Statistical tests for Rare Variants Data Rare Variants in Human Genetic Diseases: Comparison of Association Statistical Tests
Lise Bellanger, Elodie Persyn, Floriane Simonet, Richard Redon, Jean-Jacques Schott, Solena Le Scouarnec, Matilde Karakachoff, Christian Dina

To cite this version:
Lise Bellanger, Elodie Persyn, Floriane Simonet, Richard Redon, Jean-Jacques Schott, et al.. Statistical tests for Rare Variants Data Rare Variants in Human Genetic Diseases: Comparison of Association Statistical Tests. International Biometric Conference, Jul 2014, Florence, Italy. <hal-01160576>

HAL Id: hal-01160576
https://hal.archives-ouvertes.fr/hal-01160576
Submitted on 5 Jun 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Rare Variants in Human Genetic Diseases: Comparison of Association Statistical Tests

Lise BELLANGER1, Elodie PERSYN1, Floriane SIMONET1, Richard REDON1, Jean-Jacques SCHOTT2, Solena LE SCOUARNEC2

1 Laboratoire de Mathématiques Jean Leray (LMJ) UMR CNRS 6629, University of Nantes, France. Email: lise.bellanger@univ-nantes.fr
2 Institut du thorax, Inserm UMR 1087 / CNRS UMR 6291, University of Nantes, France

Background and Objectives

GWASs allow to identify common genetic variants (CVs) associated with many common diseases. But these variants do not fully explain the heritability (i.e., proportion of phenotypic variance attributable to genetic variants).

GWAS

- **GWAS** aims to identify common genetic variants (CVs) associated with many common diseases.
- These CVs do not fully explain the heritability (proportion of phenotypic variance attributable to genetic variants).

Summary of properties of the tests for RVs to be compared

- Whether pooling over variants, using a MAI threshold to define RVs, sensitive to association directions (i.e.), whether possible use of weights, requiring permutations for p-value calculations and references for more details.

Data

- Genotypes and phenotypes generated as in (1), 6 main scenarios, sub-divided into 400 independent replicates, test significant level α = 5%, 500 permutations for association-based methods:
 - sample size 500 cases and 500 controls
 - 8 causal RVs, p = (0.48,16,32) non-causal RVs
 - p = 0.05 independent or p = 0.05 in Linkage Disequilibrium (LD)

Pipeline of data creation and analysis

1. After pre-processing, 871 samples (one per studied gene) were selected and the 324 patients in line.

Results

- The first dimension remains linked to:
 - all studied burden tests
 - kernel-based weighted adaptive C-Alpha test and BOMP.
- The second dimension explains the dimension of two non-burden tests:
 - C-Alpha and its kernelization "SKAT".

Material and Methods

Test Pool MAF threshold Sensitive weights Permut Refs

<table>
<thead>
<tr>
<th>Test</th>
<th>Pool</th>
<th>MAF threshold</th>
<th>Sensitive weights</th>
<th>Permut</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAST</td>
<td>yes fixed</td>
<td>no no no 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMC</td>
<td>yes fixed</td>
<td>no no no 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSS</td>
<td>yes no</td>
<td>no yes yes 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aSUM</td>
<td>yes no</td>
<td>yes yes yes 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td>yes variable</td>
<td>no no yes 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBAC</td>
<td>no fixed</td>
<td>no yes yes 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-Alpha</td>
<td>no fixed</td>
<td>yes yes yes 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKAT</td>
<td>no fixed</td>
<td>yes yes yes 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKAT-O</td>
<td>no fixed</td>
<td>yes yes yes 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOMP</td>
<td>hybrid</td>
<td>no yes yes 10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference