exists a unique point z−j,p (respectively z+

j,p) such
that for every b such that b · E is very simple

min
z∈Ep

ηj(arg(b · z)) = ηj(arg(b · z−j,p))

(respectively maxz∈Ep ηj(arg(b · z)) = ηj(arg(b · z+
j,p))). If E satisfies the

assumption of Lemma 24, then the set

F = {z−1,1, z+
1,1, . . . , z

−
d,N , z

+
d,N}

satisfies the assumption of Lemma 25.

Proof. The result can be deduced from the following observation: for
every j ∈ J1, dK and p ∈ J1, NK, and for every b ∈ Td such that b · E is
very simple,

diam(ηj(arg(b · E))) = diam(ηj(arg(b · F ))).

�

Proof of Lemma 24. Firstly, we can slightly modify the connected com-
ponents of E in order to get an ε-close set Ẽε satisfying the assumption
in the previous lemma (see Figure 2), because if this assumption is true
for one b such that b ·E is very simple, it is true for all such b. To this
new set Ẽε, we then associate a set

Fε = {z−1,1(ε), z+
1,1(ε), . . . , z−d,N(ε), z+

d,N(ε)}
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as in this lemma. Then equalities as in Lemma 25 occur for Fε for a
certain number of couples (b, c) of admissible points. But recall that
there is only a finite number of different values of(

θ
(b,c)
1 , . . . , θ

(b,c)
N

)
that we can obtain by changing (b, c). Hence, given ε > 0 small enough,
by performing small perturbations of the connected components of Ẽε
around the points z1(ε), . . . , zM(ε), we can construct a set Eε which is
ε-close to Ẽε with respect to the Hausdorff distance and such that no
equality as in Lemma 25 ever occurs, which means that Eε is generic.

�

π

−π π

E1

E2

E1,ε

Figure 2. Approximating E by a set satisfying the as-
sumptions of Lemma 26.

Before concluding this section, note that the convex hull does not
depend on the position of E inside the torus: if E is as in Definition
21, then

Convex HullTd(b · E) = Convex HullTd(E)

for every b ∈ Td.

Remark 27. We will not give a definition of the convex hull of a
general subset of the torus, since we will always keep these assumptions
of compactness and finite number of connected components. However,
our definition allows us to handle, in particular, compact connected
subsets and sets consisting of a finite number of points. Back to our
initial problem, the former corresponds to the closed image of a joint
principal symbol, while the latter corresponds to the joint spectrum of
a family of pairwise commuting operators acting on finite-dimensional
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spaces. Moreover, computing the convex hull of a finite number of
points on tori seems to be of interest in computational geometry [13]. �

5.4. Convex hull for compact, connected subsets of Td. We fi-
nally turn to the definition of the convex hull for non necessarily simple
compact connected subsets of Td, which is more involved. We start by
proving the following result on approximation by simple subsets.

Lemma 28. Let E be a compact connected subset of Td. Assume
that there exists a sequence (En)n>1 of compact connected very simple
subsets such that

(1) En −→
n→∞

E with respect to the Hausdorff distance,

(2) En ⊂ En+1,

(3) dT
d

H (En, En+1) 6 1
2n

min
(
1, d

(
arg(En), ∂

(
[−π, π]d

)))
.

We call such a sequence a very simple approximation of E. Then
there exists a compact subset C ⊂ Td such that the sequence (Cn)n>1

of subsets of Td defined by

Cn = Convex HullTd(En)

converges to C for the Hausdorff distance topology.

Before proving this result, we state the following useful lemma. It
is a standard exercise to show that in Rd, taking the convex hull is a
1-Lipschitz operation for the Hausdorff distance; it turns out that the
same does not hold in general for simple subsets of Td, see Figure 3
for a counterexample. However, the following weaker version of this
property holds.

z1
z2 = w2

w1

Figure 3. Two subsets E = {z1, z2} and F = {w1, w2}
of S1 which convex hulls (in blue, the convex hull of E,
in red, the convex hull of F ) are at Hausdorff distance
greater than the Hausdorff distance between E and F .
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Lemma 29. Let E,F ⊂ Td be compact connected very simple subsets
such that

dT
d

H (E,F ) 6 δ

where

δ =
1

2
d
(
arg(F ), ∂

(
[−π, π]d

))
.

Then

dT
d

H (Convex HullTd(E),Convex HullTd(F )) 6 dT
d

H (E,F ).

Proof. Before starting the proof, we recall that, because of Definition
21 and the remark following it, we have that

Convex HullTd(E) = exp (i (Convex HullTd(arg(E))))

and similarly for F .

Let z ∈ Convex HullTd(F ); there exists θ ∈ Convex Hull(arg(F ))
such that z = exp(iθ). Thus θ can be written as a finite linear combi-
nation of elements of arg(F ):

θ =
m∑
`=1

α`θ
`, α1, . . . , αm ∈ [0, 1],

m∑
`=1

α` = 1, θ1, . . . , θd ∈ arg(F )

(here we use superscripts to avoid confusion with the components of
elements of Rd). For 1 6 ` 6 m, let

z` = exp(iθ`) ∈ F.
Fix 1 < γ < 2; there exists w1, . . . , wm ∈ E such that for 1 6 ` 6 m

(8) dT
d

(z`, w`) 6 γ dT
d

H (E,F ) 6 γδ.

Consider the element

w = exp

(
i
m∑
`=1

α` arg(w`)

)
of Convex HullTd(E). For ` ∈ J1,mK, choose a non-zero φ` ∈ (2πZ)d;
then arg(w`)− φ` does not belong to [−π, π]d, thus∥∥arg(z`)− arg(w`) + φ`

∥∥
Rd > d

(
arg(F ), ∂

(
[−π, π]d

))
,

which implies, by the choice of γ, that∥∥arg(z`)− arg(w`) + φ`
∥∥
Rd > γδ >

∥∥arg(z`)− arg(w`)
∥∥
Rd .

Therefore

dT
d

(z`, w`) =
∥∥θ` − arg(w`)

∥∥
Rd .
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Combining this equality with the fact that

dT
d

(z, w) 6

∥∥∥∥∥
m∑
`=1

α`
(
arg(w`)− θ`

)∥∥∥∥∥
Rd

6
m∑
`=1

α`
∥∥arg(w`)− θ`

∥∥
Rd ,

and equation (8), we obtain that

dT
d

(z, w) 6 γ

m∑
`=1

α` d
Td
H (E,F ) = γdT

d

H (E,F ).

Hence
dT

d

(z,Convex HullTd(E)) 6 γdT
d

H (E,F ).

Exchanging the roles of E and F , we obtain that for every w ∈
Convex HullTd(E), the inequality

dT
d

(w,Convex HullTd(F )) 6 γdT
d

H (E,F )

holds. Thus, from the following characterization of the Hausdorff dis-
tance (see for instance [6, Exercise 7.3.2]):
(9)

dT
d

H (A,B) 6 r ⇔
(
∀a ∈ A, dTd(a,B) 6 r and ∀b ∈ B, dTd(b, A) 6 r

)
,

we deduce that

dT
d

H (Convex HullTd(E),Convex HullTd(F )) 6 γdT
d

H (E,F ).

Since γ > 1 was arbitrary, this concludes the proof. �

Proof of Lemma 28. Since (En)n>1 converges, it is a Cauchy sequence,
and furthermore, thanks to the previous lemma, we have that for every
n > 1

dT
d

H (Cn, Cn+1) 6 dT
d

H (En, En+1).

Therefore, the triangle inequality yields, for every n, p > 1,

dT
d

H (Cn, Cn+p) 6
n+p−1∑
`=n

dT
d

H (E`, E`+1).

But the series ∑
`>1

dT
d

H (E`, E`+1)

converges; this implies that the sequence (Cn)n>1 is a Cauchy sequence
as well. But it is a well-known fact that the set of compact subsets
of a complete metric space, endowed with the Hausdorff distance, is
complete [6, Proposition 7.3.7]. Applying this to our context, we get
that the sequence (Cn)n>1 converges to some compact subset C ⊂ Td.

�
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Lemma 30. If E is a compact connected subset of Td and (En)n>1,
(Fn)n>1 are two very simple approximations of E (see Lemma 28 for
terminology), then

lim
n→+∞

Convex HullTd(En) = lim
n→+∞

Convex HullTd(Fn),

where, as usual, the limit is with respect to the Hausdorff distance.

Proof. For n > 1, put

Cn = Convex HullTd(En)

and
Dn = Convex HullTd(Fn).

Denote by C (respectively D) the limit of the sequence (Cn)n>1 (re-
spectively (Dn)n>1). By the triangle inequality, we have that

(10) dT
d

H (C,D) 6 dT
d

H (C,Cn) + dT
d

H (Cn, Dn) + dT
d

H (Dn, D).

The first and third terms on the right hand side of this inequality go
to zero as n goes to infinity. Let us estimate the second one. For every
p > n, we have, using the triangle inequality again:

dT
d

H (En, Fn) 6
1

2n

(
min

(
1, d

(
arg(En), ∂

(
[−π, π]d

)))
+ min

(
1, d

(
arg(Fn), ∂

(
[−π, π]d

))) )
+ dT

d

H (En+1, Fn+1).

Iterating and using the fact that

d
(
arg(En+1), ∂

(
[−π, π]d

))
6 d

(
arg(En), ∂

(
[−π, π]d

))
,

we obtain that for every p > 1

dT
d

H (En, Fn) 6
1

2n

(
p∑
`=0

1

2`

)(
min

(
1, d

(
arg(En), ∂

(
[−π, π]d

)))
+ min

(
1, d

(
arg(Fn), ∂

(
[−π, π]d

))) )
+ dT

d

H (En+p, Fn+p).

Letting p go to infinity, we deduce that

dT
d

H (En, Fn) 6
1

2n−1
max

(
d
(
arg(En), ∂

(
[−π, π]d

))
, d
(
arg(Fn), ∂

(
[−π, π]d

)))
.

Therefore, thanks to Lemma 29, the second term in the right hand side
of equation (10) satisfies

dT
d

H (Cn, Dn) 6 dT
d

H (En, Fn)

and converges to zero as well. Hence, letting n go to infinity in equation
(10), we obtain that dT

d

H (C,D) = 0, which yields C = D because C
and D are closed.
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�

Now, let E be any compact connected subset of Td, and let App(E) ⊂
Td be the set of a ∈ Td such that a · E admits a very simple approxi-
mation (see Lemma 28). We define a map CE from App(E) to the set
of compact subsets of Td as follows: for a ∈ App(E), CE(a) is the limit
of the convex hull of any very simple approximation of a · E.

Definition 31. We say that E is hullizable if App(E) 6= ∅ and the
map CE is constant.

Figure 4 displays an example of non-hullizable set.
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Figure 4. An example of non hullizable set E ⊂ T2.
The figure displays arg(a · E) for two different values
of a ∈ T2, and the corresponding set arg(CE(a)) (the
boundary of which is represented by a red line).

Definition 32. Let E be a hullizable compact connected subset of Td.
We define the convex hull of E as

Convex HullTd(E) := a−1 · CE(a)

for any a ∈ App(E).

This definition agrees with Definition 21 when E is simple. Indeed,
if a ∈ Td is such that a · E is very simple, then (Fn = a · E)n>1 is a
very simple approximation of a · E, hence

CE(a) = Convex HullTd(a · E) = exp (i Convex Hull(arg(a · E)))

Consequently, E is hullizable and its convex hull is computed as in
Definition 21.
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6. Proof of the main theorem

In this section, we prove our main result (Theorem 36), using the
results proved in [22] for the self-adjoint case. We also state a conjecture
about more general cases not satisfying our assumptions. Before doing
so, we introduce the main ingredient of the proof.

6.1. The inverse Cayley transform for unitary operators. Let
us recall the definition of the inverse Cayley transform of a unitary
operator [25, Definition 3.17]. Let U be a unitary operator such that
−1 /∈ Sp(U). We define the inverse Cayley transform of U as

C(U) = i(Id− U)(Id + U)−1.

Then C(U) is a self-adjoint operator.

Lemma 33. Let U, V be commuting unitary operators acting on a
Hilbert space H, none of them having −1 in its spectrum. Then C(U)
and C(V ) commute.

Proof. This is a consequence of the following fact: if A is a normal
operator acting on a Hilbert space H, with spectral measure EA, S is
a Borel set and f : C→ C is a measurable function, then

Ef(A)(S) = EA(f−1(S)).

Therefore, if B is another normal operator which commutes with A
and g is another measurable function, the spectral projections Ef(A)(S)
and Eg(B)(T ) commute for every Borel sets S, T . Hence f(A) and g(B)
commute. �

Consequently, it makes sense to talk about the joint spectrum of
the family C(U1), . . . , C(Ud). We recall that the joint spectrum of a
finite family of pairwise commuting normal operators is defined as the
support of its joint spectral measure.

Lemma 34. Let U1, . . . , Ud be commuting unitary operators acting on
a Hilbert space H. Then

JointSpec(C(U1), . . . , C(Ud)) =

{
1

2
arg(λ), λ ∈ JointSpec(U1, . . . , Ud)

}
.

Proof. We mimic the reasoning of the proof of Proposition 5.25 in [26]
(which deals with the spectrum of one single operator). For every
j ∈ J1, dK, we have that

C(Uj) = φ(Uj)
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with

φ : C \ {−1} → C, z 7→ i
1− z
1 + z

.

Let

µ = EU1 ⊗ . . .⊗ EUd
be the joint spectral measure of U1, . . . , Ud, and let

ν = EC(U1) ⊗ . . .⊗ EC(Ud)

be the joint spectral measure of C(U1), . . . , C(Ud); we need to prove
that

supp(ν) = {(φ(λ1), . . . , φ(λd)), λ ∈ supp(µ)} =: S.

Indeed, a straightforward computation shows that for z ∈ S1 \ {−1},
φ(z) = 1

2
arg z. Firstly, let ζ = (ζ1, . . . , ζd) ∈ S, and let ε1, . . . , εd > 0

small enough; there exists λ = (λ1, . . . , λd) ∈ supp(µ) such that for
every j ∈ J1, dK, the inequality

|ζj − λj| < εj

holds. Since φ is continuous in a neighbourhood of Sp(Uj) in S1 (be-
cause Sp(Uj) is closed and does not contain −1), there exists δj > 0
such that

D(λj, δj) ⊂ {z ∈ C, |φ(z)− φ(λj)| < εj} ⊂ φ−1 (D(ζj, 2εj))

where D(z, r) stands for the open disk of radius r centered at z in C.
We deduce from this inclusion that

EUj
(
φ−1 (D(ζj, 2εj))

)
> EUj (D(λj, δj)) > 0,

where the last inequality comes from the fact that λ belongs to the
support of EUj . Consequently, if

D := D(ζ1, 2ε1)× . . .×D(ζd, 2εd),

we have that

ν(D) =
d∏
j=1

Eφ(Uj)(D(ζj, 2εj)) =
d∏
j=1

EUj(φ
−1 (D(ζj, 2εj))) > 0,

which means that ζ belongs to the support of ν.
Conversely, if ζ /∈ S, there exists j ∈ J1, dK such that φ−1 (D(ζj, εj))

is empty for every εj > 0 small enough, and we conclude with similar
computations that ζ /∈ supp(ν).

�



ASYMPTOTICS OF SEMICLASSICAL UNITARY OPERATORS 29

6.2. When none of the principal symbols is onto. In this sec-
tion, we consider pairwise commuting unitary semiclassical operators
U1(~), . . . , Ud(~) with joint principal symbol F = (f 1

0 , . . . , f
d
0 ). We as-

sume that for every j ∈ J1, dK, f j0 (M) is closed, and that the same holds
for F (M). Assume moreover that none of the principal symbols

f j0 : M → S1,

j ∈ J1, dK, is onto; using the terminology introduced earlier, this means
that F (M) is a simple compact subset of Td. Note that this set is con-
nected since it is the image of M , connected, by a continuous function.

Let us introduce an additional assumption in the case where the joint
spectrum of (U1(~), . . . , Ud(~)) is generic (see Lemma 24):

(A1) There exists ~0 ∈ I and a point b ∈ Td which is admissible
(see Lemma 20 for the terminology) for all the joint spectra
JointSpec(U1(~), . . . , Ud(~)), ~ 6 ~0, and such that b · F (M) is
very simple.

Remark 35. This assumption might seem strange but will be crucial
for a part of our analysis. Indeed, it may not hold if the joint spectrum
is too sparse (see Figure 5). In this situation, given the data of the
joint spectrum only, its convex hull computed thanks to our definition
will be far from the convex hull of F (M). However, this assumption is
reasonable, because it holds for Berezin-Toeplitz and pseudodifferential
operators, as a corollary of the Bohr-Sommerfeld rules which imply
that the joint spectrum is “dense” (when ~ → 0) in the set of regular
values of F (see [15] for pseudodifferential operators and [8] for Berezin-
Toeplitz operators). Nevertheless, our assumption is much weaker than
the Bohr-Sommerfeld rules. �

Now, we no longer assume that the joint spectrum is generic. Our
goal is to prove the following result.

Theorem 36. We have that, for every b ∈ Td such that b · F (M) is
very simple,

b−1 · exp (i Convex Hull(arg(b · JointSpec(U1(~), . . . , Ud(~)))))

converges, when ~→ 0, to

Convex HullTd(F (M))

with respect to the Hausdorff distance on Td. In particular, if the joint
spectrum is generic and assumption (A1) holds, then
(11)

Convex HullTd(JointSpec(U1(~), . . . , Ud(~))) −→
~→0

Convex HullTd(F (M)).
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Figure 5. An example for which assumption (A1) does
not hold.

In this statement, we use the fact that b·JointSpec(U1(~), . . . , Ud(~)))
is very simple, for ~ ∈ I small enough, whenever b·F (M) is very simple.
This is a consequence of the following lemma, which will also be useful
in the proof of the theorem.

Lemma 37. Let j in J1, dK, and let a ∈ S1 \ f j0 (M). Then there exists
~0 ∈ I such that for every ~ 6 ~0 in I, a /∈ Sp(Uj(~)).

Proof. This is a consequence of Corollary 9 (more precisely, of its conse-
quence stated right before axiom (Q7)). Indeed, since f j0 (M) is closed,
there exists a small open neighbourhood of a in S1 not intersecting it.
Thus there exists c > 0 such that

|f j0 − a| > c.

Hence Uj(~)−aId is invertible, thus a does not belong to the spectrum
of Uj(~). �

Before proving Theorem 36, we state one last technical lemma.

Lemma 38. Let E be a compact subset of (−π, π)d and let (Eε)ε>0 be
a family of compact subsets of (−π, π)d such that

dH (E,Eε) −→
ε→0

0.

Then dT
d

H (exp(iE), exp(iEε)) −→
ε→0

0.

Proof. Let
δ0 = d

(
E, ∂([−π, π]d)

)
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be the distance between E and the boundary of [−π, π]d in Rd. Choose
a positive number δ 6 1

2
δ0; there exists ε > 0 such that dH(E,Eε) 6 δ.

Let γ be such that 1 < γ < 2. Let u ∈ E; by definition of the Hausdorff
distance, there exists v ∈ Eε such that

‖u− v‖Rd 6 γdH(E,Eε).

Now, let θ ∈ (2πZ)d be non-zero; then v−θ does not belong to [−π, π]d,
thus

‖u− v + θ‖Rd > δ0 > γδ > ‖u− v‖Rd .
Consequently, we have that

dT
d

(exp(iu), exp(iv)) = ‖u− v‖Rd 6 γdH(E,Eε) 6 γδ.

Therefore dT
d

(exp(iu), exp(iEε)) 6 γδ. Exchanging the roles of E and
Eε, we also get that for every v in Eε,

dT
d

(exp(iv), exp(iE)) 6 γδ.

This implies that dT
d

H (exp(iE), exp(iEε)) 6 γδ, because of characteri-
zation (9). �

We are finally ready to give a proof of the main result of this section.

Proof of Theorem 36. Let b = (b1, . . . , bd) ∈ Td be such that b · F (M)
is very simple . For every j ∈ J1, dK, consider the operator

Vj(~) = bjUj(~),

which is still a semiclassical unitary operator, with principal symbol

gj0 = bjf
j
0 .

By Lemma 37, there exists ~j ∈ I such that −1 /∈ Sp(Uj(~)) whenever
~ 6 ~j. Let

~0 = min
16j6d

~j;

in the rest of the proof we will assume that ~ 6 ~0. We can therefore
consider the self-adjoint operators

Tj(~) = 2 C(Vj(~)), 1 6 j 6 d

where we recall that C stands for the inverse Cayley transform (see
Section 6.1). Thanks to axiom (Q7), Tj(~) is a semiclassical operator.
We deduce from the comments following this axiom that its principal
symbol is equal to

aj0 = 2 φ ◦ gj0
where we recall that φ is defined as

φ : C \ {−1} → C, z 7→ i
1− z
1 + z

.
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We also recall that for z ∈ S1 \ {−1}, φ(z) = 1
2

arg z, and thus

aj0 = arg gj0 = arg(bjf
j
0 ).

Furthermore, by Lemma 33, Tj(~) and Tm(~) commute for every j,m ∈
J1, dK. Let A = (a1

0, . . . , a
d
0); by Theorem 3, we have that

(12)

Convex Hull(JointSpec(T1(~), . . . , Td(~))) −→
~→0

Convex Hull(A(M))

with respect to the Hausdorff distance on Rd. But on the one hand,
we have that

Convex Hull(A(M)) = Convex Hull(arg(b · F (M)))

On the other hand, Lemma 34 yields

JointSpec(T1(~), . . . , Td(~))) = arg(JointSpec(V1(~), . . . , Vd(~))).

Using these results in equation (12), we finally obtain that

Convex Hull(b · arg(JointSpec(U1(~), . . . , Ud(~))))

converges, when ~ goes to zero, to

Convex Hull(b · arg(F (M)))

with respect to the Hausdorff distance on Rd. By Lemma 38, this
implies that

exp (i Convex Hull(b · arg(JointSpec(U1(~), . . . , Ud(~)))))

converges to

exp
(
i Convex Hull(b · arg(F (M)))

)
for the Hausdorff distance on Td when ~ goes to zero. Using the conti-
nuity of exp and of the restriction of arg to (−π, π)d, the latter coincides
with the set

exp (i Convex Hull(b · arg(F (M)))).

Finally, using that z ∈ Td 7→ b−1 · z is continuous and preserves the
Hausdorff distance (Lemma 15), this yields the first part of the Theo-
rem.

For the second statement of the Theorem, just apply the first part
with a point b = (b1, . . . , bd) ∈ Td admissible for all the joint spectra
JointSpec(U1(~), . . . , Ud(~)), ~ 6 ~0, and such that the set b · F (M) is
very simple, remembering Definition 21.

�
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6.3. A conjecture in the general case. We would like to get rid
of the assumption on the surjectivity of the principals symbols. We
consider pairwise commuting unitary semiclassical operators

U1(~), . . . , Ud(~)

with joint principal symbol

F = (f 1
0 , . . . , f

d
0 ).

We still assume that F (M) is closed.

Conjecture 39. Assume that F (M) is hullizable (see Definition 31).
From the behaviour of the joint spectrum JointSpec(U1(~), . . . , Ud(~))
when ~ goes to zero, one can recover the convex hull of F (M).

We give evidence for this conjecture in Section 7.3, but first let us
make a few comments about it. Firstly, “recover” can have several
meanings, but it would be appreciable to obtain a statement similar to
Theorem 36 involving the convex hull of the joint spectrum; however,
the latter may no longer be simple, so we would need to give a meaning
to its convex hull. Secondly, in order to prove this conjecture, using
axioms (Q1) to (Q7) only might not be enough, thus a natural problem
would be to look for the minimal set of additional axioms needed for
this proof. Finally, it could be interesting to derive a sufficient condition
for F (M) to be hullizable.

7. An application: quantization of circle-valued
momentum maps

7.1. Construction of the circle valued momentum map. We
identify throughout the circle S1 with R/Z and denote by π : R 3 t 7→
[t] ∈ R/Z the natural projection map. The length form λ ∈ Ω1(R/Z)
is given by the expression λ([t]) (Ttπ(r)) := r.

Let (M,ω) be a connected symplectic manifold, that is, M is a
smooth manifold and ω is a smooth 2-form onM which is non-degenerate
and closed.

Let Φ : (R/Z) ×M → M be a smooth symplectic action, that is a
smooth action by diffeomorphisms Φ[t] : M → M that preserves the
symplectic form ω (these are called symplectomorphisms).

For r ∈ R denote by rM ∈ X(M) the action infinitesimal generator
determined by r whose value at x ∈M is

rM(x) :=
d

dε

∣∣∣∣
ε=0

Φ[rε](x).
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Definition 40. The R/Z-action on (M,ω) is Hamiltonian if there is
a smooth map µ : M → R such that i1Mω := ω(1M , ·) = dµ. The map
µ is called the momentum map of the action.

Note that the existence of µ is equivalent to the one-form i1Mω being
exact, and therefore if the first cohomology group H1(M ;R) vanishes
then every symplectic R/Z-action on M is in fact Hamiltonian.

If the R/Z-action does not have a momentum map in the sense above,
then the action must be non trivial. Hence, if the action is not Hamil-
tonian, then i1Mω is not exact. These type of actions also admit an
analogue of the momentum map, called the circle valued momentum
map, and which now takes values in R/Z. A circle valued momentum
map µ : M → R/Z is determined by the equation

µ∗λ = i1Mω.

Such a map µ always exists, for either ω itself, or a very close per-
turbation of it. To be more precise, suppose that R/Z acts symplecti-
cally on the closed symplectic manifold (M,ω), but not Hamiltonianly.
Whenever the symplectic form ω is integral (that is, [ω] ∈ H2(M ;Z)),
then the action admits a circle valued momentum map µ : M → R/Z
for ω (this result is due to McDuff, see [20], and is valid for some sym-
plectic form even when the integral cohomology assumption is invalid).

For the sake of completeness and because it is a very simple con-
struction, we review it here. It follows from [23, Lemma 7] that

[i1Mω] ∈ H1(M ;Z).

Fix m0 ∈ M and let γm be an arbitrary smooth path in M , from m0

to m, and define µ : M → R/Z by

µ(m) :=

[∫
γm

i1Mω

]
.(13)

It is immediate that the definition of µ is independent of paths, so it
is is well defined. Also, µ is clearly smooth, and for every vm ∈ TmM ,
we have

Tmµ(vm) = T∫
γm

i1M ωπ
(
i1Mω(m)(vm)

)
,

and consequently

(µ∗λ)(m)(vm) = λ(µ(m)) (Tmµ(vm)) = (i1Mω) (m)(vm),

as desired. Of course the map µ is defined up to the addition of con-
stants (because of the freedom in the choice of m0).
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7.2. Circle action and Berezin-Toeplitz quantization. It turns
out that there exists a natural way to derive a semiclassical quanti-
zation of this circle-valued moment map when M is compact and ω
is integral (in fact, integral up a factor 2π); this semiclassical quanti-
zation is called Berezin-Toeplitz quantization. It builds on geometric
quantization, due to Kostant [18] and Souriau [28]. Berezin-Toeplitz
operators were introduced by Berezin [1], their microlocal analysis was
initiated by Boutet de Monvel and Guillemin [5], and they have been
studied by many authors since [2, 3, 7, 19, 29].

Assume that (M,ω) is a compact, connected, Kähler manifold, which
means that it is endowed with an almost complex structure which is
compatible with ω and integrable. We recall that an almost complex
structure j on M is a smooth section of the bundle End(TM) → M
such that j2 = −idTM , and j being integrable means that it induces
on M a structure of complex manifold. Compatibility between ω and
j means that ω(·, j·) is a Riemannian metric on M .

Assumer moreover that the cohomology class [ω/2π] lies inH2(M,Z).
Then there exists a prequantum line bundle L → M , that is a holo-
morphic, Hermitian complex line bundle whose Chern connection (the
unique connection compatible with both the holomorphic and Hermit-
ian structures) has curvature form equal to −iω. Then for any integer
k > 1, the space

Hk = H0
(
M,L⊗k

)
of holomorphic sections of the line bundle L⊗k → M , endowed with
the Hermitian product

φ, ψ ∈ Hk 7→ 〈φ, ψ〉k =

∫
M

hk(φ, ψ)µM

where µM is the Liouville measure associated with ω and hk is the Her-
mitian form on L⊗k inherited from the one of L, is a finite dimensional
Hilbert space.

Now, the quantization map

Opk : C∞(M,C)→ L(Hk)

is defined as follows: let L2(M,L⊗k) be the space of square integrable
sections of L⊗k → M , that is the completion of C∞(M,L⊗k) with re-
spect to 〈·, ·〉k, and let Πk be the orthogonal projector from L2(M,L⊗k)
to Hk. Then, given f ∈ C∞(M,C), let

Opk(f) = Πkf

where, by a slight abuse of notation, f stands for the operator of mul-
tiplication by f in L2(M,L⊗k). Here the integer parameter k plays the
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part of the inverse of ~, therefore the semiclassical limit corresponds to
k → +∞ instead of ~→ 0.

Lemma 41. The Berezin-Toeplitz quantization is a semiclassical quan-
tization in the sense of Section 4.2.

Proof. This work was done in [22] for axioms (Q3) to (Q6). The fact
that axiom (Q1) is satisfied comes, for instance, from [2]. For axiom
(Q2), take φ, ψ ∈ Hk, and compute

〈Πkfφ, ψ〉k = 〈fφ, ψ〉k =
〈
φ, f̄ψ

〉
k

=
〈
φ,Πkf̄ψ

〉
k
,

where, to derive the first equality, we used the fact that Πk is self-
adjoint and Πkφ = φ, and we used a similar reasoning for the last
equality. The second equality follows from the definition of 〈·, ·〉k and
the sesquilinearity of hk. �

Remark 42. We have assumed that M is Kähler for convenience,
but there exist ways to construct a Berezin-Toeplitz quantization on
a compact symplectic, not necessarily Kähler, manifold (M,ω) with
[ω/(2π)] integral [4, 5, 9, 14, 19, 27]. �

Assume now that M is endowed with a smooth symplectic, but not
Hamiltonian, action of S1. We now identify R/Z with the unit circle
S1 in C by means of the map

R/Z→ S1, [t] 7→ exp(2iπt).

Since the symplectic form ω̃ = ω/2π is integral, there exists a circle
valued momentum map µ̃ with respect to ω̃ for the action, whose value
at m ∈M is given by the formula

µ̃(m) =

[∫
γm

i1M ω̃

]
,

where γm is a smooth path connecting a fixed point m0 ∈ M to m.
Hence we get a function µ ∈ C∞(M,S1) defined as

µ(m) = exp(2iπµ̃(m)) = exp

(∫
γm

i1Mω

)
.

We associate to this function a unitary Berezin-Toeplitz operator as
follows. Set V (k) = Opk(µ); then V (k) is a Berezin-Toeplitz operator
with principal symbol µ but may not be unitary. However, the operator

U(k) := V (k) (V (k)∗V (k))−1/2

is well-defined, clearly unitary, and it follows from the stability of
Berezin-Toeplitz operators with respect to smooth functional calculus
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[7, Proposition 12] that it is a Berezin-Toeplitz operator with principal
symbol µ.

7.3. A family of examples. Following these constructions, we intro-
duce a family of examples for manifolds M = T2d. We start with the
case d = 1.

An example when d = 1. A famous example of symplectic but non
Hamiltonian circle action is the action of S1 = R/Z on T2 = R2/Z2

given by the formula:

[t] · ([q, p]) = ([t+ q, p]) .

Here the torus T2 = R2/Z2 is endowed with the symplectic form coming
from the standard one on R2, that is:

ω = dp ∧ dq.
The action is clearly symplectic, and is not Hamiltonian, for instance
because it has no fixed point.

Lemma 43. The circle-valued momentum map associated with this
action is

µ̃([q, p]) = [p]

up to the addition of a constant.

Proof. Using the notation of the previous section, we have that

Φ[t]([q, p]) = [t+ q, p],

hence

1M([q, p]) =
∂

∂q
,

therefore i1Mω = dp. Take m0 = [0, 0] ∈ T2 and let m = [q, p] be any
point in T2. Then

γm : [0, 1]→ T2, t 7→ [tq, tp]

is a smooth path connecting m0 to m. Thus

µ̃(m) =

∫
γm

dp =

∫ 1

0

p dt = p.

�

As in the previous part, this map gives rise to a map

µ ∈ C∞
(
T2,S1

)
, µ([q, p]) = exp(2iπp).

We have a natural semiclassical operator associated with this momen-
tum map, in the setting of Berezin-Toeplitz quantization. Firstly, let
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us briefly describe the geometric quantization of the torus, although it
is now quite standard (see [21, Chapter I.3] for instance). Let

LR2 → R2

be the trivial line bundle with standard Hermitian form and connection
d− iα, where α is the 1-form defined as

αu(v) =
1

2
ω(u, v),

equipped with the unique holomorphic structure compatible with the
Hermitian structure and the connection. Consider a lattice Λ ⊂ R2 of
symplectic volume 4π. The Heisenberg group

H = R2 × U(1)

with product

(x, u) ? (y, v) =

(
x+ y, uv exp

(
i

2
ω0(x, y)

))
acts on LR2 , with action given by the same formula. This action pre-
serves all the relevant structures, and the lattice Λ injects into H;
therefore, by taking the quotient, we obtain a prequantum line bundle
L over T2 = R2/Λ. Furthermore, the action extends to the line bundle
L⊗kR2 by

(x, u).(y, v) =

(
x+ y, ukv exp

(
ik

2
ω0(x, y)

))
.

We thus get an action

T ∗ : Λ→ End
(
C∞

(
R2, L⊗kR2

))
, u 7→ T ∗u .

The Hilbert space Hk = H0(T2, L⊗k) can naturally be identified with
the spaceHΛ,k of holomorphic sections of L⊗kR2 → R2 which are invariant
under the action of Λ, endowed with the Hermitian product

〈φ, ψ〉k =

∫
D

φψ |ω|

where D is the fundamental domain of the lattice. Furthermore, Λ/2k
acts on HΛ,k. Let e and f be generators of Λ satisfying ω(e, f) = 4π;
one can show that there exists an orthonormal basis (ψ`)`∈Z/2kZ of HΛ,k

such that

∀` ∈ Z/2kZ


T ∗e/2kψ` = w`ψ`

T ∗f/2kψ` = ψ`+1

with w = exp
(
iπ
k

)
. The basis sections ψ` can be computed using Theta

functions.
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Now, set
U(k) = T ∗e/2k : Hk → Hk;

of course, U(k) is unitary. Let (q, p) be coordinates on R2 associated
with the basis (e, f) and [q, p] be the equivalence class of (q, p). It is
known [10, Theorem 3.1] that U(k) is a Berezin-Toeplitz operator with
principal symbol

[q, p] 7→ exp(2iπp),

which is precisely µ. Trivially, the spectrum of U(k) is

Sp(U(k)) =

{
exp

(
iπ`

k

)
, 0 6 ` 6 2k − 1

}
which is dense in µ(T2) = S1 when k goes to infinity. Thus, this ex-
ample is interesting because the assumptions of Theorem 36 are not
satisfied, since µ is onto, yet we can recover µ(M) from the spectrum
of U(k) when k → +∞. This provides with evidence for Conjecture
39 in the d = 1 case; we will now explain how to do the same in higher
dimension.

The higher dimensional case. More generally, we can consider d
symplectic but non Hamiltonian circle actions on M = T2d = (T2)d,
endowed with the symplectic form coming from

ω = dp1 ∧ dq1 + . . .+ dpd ∧ dqd

as follows: for j ∈ J1, dK, the j-th action is the action of S1 described
above applied to the j-th copy of T2:

[t].[q1, p1, . . . , qd, pd] = [q1, p1, . . . , qj−1, pj−1, t+qj, pj, qj+1, pj+1, . . . , qd, pd].

This action admits the circle valued moment map

µj ∈ C∞
(
T2d, S1

)
, µj([q1, p1, . . . , qd, pd]) = exp(2iπpj).

Now, we recall the following useful property of Berezin-Toeplitz quan-
tization with respect to direct products: if M1,M2 are two compact
connected Kähler manifolds endowed with prequantum line bundles L1

and L2 respectively, the line bundle

L = L1 � L2 := π∗1L1 ⊗ π∗2L2 →M = M1 ×M2

is a prequantum line bundle (here πj : M → Mj is the natural projec-
tion). Moreover, the quantum Hilbert spaces satisfy

H0
(
M,L⊗k

)
= H0

(
M1, L

⊗k
1

)
⊗H0

(
M2, L

⊗k
2

)
and, if fj ∈ C∞(M,C), j = 1, 2, then

Opk(f) = Opk(f1)⊗Opk(f2)
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for f(m1,m2) = f(m1)f(m2). Coming back to our example where
M = T2× . . .×T2, we quantize T2 as explained in the previous section
and we obtain a family of quantum spaces

Hk = H0
(
T2, L⊗k

)⊗d
with orthonormal basis

(ψ`1 ⊗ . . .⊗ ψ`d)`1,...,`d∈Z/2kZ.
Let U(k) be the same operator as in the previous section, and introduce
the operator

Vj(k) := Id⊗ . . .⊗ Id⊗ U(k)︸ ︷︷ ︸
j−th position

⊗ . . .⊗ Id

for every j ∈ J1, dK. Then (V1(k), . . . , Vd(k)) is a family of pairwise
commuting unitary Berezin-Toeplitz operator acting on Hk, with joint
principal symbol µ = (µ1, . . . , µd). Its joint spectrum is equal to{(

exp

(
iπ`1

k

)
, . . . , exp

(
iπ`d
k

))
, `1, . . . , `d ∈ Z/2kZ

}
and again, from this we recover µ(M) = Td when k goes to infinity.

8. Concluding remarks

A certain number of questions of interest remain. In what follows
we gather some of them.

Convex hulls on tori. Our definition of the convex hull of a simple
subset of Td is quite involved, yet it does not apply to every kind of
subset. Is there a way to get a more flexible definition? Can one find
a way to handle subsets of Td with infinitely many connected compo-
nents?

More general non-self-adjoint operators. The notion of semiclas-
sical quantization introduced in Section 4.2 allows us to handle general
non-self-adjoint semiclassical operators. It would be interesting to see if
from the family of joint spectra of a family of pairwise commuting nor-
mal operators (not necessarily self-adjoint or unitary) one can recover
some information about the classical spectrum S. One can maybe try
to recover the convex hull of S ⊂ Cd ' R2d, but the analysis seems
quite complicated. Furthermore, we would lose information for unitary
operators because then the convex hull of S ⊂ Cd would be larger than
its convex hull computed as a subset of Td.
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